code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class UpperCamelCase_ ( nn.Module ):
def __init__( self , A = 16 , A = 88 , A = None , A = 1 , A = 0.0 , A = 32 , A = None , A = False , A = None , A = None , A = "geglu" , A = None , ) -> Optional[int]:
super().__init__()
UpperCAmelCase : str = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=A , attention_head_dim=A , in_channels=A , num_layers=A , dropout=A , norm_num_groups=A , cross_attention_dim=A , attention_bias=A , sample_size=A , num_vector_embeds=A , activation_fn=A , num_embeds_ada_norm=A , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
UpperCAmelCase : int = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
UpperCAmelCase : int = [77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
UpperCAmelCase : Optional[int] = [1, 0]
def _lowercase( self , A , A , A=None , A=None , A=None , A = True , ) -> List[str]:
UpperCAmelCase : List[str] = hidden_states
UpperCAmelCase : str = []
UpperCAmelCase : Union[str, Any] = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
UpperCAmelCase : str = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
UpperCAmelCase : List[Any] = self.transformer_index_for_condition[i]
UpperCAmelCase : Union[str, Any] = self.transformers[transformer_index](
A , encoder_hidden_states=A , timestep=A , cross_attention_kwargs=A , return_dict=A , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
UpperCAmelCase : int = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
UpperCAmelCase : Optional[int] = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=A )
| 672 |
'''simple docstring'''
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""")
@require_sentencepiece
@require_tokenizers
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = PegasusTokenizer
lowercase = PegasusTokenizerFast
lowercase = True
lowercase = True
def _lowercase( self ) -> Tuple:
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase : int = PegasusTokenizer(A )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowercase( self ) -> int:
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def _lowercase( self , **A ) -> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def _lowercase( self , A ) -> List[str]:
return ("This is a test", "This is a test")
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = """</s>"""
UpperCAmelCase : Optional[int] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(A ) , 1103 )
def _lowercase( self ) -> Optional[Any]:
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def _lowercase( self ) -> int:
UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : Union[str, Any] = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : List[Any] = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1]
UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
def _lowercase( self ) -> int:
UpperCAmelCase : str = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 96103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions."""
UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1]
UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def _lowercase( self ) -> Any:
UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""]
UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""]
UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" )
UpperCAmelCase : List[Any] = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
@slow
def _lowercase( self ) -> List[str]:
# fmt: off
UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = PegasusTokenizer
lowercase = PegasusTokenizerFast
lowercase = True
lowercase = True
def _lowercase( self ) -> List[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowercase( self ) -> Optional[Any]:
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def _lowercase( self , **A ) -> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def _lowercase( self , A ) -> str:
return ("This is a test", "This is a test")
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : str = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
@require_torch
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""]
UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""]
UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" )
UpperCAmelCase : Optional[int] = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
def _lowercase( self ) -> int:
UpperCAmelCase : Union[str, Any] = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids
self.assertListEqual(
A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
| 672 | 1 |
'''simple docstring'''
import os
import sys
import unittest
a : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
a : Optional[int] = os.path.join(git_repo_path, """src""", """transformers""")
a : Optional[int] = """
{0} = None
"""
a : Optional[int] = """
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
"""
a : List[str] = """
def {0}(*args, **kwargs):
requires_backends({0}, {1})
"""
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self ) -> Any:
UpperCAmelCase : List[str] = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" )
self.assertIsNone(A )
UpperCAmelCase : str = find_backend(""" if not is_tokenizers_available():""" )
self.assertEqual(A , """tokenizers""" )
UpperCAmelCase : Union[str, Any] = find_backend(""" if not is_tensorflow_text_available():""" )
self.assertEqual(A , """tensorflow_text""" )
UpperCAmelCase : List[Any] = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" )
self.assertEqual(A , """sentencepiece_and_tokenizers""" )
UpperCAmelCase : Optional[int] = find_backend(
""" if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" )
self.assertEqual(A , """sentencepiece_and_tensorflow_text""" )
UpperCAmelCase : List[str] = find_backend(
""" if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" )
self.assertEqual(A , """sentencepiece_and_tokenizers_and_vision""" )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Any = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("""torch""" , A )
self.assertIn("""tensorflow_text""" , A )
self.assertIn("""sentencepiece_and_tokenizers""" , A )
# Likewise, we can't assert on the exact content of a key
self.assertIn("""BertModel""" , objects["""torch"""] )
self.assertIn("""TFBertModel""" , objects["""tf"""] )
self.assertIn("""FlaxBertModel""" , objects["""flax"""] )
self.assertIn("""BertModel""" , objects["""torch"""] )
self.assertIn("""TFBertTokenizer""" , objects["""tensorflow_text"""] )
self.assertIn("""convert_slow_tokenizer""" , objects["""sentencepiece_and_tokenizers"""] )
def _lowercase( self ) -> Any:
UpperCAmelCase : Any = create_dummy_object("""CONSTANT""" , """'torch'""" )
self.assertEqual(A , """\nCONSTANT = None\n""" )
UpperCAmelCase : str = create_dummy_object("""function""" , """'torch'""" )
self.assertEqual(
A , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" )
UpperCAmelCase : str = """
class FakeClass(metaclass=DummyObject):
_backends = 'torch'
def __init__(self, *args, **kwargs):
requires_backends(self, 'torch')
"""
UpperCAmelCase : str = create_dummy_object("""FakeClass""" , """'torch'""" )
self.assertEqual(A , A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Optional[int] = """# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, [\"torch\"])
class FakeClass(metaclass=DummyObject):
_backends = [\"torch\"]
def __init__(self, *args, **kwargs):
requires_backends(self, [\"torch\"])
"""
UpperCAmelCase : Union[str, Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} )
self.assertEqual(dummy_files["""torch"""] , A )
| 672 |
'''simple docstring'''
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase_ :
def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int:
UpperCAmelCase : str = parent
UpperCAmelCase : List[Any] = batch_size
UpperCAmelCase : Dict = image_size
UpperCAmelCase : Tuple = num_channels
UpperCAmelCase : Union[str, Any] = num_stages
UpperCAmelCase : Any = hidden_sizes
UpperCAmelCase : str = depths
UpperCAmelCase : Optional[int] = is_training
UpperCAmelCase : Union[str, Any] = use_labels
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : str = hidden_act
UpperCAmelCase : List[str] = num_labels
UpperCAmelCase : Tuple = initializer_range
UpperCAmelCase : Optional[Any] = out_features
UpperCAmelCase : List[str] = out_indices
UpperCAmelCase : Any = scope
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : List[Any] = None
if self.use_labels:
UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase : List[str] = self.get_config()
return config, pixel_values, labels
def _lowercase( self ) -> Optional[Any]:
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def _lowercase( self , A , A , A ) -> Optional[Any]:
UpperCAmelCase : int = ConvNextVaModel(config=A )
model.to(A )
model.eval()
UpperCAmelCase : List[Any] = model(A )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _lowercase( self , A , A , A ) -> Any:
UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : int = model(A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowercase( self , A , A , A ) -> Any:
UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A )
model.to(A )
model.eval()
UpperCAmelCase : Any = model(A )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
UpperCAmelCase : Any = None
UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A )
model.to(A )
model.eval()
UpperCAmelCase : int = model(A )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _lowercase( self ) -> List[str]:
UpperCAmelCase : Dict = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs
UpperCAmelCase : str = {"""pixel_values""": pixel_values}
return config, inputs_dict
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs
UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
lowercase = (
{'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
lowercase = False
lowercase = False
lowercase = False
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Dict = ConvNextVaModelTester(self )
UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 )
def _lowercase( self ) -> int:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowercase( self ) -> List[str]:
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def _lowercase( self ) -> Dict:
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def _lowercase( self ) -> Any:
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def _lowercase( self ) -> int:
pass
def _lowercase( self ) -> Dict:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels()
UpperCAmelCase : Optional[int] = True
if model_class.__name__ in [
*get_values(A ),
*get_values(A ),
]:
continue
UpperCAmelCase : Any = model_class(A )
model.to(A )
model.train()
UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A )
UpperCAmelCase : List[str] = model(**A ).loss
loss.backward()
def _lowercase( self ) -> Tuple:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels()
UpperCAmelCase : List[str] = False
UpperCAmelCase : int = True
if (
model_class.__name__
in [*get_values(A ), *get_values(A )]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCAmelCase : Dict = model_class(A )
model.to(A )
model.gradient_checkpointing_enable()
model.train()
UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A )
UpperCAmelCase : Any = model(**A ).loss
loss.backward()
def _lowercase( self ) -> Tuple:
UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : int = model_class(A )
UpperCAmelCase : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : Tuple = [*signature.parameters.keys()]
UpperCAmelCase : Optional[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , A )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> List[str]:
def check_hidden_states_output(A , A , A ):
UpperCAmelCase : Optional[Any] = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) )
UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase : Optional[Any] = self.model_tester.num_stages
self.assertEqual(len(A ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : str = True
check_hidden_states_output(A , A , A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase : int = True
check_hidden_states_output(A , A , A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def _lowercase( self ) -> Any:
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A )
self.assertIsNotNone(A )
def __lowerCamelCase ( ) -> Optional[int]:
UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
@cached_property
def _lowercase( self ) -> str:
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A )
UpperCAmelCase : List[Any] = self.default_image_processor
UpperCAmelCase : Any = prepare_img()
UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A )
# forward pass
with torch.no_grad():
UpperCAmelCase : Optional[Any] = model(**A )
# verify the logits
UpperCAmelCase : Dict = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , A )
UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
| 672 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : int = logging.get_logger(__name__)
a : str = {
"""facebook/s2t-wav2vec2-large-en-de""": (
"""https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json"""
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech2text2
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'speech_to_text_2'
lowercase = ['past_key_values']
lowercase = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , A=10000 , A=6 , A=2048 , A=4 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=2 , A=True , A=1 , A=0 , A=2 , A=1024 , **A , ) -> List[str]:
UpperCAmelCase : Optional[int] = vocab_size
UpperCAmelCase : List[str] = d_model
UpperCAmelCase : Any = decoder_ffn_dim
UpperCAmelCase : Optional[int] = decoder_layers
UpperCAmelCase : Any = decoder_attention_heads
UpperCAmelCase : Optional[Any] = dropout
UpperCAmelCase : int = attention_dropout
UpperCAmelCase : Dict = activation_dropout
UpperCAmelCase : List[str] = activation_function
UpperCAmelCase : Tuple = init_std
UpperCAmelCase : List[str] = decoder_layerdrop
UpperCAmelCase : Optional[Any] = use_cache
UpperCAmelCase : Tuple = decoder_layers
UpperCAmelCase : Dict = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase : int = max_target_positions
super().__init__(
pad_token_id=A , bos_token_id=A , eos_token_id=A , decoder_start_token_id=A , **A , )
| 672 |
'''simple docstring'''
from scipy.stats import pearsonr
import datasets
a : str = """
Pearson correlation coefficient and p-value for testing non-correlation.
The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.
"""
a : Dict = """
Args:
predictions (`list` of `int`): Predicted class labels, as returned by a model.
references (`list` of `int`): Ground truth labels.
return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.
Returns:
pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.
p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.
Examples:
Example 1-A simple example using only predictions and references.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])
>>> print(round(results['pearsonr'], 2))
-0.74
Example 2-The same as Example 1, but that also returns the `p-value`.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)
>>> print(sorted(list(results.keys())))
['p-value', 'pearsonr']
>>> print(round(results['pearsonr'], 2))
-0.74
>>> print(round(results['p-value'], 2))
0.15
"""
a : Optional[int] = """
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, Ilhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Antonio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
def _lowercase( self ) -> Optional[int]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , )
def _lowercase( self , A , A , A=False ) -> int:
if return_pvalue:
UpperCAmelCase : int = pearsonr(A , A )
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(A , A )[0] )}
| 672 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
a : Any = {
"""configuration_swiftformer""": [
"""SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""SwiftFormerConfig""",
"""SwiftFormerOnnxConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[Any] = [
"""SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""SwiftFormerForImageClassification""",
"""SwiftFormerModel""",
"""SwiftFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_swiftformer import (
SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
SwiftFormerConfig,
SwiftFormerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swiftformer import (
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SwiftFormerForImageClassification,
SwiftFormerModel,
SwiftFormerPreTrainedModel,
)
else:
import sys
a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 672 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]:
UpperCAmelCase : Optional[int] = list(_lowercase )
UpperCAmelCase : Dict = list(_lowercase )
UpperCAmelCase : str = 0
for i in range(len(_lowercase ) ):
if lista[i] != lista[i]:
count += 1
UpperCAmelCase : Optional[Any] = """_"""
if count > 1:
return False
else:
return "".join(_lowercase )
def __lowerCamelCase ( _lowercase ) -> list[str]:
UpperCAmelCase : List[str] = []
while True:
UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase )
UpperCAmelCase : int = []
for i in range(len(_lowercase ) ):
for j in range(i + 1 , len(_lowercase ) ):
UpperCAmelCase : str = compare_string(binary[i] , binary[j] )
if k is False:
UpperCAmelCase : Union[str, Any] = """*"""
UpperCAmelCase : Optional[Any] = """*"""
temp.append("""X""" )
for i in range(len(_lowercase ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(_lowercase ) == 0:
return pi
UpperCAmelCase : List[Any] = list(set(_lowercase ) )
def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]:
UpperCAmelCase : Dict = []
for minterm in minterms:
UpperCAmelCase : List[str] = """"""
for _ in range(_lowercase ):
UpperCAmelCase : Dict = str(minterm % 2 ) + string
minterm //= 2
temp.append(_lowercase )
return temp
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool:
UpperCAmelCase : Optional[int] = list(_lowercase )
UpperCAmelCase : Dict = list(_lowercase )
UpperCAmelCase : Dict = 0
for i in range(len(_lowercase ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]:
UpperCAmelCase : Tuple = []
UpperCAmelCase : Optional[int] = [0] * len(_lowercase )
for i in range(len(chart[0] ) ):
UpperCAmelCase : Any = 0
UpperCAmelCase : Optional[Any] = -1
for j in range(len(_lowercase ) ):
if chart[j][i] == 1:
count += 1
UpperCAmelCase : str = j
if count == 1:
UpperCAmelCase : Optional[int] = 1
for i in range(len(_lowercase ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(_lowercase ) ):
UpperCAmelCase : List[str] = 0
temp.append(prime_implicants[i] )
while True:
UpperCAmelCase : int = 0
UpperCAmelCase : Tuple = -1
UpperCAmelCase : Union[str, Any] = 0
for i in range(len(_lowercase ) ):
UpperCAmelCase : Optional[Any] = chart[i].count(1 )
if count_n > max_n:
UpperCAmelCase : Union[str, Any] = count_n
UpperCAmelCase : Optional[Any] = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(_lowercase ) ):
UpperCAmelCase : Optional[Any] = 0
def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]:
UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )]
for i in range(len(_lowercase ) ):
UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" )
for j in range(len(_lowercase ) ):
if is_for_table(prime_implicants[i] , binary[j] , _lowercase ):
UpperCAmelCase : List[Any] = 1
return chart
def __lowerCamelCase ( ) -> None:
UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) )
UpperCAmelCase : List[Any] = [
float(_lowercase )
for x in input(
"""Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split()
]
UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase )
UpperCAmelCase : Tuple = check(_lowercase )
print("""Prime Implicants are:""" )
print(_lowercase )
UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase )
UpperCAmelCase : Tuple = selection(_lowercase , _lowercase )
print("""Essential Prime Implicants are:""" )
print(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 672 | 1 |
'''simple docstring'''
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = StableUnCLIPPipeline
lowercase = TEXT_TO_IMAGE_PARAMS
lowercase = TEXT_TO_IMAGE_BATCH_PARAMS
lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS
lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
lowercase = False
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : int = 32
UpperCAmelCase : int = embedder_hidden_size
# prior components
torch.manual_seed(0 )
UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
torch.manual_seed(0 )
UpperCAmelCase : Dict = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=A , projection_dim=A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
UpperCAmelCase : int = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=A , num_layers=1 , )
torch.manual_seed(0 )
UpperCAmelCase : Union[str, Any] = DDPMScheduler(
variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=A , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , )
# regular denoising components
torch.manual_seed(0 )
UpperCAmelCase : Any = StableUnCLIPImageNormalizer(embedding_dim=A )
UpperCAmelCase : Any = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" )
torch.manual_seed(0 )
UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
torch.manual_seed(0 )
UpperCAmelCase : str = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
UpperCAmelCase : int = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=A , layers_per_block=1 , upcast_attention=A , use_linear_projection=A , )
torch.manual_seed(0 )
UpperCAmelCase : Any = DDIMScheduler(
beta_schedule="""scaled_linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type="""v_prediction""" , set_alpha_to_one=A , steps_offset=1 , )
torch.manual_seed(0 )
UpperCAmelCase : Optional[Any] = AutoencoderKL()
UpperCAmelCase : str = {
# prior components
"""prior_tokenizer""": prior_tokenizer,
"""prior_text_encoder""": prior_text_encoder,
"""prior""": prior,
"""prior_scheduler""": prior_scheduler,
# image noising components
"""image_normalizer""": image_normalizer,
"""image_noising_scheduler""": image_noising_scheduler,
# regular denoising components
"""tokenizer""": tokenizer,
"""text_encoder""": text_encoder,
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
}
return components
def _lowercase( self , A , A=0 ) -> Optional[int]:
if str(A ).startswith("""mps""" ):
UpperCAmelCase : Union[str, Any] = torch.manual_seed(A )
else:
UpperCAmelCase : Dict = torch.Generator(device=A ).manual_seed(A )
UpperCAmelCase : Tuple = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""prior_num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def _lowercase( self ) -> Dict:
UpperCAmelCase : List[str] = torch_device == """cpu"""
self._test_attention_slicing_forward_pass(test_max_difference=A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : List[str] = torch_device in ["""cpu""", """mps"""]
self._test_inference_batch_single_identical(test_max_difference=A )
@slow
@require_torch_gpu
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Optional[Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" )
UpperCAmelCase : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 )
UpperCAmelCase : Union[str, Any] = pipe("""anime turle""" , generator=A , output_type="""np""" )
UpperCAmelCase : List[Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(A , A )
def _lowercase( self ) -> List[str]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
UpperCAmelCase : Any = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa )
UpperCAmelCase : Any = pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase : Dict = pipe(
"""anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , )
UpperCAmelCase : Any = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 672 |
'''simple docstring'''
a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)]
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : str = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0]
number //= 1_0_0_0_0_0
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0
a : Optional[Any] = True
a : List[Any] = False
def __lowerCamelCase ( _lowercase ) -> bool:
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
UpperCAmelCase : List[str] = chain(next_number(_lowercase ) )
UpperCAmelCase : Tuple = number_chain
while number < 1_0_0_0_0_0_0_0:
UpperCAmelCase : List[str] = number_chain
number *= 1_0
return number_chain
def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int:
for i in range(1 , _lowercase ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'''{solution() = }''')
| 672 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
a : Optional[Any] = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : str = ["""ReformerTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[str] = ["""ReformerTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : int = [
"""REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ReformerAttention""",
"""ReformerForMaskedLM""",
"""ReformerForQuestionAnswering""",
"""ReformerForSequenceClassification""",
"""ReformerLayer""",
"""ReformerModel""",
"""ReformerModelWithLMHead""",
"""ReformerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 672 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a : Optional[Any] = {
"""configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""],
"""tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Dict = ["""BertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[Any] = [
"""BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BertForMaskedLM""",
"""BertForMultipleChoice""",
"""BertForNextSentencePrediction""",
"""BertForPreTraining""",
"""BertForQuestionAnswering""",
"""BertForSequenceClassification""",
"""BertForTokenClassification""",
"""BertLayer""",
"""BertLMHeadModel""",
"""BertModel""",
"""BertPreTrainedModel""",
"""load_tf_weights_in_bert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[str] = [
"""TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBertEmbeddings""",
"""TFBertForMaskedLM""",
"""TFBertForMultipleChoice""",
"""TFBertForNextSentencePrediction""",
"""TFBertForPreTraining""",
"""TFBertForQuestionAnswering""",
"""TFBertForSequenceClassification""",
"""TFBertForTokenClassification""",
"""TFBertLMHeadModel""",
"""TFBertMainLayer""",
"""TFBertModel""",
"""TFBertPreTrainedModel""",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : int = ["""TFBertTokenizer"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[Any] = [
"""FlaxBertForCausalLM""",
"""FlaxBertForMaskedLM""",
"""FlaxBertForMultipleChoice""",
"""FlaxBertForNextSentencePrediction""",
"""FlaxBertForPreTraining""",
"""FlaxBertForQuestionAnswering""",
"""FlaxBertForSequenceClassification""",
"""FlaxBertForTokenClassification""",
"""FlaxBertModel""",
"""FlaxBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 672 | 1 |
'''simple docstring'''
from __future__ import annotations
def __lowerCamelCase ( _lowercase ) -> bool:
UpperCAmelCase : Tuple = str(_lowercase )
return n == n[::-1]
def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0 ) -> List[Any]:
UpperCAmelCase : int = 0
for i in range(1 , _lowercase ):
if is_palindrome(_lowercase ) and is_palindrome(bin(_lowercase ).split("""b""" )[1] ):
total += i
return total
if __name__ == "__main__":
print(solution(int(str(input().strip()))))
| 672 |
'''simple docstring'''
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any:
UpperCAmelCase : Optional[int] = False
UpperCAmelCase : Any = search_prob
UpperCAmelCase : Any = start_temperate
UpperCAmelCase : Optional[Any] = []
UpperCAmelCase : Optional[Any] = 0
UpperCAmelCase : Optional[Any] = None
while not search_end:
UpperCAmelCase : List[str] = current_state.score()
if best_state is None or current_score > best_state.score():
UpperCAmelCase : List[Any] = current_state
scores.append(_lowercase )
iterations += 1
UpperCAmelCase : Dict = None
UpperCAmelCase : Union[str, Any] = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor
UpperCAmelCase : int = neighbors.pop(_lowercase )
UpperCAmelCase : Tuple = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
UpperCAmelCase : int = picked_neighbor
else:
UpperCAmelCase : Optional[Any] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
UpperCAmelCase : Optional[int] = picked_neighbor
UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
UpperCAmelCase : Optional[int] = True
else:
UpperCAmelCase : Optional[int] = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(_lowercase ) , _lowercase )
plt.xlabel("""Iterations""" )
plt.ylabel("""Function values""" )
plt.show()
return best_state
if __name__ == "__main__":
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa)
a : Dict = simulated_annealing(
prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True
)
print(
"""The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa)
a : Dict = simulated_annealing(
prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True
)
print(
"""The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]:
return (3 * x**2) - (6 * y)
a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a : Any = simulated_annealing(prob, find_max=False, visualization=True)
print(
"""The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F'''{local_min.score()}'''
)
a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a : Dict = simulated_annealing(prob, find_max=True, visualization=True)
print(
"""The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F'''{local_min.score()}'''
)
| 672 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
a : Optional[Any] = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Union[str, Any] = ["""GLPNFeatureExtractor"""]
a : Tuple = ["""GLPNImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : str = [
"""GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GLPNForDepthEstimation""",
"""GLPNLayer""",
"""GLPNModel""",
"""GLPNPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_glpn import GLPNFeatureExtractor
from .image_processing_glpn import GLPNImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_glpn import (
GLPN_PRETRAINED_MODEL_ARCHIVE_LIST,
GLPNForDepthEstimation,
GLPNLayer,
GLPNModel,
GLPNPreTrainedModel,
)
else:
import sys
a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 672 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : Any = {
"""configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Any = [
"""NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""NezhaForNextSentencePrediction""",
"""NezhaForMaskedLM""",
"""NezhaForPreTraining""",
"""NezhaForMultipleChoice""",
"""NezhaForQuestionAnswering""",
"""NezhaForSequenceClassification""",
"""NezhaForTokenClassification""",
"""NezhaModel""",
"""NezhaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nezha import (
NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
NezhaPreTrainedModel,
)
else:
import sys
a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 672 | 1 |
'''simple docstring'''
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
a : Union[str, Any] = logging.get_logger(__name__)
a : str = {
"""artists_file""": """artists.json""",
"""lyrics_file""": """lyrics.json""",
"""genres_file""": """genres.json""",
}
a : List[Any] = {
"""artists_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""",
},
"""genres_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""",
},
"""lyrics_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""",
},
}
a : Union[str, Any] = {
"""jukebox""": 5_1_2,
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_LYRIC_TOKENS_SIZES
lowercase = ['input_ids', 'attention_mask']
def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=512 , A=5 , A="<|endoftext|>" , **A , ) -> Any:
UpperCAmelCase : Any = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token
super().__init__(
unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , )
UpperCAmelCase : Any = version
UpperCAmelCase : Any = max_n_lyric_tokens
UpperCAmelCase : Optional[Any] = n_genres
with open(A , encoding="""utf-8""" ) as vocab_handle:
UpperCAmelCase : Tuple = json.load(A )
with open(A , encoding="""utf-8""" ) as vocab_handle:
UpperCAmelCase : Tuple = json.load(A )
with open(A , encoding="""utf-8""" ) as vocab_handle:
UpperCAmelCase : List[Any] = json.load(A )
UpperCAmelCase : Any = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+"""
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
UpperCAmelCase : str = oov.replace(r"""\-'""" , r"""\-+'""" )
UpperCAmelCase : Union[str, Any] = regex.compile(A )
UpperCAmelCase : Dict = {v: k for k, v in self.artists_encoder.items()}
UpperCAmelCase : Any = {v: k for k, v in self.genres_encoder.items()}
UpperCAmelCase : Optional[Any] = {v: k for k, v in self.lyrics_encoder.items()}
@property
def _lowercase( self ) -> Any:
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def _lowercase( self ) -> Union[str, Any]:
return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder )
def _lowercase( self , A , A , A ) -> Optional[Any]:
UpperCAmelCase : str = [self.artists_encoder.get(A , 0 ) for artist in list_artists]
for genres in range(len(A ) ):
UpperCAmelCase : str = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]]
UpperCAmelCase : Optional[Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
UpperCAmelCase : List[str] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def _lowercase( self , A ) -> Dict:
return list(A )
def _lowercase( self , A , A , A , **A ) -> Optional[int]:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = self.prepare_for_tokenization(A , A , A )
UpperCAmelCase : Optional[int] = self._tokenize(A )
return artist, genre, lyrics
def _lowercase( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]:
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
UpperCAmelCase : List[Any] = artists[idx].lower()
UpperCAmelCase : Dict = [genres[idx].lower()]
else:
UpperCAmelCase : Any = self._normalize(artists[idx] ) + """.v2"""
UpperCAmelCase : Union[str, Any] = [
self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
UpperCAmelCase : Union[str, Any] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" )
UpperCAmelCase : Any = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n"""
UpperCAmelCase : Dict = {vocab[index]: index + 1 for index in range(len(A ) )}
UpperCAmelCase : Optional[int] = 0
UpperCAmelCase : Any = len(A ) + 1
UpperCAmelCase : Optional[int] = self.vocab
UpperCAmelCase : str = {v: k for k, v in self.vocab.items()}
UpperCAmelCase : Any = """"""
else:
UpperCAmelCase : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" )
UpperCAmelCase : Optional[int] = self._run_strip_accents(A )
UpperCAmelCase : List[str] = lyrics.replace("""\\""" , """\n""" )
UpperCAmelCase : Optional[int] = self.out_of_vocab.sub("""""" , A ), [], []
return artists, genres, lyrics
def _lowercase( self , A ) -> str:
UpperCAmelCase : Dict = unicodedata.normalize("""NFD""" , A )
UpperCAmelCase : Any = []
for char in text:
UpperCAmelCase : Dict = unicodedata.category(A )
if cat == "Mn":
continue
output.append(A )
return "".join(A )
def _lowercase( self , A ) -> str:
UpperCAmelCase : Union[str, Any] = (
[chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )]
+ [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )]
+ [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )]
+ ["""."""]
)
UpperCAmelCase : List[str] = frozenset(A )
UpperCAmelCase : Dict = re.compile(r"""_+""" )
UpperCAmelCase : List[str] = """""".join([c if c in accepted else """_""" for c in text.lower()] )
UpperCAmelCase : Any = pattern.sub("""_""" , A ).strip("""_""" )
return text
def _lowercase( self , A ) -> str:
return " ".join(A )
def _lowercase( self , A , A = None , A = False ) -> Dict:
# Convert to TensorType
if not isinstance(A , A ):
UpperCAmelCase : Any = TensorType(A )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
"""Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" )
import tensorflow as tf
UpperCAmelCase : Optional[int] = tf.constant
UpperCAmelCase : Dict = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" )
import torch
UpperCAmelCase : Optional[Any] = torch.tensor
UpperCAmelCase : Optional[Any] = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" )
import jax.numpy as jnp # noqa: F811
UpperCAmelCase : Any = jnp.array
UpperCAmelCase : Optional[Any] = _is_jax
else:
UpperCAmelCase : List[str] = np.asarray
UpperCAmelCase : List[str] = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
UpperCAmelCase : List[Any] = [inputs]
if not is_tensor(A ):
UpperCAmelCase : Dict = as_tensor(A )
except: # noqa E722
raise ValueError(
"""Unable to create tensor, you should probably activate truncation and/or padding """
"""with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" )
return inputs
def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding:
UpperCAmelCase : Tuple = [0, 0, 0]
UpperCAmelCase : Optional[int] = [artist] * len(self.version )
UpperCAmelCase : List[str] = [genres] * len(self.version )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = self.tokenize(A , A , A )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = self._convert_token_to_id(A , A , A )
UpperCAmelCase : int = [-INFINITY] * len(full_tokens[-1] )
UpperCAmelCase : List[str] = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A )
for i in range(len(self.version ) )
]
return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} )
def _lowercase( self , A , A = None ) -> Tuple[str]:
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase : List[Any] = os.path.join(
A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] )
with open(A , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) )
UpperCAmelCase : Any = os.path.join(
A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] )
with open(A , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) )
UpperCAmelCase : Union[str, Any] = os.path.join(
A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] )
with open(A , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) )
return (artists_file, genres_file, lyrics_file)
def _lowercase( self , A , A , A ) -> Tuple:
UpperCAmelCase : Union[str, Any] = self.artists_decoder.get(A )
UpperCAmelCase : Any = [self.genres_decoder.get(A ) for genre in genres_index]
UpperCAmelCase : Dict = [self.lyrics_decoder.get(A ) for character in lyric_index]
return artist, genres, lyrics
| 672 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
a : Tuple = False
class UpperCamelCase_ ( unittest.TestCase ):
pass
@slow
@require_torch_gpu
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
UpperCAmelCase : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" )
UpperCAmelCase : List[Any] = torch.manual_seed(0 )
UpperCAmelCase : List[str] = pipe(
image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images
UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 672 | 1 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool:
UpperCAmelCase : Union[str, Any] = set()
# Replace all the whitespace in our sentence
UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" )
for alpha in input_str:
if "a" <= alpha.lower() <= "z":
frequency.add(alpha.lower() )
return len(_lowercase ) == 2_6
def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool:
UpperCAmelCase : Tuple = [False] * 2_6
for char in input_str:
if char.islower():
UpperCAmelCase : Any = True
elif char.isupper():
UpperCAmelCase : Union[str, Any] = True
return all(_lowercase )
def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool:
return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6
def __lowerCamelCase ( ) -> None:
from timeit import timeit
UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest"""
print(timeit("""is_pangram()""" , setup=_lowercase ) )
print(timeit("""is_pangram_faster()""" , setup=_lowercase ) )
print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) )
# 5.348480500048026, 2.6477354579837993, 1.8470395830227062
# 5.036091582966037, 2.644472333951853, 1.8869528750656173
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 672 |
'''simple docstring'''
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
a : Any = get_logger()
a : Optional[dict] = None
class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ):
def __init__( self , A=None , A=None , **A ) -> str:
super().__init__(features=A )
import jax
from jaxlib.xla_client import Device
if isinstance(A , A ):
raise ValueError(
f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` '''
"""is not serializable neither with `pickle` nor with `dill`. Instead you can surround """
"""the device with `str()` to get its string identifier that will be internally mapped """
"""to the actual `jaxlib.xla_extension.Device`.""" )
UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
UpperCAmelCase : Any = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
f'''Device with string identifier {self.device} not listed among the available '''
f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default '''
f'''device: {str(jax.devices()[0] )}.''' )
UpperCAmelCase : List[Any] = str(jax.devices()[0] )
UpperCAmelCase : Union[str, Any] = jnp_array_kwargs
@staticmethod
def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]:
import jax
return {str(A ): device for device in jax.devices()}
def _lowercase( self , A ) -> str:
import jax
import jax.numpy as jnp
if isinstance(A , A ) and column:
if all(
isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(A , axis=0 )
return column
def _lowercase( self , A ) -> Tuple:
import jax
import jax.numpy as jnp
if isinstance(A , (str, bytes, type(A )) ):
return value
elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
UpperCAmelCase : List[str] = {}
if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
UpperCAmelCase : str = {"""dtype""": jnp.intaa}
else:
UpperCAmelCase : int = {"""dtype""": jnp.intaa}
elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
UpperCAmelCase : Any = {"""dtype""": jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(A , PIL.Image.Image ):
UpperCAmelCase : List[str] = np.asarray(A )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
UpperCAmelCase : Dict = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} )
def _lowercase( self , A ) -> Tuple:
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(A , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ):
UpperCAmelCase : Optional[int] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(A , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] )
elif isinstance(A , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] )
return self._tensorize(A )
def _lowercase( self , A ) -> Dict:
return map_nested(self._recursive_tensorize , A , map_list=A )
def _lowercase( self , A ) -> Mapping:
UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A )
UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A )
return self.recursive_tensorize(A )
def _lowercase( self , A ) -> "jax.Array":
UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A )
UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] )
UpperCAmelCase : Optional[int] = self.recursive_tensorize(A )
UpperCAmelCase : Any = self._consolidate(A )
return column
def _lowercase( self , A ) -> Mapping:
UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A )
UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A )
UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A )
for column_name in batch:
UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] )
return batch
| 672 | 1 |
'''simple docstring'''
from typing import List
import numpy as np
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : Optional[Any] = {key: len(_lowercase ) for key, value in gen_kwargs.items() if isinstance(_lowercase , _lowercase )}
if len(set(lists_lengths.values() ) ) > 1:
raise RuntimeError(
(
"""Sharding is ambiguous for this dataset: """
+ """we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n"""
+ """\n""".join(F'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() )
+ """\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, """
+ """and use tuples otherwise. In the end there should only be one single list, or several lists with the same length."""
) )
UpperCAmelCase : Dict = max(lists_lengths.values() , default=0 )
return max(1 , _lowercase )
def __lowerCamelCase ( _lowercase , _lowercase ) -> List[range]:
UpperCAmelCase : Dict = []
for group_idx in range(_lowercase ):
UpperCAmelCase : Tuple = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs))
if num_shards_to_add == 0:
break
UpperCAmelCase : int = shards_indices_per_group[-1].stop if shards_indices_per_group else 0
UpperCAmelCase : List[str] = range(_lowercase , start + num_shards_to_add )
shards_indices_per_group.append(_lowercase )
return shards_indices_per_group
def __lowerCamelCase ( _lowercase , _lowercase ) -> List[dict]:
UpperCAmelCase : List[Any] = _number_of_shards_in_gen_kwargs(_lowercase )
if num_shards == 1:
return [dict(_lowercase )]
else:
UpperCAmelCase : int = _distribute_shards(num_shards=_lowercase , max_num_jobs=_lowercase )
return [
{
key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]]
if isinstance(_lowercase , _lowercase )
else value
for key, value in gen_kwargs.items()
}
for group_idx in range(len(_lowercase ) )
]
def __lowerCamelCase ( _lowercase ) -> dict:
return {
key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]]
if isinstance(gen_kwargs_list[0][key] , _lowercase )
else gen_kwargs_list[0][key]
for key in gen_kwargs_list[0]
}
def __lowerCamelCase ( _lowercase , _lowercase ) -> dict:
UpperCAmelCase : str = {len(_lowercase ) for value in gen_kwargs.values() if isinstance(_lowercase , _lowercase )}
UpperCAmelCase : int = {}
for size in list_sizes:
UpperCAmelCase : int = list(range(_lowercase ) )
rng.shuffle(indices_per_size[size] )
# Now let's copy the gen_kwargs and shuffle the lists based on their sizes
UpperCAmelCase : List[Any] = dict(_lowercase )
for key, value in shuffled_kwargs.items():
if isinstance(_lowercase , _lowercase ):
UpperCAmelCase : Dict = [value[i] for i in indices_per_size[len(_lowercase )]]
return shuffled_kwargs
| 672 |
'''simple docstring'''
from datetime import datetime as dt
import os
from github import Github
a : int = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""feature request""",
"""new model""",
"""wip""",
]
def __lowerCamelCase ( ) -> Dict:
UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] )
UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" )
UpperCAmelCase : int = repo.get_issues(state="""open""" )
for issue in open_issues:
UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase )
UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 3_0
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state="""closed""" )
elif (
(dt.utcnow() - issue.updated_at).days > 2_3
and (dt.utcnow() - issue.created_at).days >= 3_0
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
if __name__ == "__main__":
main()
| 672 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class UpperCamelCase_ ( unittest.TestCase ):
def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=4 , ) -> Dict:
UpperCAmelCase : Any = parent
UpperCAmelCase : Union[str, Any] = batch_size
UpperCAmelCase : List[str] = seq_length
UpperCAmelCase : Union[str, Any] = is_training
UpperCAmelCase : str = use_attention_mask
UpperCAmelCase : Dict = use_token_type_ids
UpperCAmelCase : Optional[Any] = use_labels
UpperCAmelCase : Dict = vocab_size
UpperCAmelCase : Optional[Any] = hidden_size
UpperCAmelCase : List[str] = num_hidden_layers
UpperCAmelCase : Union[str, Any] = num_attention_heads
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : Dict = hidden_act
UpperCAmelCase : Union[str, Any] = hidden_dropout_prob
UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
UpperCAmelCase : Union[str, Any] = max_position_embeddings
UpperCAmelCase : Dict = type_vocab_size
UpperCAmelCase : List[str] = type_sequence_label_size
UpperCAmelCase : str = initializer_range
UpperCAmelCase : Optional[int] = num_choices
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Optional[Any] = None
if self.use_attention_mask:
UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Dict = None
if self.use_token_type_ids:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase : Tuple = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def _lowercase( self ) -> int:
UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs
UpperCAmelCase : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = True
lowercase = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _lowercase( self ) -> int:
UpperCAmelCase : Dict = FlaxRoFormerModelTester(self )
@slow
def _lowercase( self ) -> int:
for model_class_name in self.all_model_classes:
UpperCAmelCase : str = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=A )
UpperCAmelCase : List[str] = model(np.ones((1, 1) ) )
self.assertIsNotNone(A )
@require_flax
class UpperCamelCase_ ( unittest.TestCase ):
@slow
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : int = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
UpperCAmelCase : List[str] = jnp.array([[0, 1, 2, 3, 4, 5]] )
UpperCAmelCase : List[Any] = model(A )[0]
UpperCAmelCase : Dict = 50000
UpperCAmelCase : Any = (1, 6, vocab_size)
self.assertEqual(output.shape , A )
UpperCAmelCase : int = jnp.array(
[[[-0.1_2_0_5, -1.0_2_6_5, 0.2_9_2_2], [-1.5_1_3_4, 0.1_9_7_4, 0.1_5_1_9], [-5.0_1_3_5, -3.9_0_0_3, -0.8_4_0_4]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , A , atol=1e-4 ) )
| 672 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class UpperCamelCase_ :
def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any:
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : List[Any] = batch_size
UpperCAmelCase : Union[str, Any] = seq_length
UpperCAmelCase : Optional[int] = is_training
UpperCAmelCase : str = use_input_mask
UpperCAmelCase : Optional[int] = use_token_type_ids
UpperCAmelCase : Dict = use_labels
UpperCAmelCase : str = vocab_size
UpperCAmelCase : Optional[int] = hidden_size
UpperCAmelCase : str = num_hidden_layers
UpperCAmelCase : Any = num_attention_heads
UpperCAmelCase : Union[str, Any] = intermediate_size
UpperCAmelCase : str = hidden_act
UpperCAmelCase : Any = hidden_dropout_prob
UpperCAmelCase : str = attention_probs_dropout_prob
UpperCAmelCase : Tuple = max_position_embeddings
UpperCAmelCase : Optional[Any] = type_vocab_size
UpperCAmelCase : Optional[Any] = type_sequence_label_size
UpperCAmelCase : str = initializer_range
UpperCAmelCase : List[Any] = num_labels
UpperCAmelCase : Dict = num_choices
UpperCAmelCase : Tuple = scope
def _lowercase( self ) -> Dict:
UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Optional[Any] = None
if self.use_input_mask:
UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Optional[Any] = None
if self.use_token_type_ids:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase : Union[str, Any] = None
UpperCAmelCase : Dict = None
UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowercase( self ) -> Dict:
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , )
def _lowercase( self , A , A , A , A , A , A , A ) -> str:
UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A )
model.to(A )
model.eval()
UpperCAmelCase : Dict = model(A , attention_mask=A )
UpperCAmelCase : Optional[int] = model(A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]:
UpperCAmelCase : Optional[int] = True
UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A )
model.to(A )
model.eval()
UpperCAmelCase : List[Any] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , )
UpperCAmelCase : str = model(
A , attention_mask=A , encoder_hidden_states=A , )
UpperCAmelCase : List[Any] = model(A , attention_mask=A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int:
UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A )
model.to(A )
model.eval()
UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int:
UpperCAmelCase : Dict = True
UpperCAmelCase : Tuple = True
UpperCAmelCase : str = OpenLlamaForCausalLM(config=A )
model.to(A )
model.eval()
# first forward pass
UpperCAmelCase : Union[str, Any] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , )
UpperCAmelCase : str = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCAmelCase : List[Any] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0]
UpperCAmelCase : Optional[Any] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0]
# select random slice
UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : Tuple = config_and_inputs
UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else ()
lowercase = (
{
'feature-extraction': OpenLlamaModel,
'text-classification': OpenLlamaForSequenceClassification,
'text-generation': OpenLlamaForCausalLM,
'zero-shot': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Dict = OpenLlamaModelTester(self )
UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 )
def _lowercase( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def _lowercase( self ) -> int:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> str:
UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase : int = type
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> str:
UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : List[str] = 3
UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""]
UpperCAmelCase : str = input_ids.ne(1 ).to(A )
UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Dict = 3
UpperCAmelCase : Any = """single_label_classification"""
UpperCAmelCase : Dict = input_dict["""input_ids"""]
UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A )
UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowercase( self ) -> int:
UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Tuple = 3
UpperCAmelCase : Optional[Any] = """multi_label_classification"""
UpperCAmelCase : Dict = input_dict["""input_ids"""]
UpperCAmelCase : int = input_ids.ne(1 ).to(A )
UpperCAmelCase : int = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" )
def _lowercase( self ) -> Dict:
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def _lowercase( self , A ) -> str:
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size )
UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase : Any = OpenLlamaModel(A )
original_model.to(A )
original_model.eval()
UpperCAmelCase : List[str] = original_model(A ).last_hidden_state
UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0}
UpperCAmelCase : str = OpenLlamaModel(A )
scaled_model.to(A )
scaled_model.eval()
UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state
UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(A , A , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
| 672 | 1 |
'''simple docstring'''
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class UpperCamelCase_ ( __magic_name__ ):
lowercase = (UniPCMultistepScheduler,)
lowercase = (('num_inference_steps', 25),)
def _lowercase( self , **A ) -> List[str]:
UpperCAmelCase : List[str] = {
"""num_train_timesteps""": 1000,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
"""solver_order""": 2,
"""solver_type""": """bh2""",
}
config.update(**A )
return config
def _lowercase( self , A=0 , **A ) -> Optional[int]:
UpperCAmelCase : Optional[Any] = dict(self.forward_default_kwargs )
UpperCAmelCase : Optional[Any] = kwargs.pop("""num_inference_steps""" , A )
UpperCAmelCase : Optional[int] = self.dummy_sample
UpperCAmelCase : Dict = 0.1 * sample
UpperCAmelCase : int = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase : str = self.get_scheduler_config(**A )
UpperCAmelCase : Tuple = scheduler_class(**A )
scheduler.set_timesteps(A )
# copy over dummy past residuals
UpperCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(A )
UpperCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(A )
new_scheduler.set_timesteps(A )
# copy over dummy past residuals
UpperCAmelCase : int = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase , UpperCAmelCase : List[Any] = sample, sample
for t in range(A , time_step + scheduler.config.solver_order + 1 ):
UpperCAmelCase : Any = scheduler.step(A , A , A , **A ).prev_sample
UpperCAmelCase : str = new_scheduler.step(A , A , A , **A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def _lowercase( self , A=0 , **A ) -> int:
UpperCAmelCase : Dict = dict(self.forward_default_kwargs )
UpperCAmelCase : Tuple = kwargs.pop("""num_inference_steps""" , A )
UpperCAmelCase : Any = self.dummy_sample
UpperCAmelCase : Optional[int] = 0.1 * sample
UpperCAmelCase : List[str] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase : List[str] = self.get_scheduler_config()
UpperCAmelCase : List[Any] = scheduler_class(**A )
scheduler.set_timesteps(A )
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase : Optional[int] = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(A )
UpperCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(A )
# copy over dummy past residuals
new_scheduler.set_timesteps(A )
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase : List[str] = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase : Tuple = scheduler.step(A , A , A , **A ).prev_sample
UpperCAmelCase : int = new_scheduler.step(A , A , A , **A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def _lowercase( self , A=None , **A ) -> Any:
if scheduler is None:
UpperCAmelCase : Optional[int] = self.scheduler_classes[0]
UpperCAmelCase : List[str] = self.get_scheduler_config(**A )
UpperCAmelCase : Optional[int] = scheduler_class(**A )
UpperCAmelCase : int = self.scheduler_classes[0]
UpperCAmelCase : Optional[Any] = self.get_scheduler_config(**A )
UpperCAmelCase : str = scheduler_class(**A )
UpperCAmelCase : int = 10
UpperCAmelCase : Tuple = self.dummy_model()
UpperCAmelCase : List[str] = self.dummy_sample_deter
scheduler.set_timesteps(A )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase : Optional[int] = model(A , A )
UpperCAmelCase : Optional[Any] = scheduler.step(A , A , A ).prev_sample
return sample
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Optional[Any] = dict(self.forward_default_kwargs )
UpperCAmelCase : Dict = kwargs.pop("""num_inference_steps""" , A )
for scheduler_class in self.scheduler_classes:
UpperCAmelCase : List[Any] = self.get_scheduler_config()
UpperCAmelCase : Optional[Any] = scheduler_class(**A )
UpperCAmelCase : List[Any] = self.dummy_sample
UpperCAmelCase : List[str] = 0.1 * sample
if num_inference_steps is not None and hasattr(A , """set_timesteps""" ):
scheduler.set_timesteps(A )
elif num_inference_steps is not None and not hasattr(A , """set_timesteps""" ):
UpperCAmelCase : List[Any] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
UpperCAmelCase : Dict = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
UpperCAmelCase : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order]
UpperCAmelCase : Optional[Any] = scheduler.timesteps[5]
UpperCAmelCase : Optional[Any] = scheduler.timesteps[6]
UpperCAmelCase : Optional[int] = scheduler.step(A , A , A , **A ).prev_sample
UpperCAmelCase : int = scheduler.step(A , A , A , **A ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def _lowercase( self ) -> Any:
# make sure that iterating over schedulers with same config names gives same results
# for defaults
UpperCAmelCase : Tuple = UniPCMultistepScheduler(**self.get_scheduler_config() )
UpperCAmelCase : Any = self.full_loop(scheduler=A )
UpperCAmelCase : Tuple = torch.mean(torch.abs(A ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3
UpperCAmelCase : str = DPMSolverSinglestepScheduler.from_config(scheduler.config )
UpperCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config )
UpperCAmelCase : Union[str, Any] = DPMSolverMultistepScheduler.from_config(scheduler.config )
UpperCAmelCase : str = UniPCMultistepScheduler.from_config(scheduler.config )
UpperCAmelCase : str = self.full_loop(scheduler=A )
UpperCAmelCase : List[str] = torch.mean(torch.abs(A ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3
def _lowercase( self ) -> str:
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=A )
def _lowercase( self ) -> Optional[int]:
self.check_over_configs(thresholding=A )
for order in [1, 2, 3]:
for solver_type in ["bh1", "bh2"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=A , prediction_type=A , sample_max_value=A , solver_order=A , solver_type=A , )
def _lowercase( self ) -> Tuple:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=A )
def _lowercase( self ) -> str:
for solver_type in ["bh1", "bh2"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=A , solver_type=A , prediction_type=A , )
UpperCAmelCase : int = self.full_loop(
solver_order=A , solver_type=A , prediction_type=A , )
assert not torch.isnan(A ).any(), "Samples have nan numbers"
def _lowercase( self ) -> Optional[int]:
self.check_over_configs(lower_order_final=A )
self.check_over_configs(lower_order_final=A )
def _lowercase( self ) -> Any:
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=A , time_step=0 )
def _lowercase( self ) -> List[str]:
UpperCAmelCase : List[Any] = self.full_loop()
UpperCAmelCase : List[Any] = torch.mean(torch.abs(A ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : List[Any] = self.full_loop(prediction_type="""v_prediction""" )
UpperCAmelCase : int = torch.mean(torch.abs(A ) )
assert abs(result_mean.item() - 0.1_0_1_4 ) < 1e-3
def _lowercase( self ) -> int:
UpperCAmelCase : Dict = self.scheduler_classes[0]
UpperCAmelCase : Union[str, Any] = self.get_scheduler_config(thresholding=A , dynamic_thresholding_ratio=0 )
UpperCAmelCase : Optional[int] = scheduler_class(**A )
UpperCAmelCase : Dict = 10
UpperCAmelCase : Union[str, Any] = self.dummy_model()
UpperCAmelCase : str = self.dummy_sample_deter.half()
scheduler.set_timesteps(A )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase : Optional[int] = model(A , A )
UpperCAmelCase : Optional[Any] = scheduler.step(A , A , A ).prev_sample
assert sample.dtype == torch.floataa
def _lowercase( self , **A ) -> Union[str, Any]:
for scheduler_class in self.scheduler_classes:
UpperCAmelCase : List[str] = self.get_scheduler_config(**A )
UpperCAmelCase : Tuple = scheduler_class(**A )
scheduler.set_timesteps(scheduler.config.num_train_timesteps )
assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
| 672 |
'''simple docstring'''
import math
def __lowerCamelCase ( _lowercase ) -> bool:
assert isinstance(_lowercase , _lowercase ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = factor * value
UpperCAmelCase : List[Any] = value
while not is_prime(_lowercase ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **_lowercase )
return value
| 672 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
a : Union[str, Any] = logging.get_logger(__name__)
a : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
a : Optional[int] = {
"""vocab_file""": {
"""squeezebert/squeezebert-uncased""": (
"""https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt"""
),
"""squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""",
"""squeezebert/squeezebert-mnli-headless""": (
"""https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""squeezebert/squeezebert-uncased""": (
"""https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json"""
),
"""squeezebert/squeezebert-mnli""": (
"""https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json"""
),
"""squeezebert/squeezebert-mnli-headless""": (
"""https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json"""
),
},
}
a : Union[str, Any] = {
"""squeezebert/squeezebert-uncased""": 5_1_2,
"""squeezebert/squeezebert-mnli""": 5_1_2,
"""squeezebert/squeezebert-mnli-headless""": 5_1_2,
}
a : Tuple = {
"""squeezebert/squeezebert-uncased""": {"""do_lower_case""": True},
"""squeezebert/squeezebert-mnli""": {"""do_lower_case""": True},
"""squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True},
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_INIT_CONFIGURATION
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = SqueezeBertTokenizer
def __init__( self , A=None , A=None , A=True , A="[UNK]" , A="[SEP]" , A="[PAD]" , A="[CLS]" , A="[MASK]" , A=True , A=None , **A , ) -> Union[str, Any]:
super().__init__(
A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , )
UpperCAmelCase : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , A ) != do_lower_case
or normalizer_state.get("""strip_accents""" , A ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , A ) != tokenize_chinese_chars
):
UpperCAmelCase : Tuple = getattr(A , normalizer_state.pop("""type""" ) )
UpperCAmelCase : Optional[int] = do_lower_case
UpperCAmelCase : Any = strip_accents
UpperCAmelCase : List[Any] = tokenize_chinese_chars
UpperCAmelCase : Dict = normalizer_class(**A )
UpperCAmelCase : int = do_lower_case
def _lowercase( self , A , A=None ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _lowercase( self , A , A = None ) -> List[int]:
UpperCAmelCase : Optional[Any] = [self.sep_token_id]
UpperCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _lowercase( self , A , A = None ) -> Tuple[str]:
UpperCAmelCase : Optional[int] = self._tokenizer.model.save(A , name=A )
return tuple(A )
| 672 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool:
UpperCAmelCase : Union[str, Any] = set()
# Replace all the whitespace in our sentence
UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" )
for alpha in input_str:
if "a" <= alpha.lower() <= "z":
frequency.add(alpha.lower() )
return len(_lowercase ) == 2_6
def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool:
UpperCAmelCase : Tuple = [False] * 2_6
for char in input_str:
if char.islower():
UpperCAmelCase : Any = True
elif char.isupper():
UpperCAmelCase : Union[str, Any] = True
return all(_lowercase )
def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool:
return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6
def __lowerCamelCase ( ) -> None:
from timeit import timeit
UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest"""
print(timeit("""is_pangram()""" , setup=_lowercase ) )
print(timeit("""is_pangram_faster()""" , setup=_lowercase ) )
print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) )
# 5.348480500048026, 2.6477354579837993, 1.8470395830227062
# 5.036091582966037, 2.644472333951853, 1.8869528750656173
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 672 | 1 |
'''simple docstring'''
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a : int = logging.get_logger(__name__)
a : str = {
"""vocab_file""": """vocab.txt""",
"""merges_file""": """bpe.codes""",
}
a : Dict = {
"""vocab_file""": {
"""vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""",
"""vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""",
},
"""merges_file""": {
"""vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""",
"""vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""",
},
}
a : Tuple = {
"""vinai/phobert-base""": 2_5_6,
"""vinai/phobert-large""": 2_5_6,
}
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : List[str] = set()
UpperCAmelCase : Union[str, Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCAmelCase : Union[str, Any] = char
UpperCAmelCase : str = set(_lowercase )
return pairs
class UpperCamelCase_ ( __magic_name__ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , A , A , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[str]:
super().__init__(
bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , )
UpperCAmelCase : str = vocab_file
UpperCAmelCase : Any = merges_file
UpperCAmelCase : Optional[int] = {}
UpperCAmelCase : Dict = 0
UpperCAmelCase : List[Any] = 1
UpperCAmelCase : int = 2
UpperCAmelCase : Tuple = 3
self.add_from_file(A )
UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()}
with open(A , encoding="""utf-8""" ) as merges_handle:
UpperCAmelCase : str = merges_handle.read().split("""\n""" )[:-1]
UpperCAmelCase : List[Any] = [tuple(merge.split()[:-1] ) for merge in merges]
UpperCAmelCase : Any = dict(zip(A , range(len(A ) ) ) )
UpperCAmelCase : Union[str, Any] = {}
def _lowercase( self , A , A = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase : Optional[Any] = [self.cls_token_id]
UpperCAmelCase : Tuple = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowercase( self , A , A = None , A = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A , token_ids_a=A , already_has_special_tokens=A )
if token_ids_a is None:
return [1] + ([0] * len(A )) + [1]
return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1]
def _lowercase( self , A , A = None ) -> List[int]:
UpperCAmelCase : Tuple = [self.sep_token_id]
UpperCAmelCase : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _lowercase( self ) -> Tuple:
return len(self.encoder )
def _lowercase( self ) -> Tuple:
return dict(self.encoder , **self.added_tokens_encoder )
def _lowercase( self , A ) -> Any:
if token in self.cache:
return self.cache[token]
UpperCAmelCase : Optional[int] = tuple(A )
UpperCAmelCase : List[str] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] )
UpperCAmelCase : Union[str, Any] = get_pairs(A )
if not pairs:
return token
while True:
UpperCAmelCase : Dict = min(A , key=lambda A : self.bpe_ranks.get(A , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
UpperCAmelCase , UpperCAmelCase : int = bigram
UpperCAmelCase : List[Any] = []
UpperCAmelCase : Union[str, Any] = 0
while i < len(A ):
try:
UpperCAmelCase : Any = word.index(A , A )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCAmelCase : Optional[int] = j
if word[i] == first and i < len(A ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCAmelCase : Optional[Any] = tuple(A )
UpperCAmelCase : List[Any] = new_word
if len(A ) == 1:
break
else:
UpperCAmelCase : Optional[int] = get_pairs(A )
UpperCAmelCase : List[str] = """@@ """.join(A )
UpperCAmelCase : List[str] = word[:-4]
UpperCAmelCase : int = word
return word
def _lowercase( self , A ) -> List[Any]:
UpperCAmelCase : Dict = []
UpperCAmelCase : Optional[Any] = re.findall(r"""\S+\n?""" , A )
for token in words:
split_tokens.extend(list(self.bpe(A ).split(""" """ ) ) )
return split_tokens
def _lowercase( self , A ) -> Dict:
return self.encoder.get(A , self.encoder.get(self.unk_token ) )
def _lowercase( self , A ) -> Dict:
return self.decoder.get(A , self.unk_token )
def _lowercase( self , A ) -> Optional[Any]:
UpperCAmelCase : List[Any] = """ """.join(A ).replace("""@@ """ , """""" ).strip()
return out_string
def _lowercase( self , A , A = None ) -> Tuple[str]:
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase : List[Any] = os.path.join(
A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
UpperCAmelCase : Optional[Any] = os.path.join(
A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ):
copyfile(self.vocab_file , A )
if os.path.abspath(self.merges_file ) != os.path.abspath(A ):
copyfile(self.merges_file , A )
return out_vocab_file, out_merge_file
def _lowercase( self , A ) -> List[str]:
if isinstance(A , A ):
try:
with open(A , """r""" , encoding="""utf-8""" ) as fd:
self.add_from_file(A )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' )
return
UpperCAmelCase : int = f.readlines()
for lineTmp in lines:
UpperCAmelCase : int = lineTmp.strip()
UpperCAmelCase : Optional[Any] = line.rfind(""" """ )
if idx == -1:
raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" )
UpperCAmelCase : int = line[:idx]
UpperCAmelCase : Union[str, Any] = len(self.encoder )
| 672 |
'''simple docstring'''
from sklearn.metrics import mean_squared_error
import datasets
a : Union[str, Any] = """\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
a : int = """\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
"""
a : int = """
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
\"raw_values\" : Returns a full set of errors in case of multioutput input.
\"uniform_average\" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric(\"mse\")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{'mse': 0.6123724356957945}
If you're using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mse': array([0.41666667, 1. ])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
def _lowercase( self ) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"""
] , )
def _lowercase( self ) -> List[Any]:
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("""float""" ) ),
"references": datasets.Sequence(datasets.Value("""float""" ) ),
}
else:
return {
"predictions": datasets.Value("""float""" ),
"references": datasets.Value("""float""" ),
}
def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]:
UpperCAmelCase : List[Any] = mean_squared_error(
A , A , sample_weight=A , multioutput=A , squared=A )
return {"mse": mse}
| 672 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
from PIL import Image
from ...utils import (
BaseOutput,
OptionalDependencyNotAvailable,
is_flax_available,
is_k_diffusion_available,
is_k_diffusion_version,
is_onnx_available,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
@dataclass
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 42
lowercase = 42
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_cycle_diffusion import CycleDiffusionPipeline
from .pipeline_stable_diffusion import StableDiffusionPipeline
from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline
from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline
from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline
from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy
from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline
from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline
from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline
from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline
from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline
from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline
from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline
from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline
from .pipeline_stable_unclip import StableUnCLIPPipeline
from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline
from .safety_checker import StableDiffusionSafetyChecker
from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline
else:
from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
StableDiffusionDepthaImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionPixaPixZeroPipeline,
)
else:
from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline
from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline
from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline
try:
if not (
is_torch_available()
and is_transformers_available()
and is_k_diffusion_available()
and is_k_diffusion_version(""">=""", """0.0.12""")
):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
else:
from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline
try:
if not (is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_onnx_objects import * # noqa F403
else:
from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline
from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline
from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline
from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy
from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline
if is_transformers_available() and is_flax_available():
import flax
@flax.struct.dataclass
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 42
lowercase = 42
from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState
from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline
from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline
from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline
from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
| 672 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : str = logging.get_logger(__name__)
a : Any = {
"""google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""",
"""google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json"""
# See all FNet models at https://huggingface.co/models?filter=fnet
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'fnet'
def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int:
super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A )
UpperCAmelCase : Optional[Any] = vocab_size
UpperCAmelCase : Dict = max_position_embeddings
UpperCAmelCase : List[str] = hidden_size
UpperCAmelCase : int = num_hidden_layers
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : List[str] = hidden_act
UpperCAmelCase : Tuple = hidden_dropout_prob
UpperCAmelCase : List[str] = initializer_range
UpperCAmelCase : List[Any] = type_vocab_size
UpperCAmelCase : int = layer_norm_eps
UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations
UpperCAmelCase : List[Any] = tpu_short_seq_length
| 672 | 1 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase ) -> set:
UpperCAmelCase : Any = set()
# edges = list of graph's edges
UpperCAmelCase : Dict = get_edges(_lowercase )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
UpperCAmelCase , UpperCAmelCase : Optional[Any] = edges.pop()
chosen_vertices.add(_lowercase )
chosen_vertices.add(_lowercase )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(_lowercase )
return chosen_vertices
def __lowerCamelCase ( _lowercase ) -> set:
UpperCAmelCase : Any = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 672 |
'''simple docstring'''
a : List[Any] = """Alexander Joslin"""
import operator as op
from .stack import Stack
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub}
UpperCAmelCase : Stack[int] = Stack()
UpperCAmelCase : Stack[str] = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(_lowercase ) )
elif i in operators:
# RULE 2
operator_stack.push(_lowercase )
elif i == ")":
# RULE 4
UpperCAmelCase : List[Any] = operator_stack.peek()
operator_stack.pop()
UpperCAmelCase : str = operand_stack.peek()
operand_stack.pop()
UpperCAmelCase : str = operand_stack.peek()
operand_stack.pop()
UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase )
operand_stack.push(_lowercase )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
a : Tuple = """(5 + ((4 * 2) * (2 + 3)))"""
# answer = 45
print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
| 672 | 1 |
'''simple docstring'''
import numpy
# List of input, output pairs
a : Optional[int] = (
((5, 2, 3), 1_5),
((6, 5, 9), 2_5),
((1_1, 1_2, 1_3), 4_1),
((1, 1, 1), 8),
((1_1, 1_2, 1_3), 4_1),
)
a : List[str] = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0))
a : int = [2, 4, 1, 5]
a : Optional[Any] = len(train_data)
a : List[Any] = 0.0_0_9
def __lowerCamelCase ( _lowercase , _lowercase="train" ) -> Dict:
return calculate_hypothesis_value(_lowercase , _lowercase ) - output(
_lowercase , _lowercase )
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : List[str] = 0
for i in range(len(_lowercase ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]:
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def __lowerCamelCase ( _lowercase , _lowercase ) -> Dict:
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def __lowerCamelCase ( _lowercase , _lowercase=m ) -> Any:
UpperCAmelCase : Dict = 0
for i in range(_lowercase ):
if index == -1:
summation_value += _error(_lowercase )
else:
summation_value += _error(_lowercase ) * train_data[i][0][index]
return summation_value
def __lowerCamelCase ( _lowercase ) -> Optional[int]:
UpperCAmelCase : Tuple = summation_of_cost_derivative(_lowercase , _lowercase ) / m
return cost_derivative_value
def __lowerCamelCase ( ) -> List[Any]:
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCAmelCase : int = 0.00_0002
UpperCAmelCase : str = 0
UpperCAmelCase : Tuple = 0
while True:
j += 1
UpperCAmelCase : Tuple = [0, 0, 0, 0]
for i in range(0 , len(_lowercase ) ):
UpperCAmelCase : Dict = get_cost_derivative(i - 1 )
UpperCAmelCase : List[str] = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
_lowercase , _lowercase , atol=_lowercase , rtol=_lowercase , ):
break
UpperCAmelCase : List[Any] = temp_parameter_vector
print(("""Number of iterations:""", j) )
def __lowerCamelCase ( ) -> List[str]:
for i in range(len(_lowercase ) ):
print(("""Actual output value:""", output(_lowercase , """test""" )) )
print(("""Hypothesis output:""", calculate_hypothesis_value(_lowercase , """test""" )) )
if __name__ == "__main__":
run_gradient_descent()
print("""\nTesting gradient descent for a linear hypothesis function.\n""")
test_gradient_descent()
| 672 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
a : List[Any] = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
a : List[str] = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias'''))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''',
F'''decoder.layers.{i}.encoder_attn.out_proj.weight''',
)
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''',
F'''decoder.layers.{i}.encoder_attn.out_proj.bias''',
)
)
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias'''))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''')
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
("""input_proj.weight""", """input_projection.weight"""),
("""input_proj.bias""", """input_projection.bias"""),
("""query_embed.weight""", """query_position_embeddings.weight"""),
("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""),
("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""),
("""class_embed.weight""", """class_labels_classifier.weight"""),
("""class_embed.bias""", """class_labels_classifier.bias"""),
("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""),
("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""),
("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""),
("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""),
("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""),
("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""),
("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""),
("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""),
("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""),
("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""),
("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""),
("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""),
("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""),
("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""),
("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""),
("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""),
]
)
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
UpperCAmelCase : List[str] = state_dict.pop(_lowercase )
UpperCAmelCase : List[str] = val
def __lowerCamelCase ( _lowercase ) -> Any:
UpperCAmelCase : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" )
UpperCAmelCase : Dict = value
else:
UpperCAmelCase : List[Any] = value
return new_state_dict
def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]:
UpperCAmelCase : Dict = """"""
if is_panoptic:
UpperCAmelCase : Tuple = """conditional_detr."""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' )
UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :]
UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6]
UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :]
UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2]
UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :]
UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:]
def __lowerCamelCase ( ) -> Dict:
UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
return im
@torch.no_grad()
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
UpperCAmelCase : str = ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
UpperCAmelCase : List[Any] = """resnet101"""
if "dc5" in model_name:
UpperCAmelCase : Optional[int] = True
UpperCAmelCase : List[Any] = """panoptic""" in model_name
if is_panoptic:
UpperCAmelCase : Union[str, Any] = 2_5_0
else:
UpperCAmelCase : int = 9_1
UpperCAmelCase : Tuple = """huggingface/label-files"""
UpperCAmelCase : List[Any] = """coco-detection-id2label.json"""
UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) )
UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()}
UpperCAmelCase : Optional[Any] = idalabel
UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()}
# load image processor
UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection"""
UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase )
# prepare image
UpperCAmelCase : Union[str, Any] = prepare_img()
UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" )
UpperCAmelCase : List[Any] = encoding["""pixel_values"""]
logger.info(F'''Converting model {model_name}...''' )
# load original model from torch hub
UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval()
UpperCAmelCase : List[Any] = conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
UpperCAmelCase : List[Any] = """conditional_detr.""" + src
rename_key(_lowercase , _lowercase , _lowercase )
UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase )
# query, key and value matrices need special treatment
read_in_q_k_v(_lowercase , is_panoptic=_lowercase )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model."""
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("""conditional_detr""" )
and not key.startswith("""class_labels_classifier""" )
and not key.startswith("""bbox_predictor""" )
):
UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase )
UpperCAmelCase : int = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
UpperCAmelCase : Any = state_dict.pop(_lowercase )
UpperCAmelCase : Optional[Any] = val
elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ):
continue
else:
UpperCAmelCase : List[Any] = state_dict.pop(_lowercase )
UpperCAmelCase : str = val
else:
if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ):
UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase )
UpperCAmelCase : Union[str, Any] = val
# finally, create HuggingFace model and load state dict
UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase )
model.load_state_dict(_lowercase )
model.eval()
model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" )
# verify our conversion
UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase )
UpperCAmelCase : int = model(_lowercase )
assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 )
assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 )
# Save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(_lowercase ).mkdir(exist_ok=_lowercase )
model.save_pretrained(_lowercase )
image_processor.save_pretrained(_lowercase )
if __name__ == "__main__":
a : Tuple = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
default="""conditional_detr_resnet50""",
type=str,
help="""Name of the CONDITIONAL_DETR model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
a : Optional[Any] = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 672 | 1 |
'''simple docstring'''
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def __lowerCamelCase ( _lowercase , _lowercase ) -> float:
return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(_lowercase , _lowercase ) ) )
def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[list[float] | float]]:
if dataset.ndim != value_array.ndim:
UpperCAmelCase : str = (
"""Wrong input data's dimensions... """
F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}'''
)
raise ValueError(_lowercase )
try:
if dataset.shape[1] != value_array.shape[1]:
UpperCAmelCase : str = (
"""Wrong input data's shape... """
F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}'''
)
raise ValueError(_lowercase )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError("""Wrong shape""" )
if dataset.dtype != value_array.dtype:
UpperCAmelCase : Any = (
"""Input data have different datatype... """
F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}'''
)
raise TypeError(_lowercase )
UpperCAmelCase : Any = []
for value in value_array:
UpperCAmelCase : int = euclidean(_lowercase , dataset[0] )
UpperCAmelCase : Any = dataset[0].tolist()
for dataset_value in dataset[1:]:
UpperCAmelCase : List[Any] = euclidean(_lowercase , _lowercase )
if dist > temp_dist:
UpperCAmelCase : str = temp_dist
UpperCAmelCase : Any = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def __lowerCamelCase ( _lowercase , _lowercase ) -> float:
return np.dot(_lowercase , _lowercase ) / (norm(_lowercase ) * norm(_lowercase ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 672 |
'''simple docstring'''
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 672 | 1 |
'''simple docstring'''
from itertools import count
def __lowerCamelCase ( _lowercase = 5_0 ) -> int:
UpperCAmelCase : int = [1] * min_block_length
for n in count(_lowercase ):
fill_count_functions.append(1 )
for block_length in range(_lowercase , n + 1 ):
for block_start in range(n - block_length ):
fill_count_functions[n] += fill_count_functions[
n - block_start - block_length - 1
]
fill_count_functions[n] += 1
if fill_count_functions[n] > 1_0_0_0_0_0_0:
break
return n
if __name__ == "__main__":
print(F'''{solution() = }''')
| 672 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_barthez import BarthezTokenizer
else:
a : int = None
a : List[Any] = logging.get_logger(__name__)
a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
a : Union[str, Any] = {
"""vocab_file""": {
"""moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""",
"""moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""",
"""moussaKam/barthez-orangesum-title""": (
"""https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""",
"""moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""",
"""moussaKam/barthez-orangesum-title""": (
"""https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json"""
),
},
}
a : List[Any] = {
"""moussaKam/mbarthez""": 1_0_2_4,
"""moussaKam/barthez""": 1_0_2_4,
"""moussaKam/barthez-orangesum-title""": 1_0_2_4,
}
a : int = """▁"""
class UpperCamelCase_ ( __magic_name__ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ['input_ids', 'attention_mask']
lowercase = BarthezTokenizer
def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]:
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token
super().__init__(
A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , )
UpperCAmelCase : Union[str, Any] = vocab_file
UpperCAmelCase : int = False if not self.vocab_file else True
def _lowercase( self , A , A = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase : Optional[int] = [self.cls_token_id]
UpperCAmelCase : List[str] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowercase( self , A , A = None ) -> List[int]:
UpperCAmelCase : Optional[int] = [self.sep_token_id]
UpperCAmelCase : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowercase( self , A , A = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase : str = os.path.join(
A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ):
copyfile(self.vocab_file , A )
return (out_vocab_file,)
| 672 | 1 |
'''simple docstring'''
from sklearn.metrics import mean_squared_error
import datasets
a : Union[str, Any] = """\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
a : int = """\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
"""
a : int = """
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
\"raw_values\" : Returns a full set of errors in case of multioutput input.
\"uniform_average\" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric(\"mse\")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{'mse': 0.6123724356957945}
If you're using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mse': array([0.41666667, 1. ])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
def _lowercase( self ) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"""
] , )
def _lowercase( self ) -> List[Any]:
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("""float""" ) ),
"references": datasets.Sequence(datasets.Value("""float""" ) ),
}
else:
return {
"predictions": datasets.Value("""float""" ),
"references": datasets.Value("""float""" ),
}
def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]:
UpperCAmelCase : List[Any] = mean_squared_error(
A , A , sample_weight=A , multioutput=A , squared=A )
return {"mse": mse}
| 672 |
'''simple docstring'''
from collections.abc import Callable
import numpy as np
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array:
UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) )
UpperCAmelCase : str = np.zeros((n + 1,) )
UpperCAmelCase : Optional[Any] = ya
UpperCAmelCase : Union[str, Any] = xa
for k in range(_lowercase ):
UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] )
UpperCAmelCase : Optional[int] = y[k] + (
(step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 672 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : Optional[Any] = logging.get_logger(__name__)
a : Any = {
"""huggingface/time-series-transformer-tourism-monthly""": (
"""https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json"""
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'time_series_transformer'
lowercase = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
'num_hidden_layers': 'encoder_layers',
}
def __init__( self , A = None , A = None , A = "student_t" , A = "nll" , A = 1 , A = [1, 2, 3, 4, 5, 6, 7] , A = "mean" , A = 0 , A = 0 , A = 0 , A = 0 , A = None , A = None , A = 32 , A = 32 , A = 2 , A = 2 , A = 2 , A = 2 , A = True , A = "gelu" , A = 64 , A = 0.1 , A = 0.1 , A = 0.1 , A = 0.1 , A = 0.1 , A = 100 , A = 0.0_2 , A=True , **A , ) -> int:
# time series specific configuration
UpperCAmelCase : List[Any] = prediction_length
UpperCAmelCase : List[str] = context_length or prediction_length
UpperCAmelCase : Any = distribution_output
UpperCAmelCase : Union[str, Any] = loss
UpperCAmelCase : Dict = input_size
UpperCAmelCase : Any = num_time_features
UpperCAmelCase : str = lags_sequence
UpperCAmelCase : str = scaling
UpperCAmelCase : Union[str, Any] = num_dynamic_real_features
UpperCAmelCase : Union[str, Any] = num_static_real_features
UpperCAmelCase : Optional[int] = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(A ) != num_static_categorical_features:
raise ValueError(
"""The cardinality should be a list of the same length as `num_static_categorical_features`""" )
UpperCAmelCase : Union[str, Any] = cardinality
else:
UpperCAmelCase : str = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(A ) != num_static_categorical_features:
raise ValueError(
"""The embedding dimension should be a list of the same length as `num_static_categorical_features`""" )
UpperCAmelCase : List[str] = embedding_dimension
else:
UpperCAmelCase : Optional[Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
UpperCAmelCase : int = num_parallel_samples
# Transformer architecture configuration
UpperCAmelCase : str = input_size * len(A ) + self._number_of_features
UpperCAmelCase : List[str] = d_model
UpperCAmelCase : str = encoder_attention_heads
UpperCAmelCase : Optional[int] = decoder_attention_heads
UpperCAmelCase : int = encoder_ffn_dim
UpperCAmelCase : Any = decoder_ffn_dim
UpperCAmelCase : Dict = encoder_layers
UpperCAmelCase : Optional[Any] = decoder_layers
UpperCAmelCase : Optional[Any] = dropout
UpperCAmelCase : Dict = attention_dropout
UpperCAmelCase : List[Any] = activation_dropout
UpperCAmelCase : Union[str, Any] = encoder_layerdrop
UpperCAmelCase : Optional[Any] = decoder_layerdrop
UpperCAmelCase : Optional[Any] = activation_function
UpperCAmelCase : List[str] = init_std
UpperCAmelCase : Optional[int] = use_cache
super().__init__(is_encoder_decoder=A , **A )
@property
def _lowercase( self ) -> int:
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 672 |
'''simple docstring'''
from typing import List, Union
import numpy as np
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, logging
from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline
a : List[str] = logging.get_logger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def _lowercase( self , A ) -> Optional[int]:
if isinstance(A , A ):
UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()]
return labels
def __call__( self , A , A , A ) -> str:
if len(A ) == 0 or len(A ) == 0:
raise ValueError("""You must include at least one label and at least one sequence.""" )
if hypothesis_template.format(labels[0] ) == hypothesis_template:
raise ValueError(
(
"""The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """
"""Make sure the passed template includes formatting syntax such as {{}} where the label should go."""
).format(A ) )
if isinstance(A , A ):
UpperCAmelCase : Tuple = [sequences]
UpperCAmelCase : Optional[Any] = []
for sequence in sequences:
sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] )
return sequence_pairs, sequences
@add_end_docstrings(__magic_name__ )
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]:
UpperCAmelCase : Tuple = args_parser
super().__init__(*A , **A )
if self.entailment_id == -1:
logger.warning(
"""Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """
"""-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" )
@property
def _lowercase( self ) -> List[Any]:
for label, ind in self.model.config.labelaid.items():
if label.lower().startswith("""entail""" ):
return ind
return -1
def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str:
UpperCAmelCase : Tuple = self.framework
if self.tokenizer.pad_token is None:
# Override for tokenizers not supporting padding
logger.error(
"""Tokenizer was not supporting padding necessary for zero-shot, attempting to use """
""" `pad_token=eos_token`""" )
UpperCAmelCase : Any = self.tokenizer.eos_token
try:
UpperCAmelCase : Tuple = self.tokenizer(
A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , )
except Exception as e:
if "too short" in str(A ):
# tokenizers might yell that we want to truncate
# to a value that is not even reached by the input.
# In that case we don't want to truncate.
# It seems there's not a really better way to catch that
# exception.
UpperCAmelCase : List[str] = self.tokenizer(
A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , )
else:
raise e
return inputs
def _lowercase( self , **A ) -> Tuple:
if kwargs.get("""multi_class""" , A ) is not None:
UpperCAmelCase : Any = kwargs["""multi_class"""]
logger.warning(
"""The `multi_class` argument has been deprecated and renamed to `multi_label`. """
"""`multi_class` will be removed in a future version of Transformers.""" )
UpperCAmelCase : int = {}
if "candidate_labels" in kwargs:
UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] )
if "hypothesis_template" in kwargs:
UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""]
UpperCAmelCase : Dict = {}
if "multi_label" in kwargs:
UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""]
return preprocess_params, {}, postprocess_params
def __call__( self , A , *A , **A , ) -> Tuple:
if len(A ) == 0:
pass
elif len(A ) == 1 and "candidate_labels" not in kwargs:
UpperCAmelCase : Optional[Any] = args[0]
else:
raise ValueError(f'''Unable to understand extra arguments {args}''' )
return super().__call__(A , **A )
def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]:
UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A )
for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ):
UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] )
yield {
"candidate_label": candidate_label,
"sequence": sequences[0],
"is_last": i == len(A ) - 1,
**model_input,
}
def _lowercase( self , A ) -> Optional[int]:
UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""]
UpperCAmelCase : Tuple = inputs["""sequence"""]
UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names}
UpperCAmelCase : Tuple = self.model(**A )
UpperCAmelCase : Optional[int] = {
"""candidate_label""": candidate_label,
"""sequence""": sequence,
"""is_last""": inputs["""is_last"""],
**outputs,
}
return model_outputs
def _lowercase( self , A , A=False ) -> List[str]:
UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs]
UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs]
UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] )
UpperCAmelCase : Optional[Any] = logits.shape[0]
UpperCAmelCase : int = len(A )
UpperCAmelCase : List[Any] = N // n
UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) )
if multi_label or len(A ) == 1:
# softmax over the entailment vs. contradiction dim for each label independently
UpperCAmelCase : str = self.entailment_id
UpperCAmelCase : str = -1 if entailment_id == 0 else 0
UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]]
UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A )
UpperCAmelCase : int = scores[..., 1]
else:
# softmax the "entailment" logits over all candidate labels
UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id]
UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A )
UpperCAmelCase : int = list(reversed(scores[0].argsort() ) )
return {
"sequence": sequences[0],
"labels": [candidate_labels[i] for i in top_inds],
"scores": scores[0, top_inds].tolist(),
}
| 672 | 1 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
if a < 0 or b < 0:
raise ValueError("""the value of both inputs must be positive""" )
UpperCAmelCase : Dict = str(bin(_lowercase ) )[2:] # remove the leading "0b"
UpperCAmelCase : Tuple = str(bin(_lowercase ) )[2:] # remove the leading "0b"
UpperCAmelCase : List[str] = max(len(_lowercase ) , len(_lowercase ) )
return "0b" + "".join(
str(int(char_a == """1""" and char_b == """1""" ) )
for char_a, char_b in zip(a_binary.zfill(_lowercase ) , b_binary.zfill(_lowercase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 672 |
'''simple docstring'''
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""")
@require_sentencepiece
@require_tokenizers
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = PegasusTokenizer
lowercase = PegasusTokenizerFast
lowercase = True
lowercase = True
def _lowercase( self ) -> Tuple:
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase : int = PegasusTokenizer(A )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowercase( self ) -> int:
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def _lowercase( self , **A ) -> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def _lowercase( self , A ) -> List[str]:
return ("This is a test", "This is a test")
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = """</s>"""
UpperCAmelCase : Optional[int] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(A ) , 1103 )
def _lowercase( self ) -> Optional[Any]:
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def _lowercase( self ) -> int:
UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : Union[str, Any] = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : List[Any] = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1]
UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
def _lowercase( self ) -> int:
UpperCAmelCase : str = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 96103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions."""
UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1]
UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def _lowercase( self ) -> Any:
UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""]
UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""]
UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" )
UpperCAmelCase : List[Any] = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
@slow
def _lowercase( self ) -> List[str]:
# fmt: off
UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = PegasusTokenizer
lowercase = PegasusTokenizerFast
lowercase = True
lowercase = True
def _lowercase( self ) -> List[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowercase( self ) -> Optional[Any]:
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def _lowercase( self , **A ) -> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def _lowercase( self , A ) -> str:
return ("This is a test", "This is a test")
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : str = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
@require_torch
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""]
UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""]
UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" )
UpperCAmelCase : Optional[int] = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
def _lowercase( self ) -> int:
UpperCAmelCase : Union[str, Any] = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids
self.assertListEqual(
A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
| 672 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import Counter
from random import random
class UpperCamelCase_ :
def __init__( self ) -> str:
UpperCAmelCase : int = {}
def _lowercase( self , A ) -> None:
UpperCAmelCase : Any = {}
def _lowercase( self , A , A , A ) -> None:
if nodea not in self.connections:
self.add_node(A )
if nodea not in self.connections:
self.add_node(A )
UpperCAmelCase : List[str] = probability
def _lowercase( self ) -> list[str]:
return list(self.connections )
def _lowercase( self , A ) -> str:
UpperCAmelCase : List[str] = 0
UpperCAmelCase : Dict = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> dict[str, int]:
UpperCAmelCase : Optional[Any] = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(_lowercase , _lowercase , _lowercase )
UpperCAmelCase : Optional[Any] = Counter(graph.get_nodes() )
UpperCAmelCase : List[Any] = start
for _ in range(_lowercase ):
UpperCAmelCase : Tuple = graph.transition(_lowercase )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 672 |
'''simple docstring'''
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase_ :
def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int:
UpperCAmelCase : str = parent
UpperCAmelCase : List[Any] = batch_size
UpperCAmelCase : Dict = image_size
UpperCAmelCase : Tuple = num_channels
UpperCAmelCase : Union[str, Any] = num_stages
UpperCAmelCase : Any = hidden_sizes
UpperCAmelCase : str = depths
UpperCAmelCase : Optional[int] = is_training
UpperCAmelCase : Union[str, Any] = use_labels
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : str = hidden_act
UpperCAmelCase : List[str] = num_labels
UpperCAmelCase : Tuple = initializer_range
UpperCAmelCase : Optional[Any] = out_features
UpperCAmelCase : List[str] = out_indices
UpperCAmelCase : Any = scope
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : List[Any] = None
if self.use_labels:
UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase : List[str] = self.get_config()
return config, pixel_values, labels
def _lowercase( self ) -> Optional[Any]:
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def _lowercase( self , A , A , A ) -> Optional[Any]:
UpperCAmelCase : int = ConvNextVaModel(config=A )
model.to(A )
model.eval()
UpperCAmelCase : List[Any] = model(A )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _lowercase( self , A , A , A ) -> Any:
UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : int = model(A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowercase( self , A , A , A ) -> Any:
UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A )
model.to(A )
model.eval()
UpperCAmelCase : Any = model(A )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
UpperCAmelCase : Any = None
UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A )
model.to(A )
model.eval()
UpperCAmelCase : int = model(A )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _lowercase( self ) -> List[str]:
UpperCAmelCase : Dict = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs
UpperCAmelCase : str = {"""pixel_values""": pixel_values}
return config, inputs_dict
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs
UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
lowercase = (
{'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
lowercase = False
lowercase = False
lowercase = False
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Dict = ConvNextVaModelTester(self )
UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 )
def _lowercase( self ) -> int:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowercase( self ) -> List[str]:
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def _lowercase( self ) -> Dict:
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def _lowercase( self ) -> Any:
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def _lowercase( self ) -> int:
pass
def _lowercase( self ) -> Dict:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels()
UpperCAmelCase : Optional[int] = True
if model_class.__name__ in [
*get_values(A ),
*get_values(A ),
]:
continue
UpperCAmelCase : Any = model_class(A )
model.to(A )
model.train()
UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A )
UpperCAmelCase : List[str] = model(**A ).loss
loss.backward()
def _lowercase( self ) -> Tuple:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels()
UpperCAmelCase : List[str] = False
UpperCAmelCase : int = True
if (
model_class.__name__
in [*get_values(A ), *get_values(A )]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCAmelCase : Dict = model_class(A )
model.to(A )
model.gradient_checkpointing_enable()
model.train()
UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A )
UpperCAmelCase : Any = model(**A ).loss
loss.backward()
def _lowercase( self ) -> Tuple:
UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : int = model_class(A )
UpperCAmelCase : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : Tuple = [*signature.parameters.keys()]
UpperCAmelCase : Optional[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , A )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> List[str]:
def check_hidden_states_output(A , A , A ):
UpperCAmelCase : Optional[Any] = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) )
UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase : Optional[Any] = self.model_tester.num_stages
self.assertEqual(len(A ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : str = True
check_hidden_states_output(A , A , A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase : int = True
check_hidden_states_output(A , A , A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def _lowercase( self ) -> Any:
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A )
self.assertIsNotNone(A )
def __lowerCamelCase ( ) -> Optional[int]:
UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
@cached_property
def _lowercase( self ) -> str:
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A )
UpperCAmelCase : List[Any] = self.default_image_processor
UpperCAmelCase : Any = prepare_img()
UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A )
# forward pass
with torch.no_grad():
UpperCAmelCase : Optional[Any] = model(**A )
# verify the logits
UpperCAmelCase : Dict = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , A )
UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
| 672 | 1 |
'''simple docstring'''
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401
from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401
deprecate(
"""stable diffusion controlnet""",
"""0.22.0""",
"""Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""",
standard_warn=False,
stacklevel=3,
)
| 672 |
'''simple docstring'''
from scipy.stats import pearsonr
import datasets
a : str = """
Pearson correlation coefficient and p-value for testing non-correlation.
The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.
"""
a : Dict = """
Args:
predictions (`list` of `int`): Predicted class labels, as returned by a model.
references (`list` of `int`): Ground truth labels.
return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.
Returns:
pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.
p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.
Examples:
Example 1-A simple example using only predictions and references.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])
>>> print(round(results['pearsonr'], 2))
-0.74
Example 2-The same as Example 1, but that also returns the `p-value`.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)
>>> print(sorted(list(results.keys())))
['p-value', 'pearsonr']
>>> print(round(results['pearsonr'], 2))
-0.74
>>> print(round(results['p-value'], 2))
0.15
"""
a : Optional[int] = """
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, Ilhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Antonio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
def _lowercase( self ) -> Optional[int]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , )
def _lowercase( self , A , A , A=False ) -> int:
if return_pvalue:
UpperCAmelCase : int = pearsonr(A , A )
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(A , A )[0] )}
| 672 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
a : Optional[Any] = logging.get_logger(__name__)
def __lowerCamelCase ( _lowercase ) -> List[int]:
if isinstance(_lowercase , np.ndarray ):
return list(tensor.shape )
UpperCAmelCase : int = tf.shape(_lowercase )
if tensor.shape == tf.TensorShape(_lowercase ):
return dynamic
UpperCAmelCase : Optional[Any] = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(_lowercase )]
def __lowerCamelCase ( _lowercase , _lowercase = None , _lowercase = None ) -> tf.Tensor:
return tf.nn.softmax(logits=logits + 1e-9 , axis=_lowercase , name=_lowercase )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=1e-5 , _lowercase=-1 ) -> int:
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_lowercase , _lowercase ):
raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" )
# Get mean and variance on the axis to be normalized
UpperCAmelCase , UpperCAmelCase : Tuple = tf.nn.moments(_lowercase , axes=[axis] , keepdims=_lowercase )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
UpperCAmelCase : Union[str, Any] = [1] * inputs.shape.rank
UpperCAmelCase : List[Any] = shape_list(_lowercase )[axis]
UpperCAmelCase : Dict = tf.reshape(_lowercase , _lowercase )
UpperCAmelCase : int = tf.reshape(_lowercase , _lowercase )
# Compute layer normalization using the batch_normalization
# function.
UpperCAmelCase : Optional[Any] = tf.nn.batch_normalization(
_lowercase , _lowercase , _lowercase , offset=_lowercase , scale=_lowercase , variance_epsilon=_lowercase , )
return outputs
def __lowerCamelCase ( _lowercase , _lowercase=0 , _lowercase=-1 ) -> int:
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
UpperCAmelCase : List[str] = tf.shape(_lowercase )
UpperCAmelCase : Tuple = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
UpperCAmelCase : Optional[Any] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(_lowercase , _lowercase )
def __lowerCamelCase ( _lowercase ) -> tf.Tensor:
if not isinstance(_lowercase , tf.Tensor ):
UpperCAmelCase : Optional[int] = tf.convert_to_tensor(_lowercase ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
UpperCAmelCase : Tuple = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
UpperCAmelCase : Dict = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
UpperCAmelCase : List[Any] = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase = "input_ids" ) -> None:
tf.debugging.assert_less(
_lowercase , tf.cast(_lowercase , dtype=tensor.dtype ) , message=(
F'''The maximum value of {tensor_name} ({tf.math.reduce_max(_lowercase )}) must be smaller than the embedding '''
F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str:
UpperCAmelCase : Optional[int] = 6_4_5_1_2
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
UpperCAmelCase : Optional[int] = [x for x in data if len(_lowercase ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
"""The following attributes cannot be saved to HDF5 file because """
F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
F'''bytes: {bad_attributes}''' )
UpperCAmelCase : Dict = np.asarray(_lowercase )
UpperCAmelCase : Union[str, Any] = 1
UpperCAmelCase : Union[str, Any] = np.array_split(_lowercase , _lowercase )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
UpperCAmelCase : int = np.array_split(_lowercase , _lowercase )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(_lowercase ):
UpperCAmelCase : Union[str, Any] = chunk_data
else:
UpperCAmelCase : int = data
def __lowerCamelCase ( _lowercase , _lowercase ) -> int:
if name in group.attrs:
UpperCAmelCase : List[str] = [n.decode("""utf8""" ) if hasattr(_lowercase , """decode""" ) else n for n in group.attrs[name]]
else:
UpperCAmelCase : str = []
UpperCAmelCase : int = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode("""utf8""" ) if hasattr(_lowercase , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] )
chunk_id += 1
return data
def __lowerCamelCase ( _lowercase ) -> Tuple:
def _expand_single_ad_tensor(_lowercase ):
if isinstance(_lowercase , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(_lowercase , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , _lowercase )
| 672 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]:
UpperCAmelCase : Optional[int] = list(_lowercase )
UpperCAmelCase : Dict = list(_lowercase )
UpperCAmelCase : str = 0
for i in range(len(_lowercase ) ):
if lista[i] != lista[i]:
count += 1
UpperCAmelCase : Optional[Any] = """_"""
if count > 1:
return False
else:
return "".join(_lowercase )
def __lowerCamelCase ( _lowercase ) -> list[str]:
UpperCAmelCase : List[str] = []
while True:
UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase )
UpperCAmelCase : int = []
for i in range(len(_lowercase ) ):
for j in range(i + 1 , len(_lowercase ) ):
UpperCAmelCase : str = compare_string(binary[i] , binary[j] )
if k is False:
UpperCAmelCase : Union[str, Any] = """*"""
UpperCAmelCase : Optional[Any] = """*"""
temp.append("""X""" )
for i in range(len(_lowercase ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(_lowercase ) == 0:
return pi
UpperCAmelCase : List[Any] = list(set(_lowercase ) )
def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]:
UpperCAmelCase : Dict = []
for minterm in minterms:
UpperCAmelCase : List[str] = """"""
for _ in range(_lowercase ):
UpperCAmelCase : Dict = str(minterm % 2 ) + string
minterm //= 2
temp.append(_lowercase )
return temp
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool:
UpperCAmelCase : Optional[int] = list(_lowercase )
UpperCAmelCase : Dict = list(_lowercase )
UpperCAmelCase : Dict = 0
for i in range(len(_lowercase ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]:
UpperCAmelCase : Tuple = []
UpperCAmelCase : Optional[int] = [0] * len(_lowercase )
for i in range(len(chart[0] ) ):
UpperCAmelCase : Any = 0
UpperCAmelCase : Optional[Any] = -1
for j in range(len(_lowercase ) ):
if chart[j][i] == 1:
count += 1
UpperCAmelCase : str = j
if count == 1:
UpperCAmelCase : Optional[int] = 1
for i in range(len(_lowercase ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(_lowercase ) ):
UpperCAmelCase : List[str] = 0
temp.append(prime_implicants[i] )
while True:
UpperCAmelCase : int = 0
UpperCAmelCase : Tuple = -1
UpperCAmelCase : Union[str, Any] = 0
for i in range(len(_lowercase ) ):
UpperCAmelCase : Optional[Any] = chart[i].count(1 )
if count_n > max_n:
UpperCAmelCase : Union[str, Any] = count_n
UpperCAmelCase : Optional[Any] = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(_lowercase ) ):
UpperCAmelCase : Optional[Any] = 0
def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]:
UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )]
for i in range(len(_lowercase ) ):
UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" )
for j in range(len(_lowercase ) ):
if is_for_table(prime_implicants[i] , binary[j] , _lowercase ):
UpperCAmelCase : List[Any] = 1
return chart
def __lowerCamelCase ( ) -> None:
UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) )
UpperCAmelCase : List[Any] = [
float(_lowercase )
for x in input(
"""Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split()
]
UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase )
UpperCAmelCase : Tuple = check(_lowercase )
print("""Prime Implicants are:""" )
print(_lowercase )
UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase )
UpperCAmelCase : Tuple = selection(_lowercase , _lowercase )
print("""Essential Prime Implicants are:""" )
print(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 672 | 1 |
'''simple docstring'''
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""")
@require_sentencepiece
@require_tokenizers
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = PegasusTokenizer
lowercase = PegasusTokenizerFast
lowercase = True
lowercase = True
def _lowercase( self ) -> Tuple:
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase : int = PegasusTokenizer(A )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowercase( self ) -> int:
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def _lowercase( self , **A ) -> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def _lowercase( self , A ) -> List[str]:
return ("This is a test", "This is a test")
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = """</s>"""
UpperCAmelCase : Optional[int] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(A ) , 1103 )
def _lowercase( self ) -> Optional[Any]:
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def _lowercase( self ) -> int:
UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : Union[str, Any] = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : List[Any] = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1]
UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
def _lowercase( self ) -> int:
UpperCAmelCase : str = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 96103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions."""
UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1]
UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def _lowercase( self ) -> Any:
UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""]
UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""]
UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" )
UpperCAmelCase : List[Any] = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
@slow
def _lowercase( self ) -> List[str]:
# fmt: off
UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = PegasusTokenizer
lowercase = PegasusTokenizerFast
lowercase = True
lowercase = True
def _lowercase( self ) -> List[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowercase( self ) -> Optional[Any]:
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def _lowercase( self , **A ) -> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def _lowercase( self , A ) -> str:
return ("This is a test", "This is a test")
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : str = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
@require_torch
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""]
UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""]
UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" )
UpperCAmelCase : Optional[int] = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
def _lowercase( self ) -> int:
UpperCAmelCase : Union[str, Any] = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids
self.assertListEqual(
A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
| 672 |
'''simple docstring'''
a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)]
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : str = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0]
number //= 1_0_0_0_0_0
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0
a : Optional[Any] = True
a : List[Any] = False
def __lowerCamelCase ( _lowercase ) -> bool:
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
UpperCAmelCase : List[str] = chain(next_number(_lowercase ) )
UpperCAmelCase : Tuple = number_chain
while number < 1_0_0_0_0_0_0_0:
UpperCAmelCase : List[str] = number_chain
number *= 1_0
return number_chain
def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int:
for i in range(1 , _lowercase ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'''{solution() = }''')
| 672 | 1 |
'''simple docstring'''
a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)]
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : str = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0]
number //= 1_0_0_0_0_0
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0
a : Optional[Any] = True
a : List[Any] = False
def __lowerCamelCase ( _lowercase ) -> bool:
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
UpperCAmelCase : List[str] = chain(next_number(_lowercase ) )
UpperCAmelCase : Tuple = number_chain
while number < 1_0_0_0_0_0_0_0:
UpperCAmelCase : List[str] = number_chain
number *= 1_0
return number_chain
def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int:
for i in range(1 , _lowercase ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'''{solution() = }''')
| 672 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a : Optional[Any] = {
"""configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""],
"""tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Dict = ["""BertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[Any] = [
"""BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BertForMaskedLM""",
"""BertForMultipleChoice""",
"""BertForNextSentencePrediction""",
"""BertForPreTraining""",
"""BertForQuestionAnswering""",
"""BertForSequenceClassification""",
"""BertForTokenClassification""",
"""BertLayer""",
"""BertLMHeadModel""",
"""BertModel""",
"""BertPreTrainedModel""",
"""load_tf_weights_in_bert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[str] = [
"""TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBertEmbeddings""",
"""TFBertForMaskedLM""",
"""TFBertForMultipleChoice""",
"""TFBertForNextSentencePrediction""",
"""TFBertForPreTraining""",
"""TFBertForQuestionAnswering""",
"""TFBertForSequenceClassification""",
"""TFBertForTokenClassification""",
"""TFBertLMHeadModel""",
"""TFBertMainLayer""",
"""TFBertModel""",
"""TFBertPreTrainedModel""",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : int = ["""TFBertTokenizer"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[Any] = [
"""FlaxBertForCausalLM""",
"""FlaxBertForMaskedLM""",
"""FlaxBertForMultipleChoice""",
"""FlaxBertForNextSentencePrediction""",
"""FlaxBertForPreTraining""",
"""FlaxBertForQuestionAnswering""",
"""FlaxBertForSequenceClassification""",
"""FlaxBertForTokenClassification""",
"""FlaxBertModel""",
"""FlaxBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 672 | 1 |
'''simple docstring'''
from statistics import mean, stdev
def __lowerCamelCase ( _lowercase , _lowercase = 3 ) -> list:
UpperCAmelCase : Union[str, Any] = min(_lowercase )
UpperCAmelCase : Optional[int] = max(_lowercase )
# normalize data
return [round((x - x_min) / (x_max - x_min) , _lowercase ) for x in data]
def __lowerCamelCase ( _lowercase , _lowercase = 3 ) -> list:
UpperCAmelCase : List[str] = mean(_lowercase )
UpperCAmelCase : Tuple = stdev(_lowercase )
# standardize data
return [round((x - mu) / (sigma) , _lowercase ) for x in data]
| 672 |
'''simple docstring'''
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any:
UpperCAmelCase : Optional[int] = False
UpperCAmelCase : Any = search_prob
UpperCAmelCase : Any = start_temperate
UpperCAmelCase : Optional[Any] = []
UpperCAmelCase : Optional[Any] = 0
UpperCAmelCase : Optional[Any] = None
while not search_end:
UpperCAmelCase : List[str] = current_state.score()
if best_state is None or current_score > best_state.score():
UpperCAmelCase : List[Any] = current_state
scores.append(_lowercase )
iterations += 1
UpperCAmelCase : Dict = None
UpperCAmelCase : Union[str, Any] = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor
UpperCAmelCase : int = neighbors.pop(_lowercase )
UpperCAmelCase : Tuple = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
UpperCAmelCase : int = picked_neighbor
else:
UpperCAmelCase : Optional[Any] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
UpperCAmelCase : Optional[int] = picked_neighbor
UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
UpperCAmelCase : Optional[int] = True
else:
UpperCAmelCase : Optional[int] = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(_lowercase ) , _lowercase )
plt.xlabel("""Iterations""" )
plt.ylabel("""Function values""" )
plt.show()
return best_state
if __name__ == "__main__":
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa)
a : Dict = simulated_annealing(
prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True
)
print(
"""The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa)
a : Dict = simulated_annealing(
prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True
)
print(
"""The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]:
return (3 * x**2) - (6 * y)
a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a : Any = simulated_annealing(prob, find_max=False, visualization=True)
print(
"""The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F'''{local_min.score()}'''
)
a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a : Dict = simulated_annealing(prob, find_max=True, visualization=True)
print(
"""The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F'''{local_min.score()}'''
)
| 672 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 42
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 672 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : Any = {
"""configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Any = [
"""NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""NezhaForNextSentencePrediction""",
"""NezhaForMaskedLM""",
"""NezhaForPreTraining""",
"""NezhaForMultipleChoice""",
"""NezhaForQuestionAnswering""",
"""NezhaForSequenceClassification""",
"""NezhaForTokenClassification""",
"""NezhaModel""",
"""NezhaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nezha import (
NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
NezhaPreTrainedModel,
)
else:
import sys
a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 672 | 1 |
'''simple docstring'''
from math import ceil, sqrt
def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0 ) -> int:
UpperCAmelCase : Any = 0
for outer_width in range(3 , (limit // 4) + 2 ):
if outer_width**2 > limit:
UpperCAmelCase : Optional[Any] = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 )
else:
UpperCAmelCase : Any = 1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(F'''{solution() = }''')
| 672 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
a : Tuple = False
class UpperCamelCase_ ( unittest.TestCase ):
pass
@slow
@require_torch_gpu
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
UpperCAmelCase : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" )
UpperCAmelCase : List[Any] = torch.manual_seed(0 )
UpperCAmelCase : List[str] = pipe(
image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images
UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 672 | 1 |
'''simple docstring'''
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
a : Any = 0
a : Union[str, Any] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
a : str = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
a : str = tuple[int, int]
class UpperCamelCase_ :
def __init__( self , A , A , A , A , A , A , ) -> None:
UpperCAmelCase : str = pos_x
UpperCAmelCase : Dict = pos_y
UpperCAmelCase : Optional[Any] = (pos_y, pos_x)
UpperCAmelCase : List[Any] = goal_x
UpperCAmelCase : Tuple = goal_y
UpperCAmelCase : Union[str, Any] = g_cost
UpperCAmelCase : str = parent
UpperCAmelCase : List[str] = self.calculate_heuristic()
UpperCAmelCase : Any = self.g_cost + self.h_cost
def _lowercase( self ) -> float:
UpperCAmelCase : int = self.pos_x - self.goal_x
UpperCAmelCase : Dict = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(A ) + abs(A )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self , A ) -> bool:
return self.f_cost < other.f_cost
class UpperCamelCase_ :
def __init__( self , A , A ) -> Optional[Any]:
UpperCAmelCase : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , A )
UpperCAmelCase : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , A )
UpperCAmelCase : List[Any] = [self.start]
UpperCAmelCase : list[Node] = []
UpperCAmelCase : Dict = False
def _lowercase( self ) -> list[TPosition]:
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
UpperCAmelCase : List[str] = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(A )
self.closed_nodes.append(A )
UpperCAmelCase : Any = self.get_successors(A )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(A )
else:
# retrieve the best current path
UpperCAmelCase : int = self.open_nodes.pop(self.open_nodes.index(A ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(A )
else:
self.open_nodes.append(A )
return [self.start.pos]
def _lowercase( self , A ) -> list[Node]:
UpperCAmelCase : str = []
for action in delta:
UpperCAmelCase : Dict = parent.pos_x + action[1]
UpperCAmelCase : str = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
A , A , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , A , ) )
return successors
def _lowercase( self , A ) -> list[TPosition]:
UpperCAmelCase : Any = node
UpperCAmelCase : Dict = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
UpperCAmelCase : Optional[Any] = current_node.parent
path.reverse()
return path
class UpperCamelCase_ :
def __init__( self , A , A ) -> None:
UpperCAmelCase : List[Any] = AStar(A , A )
UpperCAmelCase : Dict = AStar(A , A )
UpperCAmelCase : Tuple = False
def _lowercase( self ) -> list[TPosition]:
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
UpperCAmelCase : str = self.fwd_astar.open_nodes.pop(0 )
UpperCAmelCase : List[Any] = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
A , A )
self.fwd_astar.closed_nodes.append(A )
self.bwd_astar.closed_nodes.append(A )
UpperCAmelCase : Union[str, Any] = current_bwd_node
UpperCAmelCase : str = current_fwd_node
UpperCAmelCase : Optional[int] = {
self.fwd_astar: self.fwd_astar.get_successors(A ),
self.bwd_astar: self.bwd_astar.get_successors(A ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(A )
else:
# retrieve the best current path
UpperCAmelCase : Optional[Any] = astar.open_nodes.pop(
astar.open_nodes.index(A ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(A )
else:
astar.open_nodes.append(A )
return [self.fwd_astar.start.pos]
def _lowercase( self , A , A ) -> list[TPosition]:
UpperCAmelCase : Optional[Any] = self.fwd_astar.retrace_path(A )
UpperCAmelCase : List[Any] = self.bwd_astar.retrace_path(A )
bwd_path.pop()
bwd_path.reverse()
UpperCAmelCase : int = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
a : Optional[int] = (0, 0)
a : str = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
a : Union[str, Any] = time.time()
a : Dict = AStar(init, goal)
a : Tuple = a_star.search()
a : Optional[int] = time.time() - start_time
print(F'''AStar execution time = {end_time:f} seconds''')
a : Optional[int] = time.time()
a : Dict = BidirectionalAStar(init, goal)
a : str = time.time() - bd_start_time
print(F'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
| 672 |
'''simple docstring'''
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
a : Any = get_logger()
a : Optional[dict] = None
class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ):
def __init__( self , A=None , A=None , **A ) -> str:
super().__init__(features=A )
import jax
from jaxlib.xla_client import Device
if isinstance(A , A ):
raise ValueError(
f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` '''
"""is not serializable neither with `pickle` nor with `dill`. Instead you can surround """
"""the device with `str()` to get its string identifier that will be internally mapped """
"""to the actual `jaxlib.xla_extension.Device`.""" )
UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
UpperCAmelCase : Any = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
f'''Device with string identifier {self.device} not listed among the available '''
f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default '''
f'''device: {str(jax.devices()[0] )}.''' )
UpperCAmelCase : List[Any] = str(jax.devices()[0] )
UpperCAmelCase : Union[str, Any] = jnp_array_kwargs
@staticmethod
def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]:
import jax
return {str(A ): device for device in jax.devices()}
def _lowercase( self , A ) -> str:
import jax
import jax.numpy as jnp
if isinstance(A , A ) and column:
if all(
isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(A , axis=0 )
return column
def _lowercase( self , A ) -> Tuple:
import jax
import jax.numpy as jnp
if isinstance(A , (str, bytes, type(A )) ):
return value
elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
UpperCAmelCase : List[str] = {}
if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
UpperCAmelCase : str = {"""dtype""": jnp.intaa}
else:
UpperCAmelCase : int = {"""dtype""": jnp.intaa}
elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
UpperCAmelCase : Any = {"""dtype""": jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(A , PIL.Image.Image ):
UpperCAmelCase : List[str] = np.asarray(A )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
UpperCAmelCase : Dict = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} )
def _lowercase( self , A ) -> Tuple:
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(A , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ):
UpperCAmelCase : Optional[int] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(A , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] )
elif isinstance(A , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] )
return self._tensorize(A )
def _lowercase( self , A ) -> Dict:
return map_nested(self._recursive_tensorize , A , map_list=A )
def _lowercase( self , A ) -> Mapping:
UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A )
UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A )
return self.recursive_tensorize(A )
def _lowercase( self , A ) -> "jax.Array":
UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A )
UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] )
UpperCAmelCase : Optional[int] = self.recursive_tensorize(A )
UpperCAmelCase : Any = self._consolidate(A )
return column
def _lowercase( self , A ) -> Mapping:
UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A )
UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A )
UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A )
for column_name in batch:
UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] )
return batch
| 672 | 1 |
'''simple docstring'''
import argparse
from typing import List
import evaluate
import numpy as np
import torch
from datasets import DatasetDict, load_dataset
# New Code #
# We'll be using StratifiedKFold for this example
from sklearn.model_selection import StratifiedKFold
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to perform Cross Validation,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
a : List[str] = 1_6
a : List[Any] = 3_2
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = 1_6 ) -> Any:
UpperCAmelCase : Dict = AutoTokenizer.from_pretrained("""bert-base-cased""" )
UpperCAmelCase : Optional[Any] = DatasetDict(
{
"""train""": dataset["""train"""].select(_lowercase ),
"""validation""": dataset["""train"""].select(_lowercase ),
"""test""": dataset["""validation"""],
} )
def tokenize_function(_lowercase ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase : str = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowercase , max_length=_lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
UpperCAmelCase : Any = datasets.map(
_lowercase , batched=_lowercase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase : int = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(_lowercase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
UpperCAmelCase : Any = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
UpperCAmelCase : List[str] = 1_6
elif accelerator.mixed_precision != "no":
UpperCAmelCase : Any = 8
else:
UpperCAmelCase : Tuple = None
return tokenizer.pad(
_lowercase , padding="""longest""" , max_length=_lowercase , pad_to_multiple_of=_lowercase , return_tensors="""pt""" , )
# Instantiate dataloaders.
UpperCAmelCase : int = DataLoader(
tokenized_datasets["""train"""] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase )
UpperCAmelCase : Tuple = DataLoader(
tokenized_datasets["""validation"""] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase )
UpperCAmelCase : Tuple = DataLoader(
tokenized_datasets["""test"""] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase )
return train_dataloader, eval_dataloader, test_dataloader
def __lowerCamelCase ( _lowercase , _lowercase ) -> List[Any]:
# New Code #
UpperCAmelCase : List[Any] = []
# Download the dataset
UpperCAmelCase : List[Any] = load_dataset("""glue""" , """mrpc""" )
# Create our splits
UpperCAmelCase : Dict = StratifiedKFold(n_splits=int(args.num_folds ) )
# Initialize accelerator
UpperCAmelCase : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase : List[str] = config["""lr"""]
UpperCAmelCase : str = int(config["""num_epochs"""] )
UpperCAmelCase : str = int(config["""seed"""] )
UpperCAmelCase : Tuple = int(config["""batch_size"""] )
UpperCAmelCase : Union[str, Any] = evaluate.load("""glue""" , """mrpc""" )
# If the batch size is too big we use gradient accumulation
UpperCAmelCase : Union[str, Any] = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
UpperCAmelCase : str = batch_size // MAX_GPU_BATCH_SIZE
UpperCAmelCase : Optional[int] = MAX_GPU_BATCH_SIZE
set_seed(_lowercase )
# New Code #
# Create our folds:
UpperCAmelCase : Optional[int] = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] )
UpperCAmelCase : Tuple = []
# Iterate over them
for i, (train_idxs, valid_idxs) in enumerate(_lowercase ):
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = get_fold_dataloaders(
_lowercase , _lowercase , _lowercase , _lowercase , )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase : Optional[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_lowercase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCAmelCase : Any = model.to(accelerator.device )
# Instantiate optimizer
UpperCAmelCase : Union[str, Any] = AdamW(params=model.parameters() , lr=_lowercase )
# Instantiate scheduler
UpperCAmelCase : Any = get_linear_schedule_with_warmup(
optimizer=_lowercase , num_warmup_steps=1_0_0 , num_training_steps=(len(_lowercase ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = accelerator.prepare(
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
# Now we train the model
for epoch in range(_lowercase ):
model.train()
for step, batch in enumerate(_lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
UpperCAmelCase : Optional[Any] = model(**_lowercase )
UpperCAmelCase : Any = outputs.loss
UpperCAmelCase : Any = loss / gradient_accumulation_steps
accelerator.backward(_lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(_lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase : Optional[Any] = model(**_lowercase )
UpperCAmelCase : Any = outputs.logits.argmax(dim=-1 )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=_lowercase , references=_lowercase , )
UpperCAmelCase : Any = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , _lowercase )
# New Code #
# We also run predictions on the test set at the very end
UpperCAmelCase : Optional[Any] = []
for step, batch in enumerate(_lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase : Optional[Any] = model(**_lowercase )
UpperCAmelCase : List[str] = outputs.logits
UpperCAmelCase , UpperCAmelCase : Dict = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
fold_predictions.append(predictions.cpu() )
if i == 0:
# We need all of the test predictions
test_references.append(references.cpu() )
# Use accelerator.print to print only on the main process.
test_predictions.append(torch.cat(_lowercase , dim=0 ) )
# We now need to release all our memory and get rid of the current model, optimizer, etc
accelerator.free_memory()
# New Code #
# Finally we check the accuracy of our folded results:
UpperCAmelCase : Dict = torch.cat(_lowercase , dim=0 )
UpperCAmelCase : int = torch.stack(_lowercase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 )
UpperCAmelCase : List[Any] = metric.compute(predictions=_lowercase , references=_lowercase )
accelerator.print("""Average test metrics from all folds:""" , _lowercase )
def __lowerCamelCase ( ) -> Optional[Any]:
UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=_lowercase , default=_lowercase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
# New Code #
parser.add_argument("""--num_folds""" , type=_lowercase , default=3 , help="""The number of splits to perform across the dataset""" )
UpperCAmelCase : Optional[int] = parser.parse_args()
UpperCAmelCase : Optional[int] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6}
training_function(_lowercase , _lowercase )
if __name__ == "__main__":
main()
| 672 |
'''simple docstring'''
from datetime import datetime as dt
import os
from github import Github
a : int = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""feature request""",
"""new model""",
"""wip""",
]
def __lowerCamelCase ( ) -> Dict:
UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] )
UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" )
UpperCAmelCase : int = repo.get_issues(state="""open""" )
for issue in open_issues:
UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase )
UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 3_0
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state="""closed""" )
elif (
(dt.utcnow() - issue.updated_at).days > 2_3
and (dt.utcnow() - issue.created_at).days >= 3_0
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
if __name__ == "__main__":
main()
| 672 | 1 |
'''simple docstring'''
from torch import nn
def __lowerCamelCase ( _lowercase ) -> Optional[int]:
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(F'''Unsupported activation function: {act_fn}''' )
| 672 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class UpperCamelCase_ :
def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any:
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : List[Any] = batch_size
UpperCAmelCase : Union[str, Any] = seq_length
UpperCAmelCase : Optional[int] = is_training
UpperCAmelCase : str = use_input_mask
UpperCAmelCase : Optional[int] = use_token_type_ids
UpperCAmelCase : Dict = use_labels
UpperCAmelCase : str = vocab_size
UpperCAmelCase : Optional[int] = hidden_size
UpperCAmelCase : str = num_hidden_layers
UpperCAmelCase : Any = num_attention_heads
UpperCAmelCase : Union[str, Any] = intermediate_size
UpperCAmelCase : str = hidden_act
UpperCAmelCase : Any = hidden_dropout_prob
UpperCAmelCase : str = attention_probs_dropout_prob
UpperCAmelCase : Tuple = max_position_embeddings
UpperCAmelCase : Optional[Any] = type_vocab_size
UpperCAmelCase : Optional[Any] = type_sequence_label_size
UpperCAmelCase : str = initializer_range
UpperCAmelCase : List[Any] = num_labels
UpperCAmelCase : Dict = num_choices
UpperCAmelCase : Tuple = scope
def _lowercase( self ) -> Dict:
UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Optional[Any] = None
if self.use_input_mask:
UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Optional[Any] = None
if self.use_token_type_ids:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase : Union[str, Any] = None
UpperCAmelCase : Dict = None
UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowercase( self ) -> Dict:
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , )
def _lowercase( self , A , A , A , A , A , A , A ) -> str:
UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A )
model.to(A )
model.eval()
UpperCAmelCase : Dict = model(A , attention_mask=A )
UpperCAmelCase : Optional[int] = model(A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]:
UpperCAmelCase : Optional[int] = True
UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A )
model.to(A )
model.eval()
UpperCAmelCase : List[Any] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , )
UpperCAmelCase : str = model(
A , attention_mask=A , encoder_hidden_states=A , )
UpperCAmelCase : List[Any] = model(A , attention_mask=A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int:
UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A )
model.to(A )
model.eval()
UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int:
UpperCAmelCase : Dict = True
UpperCAmelCase : Tuple = True
UpperCAmelCase : str = OpenLlamaForCausalLM(config=A )
model.to(A )
model.eval()
# first forward pass
UpperCAmelCase : Union[str, Any] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , )
UpperCAmelCase : str = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCAmelCase : List[Any] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0]
UpperCAmelCase : Optional[Any] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0]
# select random slice
UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : Tuple = config_and_inputs
UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else ()
lowercase = (
{
'feature-extraction': OpenLlamaModel,
'text-classification': OpenLlamaForSequenceClassification,
'text-generation': OpenLlamaForCausalLM,
'zero-shot': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Dict = OpenLlamaModelTester(self )
UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 )
def _lowercase( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def _lowercase( self ) -> int:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> str:
UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase : int = type
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> str:
UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : List[str] = 3
UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""]
UpperCAmelCase : str = input_ids.ne(1 ).to(A )
UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Dict = 3
UpperCAmelCase : Any = """single_label_classification"""
UpperCAmelCase : Dict = input_dict["""input_ids"""]
UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A )
UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowercase( self ) -> int:
UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Tuple = 3
UpperCAmelCase : Optional[Any] = """multi_label_classification"""
UpperCAmelCase : Dict = input_dict["""input_ids"""]
UpperCAmelCase : int = input_ids.ne(1 ).to(A )
UpperCAmelCase : int = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" )
def _lowercase( self ) -> Dict:
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def _lowercase( self , A ) -> str:
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size )
UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase : Any = OpenLlamaModel(A )
original_model.to(A )
original_model.eval()
UpperCAmelCase : List[str] = original_model(A ).last_hidden_state
UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0}
UpperCAmelCase : str = OpenLlamaModel(A )
scaled_model.to(A )
scaled_model.eval()
UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state
UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(A , A , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
| 672 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class UpperCamelCase_ :
lowercase = LEDConfig
lowercase = {}
lowercase = 'gelu'
def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , A=4 , ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = parent
UpperCAmelCase : List[Any] = batch_size
UpperCAmelCase : Union[str, Any] = seq_length
UpperCAmelCase : Optional[int] = is_training
UpperCAmelCase : Dict = use_labels
UpperCAmelCase : Dict = vocab_size
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : Union[str, Any] = num_hidden_layers
UpperCAmelCase : Any = num_attention_heads
UpperCAmelCase : int = intermediate_size
UpperCAmelCase : Dict = hidden_dropout_prob
UpperCAmelCase : List[str] = attention_probs_dropout_prob
UpperCAmelCase : Dict = max_position_embeddings
UpperCAmelCase : str = eos_token_id
UpperCAmelCase : Tuple = pad_token_id
UpperCAmelCase : str = bos_token_id
UpperCAmelCase : Any = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
UpperCAmelCase : Tuple = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
UpperCAmelCase : Tuple = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Union[str, Any] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
UpperCAmelCase : Tuple = prepare_led_inputs_dict(A , A , A )
UpperCAmelCase : List[Any] = tf.concat(
[tf.zeros_like(A )[:, :-1], tf.ones_like(A )[:, -1:]] , axis=-1 , )
UpperCAmelCase : Tuple = global_attention_mask
return config, inputs_dict
def _lowercase( self , A , A ) -> Optional[int]:
UpperCAmelCase : Union[str, Any] = TFLEDModel(config=A ).get_decoder()
UpperCAmelCase : Union[str, Any] = inputs_dict["""input_ids"""]
UpperCAmelCase : str = input_ids[:1, :]
UpperCAmelCase : int = inputs_dict["""attention_mask"""][:1, :]
UpperCAmelCase : str = 1
# first forward pass
UpperCAmelCase : Optional[int] = model(A , attention_mask=A , use_cache=A )
UpperCAmelCase , UpperCAmelCase : Dict = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCAmelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCAmelCase : Any = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCAmelCase : Dict = model(A , attention_mask=A )[0]
UpperCAmelCase : List[Any] = model(A , attention_mask=A , past_key_values=A )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCAmelCase : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCAmelCase : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx]
UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(A , A , rtol=1e-3 )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> Optional[Any]:
if attention_mask is None:
UpperCAmelCase : str = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase : List[Any] = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase : Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
lowercase = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
lowercase = (
{
'conversational': TFLEDForConditionalGeneration,
'feature-extraction': TFLEDModel,
'summarization': TFLEDForConditionalGeneration,
'text2text-generation': TFLEDForConditionalGeneration,
'translation': TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowercase = True
lowercase = False
lowercase = False
lowercase = False
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = TFLEDModelTester(self )
UpperCAmelCase : Any = ConfigTester(self , config_class=A )
def _lowercase( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def _lowercase( self ) -> str:
UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*A )
def _lowercase( self ) -> int:
UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Optional[int] = tf.zeros_like(inputs_dict["""attention_mask"""] )
UpperCAmelCase : List[str] = 2
UpperCAmelCase : Any = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["""global_attention_mask"""] , )
UpperCAmelCase : int = True
UpperCAmelCase : Any = self.model_tester.seq_length
UpperCAmelCase : Any = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(A ):
UpperCAmelCase : Union[str, Any] = outputs.decoder_attentions
self.assertEqual(len(A ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(A ):
UpperCAmelCase : Optional[Any] = [t.numpy() for t in outputs.encoder_attentions]
UpperCAmelCase : Optional[Any] = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(A ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(A ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
UpperCAmelCase : Union[str, Any] = True
UpperCAmelCase : Dict = False
UpperCAmelCase : Optional[int] = False
UpperCAmelCase : Dict = model_class(A )
UpperCAmelCase : int = model(self._prepare_for_class(A , A ) )
UpperCAmelCase : Any = len(A )
self.assertEqual(config.output_hidden_states , A )
check_encoder_attentions_output(A )
if self.is_encoder_decoder:
UpperCAmelCase : Dict = model_class(A )
UpperCAmelCase : Dict = model(self._prepare_for_class(A , A ) )
self.assertEqual(config.output_hidden_states , A )
check_decoder_attentions_output(A )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase : Any = True
UpperCAmelCase : Dict = model_class(A )
UpperCAmelCase : int = model(self._prepare_for_class(A , A ) )
self.assertEqual(config.output_hidden_states , A )
check_encoder_attentions_output(A )
# Check attention is always last and order is fine
UpperCAmelCase : Any = True
UpperCAmelCase : Any = True
UpperCAmelCase : int = model_class(A )
UpperCAmelCase : Dict = model(self._prepare_for_class(A , A ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(A ) )
self.assertEqual(model.config.output_hidden_states , A )
check_encoder_attentions_output(A )
@unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""" )
def _lowercase( self ) -> List[Any]:
pass
def _lowercase( self ) -> Optional[int]:
# TODO: Head-masking not yet implement
pass
def __lowerCamelCase ( _lowercase ) -> List[str]:
return tf.constant(_lowercase , dtype=tf.intaa )
a : int = 1E-4
@slow
@require_tf
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self ) -> List[str]:
UpperCAmelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ).led
# change to intended input here
UpperCAmelCase : List[Any] = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase : Optional[Any] = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase : Tuple = prepare_led_inputs_dict(model.config , A , A )
UpperCAmelCase : List[Any] = model(**A )[0]
UpperCAmelCase : Optional[Any] = (1, 1024, 768)
self.assertEqual(output.shape , A )
# change to expected output here
UpperCAmelCase : int = tf.convert_to_tensor(
[[2.3_0_5_0, 2.8_2_7_9, 0.6_5_3_1], [-1.8_4_5_7, -0.1_4_5_5, -3.5_6_6_1], [-1.0_1_8_6, 0.4_5_8_6, -2.2_0_4_3]] , )
tf.debugging.assert_near(output[:, :3, :3] , A , atol=1e-3 )
def _lowercase( self ) -> str:
UpperCAmelCase : str = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" )
# change to intended input here
UpperCAmelCase : List[str] = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase : Union[str, Any] = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase : Optional[int] = prepare_led_inputs_dict(model.config , A , A )
UpperCAmelCase : Union[str, Any] = model(**A )[0]
UpperCAmelCase : Optional[Any] = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , A )
# change to expected output here
UpperCAmelCase : str = tf.convert_to_tensor(
[[3_3.6_5_0_7, 6.4_5_7_2, 1_6.8_0_8_9], [5.8_7_3_9, -2.4_2_3_8, 1_1.2_9_0_2], [-3.2_1_3_9, -4.3_1_4_9, 4.2_7_8_3]] , )
tf.debugging.assert_near(output[:, :3, :3] , A , atol=1e-3 , rtol=1e-3 )
| 672 |
'''simple docstring'''
import math
def __lowerCamelCase ( _lowercase ) -> bool:
assert isinstance(_lowercase , _lowercase ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = factor * value
UpperCAmelCase : List[Any] = value
while not is_prime(_lowercase ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **_lowercase )
return value
| 672 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase_ :
def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> Dict:
UpperCAmelCase : List[Any] = parent
UpperCAmelCase : Dict = batch_size
UpperCAmelCase : Optional[int] = image_size
UpperCAmelCase : Optional[int] = num_channels
UpperCAmelCase : List[str] = num_stages
UpperCAmelCase : Optional[int] = hidden_sizes
UpperCAmelCase : Optional[Any] = depths
UpperCAmelCase : Optional[int] = is_training
UpperCAmelCase : str = use_labels
UpperCAmelCase : Dict = intermediate_size
UpperCAmelCase : List[Any] = hidden_act
UpperCAmelCase : Optional[int] = num_labels
UpperCAmelCase : List[str] = initializer_range
UpperCAmelCase : Any = out_features
UpperCAmelCase : str = out_indices
UpperCAmelCase : Dict = scope
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : Any = None
if self.use_labels:
UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase : Dict = self.get_config()
return config, pixel_values, labels
def _lowercase( self ) -> Optional[int]:
return ConvNextConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def _lowercase( self , A , A , A ) -> List[str]:
UpperCAmelCase : Optional[Any] = ConvNextModel(config=A )
model.to(A )
model.eval()
UpperCAmelCase : Optional[int] = model(A )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _lowercase( self , A , A , A ) -> Tuple:
UpperCAmelCase : List[str] = ConvNextForImageClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : List[str] = model(A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowercase( self , A , A , A ) -> Optional[int]:
UpperCAmelCase : Union[str, Any] = ConvNextBackbone(config=A )
model.to(A )
model.eval()
UpperCAmelCase : List[str] = model(A )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
UpperCAmelCase : Any = None
UpperCAmelCase : Dict = ConvNextBackbone(config=A )
model.to(A )
model.eval()
UpperCAmelCase : Optional[Any] = model(A )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = config_and_inputs
UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (
(
ConvNextModel,
ConvNextForImageClassification,
ConvNextBackbone,
)
if is_torch_available()
else ()
)
lowercase = (
{'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification}
if is_torch_available()
else {}
)
lowercase = True
lowercase = False
lowercase = False
lowercase = False
lowercase = False
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = ConvNextModelTester(self )
UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 )
def _lowercase( self ) -> Tuple:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowercase( self ) -> Union[str, Any]:
return
@unittest.skip(reason="""ConvNext does not use inputs_embeds""" )
def _lowercase( self ) -> int:
pass
@unittest.skip(reason="""ConvNext does not support input and output embeddings""" )
def _lowercase( self ) -> Any:
pass
@unittest.skip(reason="""ConvNext does not use feedforward chunking""" )
def _lowercase( self ) -> int:
pass
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : List[str] = model_class(A )
UpperCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : str = [*signature.parameters.keys()]
UpperCAmelCase : Optional[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , A )
def _lowercase( self ) -> str:
UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> str:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*A )
def _lowercase( self ) -> Optional[Any]:
def check_hidden_states_output(A , A , A ):
UpperCAmelCase : str = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
UpperCAmelCase : List[str] = model(**self._prepare_for_class(A , A ) )
UpperCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase : Any = self.model_tester.num_stages
self.assertEqual(len(A ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Any = True
check_hidden_states_output(A , A , A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase : Dict = True
check_hidden_states_output(A , A , A )
def _lowercase( self ) -> int:
UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def _lowercase( self ) -> Optional[Any]:
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Optional[int] = ConvNextModel.from_pretrained(A )
self.assertIsNotNone(A )
def __lowerCamelCase ( ) -> Union[str, Any]:
UpperCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
@cached_property
def _lowercase( self ) -> Dict:
return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None
@slow
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Dict = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(A )
UpperCAmelCase : Union[str, Any] = self.default_image_processor
UpperCAmelCase : Any = prepare_img()
UpperCAmelCase : Dict = image_processor(images=A , return_tensors="""pt""" ).to(A )
# forward pass
with torch.no_grad():
UpperCAmelCase : Any = model(**A )
# verify the logits
UpperCAmelCase : Any = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , A )
UpperCAmelCase : Optional[int] = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
@require_torch
class UpperCamelCase_ ( unittest.TestCase , __magic_name__ ):
lowercase = (ConvNextBackbone,) if is_torch_available() else ()
lowercase = ConvNextConfig
lowercase = False
def _lowercase( self ) -> Dict:
UpperCAmelCase : int = ConvNextModelTester(self )
| 672 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool:
UpperCAmelCase : Union[str, Any] = set()
# Replace all the whitespace in our sentence
UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" )
for alpha in input_str:
if "a" <= alpha.lower() <= "z":
frequency.add(alpha.lower() )
return len(_lowercase ) == 2_6
def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool:
UpperCAmelCase : Tuple = [False] * 2_6
for char in input_str:
if char.islower():
UpperCAmelCase : Any = True
elif char.isupper():
UpperCAmelCase : Union[str, Any] = True
return all(_lowercase )
def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool:
return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6
def __lowerCamelCase ( ) -> None:
from timeit import timeit
UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest"""
print(timeit("""is_pangram()""" , setup=_lowercase ) )
print(timeit("""is_pangram_faster()""" , setup=_lowercase ) )
print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) )
# 5.348480500048026, 2.6477354579837993, 1.8470395830227062
# 5.036091582966037, 2.644472333951853, 1.8869528750656173
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 672 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : List[str] = logging.get_logger(__name__)
a : Optional[Any] = {
"""caidas/swin2sr-classicalsr-x2-64""": (
"""https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json"""
),
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'swin2sr'
lowercase = {
'hidden_size': 'embed_dim',
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self , A=64 , A=1 , A=3 , A=180 , A=[6, 6, 6, 6, 6, 6] , A=[6, 6, 6, 6, 6, 6] , A=8 , A=2.0 , A=True , A=0.0 , A=0.0 , A=0.1 , A="gelu" , A=False , A=0.0_2 , A=1e-5 , A=2 , A=1.0 , A="1conv" , A="pixelshuffle" , **A , ) -> List[str]:
super().__init__(**A )
UpperCAmelCase : List[str] = image_size
UpperCAmelCase : Dict = patch_size
UpperCAmelCase : List[Any] = num_channels
UpperCAmelCase : Union[str, Any] = embed_dim
UpperCAmelCase : Dict = depths
UpperCAmelCase : Dict = len(A )
UpperCAmelCase : Dict = num_heads
UpperCAmelCase : str = window_size
UpperCAmelCase : Tuple = mlp_ratio
UpperCAmelCase : List[str] = qkv_bias
UpperCAmelCase : Any = hidden_dropout_prob
UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
UpperCAmelCase : List[str] = drop_path_rate
UpperCAmelCase : Tuple = hidden_act
UpperCAmelCase : List[str] = use_absolute_embeddings
UpperCAmelCase : List[str] = layer_norm_eps
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : Any = upscale
UpperCAmelCase : Tuple = img_range
UpperCAmelCase : Tuple = resi_connection
UpperCAmelCase : Tuple = upsampler
| 672 |
'''simple docstring'''
from sklearn.metrics import mean_squared_error
import datasets
a : Union[str, Any] = """\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
a : int = """\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
"""
a : int = """
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
\"raw_values\" : Returns a full set of errors in case of multioutput input.
\"uniform_average\" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric(\"mse\")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{'mse': 0.6123724356957945}
If you're using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mse': array([0.41666667, 1. ])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
def _lowercase( self ) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"""
] , )
def _lowercase( self ) -> List[Any]:
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("""float""" ) ),
"references": datasets.Sequence(datasets.Value("""float""" ) ),
}
else:
return {
"predictions": datasets.Value("""float""" ),
"references": datasets.Value("""float""" ),
}
def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]:
UpperCAmelCase : List[Any] = mean_squared_error(
A , A , sample_weight=A , multioutput=A , squared=A )
return {"mse": mse}
| 672 | 1 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase ) -> str:
UpperCAmelCase : Optional[Any] = 0
# if input_string is "aba" than new_input_string become "a|b|a"
UpperCAmelCase : Union[str, Any] = """"""
UpperCAmelCase : Any = """"""
# append each character + "|" in new_string for range(0, length-1)
for i in input_string[: len(_lowercase ) - 1]:
new_input_string += i + "|"
# append last character
new_input_string += input_string[-1]
# we will store the starting and ending of previous furthest ending palindromic
# substring
UpperCAmelCase , UpperCAmelCase : Optional[int] = 0, 0
# length[i] shows the length of palindromic substring with center i
UpperCAmelCase : int = [1 for i in range(len(_lowercase ) )]
# for each character in new_string find corresponding palindromic string
UpperCAmelCase : Optional[Any] = 0
for j in range(len(_lowercase ) ):
UpperCAmelCase : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 )
while (
j - k >= 0
and j + k < len(_lowercase )
and new_input_string[k + j] == new_input_string[j - k]
):
k += 1
UpperCAmelCase : List[Any] = 2 * k - 1
# does this string is ending after the previously explored end (that is r) ?
# if yes the update the new r to the last index of this
if j + k - 1 > r:
UpperCAmelCase : Any = j - k + 1 # noqa: E741
UpperCAmelCase : List[str] = j + k - 1
# update max_length and start position
if max_length < length[j]:
UpperCAmelCase : Union[str, Any] = length[j]
UpperCAmelCase : List[str] = j
# create that string
UpperCAmelCase : List[Any] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1]
for i in s:
if i != "|":
output_string += i
return output_string
if __name__ == "__main__":
import doctest
doctest.testmod()
| 672 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : str = logging.get_logger(__name__)
a : Any = {
"""google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""",
"""google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json"""
# See all FNet models at https://huggingface.co/models?filter=fnet
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'fnet'
def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int:
super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A )
UpperCAmelCase : Optional[Any] = vocab_size
UpperCAmelCase : Dict = max_position_embeddings
UpperCAmelCase : List[str] = hidden_size
UpperCAmelCase : int = num_hidden_layers
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : List[str] = hidden_act
UpperCAmelCase : Tuple = hidden_dropout_prob
UpperCAmelCase : List[str] = initializer_range
UpperCAmelCase : List[Any] = type_vocab_size
UpperCAmelCase : int = layer_norm_eps
UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations
UpperCAmelCase : List[Any] = tpu_short_seq_length
| 672 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
a : int = logging.get_logger(__name__)
def __lowerCamelCase ( _lowercase ) -> List[List[ImageInput]]:
if isinstance(_lowercase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(_lowercase , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(_lowercase ):
return [[videos]]
raise ValueError(F'''Could not make batched video from {videos}''' )
class UpperCamelCase_ ( __magic_name__ ):
lowercase = ['pixel_values']
def __init__( self , A = True , A = None , A = PILImageResampling.BILINEAR , A = True , A = None , A = True , A = 1 / 255 , A = True , A = None , A = None , **A , ) -> None:
super().__init__(**A )
UpperCAmelCase : Dict = size if size is not None else {"""shortest_edge""": 224}
UpperCAmelCase : List[Any] = get_size_dict(A , default_to_square=A )
UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
UpperCAmelCase : Any = get_size_dict(A , param_name="""crop_size""" )
UpperCAmelCase : str = do_resize
UpperCAmelCase : str = size
UpperCAmelCase : Optional[Any] = do_center_crop
UpperCAmelCase : Union[str, Any] = crop_size
UpperCAmelCase : Dict = resample
UpperCAmelCase : str = do_rescale
UpperCAmelCase : Tuple = rescale_factor
UpperCAmelCase : Optional[int] = do_normalize
UpperCAmelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowercase( self , A , A , A = PILImageResampling.BILINEAR , A = None , **A , ) -> np.ndarray:
UpperCAmelCase : List[str] = get_size_dict(A , default_to_square=A )
if "shortest_edge" in size:
UpperCAmelCase : List[str] = get_resize_output_image_size(A , size["""shortest_edge"""] , default_to_square=A )
elif "height" in size and "width" in size:
UpperCAmelCase : List[str] = (size["""height"""], size["""width"""])
else:
raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' )
return resize(A , size=A , resample=A , data_format=A , **A )
def _lowercase( self , A , A , A = None , **A , ) -> np.ndarray:
UpperCAmelCase : List[str] = get_size_dict(A )
if "height" not in size or "width" not in size:
raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' )
return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A )
def _lowercase( self , A , A , A = None , **A , ) -> List[str]:
return rescale(A , scale=A , data_format=A , **A )
def _lowercase( self , A , A , A , A = None , **A , ) -> np.ndarray:
return normalize(A , mean=A , std=A , data_format=A , **A )
def _lowercase( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , ) -> np.ndarray:
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
UpperCAmelCase : List[str] = to_numpy_array(A )
if do_resize:
UpperCAmelCase : str = self.resize(image=A , size=A , resample=A )
if do_center_crop:
UpperCAmelCase : Tuple = self.center_crop(A , size=A )
if do_rescale:
UpperCAmelCase : Optional[Any] = self.rescale(image=A , scale=A )
if do_normalize:
UpperCAmelCase : List[Any] = self.normalize(image=A , mean=A , std=A )
UpperCAmelCase : int = to_channel_dimension_format(A , A )
return image
def _lowercase( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image:
UpperCAmelCase : Any = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase : int = resample if resample is not None else self.resample
UpperCAmelCase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase : Tuple = image_std if image_std is not None else self.image_std
UpperCAmelCase : Optional[int] = size if size is not None else self.size
UpperCAmelCase : Union[str, Any] = get_size_dict(A , default_to_square=A )
UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase : Dict = get_size_dict(A , param_name="""crop_size""" )
if not valid_images(A ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
UpperCAmelCase : List[Any] = make_batched(A )
UpperCAmelCase : Dict = [
[
self._preprocess_image(
image=A , do_resize=A , size=A , resample=A , do_center_crop=A , crop_size=A , do_rescale=A , rescale_factor=A , do_normalize=A , image_mean=A , image_std=A , data_format=A , )
for img in video
]
for video in videos
]
UpperCAmelCase : int = {"""pixel_values""": videos}
return BatchFeature(data=A , tensor_type=A )
| 672 |
'''simple docstring'''
a : List[Any] = """Alexander Joslin"""
import operator as op
from .stack import Stack
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub}
UpperCAmelCase : Stack[int] = Stack()
UpperCAmelCase : Stack[str] = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(_lowercase ) )
elif i in operators:
# RULE 2
operator_stack.push(_lowercase )
elif i == ")":
# RULE 4
UpperCAmelCase : List[Any] = operator_stack.peek()
operator_stack.pop()
UpperCAmelCase : str = operand_stack.peek()
operand_stack.pop()
UpperCAmelCase : str = operand_stack.peek()
operand_stack.pop()
UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase )
operand_stack.push(_lowercase )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
a : Tuple = """(5 + ((4 * 2) * (2 + 3)))"""
# answer = 45
print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
| 672 | 1 |
'''simple docstring'''
import importlib.metadata
from typing import Union
from packaging.version import Version, parse
from .constants import STR_OPERATION_TO_FUNC
a : Any = parse(importlib.metadata.version("""torch"""))
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int:
if operation not in STR_OPERATION_TO_FUNC.keys():
raise ValueError(F'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' )
UpperCAmelCase : Tuple = STR_OPERATION_TO_FUNC[operation]
if isinstance(_lowercase , _lowercase ):
UpperCAmelCase : Any = parse(importlib.metadata.version(_lowercase ) )
return operation(_lowercase , parse(_lowercase ) )
def __lowerCamelCase ( _lowercase , _lowercase ) -> Union[str, Any]:
return compare_versions(_lowercase , _lowercase , _lowercase )
| 672 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
a : List[Any] = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
a : List[str] = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias'''))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''',
F'''decoder.layers.{i}.encoder_attn.out_proj.weight''',
)
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''',
F'''decoder.layers.{i}.encoder_attn.out_proj.bias''',
)
)
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias'''))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''')
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
("""input_proj.weight""", """input_projection.weight"""),
("""input_proj.bias""", """input_projection.bias"""),
("""query_embed.weight""", """query_position_embeddings.weight"""),
("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""),
("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""),
("""class_embed.weight""", """class_labels_classifier.weight"""),
("""class_embed.bias""", """class_labels_classifier.bias"""),
("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""),
("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""),
("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""),
("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""),
("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""),
("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""),
("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""),
("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""),
("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""),
("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""),
("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""),
("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""),
("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""),
("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""),
("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""),
("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""),
]
)
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
UpperCAmelCase : List[str] = state_dict.pop(_lowercase )
UpperCAmelCase : List[str] = val
def __lowerCamelCase ( _lowercase ) -> Any:
UpperCAmelCase : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" )
UpperCAmelCase : Dict = value
else:
UpperCAmelCase : List[Any] = value
return new_state_dict
def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]:
UpperCAmelCase : Dict = """"""
if is_panoptic:
UpperCAmelCase : Tuple = """conditional_detr."""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' )
UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :]
UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6]
UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :]
UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2]
UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :]
UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:]
def __lowerCamelCase ( ) -> Dict:
UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
return im
@torch.no_grad()
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
UpperCAmelCase : str = ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
UpperCAmelCase : List[Any] = """resnet101"""
if "dc5" in model_name:
UpperCAmelCase : Optional[int] = True
UpperCAmelCase : List[Any] = """panoptic""" in model_name
if is_panoptic:
UpperCAmelCase : Union[str, Any] = 2_5_0
else:
UpperCAmelCase : int = 9_1
UpperCAmelCase : Tuple = """huggingface/label-files"""
UpperCAmelCase : List[Any] = """coco-detection-id2label.json"""
UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) )
UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()}
UpperCAmelCase : Optional[Any] = idalabel
UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()}
# load image processor
UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection"""
UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase )
# prepare image
UpperCAmelCase : Union[str, Any] = prepare_img()
UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" )
UpperCAmelCase : List[Any] = encoding["""pixel_values"""]
logger.info(F'''Converting model {model_name}...''' )
# load original model from torch hub
UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval()
UpperCAmelCase : List[Any] = conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
UpperCAmelCase : List[Any] = """conditional_detr.""" + src
rename_key(_lowercase , _lowercase , _lowercase )
UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase )
# query, key and value matrices need special treatment
read_in_q_k_v(_lowercase , is_panoptic=_lowercase )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model."""
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("""conditional_detr""" )
and not key.startswith("""class_labels_classifier""" )
and not key.startswith("""bbox_predictor""" )
):
UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase )
UpperCAmelCase : int = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
UpperCAmelCase : Any = state_dict.pop(_lowercase )
UpperCAmelCase : Optional[Any] = val
elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ):
continue
else:
UpperCAmelCase : List[Any] = state_dict.pop(_lowercase )
UpperCAmelCase : str = val
else:
if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ):
UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase )
UpperCAmelCase : Union[str, Any] = val
# finally, create HuggingFace model and load state dict
UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase )
model.load_state_dict(_lowercase )
model.eval()
model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" )
# verify our conversion
UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase )
UpperCAmelCase : int = model(_lowercase )
assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 )
assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 )
# Save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(_lowercase ).mkdir(exist_ok=_lowercase )
model.save_pretrained(_lowercase )
image_processor.save_pretrained(_lowercase )
if __name__ == "__main__":
a : Tuple = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
default="""conditional_detr_resnet50""",
type=str,
help="""Name of the CONDITIONAL_DETR model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
a : Optional[Any] = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 672 | 1 |
'''simple docstring'''
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def __lowerCamelCase ( ) -> Optional[int]:
UpperCAmelCase , UpperCAmelCase : Tuple = 9, 1_4 # noqa: F841
UpperCAmelCase : Any = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 1_4],
[3, 4, 9],
[5, 4, 1_0],
[1, 7, 1_1],
]
UpperCAmelCase : int = defaultdict(_lowercase )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
UpperCAmelCase : Tuple = mst(_lowercase )
UpperCAmelCase : Optional[int] = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
UpperCAmelCase : int = tuple(answer[:2] )
UpperCAmelCase : Optional[Any] = tuple(edge[::-1] )
assert edge in result or reverse in result
| 672 |
'''simple docstring'''
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 672 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
a : Union[str, Any] = logging.get_logger(__name__)
def __lowerCamelCase ( _lowercase , _lowercase=False , _lowercase=False ) -> Dict:
UpperCAmelCase : Any = """backbone.""" if is_semantic else """"""
UpperCAmelCase : Union[str, Any] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
(F'''{prefix}cls_token''', """beit.embeddings.cls_token"""),
(F'''{prefix}patch_embed.proj.weight''', """beit.embeddings.patch_embeddings.projection.weight"""),
(F'''{prefix}patch_embed.proj.bias''', """beit.embeddings.patch_embeddings.projection.bias"""),
(F'''{prefix}pos_embed''', """beit.embeddings.position_embeddings"""),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
("""mask_token""", """beit.embeddings.mask_token"""),
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
("""fc_norm.weight""", """beit.pooler.layernorm.weight"""),
("""fc_norm.bias""", """beit.pooler.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=False , _lowercase=False ) -> Dict:
for i in range(config.num_hidden_layers ):
UpperCAmelCase : Tuple = """backbone.""" if is_semantic else """"""
# queries, keys and values
UpperCAmelCase : Union[str, Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' )
UpperCAmelCase : Optional[int] = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' )
UpperCAmelCase : Any = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' )
UpperCAmelCase : List[Any] = in_proj_weight[
: config.hidden_size, :
]
UpperCAmelCase : Optional[int] = q_bias
UpperCAmelCase : Any = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase : Union[str, Any] = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
UpperCAmelCase : str = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' )
UpperCAmelCase : Optional[Any] = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' )
UpperCAmelCase : Dict = gamma_a
UpperCAmelCase : Tuple = gamma_a
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Any:
UpperCAmelCase : Any = dct.pop(_lowercase )
UpperCAmelCase : Optional[int] = val
def __lowerCamelCase ( ) -> Dict:
UpperCAmelCase : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
return im
@torch.no_grad()
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=False ) -> str:
UpperCAmelCase : Any = False if """rvlcdip""" in checkpoint_url else True
UpperCAmelCase : int = BeitConfig(use_absolute_position_embeddings=_lowercase , use_mask_token=_lowercase )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
UpperCAmelCase : Tuple = 1_0_2_4
UpperCAmelCase : Tuple = 4_0_9_6
UpperCAmelCase : str = 2_4
UpperCAmelCase : Optional[Any] = 1_6
# labels
if "rvlcdip" in checkpoint_url:
UpperCAmelCase : List[Any] = 1_6
UpperCAmelCase : Union[str, Any] = """huggingface/label-files"""
UpperCAmelCase : Optional[int] = """rvlcdip-id2label.json"""
UpperCAmelCase : Any = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) )
UpperCAmelCase : str = {int(_lowercase ): v for k, v in idalabel.items()}
UpperCAmelCase : Dict = idalabel
UpperCAmelCase : Any = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
UpperCAmelCase : Dict = torch.hub.load_state_dict_from_url(_lowercase , map_location="""cpu""" )["""model"""]
UpperCAmelCase : Any = create_rename_keys(_lowercase , has_lm_head=_lowercase )
for src, dest in rename_keys:
rename_key(_lowercase , _lowercase , _lowercase )
read_in_q_k_v(_lowercase , _lowercase , has_lm_head=_lowercase )
# load HuggingFace model
UpperCAmelCase : List[Any] = BeitForMaskedImageModeling(_lowercase ) if has_lm_head else BeitForImageClassification(_lowercase )
model.eval()
model.load_state_dict(_lowercase )
# Check outputs on an image
UpperCAmelCase : Dict = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_lowercase )
UpperCAmelCase : Union[str, Any] = prepare_img()
UpperCAmelCase : Optional[Any] = image_processor(images=_lowercase , return_tensors="""pt""" )
UpperCAmelCase : Union[str, Any] = encoding["""pixel_values"""]
UpperCAmelCase : int = model(_lowercase )
UpperCAmelCase : int = outputs.logits
# verify logits
UpperCAmelCase : Any = [1, 1_6] if """rvlcdip""" in checkpoint_url else [1, 1_9_6, 8_1_9_2]
assert logits.shape == torch.Size(_lowercase ), "Shape of logits not as expected"
Path(_lowercase ).mkdir(exist_ok=_lowercase )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(_lowercase )
if push_to_hub:
if has_lm_head:
UpperCAmelCase : Union[str, Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large"""
else:
UpperCAmelCase : int = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip"""
image_processor.push_to_hub(
repo_path_or_name=Path(_lowercase , _lowercase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=_lowercase , )
model.push_to_hub(
repo_path_or_name=Path(_lowercase , _lowercase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=_lowercase , )
if __name__ == "__main__":
a : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_url""",
default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""",
type=str,
help="""URL to the original PyTorch checkpoint (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
)
a : int = parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 672 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_barthez import BarthezTokenizer
else:
a : int = None
a : List[Any] = logging.get_logger(__name__)
a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
a : Union[str, Any] = {
"""vocab_file""": {
"""moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""",
"""moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""",
"""moussaKam/barthez-orangesum-title""": (
"""https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""",
"""moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""",
"""moussaKam/barthez-orangesum-title""": (
"""https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json"""
),
},
}
a : List[Any] = {
"""moussaKam/mbarthez""": 1_0_2_4,
"""moussaKam/barthez""": 1_0_2_4,
"""moussaKam/barthez-orangesum-title""": 1_0_2_4,
}
a : int = """▁"""
class UpperCamelCase_ ( __magic_name__ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ['input_ids', 'attention_mask']
lowercase = BarthezTokenizer
def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]:
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token
super().__init__(
A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , )
UpperCAmelCase : Union[str, Any] = vocab_file
UpperCAmelCase : int = False if not self.vocab_file else True
def _lowercase( self , A , A = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase : Optional[int] = [self.cls_token_id]
UpperCAmelCase : List[str] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowercase( self , A , A = None ) -> List[int]:
UpperCAmelCase : Optional[int] = [self.sep_token_id]
UpperCAmelCase : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowercase( self , A , A = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase : str = os.path.join(
A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ):
copyfile(self.vocab_file , A )
return (out_vocab_file,)
| 672 | 1 |
'''simple docstring'''
a : Union[str, Any] = 6_5_5_2_1
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : str = 1
UpperCAmelCase : Any = 0
for plain_chr in plain_text:
UpperCAmelCase : Optional[int] = (a + ord(_lowercase )) % MOD_ADLER
UpperCAmelCase : Optional[int] = (b + a) % MOD_ADLER
return (b << 1_6) | a
| 672 |
'''simple docstring'''
from collections.abc import Callable
import numpy as np
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array:
UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) )
UpperCAmelCase : str = np.zeros((n + 1,) )
UpperCAmelCase : Optional[Any] = ya
UpperCAmelCase : Union[str, Any] = xa
for k in range(_lowercase ):
UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] )
UpperCAmelCase : Optional[int] = y[k] + (
(step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 672 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
a : List[str] = None
a : Dict = logging.get_logger(__name__)
a : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
a : Any = {
"""vocab_file""": {
"""camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""",
},
"""tokenizer_file""": {
"""camembert-base""": """https://huggingface.co/camembert-base/resolve/main/tokenizer.json""",
},
}
a : int = {
"""camembert-base""": 5_1_2,
}
a : Dict = """▁"""
class UpperCamelCase_ ( __magic_name__ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ['input_ids', 'attention_mask']
lowercase = CamembertTokenizer
def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=["<s>NOTUSED", "</s>NOTUSED"] , **A , ) -> Optional[int]:
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase : Optional[int] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token
super().__init__(
A , tokenizer_file=A , bos_token=A , eos_token=A , sep_token=A , cls_token=A , unk_token=A , pad_token=A , mask_token=A , additional_special_tokens=A , **A , )
UpperCAmelCase : Optional[Any] = vocab_file
UpperCAmelCase : List[str] = False if not self.vocab_file else True
def _lowercase( self , A , A = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase : Tuple = [self.cls_token_id]
UpperCAmelCase : Tuple = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowercase( self , A , A = None ) -> List[int]:
UpperCAmelCase : Dict = [self.sep_token_id]
UpperCAmelCase : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowercase( self , A , A = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase : Union[str, Any] = os.path.join(
A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ):
copyfile(self.vocab_file , A )
return (out_vocab_file,)
| 672 |
'''simple docstring'''
from typing import List, Union
import numpy as np
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, logging
from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline
a : List[str] = logging.get_logger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def _lowercase( self , A ) -> Optional[int]:
if isinstance(A , A ):
UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()]
return labels
def __call__( self , A , A , A ) -> str:
if len(A ) == 0 or len(A ) == 0:
raise ValueError("""You must include at least one label and at least one sequence.""" )
if hypothesis_template.format(labels[0] ) == hypothesis_template:
raise ValueError(
(
"""The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """
"""Make sure the passed template includes formatting syntax such as {{}} where the label should go."""
).format(A ) )
if isinstance(A , A ):
UpperCAmelCase : Tuple = [sequences]
UpperCAmelCase : Optional[Any] = []
for sequence in sequences:
sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] )
return sequence_pairs, sequences
@add_end_docstrings(__magic_name__ )
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]:
UpperCAmelCase : Tuple = args_parser
super().__init__(*A , **A )
if self.entailment_id == -1:
logger.warning(
"""Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """
"""-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" )
@property
def _lowercase( self ) -> List[Any]:
for label, ind in self.model.config.labelaid.items():
if label.lower().startswith("""entail""" ):
return ind
return -1
def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str:
UpperCAmelCase : Tuple = self.framework
if self.tokenizer.pad_token is None:
# Override for tokenizers not supporting padding
logger.error(
"""Tokenizer was not supporting padding necessary for zero-shot, attempting to use """
""" `pad_token=eos_token`""" )
UpperCAmelCase : Any = self.tokenizer.eos_token
try:
UpperCAmelCase : Tuple = self.tokenizer(
A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , )
except Exception as e:
if "too short" in str(A ):
# tokenizers might yell that we want to truncate
# to a value that is not even reached by the input.
# In that case we don't want to truncate.
# It seems there's not a really better way to catch that
# exception.
UpperCAmelCase : List[str] = self.tokenizer(
A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , )
else:
raise e
return inputs
def _lowercase( self , **A ) -> Tuple:
if kwargs.get("""multi_class""" , A ) is not None:
UpperCAmelCase : Any = kwargs["""multi_class"""]
logger.warning(
"""The `multi_class` argument has been deprecated and renamed to `multi_label`. """
"""`multi_class` will be removed in a future version of Transformers.""" )
UpperCAmelCase : int = {}
if "candidate_labels" in kwargs:
UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] )
if "hypothesis_template" in kwargs:
UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""]
UpperCAmelCase : Dict = {}
if "multi_label" in kwargs:
UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""]
return preprocess_params, {}, postprocess_params
def __call__( self , A , *A , **A , ) -> Tuple:
if len(A ) == 0:
pass
elif len(A ) == 1 and "candidate_labels" not in kwargs:
UpperCAmelCase : Optional[Any] = args[0]
else:
raise ValueError(f'''Unable to understand extra arguments {args}''' )
return super().__call__(A , **A )
def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]:
UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A )
for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ):
UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] )
yield {
"candidate_label": candidate_label,
"sequence": sequences[0],
"is_last": i == len(A ) - 1,
**model_input,
}
def _lowercase( self , A ) -> Optional[int]:
UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""]
UpperCAmelCase : Tuple = inputs["""sequence"""]
UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names}
UpperCAmelCase : Tuple = self.model(**A )
UpperCAmelCase : Optional[int] = {
"""candidate_label""": candidate_label,
"""sequence""": sequence,
"""is_last""": inputs["""is_last"""],
**outputs,
}
return model_outputs
def _lowercase( self , A , A=False ) -> List[str]:
UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs]
UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs]
UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] )
UpperCAmelCase : Optional[Any] = logits.shape[0]
UpperCAmelCase : int = len(A )
UpperCAmelCase : List[Any] = N // n
UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) )
if multi_label or len(A ) == 1:
# softmax over the entailment vs. contradiction dim for each label independently
UpperCAmelCase : str = self.entailment_id
UpperCAmelCase : str = -1 if entailment_id == 0 else 0
UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]]
UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A )
UpperCAmelCase : int = scores[..., 1]
else:
# softmax the "entailment" logits over all candidate labels
UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id]
UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A )
UpperCAmelCase : int = list(reversed(scores[0].argsort() ) )
return {
"sequence": sequences[0],
"labels": [candidate_labels[i] for i in top_inds],
"scores": scores[0, top_inds].tolist(),
}
| 672 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
a : Tuple = logging.get_logger("""transformers.models.speecht5""")
a : Any = {
"""speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""",
"""speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""",
"""speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""",
"""speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""",
}
a : Union[str, Any] = {
"""text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""",
"""text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""",
}
a : str = {
"""speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""",
"""speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""",
"""speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""",
"""speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""",
"""speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""",
}
a : Dict = {
"""speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""",
"""speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""",
"""speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""",
"""speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""",
"""speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""",
"""speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""",
"""speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""",
"""speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""",
"""speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""",
"""speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""",
"""speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""",
"""speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""",
}
a : Union[str, Any] = {
"""text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""",
}
a : List[str] = {
"""text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""",
}
a : List[str] = {
"""encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""",
"""encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""",
"""encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""",
"""encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""",
"""encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""",
"""encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""",
"""encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""",
"""encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""",
"""encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""",
}
a : Union[str, Any] = {
"""decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""",
"""decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""",
"""decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""",
"""decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""",
"""decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""",
"""decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""",
"""decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""",
"""decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""",
"""decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""",
"""decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""",
"""decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""",
"""decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""",
"""decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""",
}
a : Union[str, Any] = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
a : Any = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
a : Tuple = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
a : Any = []
a : List[str] = [
"""encoder.version""",
"""encoder.layers.*.norm_k.weight""",
"""encoder.layers.*.norm_k.bias""",
"""decoder.version""",
"""decoder.layers.*.norm_k.weight""",
"""decoder.layers.*.norm_k.bias""",
"""decoder.pos_emb.pe_k""",
"""speech_encoder_prenet.embed_positions._float_tensor""",
"""text_decoder_prenet.embed_positions._float_tensor""",
]
a : Optional[Any] = IGNORE_KEYS + [
"""encoder.proj""",
"""text_encoder_prenet.*""",
"""speech_decoder_prenet.*""",
"""speech_decoder_postnet.*""",
]
a : Optional[int] = IGNORE_KEYS + [
"""encoder.proj""",
"""speech_encoder_prenet.*""",
"""text_decoder_prenet.*""",
"""text_decoder_postnet.*""",
]
a : Optional[Any] = IGNORE_KEYS + [
"""encoder.proj""",
"""text_encoder_prenet.*""",
"""text_decoder_prenet.*""",
"""text_decoder_postnet.*""",
]
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]:
for attribute in key.split(""".""" ):
UpperCAmelCase : str = getattr(_lowercase , _lowercase )
if weight_type is not None:
UpperCAmelCase : Optional[Any] = getattr(_lowercase , _lowercase ).shape
else:
UpperCAmelCase : Tuple = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
UpperCAmelCase : Any = value
elif weight_type == "weight_g":
UpperCAmelCase : List[str] = value
elif weight_type == "weight_v":
UpperCAmelCase : Dict = value
elif weight_type == "bias":
UpperCAmelCase : List[str] = value
elif weight_type == "running_mean":
UpperCAmelCase : Any = value
elif weight_type == "running_var":
UpperCAmelCase : Tuple = value
elif weight_type == "num_batches_tracked":
UpperCAmelCase : Any = value
else:
UpperCAmelCase : Union[str, Any] = value
logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' )
def __lowerCamelCase ( _lowercase , _lowercase ) -> List[Any]:
for key in ignore_keys:
if key.endswith(""".*""" ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = key.split(""".*.""" )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[Any]:
UpperCAmelCase : Optional[Any] = []
if task == "s2t":
UpperCAmelCase : List[str] = hf_model.speechta.encoder.prenet.feature_encoder
UpperCAmelCase : Any = MAPPING_S2T
UpperCAmelCase : List[Any] = IGNORE_KEYS_S2T
elif task == "t2s":
UpperCAmelCase : Optional[int] = None
UpperCAmelCase : Optional[Any] = MAPPING_T2S
UpperCAmelCase : Any = IGNORE_KEYS_T2S
elif task == "s2s":
UpperCAmelCase : List[Any] = hf_model.speechta.encoder.prenet.feature_encoder
UpperCAmelCase : List[Any] = MAPPING_S2S
UpperCAmelCase : Dict = IGNORE_KEYS_S2S
else:
raise ValueError(F'''Unsupported task: {task}''' )
for name, value in fairseq_dict.items():
if should_ignore(_lowercase , _lowercase ):
logger.info(F'''{name} was ignored''' )
continue
UpperCAmelCase : List[Any] = False
if "conv_layers" in name:
load_conv_layer(
_lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == """group""" , )
UpperCAmelCase : List[str] = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = key.split(""".*.""" )
if prefix in name and suffix in name:
UpperCAmelCase : List[str] = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
UpperCAmelCase : Dict = True
if "*" in mapped_key:
UpperCAmelCase : Tuple = name.split(_lowercase )[0].split(""".""" )[-2]
UpperCAmelCase : Optional[Any] = mapped_key.replace("""*""" , _lowercase )
if "weight_g" in name:
UpperCAmelCase : List[Any] = """weight_g"""
elif "weight_v" in name:
UpperCAmelCase : List[str] = """weight_v"""
elif "bias" in name:
UpperCAmelCase : List[str] = """bias"""
elif "weight" in name:
UpperCAmelCase : str = """weight"""
elif "running_mean" in name:
UpperCAmelCase : Dict = """running_mean"""
elif "running_var" in name:
UpperCAmelCase : str = """running_var"""
elif "num_batches_tracked" in name:
UpperCAmelCase : str = """num_batches_tracked"""
else:
UpperCAmelCase : Optional[Any] = None
set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
continue
if not is_used:
unused_weights.append(_lowercase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
UpperCAmelCase : Tuple = full_name.split("""conv_layers.""" )[-1]
UpperCAmelCase : Any = name.split(""".""" )
UpperCAmelCase : List[Any] = int(items[0] )
UpperCAmelCase : int = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
UpperCAmelCase : Tuple = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
UpperCAmelCase : Any = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
UpperCAmelCase : int = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
UpperCAmelCase : Tuple = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(_lowercase )
@torch.no_grad()
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , ) -> Union[str, Any]:
if config_path is not None:
UpperCAmelCase : Any = SpeechTaConfig.from_pretrained(_lowercase )
else:
UpperCAmelCase : str = SpeechTaConfig()
if task == "s2t":
UpperCAmelCase : Optional[Any] = config.max_text_positions
UpperCAmelCase : int = SpeechTaForSpeechToText(_lowercase )
elif task == "t2s":
UpperCAmelCase : Dict = 1_8_7_6
UpperCAmelCase : Any = 6_0_0
UpperCAmelCase : Optional[Any] = config.max_speech_positions
UpperCAmelCase : List[str] = SpeechTaForTextToSpeech(_lowercase )
elif task == "s2s":
UpperCAmelCase : List[Any] = 1_8_7_6
UpperCAmelCase : Optional[Any] = config.max_speech_positions
UpperCAmelCase : List[Any] = SpeechTaForSpeechToSpeech(_lowercase )
else:
raise ValueError(F'''Unknown task name: {task}''' )
if vocab_path:
UpperCAmelCase : Optional[int] = SpeechTaTokenizer(_lowercase , model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
UpperCAmelCase : Optional[Any] = AddedToken("""<mask>""" , lstrip=_lowercase , rstrip=_lowercase )
UpperCAmelCase : Optional[int] = mask_token
tokenizer.add_special_tokens({"""mask_token""": mask_token} )
tokenizer.add_tokens(["""<ctc_blank>"""] )
UpperCAmelCase : List[Any] = SpeechTaFeatureExtractor()
UpperCAmelCase : List[Any] = SpeechTaProcessor(tokenizer=_lowercase , feature_extractor=_lowercase )
processor.save_pretrained(_lowercase )
UpperCAmelCase : str = torch.load(_lowercase )
recursively_load_weights(fairseq_checkpoint["""model"""] , _lowercase , _lowercase )
model.save_pretrained(_lowercase )
if repo_id:
print("""Pushing to the hub...""" )
processor.push_to_hub(_lowercase )
model.push_to_hub(_lowercase )
if __name__ == "__main__":
a : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--task""",
default="""s2t""",
type=str,
help="""Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.""",
)
parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub."""
)
a : Tuple = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 672 |
'''simple docstring'''
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""")
@require_sentencepiece
@require_tokenizers
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = PegasusTokenizer
lowercase = PegasusTokenizerFast
lowercase = True
lowercase = True
def _lowercase( self ) -> Tuple:
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase : int = PegasusTokenizer(A )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowercase( self ) -> int:
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def _lowercase( self , **A ) -> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def _lowercase( self , A ) -> List[str]:
return ("This is a test", "This is a test")
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = """</s>"""
UpperCAmelCase : Optional[int] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(A ) , 1103 )
def _lowercase( self ) -> Optional[Any]:
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def _lowercase( self ) -> int:
UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : Union[str, Any] = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : List[Any] = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1]
UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
def _lowercase( self ) -> int:
UpperCAmelCase : str = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 96103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions."""
UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1]
UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def _lowercase( self ) -> Any:
UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""]
UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""]
UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" )
UpperCAmelCase : List[Any] = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
@slow
def _lowercase( self ) -> List[str]:
# fmt: off
UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = PegasusTokenizer
lowercase = PegasusTokenizerFast
lowercase = True
lowercase = True
def _lowercase( self ) -> List[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowercase( self ) -> Optional[Any]:
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def _lowercase( self , **A ) -> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def _lowercase( self , A ) -> str:
return ("This is a test", "This is a test")
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : str = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
@require_torch
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""]
UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""]
UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" )
UpperCAmelCase : Optional[int] = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
def _lowercase( self ) -> int:
UpperCAmelCase : Union[str, Any] = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids
self.assertListEqual(
A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
| 672 | 1 |
'''simple docstring'''
import sacrebleu as scb
from packaging import version
from sacrebleu import TER
import datasets
a : str = """\
@inproceedings{snover-etal-2006-study,
title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",
author = \"Snover, Matthew and
Dorr, Bonnie and
Schwartz, Rich and
Micciulla, Linnea and
Makhoul, John\",
booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",
month = aug # \" 8-12\",
year = \"2006\",
address = \"Cambridge, Massachusetts, USA\",
publisher = \"Association for Machine Translation in the Americas\",
url = \"https://aclanthology.org/2006.amta-papers.25\",
pages = \"223--231\",
}
@inproceedings{post-2018-call,
title = \"A Call for Clarity in Reporting {BLEU} Scores\",
author = \"Post, Matt\",
booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",
month = oct,
year = \"2018\",
address = \"Belgium, Brussels\",
publisher = \"Association for Computational Linguistics\",
url = \"https://www.aclweb.org/anthology/W18-6319\",
pages = \"186--191\",
}
"""
a : Optional[int] = """\
TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a
hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu
(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found
here: https://github.com/jhclark/tercom.
The implementation here is slightly different from sacrebleu in terms of the required input format. The length of
the references and hypotheses lists need to be the same, so you may need to transpose your references compared to
sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534
See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.
"""
a : Optional[Any] = """
Produces TER scores alongside the number of edits and reference length.
Args:
predictions (list of str): The system stream (a sequence of segments).
references (list of list of str): A list of one or more reference streams (each a sequence of segments).
normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.
ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.
support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,
as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.
Only applies if `normalized = True`. Defaults to `False`.
case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.
Returns:
'score' (float): TER score (num_edits / sum_ref_lengths * 100)
'num_edits' (int): The cumulative number of edits
'ref_length' (float): The cumulative average reference length
Examples:
Example 1:
>>> predictions = [\"does this sentence match??\",
... \"what about this sentence?\",
... \"What did the TER metric user say to the developer?\"]
>>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],
... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],
... [\"Your jokes are...\", \"...TERrible\"]]
>>> ter = datasets.load_metric(\"ter\")
>>> results = ter.compute(predictions=predictions,
... references=references,
... case_sensitive=True)
>>> print(results)
{'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}
Example 2:
>>> predictions = [\"does this sentence match??\",
... \"what about this sentence?\"]
>>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],
... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]
>>> ter = datasets.load_metric(\"ter\")
>>> results = ter.compute(predictions=predictions,
... references=references,
... case_sensitive=True)
>>> print(results)
{'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}
Example 3:
>>> predictions = [\"does this sentence match??\",
... \"what about this sentence?\"]
>>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],
... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]
>>> ter = datasets.load_metric(\"ter\")
>>> results = ter.compute(predictions=predictions,
... references=references,
... normalized=True,
... case_sensitive=True)
>>> print(results)
{'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}
Example 4:
>>> predictions = [\"does this sentence match??\",
... \"what about this sentence?\"]
>>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],
... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]
>>> ter = datasets.load_metric(\"ter\")
>>> results = ter.compute(predictions=predictions,
... references=references,
... ignore_punct=True,
... case_sensitive=False)
>>> print(results)
{'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}
Example 5:
>>> predictions = [\"does this sentence match??\",
... \"what about this sentence?\",
... \"What did the TER metric user say to the developer?\"]
>>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],
... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],
... [\"Your jokes are...\", \"...TERrible\"]]
>>> ter = datasets.load_metric(\"ter\")
>>> results = ter.compute(predictions=predictions,
... references=references,
... ignore_punct=True,
... case_sensitive=False)
>>> print(results)
{'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
def _lowercase( self ) -> Any:
if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ):
raise ImportWarning(
"""To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"""
"""You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[
"""https://github.com/jhclark/tercom""",
] , )
def _lowercase( self , A , A , A = False , A = False , A = False , A = False , ) -> Tuple:
UpperCAmelCase : Optional[int] = len(references[0] )
if any(len(A ) != references_per_prediction for refs in references ):
raise ValueError("""Sacrebleu requires the same number of references for each prediction""" )
UpperCAmelCase : Union[str, Any] = [[refs[i] for refs in references] for i in range(A )]
UpperCAmelCase : Optional[int] = TER(
normalized=A , no_punct=A , asian_support=A , case_sensitive=A , )
UpperCAmelCase : List[str] = sb_ter.corpus_score(A , A )
return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
| 672 |
'''simple docstring'''
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase_ :
def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int:
UpperCAmelCase : str = parent
UpperCAmelCase : List[Any] = batch_size
UpperCAmelCase : Dict = image_size
UpperCAmelCase : Tuple = num_channels
UpperCAmelCase : Union[str, Any] = num_stages
UpperCAmelCase : Any = hidden_sizes
UpperCAmelCase : str = depths
UpperCAmelCase : Optional[int] = is_training
UpperCAmelCase : Union[str, Any] = use_labels
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : str = hidden_act
UpperCAmelCase : List[str] = num_labels
UpperCAmelCase : Tuple = initializer_range
UpperCAmelCase : Optional[Any] = out_features
UpperCAmelCase : List[str] = out_indices
UpperCAmelCase : Any = scope
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : List[Any] = None
if self.use_labels:
UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase : List[str] = self.get_config()
return config, pixel_values, labels
def _lowercase( self ) -> Optional[Any]:
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def _lowercase( self , A , A , A ) -> Optional[Any]:
UpperCAmelCase : int = ConvNextVaModel(config=A )
model.to(A )
model.eval()
UpperCAmelCase : List[Any] = model(A )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _lowercase( self , A , A , A ) -> Any:
UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : int = model(A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowercase( self , A , A , A ) -> Any:
UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A )
model.to(A )
model.eval()
UpperCAmelCase : Any = model(A )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
UpperCAmelCase : Any = None
UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A )
model.to(A )
model.eval()
UpperCAmelCase : int = model(A )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _lowercase( self ) -> List[str]:
UpperCAmelCase : Dict = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs
UpperCAmelCase : str = {"""pixel_values""": pixel_values}
return config, inputs_dict
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs
UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
lowercase = (
{'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
lowercase = False
lowercase = False
lowercase = False
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Dict = ConvNextVaModelTester(self )
UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 )
def _lowercase( self ) -> int:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowercase( self ) -> List[str]:
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def _lowercase( self ) -> Dict:
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def _lowercase( self ) -> Any:
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def _lowercase( self ) -> int:
pass
def _lowercase( self ) -> Dict:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels()
UpperCAmelCase : Optional[int] = True
if model_class.__name__ in [
*get_values(A ),
*get_values(A ),
]:
continue
UpperCAmelCase : Any = model_class(A )
model.to(A )
model.train()
UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A )
UpperCAmelCase : List[str] = model(**A ).loss
loss.backward()
def _lowercase( self ) -> Tuple:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels()
UpperCAmelCase : List[str] = False
UpperCAmelCase : int = True
if (
model_class.__name__
in [*get_values(A ), *get_values(A )]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCAmelCase : Dict = model_class(A )
model.to(A )
model.gradient_checkpointing_enable()
model.train()
UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A )
UpperCAmelCase : Any = model(**A ).loss
loss.backward()
def _lowercase( self ) -> Tuple:
UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : int = model_class(A )
UpperCAmelCase : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : Tuple = [*signature.parameters.keys()]
UpperCAmelCase : Optional[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , A )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> List[str]:
def check_hidden_states_output(A , A , A ):
UpperCAmelCase : Optional[Any] = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) )
UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase : Optional[Any] = self.model_tester.num_stages
self.assertEqual(len(A ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : str = True
check_hidden_states_output(A , A , A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase : int = True
check_hidden_states_output(A , A , A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def _lowercase( self ) -> Any:
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A )
self.assertIsNotNone(A )
def __lowerCamelCase ( ) -> Optional[int]:
UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
@cached_property
def _lowercase( self ) -> str:
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A )
UpperCAmelCase : List[Any] = self.default_image_processor
UpperCAmelCase : Any = prepare_img()
UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A )
# forward pass
with torch.no_grad():
UpperCAmelCase : Optional[Any] = model(**A )
# verify the logits
UpperCAmelCase : Dict = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , A )
UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
| 672 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
a : Optional[int] = logging.get_logger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
lowercase = ['pixel_values']
def __init__( self , A = True , A = None , A = PILImageResampling.BILINEAR , A = True , A = None , A = True , A = 1 / 255 , A = True , A = None , A = None , **A , ) -> None:
super().__init__(**A )
UpperCAmelCase : Any = size if size is not None else {"""shortest_edge""": 256}
UpperCAmelCase : Dict = get_size_dict(A , default_to_square=A )
UpperCAmelCase : List[str] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
UpperCAmelCase : List[str] = get_size_dict(A )
UpperCAmelCase : Optional[int] = do_resize
UpperCAmelCase : Any = size
UpperCAmelCase : int = resample
UpperCAmelCase : str = do_center_crop
UpperCAmelCase : List[Any] = crop_size
UpperCAmelCase : str = do_rescale
UpperCAmelCase : Tuple = rescale_factor
UpperCAmelCase : Tuple = do_normalize
UpperCAmelCase : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowercase( self , A , A , A = PILImageResampling.BICUBIC , A = None , **A , ) -> np.ndarray:
UpperCAmelCase : List[str] = get_size_dict(A , default_to_square=A )
if "shortest_edge" not in size:
raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
UpperCAmelCase : Optional[int] = get_resize_output_image_size(A , size=size["""shortest_edge"""] , default_to_square=A )
return resize(A , size=A , resample=A , data_format=A , **A )
def _lowercase( self , A , A , A = None , **A , ) -> np.ndarray:
UpperCAmelCase : Optional[Any] = get_size_dict(A )
return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A )
def _lowercase( self , A , A , A = None , **A ) -> np.ndarray:
return rescale(A , scale=A , data_format=A , **A )
def _lowercase( self , A , A , A , A = None , **A , ) -> np.ndarray:
return normalize(A , mean=A , std=A , data_format=A , **A )
def _lowercase( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> Any:
UpperCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase : Optional[int] = size if size is not None else self.size
UpperCAmelCase : Optional[Any] = get_size_dict(A , default_to_square=A )
UpperCAmelCase : str = resample if resample is not None else self.resample
UpperCAmelCase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase : Dict = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase : Any = get_size_dict(A )
UpperCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase : Any = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase : Dict = image_std if image_std is not None else self.image_std
UpperCAmelCase : Tuple = make_list_of_images(A )
if not valid_images(A ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
UpperCAmelCase : Tuple = [to_numpy_array(A ) for image in images]
if do_resize:
UpperCAmelCase : Optional[Any] = [self.resize(image=A , size=A , resample=A ) for image in images]
if do_center_crop:
UpperCAmelCase : int = [self.center_crop(image=A , size=A ) for image in images]
if do_rescale:
UpperCAmelCase : Optional[Any] = [self.rescale(image=A , scale=A ) for image in images]
if do_normalize:
UpperCAmelCase : str = [self.normalize(image=A , mean=A , std=A ) for image in images]
UpperCAmelCase : int = [to_channel_dimension_format(A , A ) for image in images]
UpperCAmelCase : int = {"""pixel_values""": images}
return BatchFeature(data=A , tensor_type=A )
| 672 |
'''simple docstring'''
from scipy.stats import pearsonr
import datasets
a : str = """
Pearson correlation coefficient and p-value for testing non-correlation.
The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.
"""
a : Dict = """
Args:
predictions (`list` of `int`): Predicted class labels, as returned by a model.
references (`list` of `int`): Ground truth labels.
return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.
Returns:
pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.
p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.
Examples:
Example 1-A simple example using only predictions and references.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])
>>> print(round(results['pearsonr'], 2))
-0.74
Example 2-The same as Example 1, but that also returns the `p-value`.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)
>>> print(sorted(list(results.keys())))
['p-value', 'pearsonr']
>>> print(round(results['pearsonr'], 2))
-0.74
>>> print(round(results['p-value'], 2))
0.15
"""
a : Optional[int] = """
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, Ilhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Antonio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
def _lowercase( self ) -> Optional[int]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , )
def _lowercase( self , A , A , A=False ) -> int:
if return_pvalue:
UpperCAmelCase : int = pearsonr(A , A )
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(A , A )[0] )}
| 672 | 1 |
'''simple docstring'''
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def __lowerCamelCase ( _lowercase , _lowercase=1 ) -> Optional[int]:
if n_shave_prefix_segments >= 0:
return ".".join(path.split(""".""" )[n_shave_prefix_segments:] )
else:
return ".".join(path.split(""".""" )[:n_shave_prefix_segments] )
def __lowerCamelCase ( _lowercase , _lowercase=0 ) -> Tuple:
UpperCAmelCase : Tuple = []
for old_item in old_list:
UpperCAmelCase : List[Any] = old_item.replace("""in_layers.0""" , """norm1""" )
UpperCAmelCase : Dict = new_item.replace("""in_layers.2""" , """conv1""" )
UpperCAmelCase : Any = new_item.replace("""out_layers.0""" , """norm2""" )
UpperCAmelCase : int = new_item.replace("""out_layers.3""" , """conv2""" )
UpperCAmelCase : Optional[Any] = new_item.replace("""emb_layers.1""" , """time_emb_proj""" )
UpperCAmelCase : Dict = new_item.replace("""skip_connection""" , """conv_shortcut""" )
UpperCAmelCase : str = shave_segments(_lowercase , n_shave_prefix_segments=_lowercase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def __lowerCamelCase ( _lowercase , _lowercase=0 ) -> str:
UpperCAmelCase : Dict = []
for old_item in old_list:
UpperCAmelCase : Dict = old_item
UpperCAmelCase : str = new_item.replace("""norm.weight""" , """group_norm.weight""" )
UpperCAmelCase : Optional[Any] = new_item.replace("""norm.bias""" , """group_norm.bias""" )
UpperCAmelCase : Optional[Any] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" )
UpperCAmelCase : Union[str, Any] = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" )
UpperCAmelCase : Union[str, Any] = shave_segments(_lowercase , n_shave_prefix_segments=_lowercase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None ) -> Dict:
assert isinstance(_lowercase , _lowercase ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
UpperCAmelCase : Optional[Any] = old_checkpoint[path]
UpperCAmelCase : str = old_tensor.shape[0] // 3
UpperCAmelCase : Optional[int] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1)
UpperCAmelCase : str = old_tensor.shape[0] // config["""num_head_channels"""] // 3
UpperCAmelCase : int = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = old_tensor.split(channels // num_heads , dim=1 )
UpperCAmelCase : Optional[Any] = query.reshape(_lowercase )
UpperCAmelCase : Optional[Any] = key.reshape(_lowercase )
UpperCAmelCase : Any = value.reshape(_lowercase )
for path in paths:
UpperCAmelCase : Any = path["""new"""]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
UpperCAmelCase : Any = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" )
UpperCAmelCase : Optional[Any] = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" )
UpperCAmelCase : int = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" )
if additional_replacements is not None:
for replacement in additional_replacements:
UpperCAmelCase : List[Any] = new_path.replace(replacement["""old"""] , replacement["""new"""] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
UpperCAmelCase : Union[str, Any] = old_checkpoint[path["""old"""]][:, :, 0]
else:
UpperCAmelCase : str = old_checkpoint[path["""old"""]]
def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]:
UpperCAmelCase : Optional[int] = {}
UpperCAmelCase : List[Any] = checkpoint["""time_embed.0.weight"""]
UpperCAmelCase : Optional[Any] = checkpoint["""time_embed.0.bias"""]
UpperCAmelCase : List[str] = checkpoint["""time_embed.2.weight"""]
UpperCAmelCase : int = checkpoint["""time_embed.2.bias"""]
UpperCAmelCase : Any = checkpoint["""input_blocks.0.0.weight"""]
UpperCAmelCase : str = checkpoint["""input_blocks.0.0.bias"""]
UpperCAmelCase : Optional[Any] = checkpoint["""out.0.weight"""]
UpperCAmelCase : List[Any] = checkpoint["""out.0.bias"""]
UpperCAmelCase : Optional[Any] = checkpoint["""out.2.weight"""]
UpperCAmelCase : List[str] = checkpoint["""out.2.bias"""]
# Retrieves the keys for the input blocks only
UpperCAmelCase : Any = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} )
UpperCAmelCase : Any = {
layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key]
for layer_id in range(_lowercase )
}
# Retrieves the keys for the middle blocks only
UpperCAmelCase : str = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} )
UpperCAmelCase : Any = {
layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key]
for layer_id in range(_lowercase )
}
# Retrieves the keys for the output blocks only
UpperCAmelCase : List[Any] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} )
UpperCAmelCase : List[str] = {
layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key]
for layer_id in range(_lowercase )
}
for i in range(1 , _lowercase ):
UpperCAmelCase : str = (i - 1) // (config["""num_res_blocks"""] + 1)
UpperCAmelCase : Union[str, Any] = (i - 1) % (config["""num_res_blocks"""] + 1)
UpperCAmelCase : Optional[int] = [key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key]
UpperCAmelCase : Optional[int] = [key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key]
if F'''input_blocks.{i}.0.op.weight''' in checkpoint:
UpperCAmelCase : Optional[Any] = checkpoint[
F'''input_blocks.{i}.0.op.weight'''
]
UpperCAmelCase : Dict = checkpoint[
F'''input_blocks.{i}.0.op.bias'''
]
continue
UpperCAmelCase : int = renew_resnet_paths(_lowercase )
UpperCAmelCase : List[Any] = {"""old""": F'''input_blocks.{i}.0''', """new""": F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''}
UpperCAmelCase : List[Any] = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""}
assign_to_checkpoint(
_lowercase , _lowercase , _lowercase , additional_replacements=[meta_path, resnet_op] , config=_lowercase )
if len(_lowercase ):
UpperCAmelCase : Any = renew_attention_paths(_lowercase )
UpperCAmelCase : Optional[Any] = {
"""old""": F'''input_blocks.{i}.1''',
"""new""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
UpperCAmelCase : Any = {
F'''input_blocks.{i}.1.qkv.bias''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''input_blocks.{i}.1.qkv.weight''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
_lowercase , _lowercase , _lowercase , additional_replacements=[meta_path] , attention_paths_to_split=_lowercase , config=_lowercase , )
UpperCAmelCase : Optional[Any] = middle_blocks[0]
UpperCAmelCase : Tuple = middle_blocks[1]
UpperCAmelCase : Any = middle_blocks[2]
UpperCAmelCase : int = renew_resnet_paths(_lowercase )
assign_to_checkpoint(_lowercase , _lowercase , _lowercase , config=_lowercase )
UpperCAmelCase : Dict = renew_resnet_paths(_lowercase )
assign_to_checkpoint(_lowercase , _lowercase , _lowercase , config=_lowercase )
UpperCAmelCase : int = renew_attention_paths(_lowercase )
UpperCAmelCase : Union[str, Any] = {
"""middle_block.1.qkv.bias""": {
"""key""": """mid_block.attentions.0.key.bias""",
"""query""": """mid_block.attentions.0.query.bias""",
"""value""": """mid_block.attentions.0.value.bias""",
},
"""middle_block.1.qkv.weight""": {
"""key""": """mid_block.attentions.0.key.weight""",
"""query""": """mid_block.attentions.0.query.weight""",
"""value""": """mid_block.attentions.0.value.weight""",
},
}
assign_to_checkpoint(
_lowercase , _lowercase , _lowercase , attention_paths_to_split=_lowercase , config=_lowercase )
for i in range(_lowercase ):
UpperCAmelCase : int = i // (config["""num_res_blocks"""] + 1)
UpperCAmelCase : List[str] = i % (config["""num_res_blocks"""] + 1)
UpperCAmelCase : Optional[Any] = [shave_segments(_lowercase , 2 ) for name in output_blocks[i]]
UpperCAmelCase : List[str] = {}
for layer in output_block_layers:
UpperCAmelCase , UpperCAmelCase : Any = layer.split(""".""" )[0], shave_segments(_lowercase , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(_lowercase )
else:
UpperCAmelCase : Tuple = [layer_name]
if len(_lowercase ) > 1:
UpperCAmelCase : List[Any] = [key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key]
UpperCAmelCase : Union[str, Any] = [key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key]
UpperCAmelCase : int = renew_resnet_paths(_lowercase )
UpperCAmelCase : Dict = renew_resnet_paths(_lowercase )
UpperCAmelCase : List[str] = {"""old""": F'''output_blocks.{i}.0''', """new""": F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''}
assign_to_checkpoint(_lowercase , _lowercase , _lowercase , additional_replacements=[meta_path] , config=_lowercase )
if ["conv.weight", "conv.bias"] in output_block_list.values():
UpperCAmelCase : int = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] )
UpperCAmelCase : Dict = checkpoint[
F'''output_blocks.{i}.{index}.conv.weight'''
]
UpperCAmelCase : List[str] = checkpoint[
F'''output_blocks.{i}.{index}.conv.bias'''
]
# Clear attentions as they have been attributed above.
if len(_lowercase ) == 2:
UpperCAmelCase : Any = []
if len(_lowercase ):
UpperCAmelCase : Dict = renew_attention_paths(_lowercase )
UpperCAmelCase : List[str] = {
"""old""": F'''output_blocks.{i}.1''',
"""new""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
UpperCAmelCase : str = {
F'''output_blocks.{i}.1.qkv.bias''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''output_blocks.{i}.1.qkv.weight''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
_lowercase , _lowercase , _lowercase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=_lowercase , )
else:
UpperCAmelCase : List[str] = renew_resnet_paths(_lowercase , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
UpperCAmelCase : Tuple = """.""".join(["""output_blocks""", str(_lowercase ), path["""old"""]] )
UpperCAmelCase : List[str] = """.""".join(["""up_blocks""", str(_lowercase ), """resnets""", str(_lowercase ), path["""new"""]] )
UpperCAmelCase : List[Any] = checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
a : Any = argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help="""The config json file corresponding to the architecture.""",
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
a : Union[str, Any] = parser.parse_args()
a : Tuple = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
a : Tuple = json.loads(f.read())
a : str = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
a : Optional[Any] = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
a : Optional[int] = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1]))
a : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1]))
a : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 672 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]:
UpperCAmelCase : Optional[int] = list(_lowercase )
UpperCAmelCase : Dict = list(_lowercase )
UpperCAmelCase : str = 0
for i in range(len(_lowercase ) ):
if lista[i] != lista[i]:
count += 1
UpperCAmelCase : Optional[Any] = """_"""
if count > 1:
return False
else:
return "".join(_lowercase )
def __lowerCamelCase ( _lowercase ) -> list[str]:
UpperCAmelCase : List[str] = []
while True:
UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase )
UpperCAmelCase : int = []
for i in range(len(_lowercase ) ):
for j in range(i + 1 , len(_lowercase ) ):
UpperCAmelCase : str = compare_string(binary[i] , binary[j] )
if k is False:
UpperCAmelCase : Union[str, Any] = """*"""
UpperCAmelCase : Optional[Any] = """*"""
temp.append("""X""" )
for i in range(len(_lowercase ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(_lowercase ) == 0:
return pi
UpperCAmelCase : List[Any] = list(set(_lowercase ) )
def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]:
UpperCAmelCase : Dict = []
for minterm in minterms:
UpperCAmelCase : List[str] = """"""
for _ in range(_lowercase ):
UpperCAmelCase : Dict = str(minterm % 2 ) + string
minterm //= 2
temp.append(_lowercase )
return temp
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool:
UpperCAmelCase : Optional[int] = list(_lowercase )
UpperCAmelCase : Dict = list(_lowercase )
UpperCAmelCase : Dict = 0
for i in range(len(_lowercase ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]:
UpperCAmelCase : Tuple = []
UpperCAmelCase : Optional[int] = [0] * len(_lowercase )
for i in range(len(chart[0] ) ):
UpperCAmelCase : Any = 0
UpperCAmelCase : Optional[Any] = -1
for j in range(len(_lowercase ) ):
if chart[j][i] == 1:
count += 1
UpperCAmelCase : str = j
if count == 1:
UpperCAmelCase : Optional[int] = 1
for i in range(len(_lowercase ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(_lowercase ) ):
UpperCAmelCase : List[str] = 0
temp.append(prime_implicants[i] )
while True:
UpperCAmelCase : int = 0
UpperCAmelCase : Tuple = -1
UpperCAmelCase : Union[str, Any] = 0
for i in range(len(_lowercase ) ):
UpperCAmelCase : Optional[Any] = chart[i].count(1 )
if count_n > max_n:
UpperCAmelCase : Union[str, Any] = count_n
UpperCAmelCase : Optional[Any] = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(_lowercase ) ):
UpperCAmelCase : Optional[Any] = 0
def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]:
UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )]
for i in range(len(_lowercase ) ):
UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" )
for j in range(len(_lowercase ) ):
if is_for_table(prime_implicants[i] , binary[j] , _lowercase ):
UpperCAmelCase : List[Any] = 1
return chart
def __lowerCamelCase ( ) -> None:
UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) )
UpperCAmelCase : List[Any] = [
float(_lowercase )
for x in input(
"""Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split()
]
UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase )
UpperCAmelCase : Tuple = check(_lowercase )
print("""Prime Implicants are:""" )
print(_lowercase )
UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase )
UpperCAmelCase : Tuple = selection(_lowercase , _lowercase )
print("""Essential Prime Implicants are:""" )
print(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 672 | 1 |
'''simple docstring'''
from random import randint
from tempfile import TemporaryFile
import numpy as np
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[Any]:
UpperCAmelCase : Dict = 0
if start < end:
UpperCAmelCase : Optional[Any] = randint(_lowercase , _lowercase )
UpperCAmelCase : Dict = a[end]
UpperCAmelCase : Any = a[pivot]
UpperCAmelCase : List[Any] = temp
UpperCAmelCase , UpperCAmelCase : Optional[int] = _in_place_partition(_lowercase , _lowercase , _lowercase )
count += _in_place_quick_sort(_lowercase , _lowercase , p - 1 )
count += _in_place_quick_sort(_lowercase , p + 1 , _lowercase )
return count
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int:
UpperCAmelCase : Any = 0
UpperCAmelCase : Optional[int] = randint(_lowercase , _lowercase )
UpperCAmelCase : int = a[end]
UpperCAmelCase : Tuple = a[pivot]
UpperCAmelCase : str = temp
UpperCAmelCase : List[Any] = start - 1
for index in range(_lowercase , _lowercase ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
UpperCAmelCase : Dict = new_pivot_index + 1
UpperCAmelCase : Dict = a[new_pivot_index]
UpperCAmelCase : Optional[int] = a[index]
UpperCAmelCase : Any = temp
UpperCAmelCase : List[Any] = a[new_pivot_index + 1]
UpperCAmelCase : Union[str, Any] = a[end]
UpperCAmelCase : Optional[Any] = temp
return new_pivot_index + 1, count
a : Any = TemporaryFile()
a : Dict = 1_0_0 # 1000 elements are to be sorted
a , a : Union[str, Any] = 0, 1 # mean and standard deviation
a : Optional[int] = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("""The array is""")
print(X)
outfile.seek(0) # using the same array
a : List[str] = np.load(outfile)
a : str = len(M) - 1
a : List[str] = _in_place_quick_sort(M, 0, r)
print(
"""No of Comparisons for 100 elements selected from a standard normal distribution"""
"""is :"""
)
print(z)
| 672 |
'''simple docstring'''
a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)]
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : str = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0]
number //= 1_0_0_0_0_0
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0
a : Optional[Any] = True
a : List[Any] = False
def __lowerCamelCase ( _lowercase ) -> bool:
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
UpperCAmelCase : List[str] = chain(next_number(_lowercase ) )
UpperCAmelCase : Tuple = number_chain
while number < 1_0_0_0_0_0_0_0:
UpperCAmelCase : List[str] = number_chain
number *= 1_0
return number_chain
def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int:
for i in range(1 , _lowercase ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'''{solution() = }''')
| 672 | 1 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from requests.exceptions import HTTPError
from transformers.utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TRANSFORMERS_CACHE,
WEIGHTS_NAME,
cached_file,
get_file_from_repo,
has_file,
)
a : Optional[int] = """hf-internal-testing/tiny-random-bert"""
a : Tuple = os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""")
a : Dict = """9b8c223d42b2188cb49d29af482996f9d0f3e5a6"""
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self ) -> Tuple:
UpperCAmelCase : List[Any] = cached_file(A , A )
# Should have downloaded the file in here
self.assertTrue(os.path.isdir(A ) )
# Cache should contain at least those three subfolders:
for subfolder in ["blobs", "refs", "snapshots"]:
self.assertTrue(os.path.isdir(os.path.join(A , A ) ) )
with open(os.path.join(A , """refs""" , """main""" ) ) as f:
UpperCAmelCase : str = f.read()
self.assertEqual(A , os.path.join(A , """snapshots""" , A , A ) )
self.assertTrue(os.path.isfile(A ) )
# File is cached at the same place the second time.
UpperCAmelCase : Union[str, Any] = cached_file(A , A )
self.assertEqual(A , A )
# Using a specific revision to test the full commit hash.
UpperCAmelCase : List[str] = cached_file(A , A , revision="""9b8c223""" )
self.assertEqual(A , os.path.join(A , """snapshots""" , A , A ) )
def _lowercase( self ) -> Union[str, Any]:
with self.assertRaisesRegex(A , """is not a valid model identifier""" ):
UpperCAmelCase : Optional[Any] = cached_file("""tiny-random-bert""" , A )
with self.assertRaisesRegex(A , """is not a valid git identifier""" ):
UpperCAmelCase : List[Any] = cached_file(A , A , revision="""aaaa""" )
with self.assertRaisesRegex(A , """does not appear to have a file named""" ):
UpperCAmelCase : Optional[Any] = cached_file(A , """conf""" )
def _lowercase( self ) -> str:
with self.assertRaisesRegex(A , """does not appear to have a file named""" ):
UpperCAmelCase : List[str] = cached_file(A , """conf""" )
with open(os.path.join(A , """refs""" , """main""" ) ) as f:
UpperCAmelCase : List[Any] = f.read()
self.assertTrue(os.path.isfile(os.path.join(A , """.no_exist""" , A , """conf""" ) ) )
UpperCAmelCase : Tuple = cached_file(A , """conf""" , _raise_exceptions_for_missing_entries=A )
self.assertIsNone(A )
UpperCAmelCase : List[Any] = cached_file(A , """conf""" , local_files_only=A , _raise_exceptions_for_missing_entries=A )
self.assertIsNone(A )
UpperCAmelCase : Tuple = mock.Mock()
UpperCAmelCase : int = 500
UpperCAmelCase : Any = {}
UpperCAmelCase : Dict = HTTPError
UpperCAmelCase : List[Any] = {}
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("""requests.Session.request""" , return_value=A ) as mock_head:
UpperCAmelCase : List[str] = cached_file(A , """conf""" , _raise_exceptions_for_connection_errors=A )
self.assertIsNone(A )
# This check we did call the fake head request
mock_head.assert_called()
def _lowercase( self ) -> List[str]:
self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" , A ) )
self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , A ) )
self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , A ) )
def _lowercase( self ) -> List[str]:
# `get_file_from_repo` returns None if the file does not exist
self.assertIsNone(get_file_from_repo("""bert-base-cased""" , """ahah.txt""" ) )
# The function raises if the repository does not exist.
with self.assertRaisesRegex(A , """is not a valid model identifier""" ):
get_file_from_repo("""bert-base-case""" , A )
# The function raises if the revision does not exist.
with self.assertRaisesRegex(A , """is not a valid git identifier""" ):
get_file_from_repo("""bert-base-cased""" , A , revision="""ahaha""" )
UpperCAmelCase : List[Any] = get_file_from_repo("""bert-base-cased""" , A )
# The name is the cached name which is not very easy to test, so instead we load the content.
UpperCAmelCase : Dict = json.loads(open(A , """r""" ).read() )
self.assertEqual(config["""hidden_size"""] , 768 )
def _lowercase( self ) -> List[str]:
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase : List[Any] = Path(A ) / """a.txt"""
filename.touch()
self.assertEqual(get_file_from_repo(A , """a.txt""" ) , str(A ) )
self.assertIsNone(get_file_from_repo(A , """b.txt""" ) )
| 672 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a : Optional[Any] = {
"""configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""],
"""tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Dict = ["""BertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[Any] = [
"""BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BertForMaskedLM""",
"""BertForMultipleChoice""",
"""BertForNextSentencePrediction""",
"""BertForPreTraining""",
"""BertForQuestionAnswering""",
"""BertForSequenceClassification""",
"""BertForTokenClassification""",
"""BertLayer""",
"""BertLMHeadModel""",
"""BertModel""",
"""BertPreTrainedModel""",
"""load_tf_weights_in_bert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[str] = [
"""TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBertEmbeddings""",
"""TFBertForMaskedLM""",
"""TFBertForMultipleChoice""",
"""TFBertForNextSentencePrediction""",
"""TFBertForPreTraining""",
"""TFBertForQuestionAnswering""",
"""TFBertForSequenceClassification""",
"""TFBertForTokenClassification""",
"""TFBertLMHeadModel""",
"""TFBertMainLayer""",
"""TFBertModel""",
"""TFBertPreTrainedModel""",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : int = ["""TFBertTokenizer"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[Any] = [
"""FlaxBertForCausalLM""",
"""FlaxBertForMaskedLM""",
"""FlaxBertForMultipleChoice""",
"""FlaxBertForNextSentencePrediction""",
"""FlaxBertForPreTraining""",
"""FlaxBertForQuestionAnswering""",
"""FlaxBertForSequenceClassification""",
"""FlaxBertForTokenClassification""",
"""FlaxBertModel""",
"""FlaxBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 672 | 1 |
'''simple docstring'''
import fire
from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer
def __lowerCamelCase ( _lowercase , _lowercase , **_lowercase ) -> Optional[Any]:
UpperCAmelCase : int = AutoConfig.from_pretrained(_lowercase , **_lowercase )
UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_config(_lowercase )
model.save_pretrained(_lowercase )
AutoTokenizer.from_pretrained(_lowercase ).save_pretrained(_lowercase )
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version)
| 672 |
'''simple docstring'''
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any:
UpperCAmelCase : Optional[int] = False
UpperCAmelCase : Any = search_prob
UpperCAmelCase : Any = start_temperate
UpperCAmelCase : Optional[Any] = []
UpperCAmelCase : Optional[Any] = 0
UpperCAmelCase : Optional[Any] = None
while not search_end:
UpperCAmelCase : List[str] = current_state.score()
if best_state is None or current_score > best_state.score():
UpperCAmelCase : List[Any] = current_state
scores.append(_lowercase )
iterations += 1
UpperCAmelCase : Dict = None
UpperCAmelCase : Union[str, Any] = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor
UpperCAmelCase : int = neighbors.pop(_lowercase )
UpperCAmelCase : Tuple = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
UpperCAmelCase : int = picked_neighbor
else:
UpperCAmelCase : Optional[Any] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
UpperCAmelCase : Optional[int] = picked_neighbor
UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
UpperCAmelCase : Optional[int] = True
else:
UpperCAmelCase : Optional[int] = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(_lowercase ) , _lowercase )
plt.xlabel("""Iterations""" )
plt.ylabel("""Function values""" )
plt.show()
return best_state
if __name__ == "__main__":
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa)
a : Dict = simulated_annealing(
prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True
)
print(
"""The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa)
a : Dict = simulated_annealing(
prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True
)
print(
"""The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]:
return (3 * x**2) - (6 * y)
a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a : Any = simulated_annealing(prob, find_max=False, visualization=True)
print(
"""The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F'''{local_min.score()}'''
)
a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a : Dict = simulated_annealing(prob, find_max=True, visualization=True)
print(
"""The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F'''{local_min.score()}'''
)
| 672 | 1 |
'''simple docstring'''
import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
a : int = (
"""4S 3H 2C 7S 5H""",
"""9D 8H 2C 6S 7H""",
"""2D 6D 9D TH 7D""",
"""TC 8C 2S JH 6C""",
"""JH 8S TH AH QH""",
"""TS KS 5S 9S AC""",
"""KD 6S 9D TH AD""",
"""KS 8D 4D 9S 4S""", # pair
"""8C 4S KH JS 4D""", # pair
"""QH 8H KD JH 8S""", # pair
"""KC 4H KS 2H 8D""", # pair
"""KD 4S KC 3H 8S""", # pair
"""AH 8S AS KC JH""", # pair
"""3H 4C 4H 3S 2H""", # 2 pairs
"""5S 5D 2C KH KH""", # 2 pairs
"""3C KH 5D 5S KH""", # 2 pairs
"""AS 3C KH AD KH""", # 2 pairs
"""7C 7S 3S 7H 5S""", # 3 of a kind
"""7C 7S KH 2H 7H""", # 3 of a kind
"""AC KH QH AH AS""", # 3 of a kind
"""2H 4D 3C AS 5S""", # straight (low ace)
"""3C 5C 4C 2C 6H""", # straight
"""6S 8S 7S 5H 9H""", # straight
"""JS QS 9H TS KH""", # straight
"""QC KH TS JS AH""", # straight (high ace)
"""8C 9C 5C 3C TC""", # flush
"""3S 8S 9S 5S KS""", # flush
"""4C 5C 9C 8C KC""", # flush
"""JH 8H AH KH QH""", # flush
"""3D 2H 3H 2C 2D""", # full house
"""2H 2C 3S 3H 3D""", # full house
"""KH KC 3S 3H 3D""", # full house
"""JC 6H JS JD JH""", # 4 of a kind
"""JC 7H JS JD JH""", # 4 of a kind
"""JC KH JS JD JH""", # 4 of a kind
"""2S AS 4S 5S 3S""", # straight flush (low ace)
"""2D 6D 3D 4D 5D""", # straight flush
"""5C 6C 3C 7C 4C""", # straight flush
"""JH 9H TH KH QH""", # straight flush
"""JH AH TH KH QH""", # royal flush (high ace straight flush)
)
a : Tuple = (
("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""),
("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""),
("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""),
("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""),
("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""),
("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""),
("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""),
("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""),
("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""),
("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""),
("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""),
("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""),
("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""),
("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""),
("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""),
("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""),
("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""),
("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""),
("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""),
("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""),
("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""),
("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""),
("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""),
("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""),
("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""),
("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""),
("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""),
("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""),
("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""),
("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""),
("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""),
("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""),
("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""),
)
a : List[str] = (
("""2H 3H 4H 5H 6H""", True),
("""AS AH 2H AD AC""", False),
("""2H 3H 5H 6H 7H""", True),
("""KS AS TS QS JS""", True),
("""8H 9H QS JS TH""", False),
("""AS 3S 4S 8S 2S""", True),
)
a : List[str] = (
("""2H 3H 4H 5H 6H""", True),
("""AS AH 2H AD AC""", False),
("""2H 3H 5H 6H 7H""", False),
("""KS AS TS QS JS""", True),
("""8H 9H QS JS TH""", True),
)
a : List[str] = (
("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 1_4]),
("""2H 5D 3C AS 5S""", False, [1_4, 5, 5, 3, 2]),
("""JH QD KC AS TS""", False, [1_4, 1_3, 1_2, 1_1, 1_0]),
("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]),
)
a : Union[str, Any] = (
("""JH AH TH KH QH""", 0),
("""JH 9H TH KH QH""", 0),
("""JC KH JS JD JH""", 7),
("""KH KC 3S 3H 3D""", 6),
("""8C 9C 5C 3C TC""", 0),
("""JS QS 9H TS KH""", 0),
("""7C 7S KH 2H 7H""", 3),
("""3C KH 5D 5S KH""", 2),
("""QH 8H KD JH 8S""", 1),
("""2D 6D 9D TH 7D""", 0),
)
a : str = (
("""JH AH TH KH QH""", 2_3),
("""JH 9H TH KH QH""", 2_2),
("""JC KH JS JD JH""", 2_1),
("""KH KC 3S 3H 3D""", 2_0),
("""8C 9C 5C 3C TC""", 1_9),
("""JS QS 9H TS KH""", 1_8),
("""7C 7S KH 2H 7H""", 1_7),
("""3C KH 5D 5S KH""", 1_6),
("""QH 8H KD JH 8S""", 1_5),
("""2D 6D 9D TH 7D""", 1_4),
)
def __lowerCamelCase ( ) -> Tuple:
UpperCAmelCase , UpperCAmelCase : Dict = randrange(len(_lowercase ) ), randrange(len(_lowercase ) )
UpperCAmelCase : Dict = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)]
UpperCAmelCase , UpperCAmelCase : List[Any] = SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def __lowerCamelCase ( _lowercase = 1_0_0 ) -> Optional[int]:
return (generate_random_hand() for _ in range(_lowercase ))
@pytest.mark.parametrize("""hand, expected""" , _lowercase )
def __lowerCamelCase ( _lowercase , _lowercase ) -> Dict:
assert PokerHand(_lowercase )._is_flush() == expected
@pytest.mark.parametrize("""hand, expected""" , _lowercase )
def __lowerCamelCase ( _lowercase , _lowercase ) -> Union[str, Any]:
assert PokerHand(_lowercase )._is_straight() == expected
@pytest.mark.parametrize("""hand, expected, card_values""" , _lowercase )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]:
UpperCAmelCase : Optional[Any] = PokerHand(_lowercase )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize("""hand, expected""" , _lowercase )
def __lowerCamelCase ( _lowercase , _lowercase ) -> Union[str, Any]:
assert PokerHand(_lowercase )._is_same_kind() == expected
@pytest.mark.parametrize("""hand, expected""" , _lowercase )
def __lowerCamelCase ( _lowercase , _lowercase ) -> int:
assert PokerHand(_lowercase )._hand_type == expected
@pytest.mark.parametrize("""hand, other, expected""" , _lowercase )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]:
assert PokerHand(_lowercase ).compare_with(PokerHand(_lowercase ) ) == expected
@pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]:
assert PokerHand(_lowercase ).compare_with(PokerHand(_lowercase ) ) == expected
def __lowerCamelCase ( ) -> Tuple:
UpperCAmelCase : Tuple = [PokerHand(_lowercase ) for hand in SORTED_HANDS]
UpperCAmelCase : int = poker_hands.copy()
shuffle(_lowercase )
UpperCAmelCase : int = chain(sorted(_lowercase ) )
for index, hand in enumerate(_lowercase ):
assert hand == poker_hands[index]
def __lowerCamelCase ( ) -> int:
# Test that five high straights are compared correctly.
UpperCAmelCase : Union[str, Any] = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )]
pokerhands.sort(reverse=_lowercase )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def __lowerCamelCase ( ) -> Any:
# Multiple calls to five_high_straight function should still return True
# and shouldn't mutate the list in every call other than the first.
UpperCAmelCase : Any = PokerHand("""2C 4S AS 3D 5C""" )
UpperCAmelCase : List[Any] = True
UpperCAmelCase : List[str] = [5, 4, 3, 2, 1_4]
for _ in range(1_0 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def __lowerCamelCase ( ) -> Tuple:
# Problem number 54 from Project Euler
# Testing from poker_hands.txt file
UpperCAmelCase : Dict = 0
UpperCAmelCase : List[str] = os.path.abspath(os.path.dirname(_lowercase ) )
UpperCAmelCase : Union[str, Any] = os.path.join(_lowercase , """poker_hands.txt""" )
with open(_lowercase ) as file_hand:
for line in file_hand:
UpperCAmelCase : Tuple = line[:1_4].strip()
UpperCAmelCase : Tuple = line[1_5:].strip()
UpperCAmelCase , UpperCAmelCase : Optional[Any] = PokerHand(_lowercase ), PokerHand(_lowercase )
UpperCAmelCase : Optional[Any] = player.compare_with(_lowercase )
if output == "Win":
answer += 1
assert answer == 3_7_6
| 672 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : Any = {
"""configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Any = [
"""NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""NezhaForNextSentencePrediction""",
"""NezhaForMaskedLM""",
"""NezhaForPreTraining""",
"""NezhaForMultipleChoice""",
"""NezhaForQuestionAnswering""",
"""NezhaForSequenceClassification""",
"""NezhaForTokenClassification""",
"""NezhaModel""",
"""NezhaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nezha import (
NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
NezhaPreTrainedModel,
)
else:
import sys
a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 672 | 1 |
'''simple docstring'''
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 672 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
a : Tuple = False
class UpperCamelCase_ ( unittest.TestCase ):
pass
@slow
@require_torch_gpu
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
UpperCAmelCase : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" )
UpperCAmelCase : List[Any] = torch.manual_seed(0 )
UpperCAmelCase : List[str] = pipe(
image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images
UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 672 | 1 |
'''simple docstring'''
from __future__ import annotations
import typing
from collections import Counter
def __lowerCamelCase ( _lowercase ) -> typing.Counter[int]:
UpperCAmelCase : typing.Counter[int] = Counter()
for base in range(1 , max_perimeter + 1 ):
for perpendicular in range(_lowercase , max_perimeter + 1 ):
UpperCAmelCase : Tuple = (base * base + perpendicular * perpendicular) ** 0.5
if hypotenuse == int(_lowercase ):
UpperCAmelCase : Optional[int] = int(base + perpendicular + hypotenuse )
if perimeter > max_perimeter:
continue
triplets[perimeter] += 1
return triplets
def __lowerCamelCase ( _lowercase = 1_0_0_0 ) -> int:
UpperCAmelCase : Dict = pythagorean_triple(_lowercase )
return triplets.most_common(1 )[0][0]
if __name__ == "__main__":
print(F'''Perimeter {solution()} has maximum solutions''')
| 672 |
'''simple docstring'''
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
a : Any = get_logger()
a : Optional[dict] = None
class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ):
def __init__( self , A=None , A=None , **A ) -> str:
super().__init__(features=A )
import jax
from jaxlib.xla_client import Device
if isinstance(A , A ):
raise ValueError(
f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` '''
"""is not serializable neither with `pickle` nor with `dill`. Instead you can surround """
"""the device with `str()` to get its string identifier that will be internally mapped """
"""to the actual `jaxlib.xla_extension.Device`.""" )
UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
UpperCAmelCase : Any = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
f'''Device with string identifier {self.device} not listed among the available '''
f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default '''
f'''device: {str(jax.devices()[0] )}.''' )
UpperCAmelCase : List[Any] = str(jax.devices()[0] )
UpperCAmelCase : Union[str, Any] = jnp_array_kwargs
@staticmethod
def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]:
import jax
return {str(A ): device for device in jax.devices()}
def _lowercase( self , A ) -> str:
import jax
import jax.numpy as jnp
if isinstance(A , A ) and column:
if all(
isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(A , axis=0 )
return column
def _lowercase( self , A ) -> Tuple:
import jax
import jax.numpy as jnp
if isinstance(A , (str, bytes, type(A )) ):
return value
elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
UpperCAmelCase : List[str] = {}
if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
UpperCAmelCase : str = {"""dtype""": jnp.intaa}
else:
UpperCAmelCase : int = {"""dtype""": jnp.intaa}
elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
UpperCAmelCase : Any = {"""dtype""": jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(A , PIL.Image.Image ):
UpperCAmelCase : List[str] = np.asarray(A )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
UpperCAmelCase : Dict = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} )
def _lowercase( self , A ) -> Tuple:
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(A , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ):
UpperCAmelCase : Optional[int] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(A , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] )
elif isinstance(A , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] )
return self._tensorize(A )
def _lowercase( self , A ) -> Dict:
return map_nested(self._recursive_tensorize , A , map_list=A )
def _lowercase( self , A ) -> Mapping:
UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A )
UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A )
return self.recursive_tensorize(A )
def _lowercase( self , A ) -> "jax.Array":
UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A )
UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] )
UpperCAmelCase : Optional[int] = self.recursive_tensorize(A )
UpperCAmelCase : Any = self._consolidate(A )
return column
def _lowercase( self , A ) -> Mapping:
UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A )
UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A )
UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A )
for column_name in batch:
UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] )
return batch
| 672 | 1 |
'''simple docstring'''
import re
import time
from typing import Optional
import IPython.display as disp
from ..trainer_callback import TrainerCallback
from ..trainer_utils import IntervalStrategy, has_length
def __lowerCamelCase ( _lowercase ) -> Optional[int]:
UpperCAmelCase : Dict = int(_lowercase )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = t // 3_6_0_0, (t // 6_0) % 6_0, t % 6_0
return F'''{h}:{m:02d}:{s:02d}''' if h != 0 else F'''{m:02d}:{s:02d}'''
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=3_0_0 ) -> Union[str, Any]:
# docstyle-ignore
return F'''
<div>
{prefix}
<progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress>
{label}
</div>
'''
def __lowerCamelCase ( _lowercase ) -> Dict:
UpperCAmelCase : Any = """<table border=\"1\" class=\"dataframe\">\n"""
html_code += """ <thead>\n <tr style="text-align: left;">\n"""
for i in items[0]:
html_code += F''' <th>{i}</th>\n'''
html_code += " </tr>\n </thead>\n <tbody>\n"
for line in items[1:]:
html_code += " <tr>\n"
for elt in line:
UpperCAmelCase : str = F'''{elt:.6f}''' if isinstance(_lowercase , _lowercase ) else str(_lowercase )
html_code += F''' <td>{elt}</td>\n'''
html_code += " </tr>\n"
html_code += " </tbody>\n</table><p>"
return html_code
class UpperCamelCase_ :
lowercase = 5
lowercase = 0.2
def __init__( self , A , A = None , A = True , A = None , A = 300 , ) -> int:
UpperCAmelCase : Tuple = total
UpperCAmelCase : Any = """""" if prefix is None else prefix
UpperCAmelCase : Dict = leave
UpperCAmelCase : Union[str, Any] = parent
UpperCAmelCase : Optional[int] = width
UpperCAmelCase : str = None
UpperCAmelCase : int = None
UpperCAmelCase : Optional[Any] = None
def _lowercase( self , A , A = False , A = None ) -> Tuple:
UpperCAmelCase : List[Any] = value
if comment is not None:
UpperCAmelCase : List[str] = comment
if self.last_value is None:
UpperCAmelCase : Optional[int] = time.time()
UpperCAmelCase : int = value
UpperCAmelCase : int = None
UpperCAmelCase : str = self.warmup
UpperCAmelCase : Optional[int] = 1
self.update_bar(A )
elif value <= self.last_value and not force_update:
return
elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ):
if self.first_calls > 0:
self.first_calls -= 1
UpperCAmelCase : Any = time.time()
UpperCAmelCase : str = current_time - self.start_time
# We could have value = self.start_value if the update is called twixe with the same start value.
if value > self.start_value:
UpperCAmelCase : Union[str, Any] = self.elapsed_time / (value - self.start_value)
else:
UpperCAmelCase : Optional[int] = None
if value >= self.total:
UpperCAmelCase : Dict = self.total
UpperCAmelCase : List[str] = None
if not self.leave:
self.close()
elif self.average_time_per_item is not None:
UpperCAmelCase : Optional[int] = self.average_time_per_item * (self.total - value)
self.update_bar(A )
UpperCAmelCase : str = value
UpperCAmelCase : Optional[int] = current_time
if self.average_time_per_item is None:
UpperCAmelCase : Dict = 1
else:
UpperCAmelCase : Dict = max(int(self.update_every / self.average_time_per_item ) , 1 )
def _lowercase( self , A , A=None ) -> Any:
UpperCAmelCase : List[Any] = """ """ * (len(str(self.total ) ) - len(str(A ) )) + str(A )
if self.elapsed_time is None:
UpperCAmelCase : Optional[int] = f'''[{spaced_value}/{self.total} : < :'''
elif self.predicted_remaining is None:
UpperCAmelCase : Tuple = f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}'''
else:
UpperCAmelCase : List[Any] = (
f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <'''
f''' {format_time(self.predicted_remaining )}'''
)
self.label += f''', {1/self.average_time_per_item:.2f} it/s'''
self.label += "]" if self.comment is None or len(self.comment ) == 0 else f''', {self.comment}]'''
self.display()
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.parent is not None:
# If this is a child bar, the parent will take care of the display.
self.parent.display()
return
if self.output is None:
UpperCAmelCase : List[Any] = disp.display(disp.HTML(self.html_code ) , display_id=A )
else:
self.output.update(disp.HTML(self.html_code ) )
def _lowercase( self ) -> Any:
if self.parent is None and self.output is not None:
self.output.update(disp.HTML("""""" ) )
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A , A=None ) -> int:
super().__init__(A )
UpperCAmelCase : Optional[int] = None if column_names is None else [column_names]
UpperCAmelCase : List[str] = None
def _lowercase( self ) -> Any:
UpperCAmelCase : int = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.inner_table is not None:
self.html_code += text_to_html_table(self.inner_table )
if self.child_bar is not None:
self.html_code += self.child_bar.html_code
if self.output is None:
UpperCAmelCase : Union[str, Any] = disp.display(disp.HTML(self.html_code ) , display_id=A )
else:
self.output.update(disp.HTML(self.html_code ) )
def _lowercase( self , A ) -> Dict:
if self.inner_table is None:
UpperCAmelCase : Optional[Any] = [list(values.keys() ), list(values.values() )]
else:
UpperCAmelCase : Dict = self.inner_table[0]
if len(self.inner_table ) == 1:
# We give a chance to update the column names at the first iteration
for key in values.keys():
if key not in columns:
columns.append(A )
UpperCAmelCase : Dict = columns
self.inner_table.append([values[c] for c in columns] )
def _lowercase( self , A , A=None , A=300 ) -> int:
UpperCAmelCase : Optional[int] = NotebookProgressBar(A , prefix=A , parent=self , width=A )
return self.child_bar
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Optional[int] = None
self.display()
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self ) -> Union[str, Any]:
UpperCAmelCase : List[str] = None
UpperCAmelCase : int = None
UpperCAmelCase : Any = False
def _lowercase( self , A , A , A , **A ) -> Any:
UpperCAmelCase : List[Any] = """Epoch""" if args.evaluation_strategy == IntervalStrategy.EPOCH else """Step"""
UpperCAmelCase : Any = 0
UpperCAmelCase : Optional[int] = 0
UpperCAmelCase : Optional[int] = [self.first_column] + ["""Training Loss"""]
if args.evaluation_strategy != IntervalStrategy.NO:
column_names.append("""Validation Loss""" )
UpperCAmelCase : List[Any] = NotebookTrainingTracker(state.max_steps , A )
def _lowercase( self , A , A , A , **A ) -> List[str]:
UpperCAmelCase : Optional[int] = int(state.epoch ) if int(state.epoch ) == state.epoch else f'''{state.epoch:.2f}'''
self.training_tracker.update(
state.global_step + 1 , comment=f'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , )
UpperCAmelCase : Union[str, Any] = False
def _lowercase( self , A , A , A , A=None , **A ) -> List[Any]:
if not has_length(A ):
return
if self.prediction_bar is None:
if self.training_tracker is not None:
UpperCAmelCase : List[str] = self.training_tracker.add_child(len(A ) )
else:
UpperCAmelCase : str = NotebookProgressBar(len(A ) )
self.prediction_bar.update(1 )
else:
self.prediction_bar.update(self.prediction_bar.value + 1 )
def _lowercase( self , A , A , A , **A ) -> Any:
if self.prediction_bar is not None:
self.prediction_bar.close()
UpperCAmelCase : Union[str, Any] = None
def _lowercase( self , A , A , A , A=None , **A ) -> Any:
# Only for when there is no evaluation
if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs:
UpperCAmelCase : Optional[Any] = {"""Training Loss""": logs["""loss"""]}
# First column is necessarily Step sine we're not in epoch eval strategy
UpperCAmelCase : int = state.global_step
self.training_tracker.write_line(A )
def _lowercase( self , A , A , A , A=None , **A ) -> List[Any]:
if self.training_tracker is not None:
UpperCAmelCase : str = {"""Training Loss""": """No log""", """Validation Loss""": """No log"""}
for log in reversed(state.log_history ):
if "loss" in log:
UpperCAmelCase : Optional[Any] = log["""loss"""]
break
if self.first_column == "Epoch":
UpperCAmelCase : Any = int(state.epoch )
else:
UpperCAmelCase : List[str] = state.global_step
UpperCAmelCase : str = """eval"""
for k in metrics:
if k.endswith("""_loss""" ):
UpperCAmelCase : str = re.sub(r"""\_loss$""" , """""" , A )
UpperCAmelCase : Optional[Any] = metrics.pop("""total_flos""" , A )
UpperCAmelCase : Optional[int] = metrics.pop("""epoch""" , A )
UpperCAmelCase : Union[str, Any] = metrics.pop(f'''{metric_key_prefix}_runtime''' , A )
UpperCAmelCase : List[str] = metrics.pop(f'''{metric_key_prefix}_samples_per_second''' , A )
UpperCAmelCase : Tuple = metrics.pop(f'''{metric_key_prefix}_steps_per_second''' , A )
UpperCAmelCase : Any = metrics.pop(f'''{metric_key_prefix}_jit_compilation_time''' , A )
for k, v in metrics.items():
if k == f'''{metric_key_prefix}_loss''':
UpperCAmelCase : List[Any] = v
else:
UpperCAmelCase : str = k.split("""_""" )
UpperCAmelCase : List[Any] = """ """.join([part.capitalize() for part in splits[1:]] )
UpperCAmelCase : Optional[int] = v
self.training_tracker.write_line(A )
self.training_tracker.remove_child()
UpperCAmelCase : str = None
# Evaluation takes a long time so we should force the next update.
UpperCAmelCase : str = True
def _lowercase( self , A , A , A , **A ) -> Any:
self.training_tracker.update(
state.global_step , comment=f'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=A )
UpperCAmelCase : Any = None
| 672 |
'''simple docstring'''
from datetime import datetime as dt
import os
from github import Github
a : int = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""feature request""",
"""new model""",
"""wip""",
]
def __lowerCamelCase ( ) -> Dict:
UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] )
UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" )
UpperCAmelCase : int = repo.get_issues(state="""open""" )
for issue in open_issues:
UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase )
UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 3_0
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state="""closed""" )
elif (
(dt.utcnow() - issue.updated_at).days > 2_3
and (dt.utcnow() - issue.created_at).days >= 3_0
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
if __name__ == "__main__":
main()
| 672 | 1 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : Any = logging.get_logger(__name__)
a : Optional[int] = {
"""microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""",
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'git_vision_model'
def __init__( self , A=768 , A=3072 , A=12 , A=12 , A=3 , A=224 , A=16 , A="quick_gelu" , A=1e-5 , A=0.0 , A=0.0_2 , **A , ) -> Optional[Any]:
super().__init__(**A )
UpperCAmelCase : Any = hidden_size
UpperCAmelCase : str = intermediate_size
UpperCAmelCase : Any = num_hidden_layers
UpperCAmelCase : Tuple = num_attention_heads
UpperCAmelCase : Union[str, Any] = num_channels
UpperCAmelCase : Dict = patch_size
UpperCAmelCase : Union[str, Any] = image_size
UpperCAmelCase : Union[str, Any] = initializer_range
UpperCAmelCase : Tuple = attention_dropout
UpperCAmelCase : List[str] = layer_norm_eps
UpperCAmelCase : Optional[Any] = hidden_act
@classmethod
def _lowercase( cls , A , **A ) -> "PretrainedConfig":
cls._set_token_in_kwargs(A )
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = cls.get_config_dict(A , **A )
# get the vision config dict if we are loading from GITConfig
if config_dict.get("""model_type""" ) == "git":
UpperCAmelCase : Any = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(A , **A )
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'git'
def __init__( self , A=None , A=30522 , A=768 , A=6 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=1024 , A=0.0_2 , A=1e-12 , A=0 , A="absolute" , A=True , A=False , A=101 , A=102 , A=None , **A , ) -> Any:
super().__init__(bos_token_id=A , eos_token_id=A , pad_token_id=A , **A )
if vision_config is None:
UpperCAmelCase : Tuple = {}
logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" )
UpperCAmelCase : str = GitVisionConfig(**A )
UpperCAmelCase : int = vocab_size
UpperCAmelCase : Any = hidden_size
UpperCAmelCase : str = num_hidden_layers
UpperCAmelCase : int = num_attention_heads
UpperCAmelCase : int = hidden_act
UpperCAmelCase : Dict = intermediate_size
UpperCAmelCase : Tuple = hidden_dropout_prob
UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
UpperCAmelCase : Dict = max_position_embeddings
UpperCAmelCase : Any = initializer_range
UpperCAmelCase : Any = layer_norm_eps
UpperCAmelCase : List[str] = position_embedding_type
UpperCAmelCase : Optional[int] = use_cache
UpperCAmelCase : Any = tie_word_embeddings
UpperCAmelCase : List[Any] = num_image_with_embedding
UpperCAmelCase : Tuple = bos_token_id
UpperCAmelCase : List[Any] = eos_token_id
def _lowercase( self ) -> Dict:
UpperCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ )
UpperCAmelCase : List[Any] = self.vision_config.to_dict()
UpperCAmelCase : Optional[Any] = self.__class__.model_type
return output
| 672 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class UpperCamelCase_ :
def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any:
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : List[Any] = batch_size
UpperCAmelCase : Union[str, Any] = seq_length
UpperCAmelCase : Optional[int] = is_training
UpperCAmelCase : str = use_input_mask
UpperCAmelCase : Optional[int] = use_token_type_ids
UpperCAmelCase : Dict = use_labels
UpperCAmelCase : str = vocab_size
UpperCAmelCase : Optional[int] = hidden_size
UpperCAmelCase : str = num_hidden_layers
UpperCAmelCase : Any = num_attention_heads
UpperCAmelCase : Union[str, Any] = intermediate_size
UpperCAmelCase : str = hidden_act
UpperCAmelCase : Any = hidden_dropout_prob
UpperCAmelCase : str = attention_probs_dropout_prob
UpperCAmelCase : Tuple = max_position_embeddings
UpperCAmelCase : Optional[Any] = type_vocab_size
UpperCAmelCase : Optional[Any] = type_sequence_label_size
UpperCAmelCase : str = initializer_range
UpperCAmelCase : List[Any] = num_labels
UpperCAmelCase : Dict = num_choices
UpperCAmelCase : Tuple = scope
def _lowercase( self ) -> Dict:
UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Optional[Any] = None
if self.use_input_mask:
UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Optional[Any] = None
if self.use_token_type_ids:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase : Union[str, Any] = None
UpperCAmelCase : Dict = None
UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowercase( self ) -> Dict:
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , )
def _lowercase( self , A , A , A , A , A , A , A ) -> str:
UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A )
model.to(A )
model.eval()
UpperCAmelCase : Dict = model(A , attention_mask=A )
UpperCAmelCase : Optional[int] = model(A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]:
UpperCAmelCase : Optional[int] = True
UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A )
model.to(A )
model.eval()
UpperCAmelCase : List[Any] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , )
UpperCAmelCase : str = model(
A , attention_mask=A , encoder_hidden_states=A , )
UpperCAmelCase : List[Any] = model(A , attention_mask=A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int:
UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A )
model.to(A )
model.eval()
UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int:
UpperCAmelCase : Dict = True
UpperCAmelCase : Tuple = True
UpperCAmelCase : str = OpenLlamaForCausalLM(config=A )
model.to(A )
model.eval()
# first forward pass
UpperCAmelCase : Union[str, Any] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , )
UpperCAmelCase : str = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCAmelCase : List[Any] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0]
UpperCAmelCase : Optional[Any] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0]
# select random slice
UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : Tuple = config_and_inputs
UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else ()
lowercase = (
{
'feature-extraction': OpenLlamaModel,
'text-classification': OpenLlamaForSequenceClassification,
'text-generation': OpenLlamaForCausalLM,
'zero-shot': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Dict = OpenLlamaModelTester(self )
UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 )
def _lowercase( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def _lowercase( self ) -> int:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> str:
UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase : int = type
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> str:
UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : List[str] = 3
UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""]
UpperCAmelCase : str = input_ids.ne(1 ).to(A )
UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Dict = 3
UpperCAmelCase : Any = """single_label_classification"""
UpperCAmelCase : Dict = input_dict["""input_ids"""]
UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A )
UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowercase( self ) -> int:
UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Tuple = 3
UpperCAmelCase : Optional[Any] = """multi_label_classification"""
UpperCAmelCase : Dict = input_dict["""input_ids"""]
UpperCAmelCase : int = input_ids.ne(1 ).to(A )
UpperCAmelCase : int = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" )
def _lowercase( self ) -> Dict:
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def _lowercase( self , A ) -> str:
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size )
UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase : Any = OpenLlamaModel(A )
original_model.to(A )
original_model.eval()
UpperCAmelCase : List[str] = original_model(A ).last_hidden_state
UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0}
UpperCAmelCase : str = OpenLlamaModel(A )
scaled_model.to(A )
scaled_model.eval()
UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state
UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(A , A , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
| 672 | 1 |
'''simple docstring'''
import math
def __lowerCamelCase ( _lowercase , _lowercase ) -> float:
return math.pow(_lowercase , 2 ) - a
def __lowerCamelCase ( _lowercase ) -> float:
return 2 * x
def __lowerCamelCase ( _lowercase ) -> float:
UpperCAmelCase : List[Any] = 2.0
while start <= a:
UpperCAmelCase : Union[str, Any] = math.pow(_lowercase , 2 )
return start
def __lowerCamelCase ( _lowercase , _lowercase = 9_9_9_9 , _lowercase = 0.00_0000_0000_0001 ) -> float:
if a < 0:
raise ValueError("""math domain error""" )
UpperCAmelCase : List[str] = get_initial_point(_lowercase )
for _ in range(_lowercase ):
UpperCAmelCase : List[Any] = value
UpperCAmelCase : Tuple = value - fx(_lowercase , _lowercase ) / fx_derivative(_lowercase )
if abs(prev_value - value ) < tolerance:
return value
return value
if __name__ == "__main__":
from doctest import testmod
testmod()
| 672 |
'''simple docstring'''
import math
def __lowerCamelCase ( _lowercase ) -> bool:
assert isinstance(_lowercase , _lowercase ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = factor * value
UpperCAmelCase : List[Any] = value
while not is_prime(_lowercase ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **_lowercase )
return value
| 672 | 1 |
'''simple docstring'''
from math import sqrt
def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0 ) -> int:
UpperCAmelCase : int = 0
UpperCAmelCase : int = 0
UpperCAmelCase : int
while num_cuboids <= limit:
max_cuboid_size += 1
for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ):
if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer():
num_cuboids += (
min(_lowercase , sum_shortest_sides // 2 )
- max(1 , sum_shortest_sides - max_cuboid_size )
+ 1
)
return max_cuboid_size
if __name__ == "__main__":
print(F'''{solution() = }''')
| 672 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool:
UpperCAmelCase : Union[str, Any] = set()
# Replace all the whitespace in our sentence
UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" )
for alpha in input_str:
if "a" <= alpha.lower() <= "z":
frequency.add(alpha.lower() )
return len(_lowercase ) == 2_6
def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool:
UpperCAmelCase : Tuple = [False] * 2_6
for char in input_str:
if char.islower():
UpperCAmelCase : Any = True
elif char.isupper():
UpperCAmelCase : Union[str, Any] = True
return all(_lowercase )
def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool:
return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6
def __lowerCamelCase ( ) -> None:
from timeit import timeit
UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest"""
print(timeit("""is_pangram()""" , setup=_lowercase ) )
print(timeit("""is_pangram_faster()""" , setup=_lowercase ) )
print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) )
# 5.348480500048026, 2.6477354579837993, 1.8470395830227062
# 5.036091582966037, 2.644472333951853, 1.8869528750656173
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 672 | 1 |
'''simple docstring'''
import unittest
from diffusers.models.unet_ad_blocks import * # noqa F403
from diffusers.utils import torch_device
from .test_unet_blocks_common import UNetBlockTesterMixin
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = DownBlockaD # noqa F405
lowercase = 'down'
def _lowercase( self ) -> int:
UpperCAmelCase : Union[str, Any] = [-0.0_2_3_2, -0.9_8_6_9, 0.8_0_5_4, -0.0_6_3_7, -0.1_6_8_8, -1.4_2_6_4, 0.4_4_7_0, -1.3_3_9_4, 0.0_9_0_4]
super().test_output(A )
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = ResnetDownsampleBlockaD # noqa F405
lowercase = 'down'
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = [0.0_7_1_0, 0.2_4_1_0, -0.7_3_2_0, -1.0_7_5_7, -1.1_3_4_3, 0.3_5_4_0, -0.0_1_3_3, -0.2_5_7_6, 0.0_9_4_8]
super().test_output(A )
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = AttnDownBlockaD # noqa F405
lowercase = 'down'
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Optional[int] = [0.0_6_3_6, 0.8_9_6_4, -0.6_2_3_4, -1.0_1_3_1, 0.0_8_4_4, 0.4_9_3_5, 0.3_4_3_7, 0.0_9_1_1, -0.2_9_5_7]
super().test_output(A )
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = CrossAttnDownBlockaD # noqa F405
lowercase = 'down'
def _lowercase( self ) -> List[Any]:
UpperCAmelCase , UpperCAmelCase : Dict = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase : Optional[int] = 32
return init_dict, inputs_dict
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Any = [0.2_2_3_8, -0.7_3_9_6, -0.2_2_5_5, -0.3_8_2_9, 0.1_9_2_5, 1.1_6_6_5, 0.0_6_0_3, -0.7_2_9_5, 0.1_9_8_3]
super().test_output(A )
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = SimpleCrossAttnDownBlockaD # noqa F405
lowercase = 'down'
@property
def _lowercase( self ) -> List[Any]:
return super().get_dummy_input(include_encoder_hidden_states=A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase , UpperCAmelCase : Dict = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase : int = 32
return init_dict, inputs_dict
@unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" )
def _lowercase( self ) -> str:
UpperCAmelCase : str = [0.7_9_2_1, -0.0_9_9_2, -0.1_9_6_2, -0.7_6_9_5, -0.4_2_4_2, 0.7_8_0_4, 0.4_7_3_7, 0.2_7_6_5, 0.3_3_3_8]
super().test_output(A )
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = SkipDownBlockaD # noqa F405
lowercase = 'down'
@property
def _lowercase( self ) -> int:
return super().get_dummy_input(include_skip_sample=A )
def _lowercase( self ) -> int:
UpperCAmelCase : List[str] = [-0.0_8_4_5, -0.2_0_8_7, -0.2_4_6_5, 0.0_9_7_1, 0.1_9_0_0, -0.0_4_8_4, 0.2_6_6_4, 0.4_1_7_9, 0.5_0_6_9]
super().test_output(A )
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = AttnSkipDownBlockaD # noqa F405
lowercase = 'down'
@property
def _lowercase( self ) -> Any:
return super().get_dummy_input(include_skip_sample=A )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : int = [0.5_5_3_9, 0.1_6_0_9, 0.4_9_2_4, 0.0_5_3_7, -0.1_9_9_5, 0.4_0_5_0, 0.0_9_7_9, -0.2_7_2_1, -0.0_6_4_2]
super().test_output(A )
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = DownEncoderBlockaD # noqa F405
lowercase = 'down'
@property
def _lowercase( self ) -> Union[str, Any]:
return super().get_dummy_input(include_temb=A )
def _lowercase( self ) -> Any:
UpperCAmelCase : Tuple = {
"""in_channels""": 32,
"""out_channels""": 32,
}
UpperCAmelCase : Tuple = self.dummy_input
return init_dict, inputs_dict
def _lowercase( self ) -> Dict:
UpperCAmelCase : List[Any] = [1.1_1_0_2, 0.5_3_0_2, 0.4_8_7_2, -0.0_0_2_3, -0.8_0_4_2, 0.0_4_8_3, -0.3_4_8_9, -0.5_6_3_2, 0.7_6_2_6]
super().test_output(A )
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = AttnDownEncoderBlockaD # noqa F405
lowercase = 'down'
@property
def _lowercase( self ) -> Optional[Any]:
return super().get_dummy_input(include_temb=A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Any = {
"""in_channels""": 32,
"""out_channels""": 32,
}
UpperCAmelCase : Any = self.dummy_input
return init_dict, inputs_dict
def _lowercase( self ) -> List[str]:
UpperCAmelCase : List[str] = [0.8_9_6_6, -0.1_4_8_6, 0.8_5_6_8, 0.8_1_4_1, -0.9_0_4_6, -0.1_3_4_2, -0.0_9_7_2, -0.7_4_1_7, 0.1_5_3_8]
super().test_output(A )
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = UNetMidBlockaD # noqa F405
lowercase = 'mid'
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Dict = {
"""in_channels""": 32,
"""temb_channels""": 128,
}
UpperCAmelCase : Dict = self.dummy_input
return init_dict, inputs_dict
def _lowercase( self ) -> Any:
UpperCAmelCase : Tuple = [-0.1_0_6_2, 1.7_2_4_8, 0.3_4_9_4, 1.4_5_6_9, -0.0_9_1_0, -1.2_4_2_1, -0.9_9_8_4, 0.6_7_3_6, 1.0_0_2_8]
super().test_output(A )
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = UNetMidBlockaDCrossAttn # noqa F405
lowercase = 'mid'
def _lowercase( self ) -> List[str]:
UpperCAmelCase , UpperCAmelCase : List[str] = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase : Any = 32
return init_dict, inputs_dict
def _lowercase( self ) -> str:
UpperCAmelCase : int = [0.0_1_8_7, 2.4_2_2_0, 0.4_4_8_4, 1.1_2_0_3, -0.6_1_2_1, -1.5_1_2_2, -0.8_2_7_0, 0.7_8_5_1, 1.8_3_3_5]
super().test_output(A )
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = UNetMidBlockaDSimpleCrossAttn # noqa F405
lowercase = 'mid'
@property
def _lowercase( self ) -> Any:
return super().get_dummy_input(include_encoder_hidden_states=A )
def _lowercase( self ) -> List[Any]:
UpperCAmelCase , UpperCAmelCase : Optional[Any] = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase : Optional[int] = 32
return init_dict, inputs_dict
def _lowercase( self ) -> Dict:
UpperCAmelCase : List[str] = [0.7_1_4_3, 1.9_9_7_4, 0.5_4_4_8, 1.3_9_7_7, 0.1_2_8_2, -1.1_2_3_7, -1.4_2_3_8, 0.5_5_3_0, 0.8_8_8_0]
super().test_output(A )
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = UpBlockaD # noqa F405
lowercase = 'up'
@property
def _lowercase( self ) -> str:
return super().get_dummy_input(include_res_hidden_states_tuple=A )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = [-0.2_0_4_1, -0.4_1_6_5, -0.3_0_2_2, 0.0_0_4_1, -0.6_6_2_8, -0.7_0_5_3, 0.1_9_2_8, -0.0_3_2_5, 0.0_5_2_3]
super().test_output(A )
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = ResnetUpsampleBlockaD # noqa F405
lowercase = 'up'
@property
def _lowercase( self ) -> Optional[int]:
return super().get_dummy_input(include_res_hidden_states_tuple=A )
def _lowercase( self ) -> Dict:
UpperCAmelCase : Dict = [0.2_2_8_7, 0.3_5_4_9, -0.1_3_4_6, 0.4_7_9_7, -0.1_7_1_5, -0.9_6_4_9, 0.7_3_0_5, -0.5_8_6_4, -0.6_2_4_4]
super().test_output(A )
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = CrossAttnUpBlockaD # noqa F405
lowercase = 'up'
@property
def _lowercase( self ) -> List[str]:
return super().get_dummy_input(include_res_hidden_states_tuple=A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase , UpperCAmelCase : Any = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase : str = 32
return init_dict, inputs_dict
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Dict = [-0.1_4_0_3, -0.3_5_1_5, -0.0_4_2_0, -0.1_4_2_5, 0.3_1_6_7, 0.5_0_9_4, -0.2_1_8_1, 0.5_9_3_1, 0.5_5_8_2]
super().test_output(A )
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = SimpleCrossAttnUpBlockaD # noqa F405
lowercase = 'up'
@property
def _lowercase( self ) -> List[str]:
return super().get_dummy_input(include_res_hidden_states_tuple=A , include_encoder_hidden_states=A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase , UpperCAmelCase : Optional[int] = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase : Tuple = 32
return init_dict, inputs_dict
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Tuple = [0.2_6_4_5, 0.1_4_8_0, 0.0_9_0_9, 0.8_0_4_4, -0.9_7_5_8, -0.9_0_8_3, 0.0_9_9_4, -1.1_4_5_3, -0.7_4_0_2]
super().test_output(A )
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = AttnUpBlockaD # noqa F405
lowercase = 'up'
@property
def _lowercase( self ) -> List[str]:
return super().get_dummy_input(include_res_hidden_states_tuple=A )
@unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" )
def _lowercase( self ) -> Any:
UpperCAmelCase : Union[str, Any] = [0.0_9_7_9, 0.1_3_2_6, 0.0_0_2_1, 0.0_6_5_9, 0.2_2_4_9, 0.0_0_5_9, 0.1_1_3_2, 0.5_9_5_2, 0.1_0_3_3]
super().test_output(A )
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = SkipUpBlockaD # noqa F405
lowercase = 'up'
@property
def _lowercase( self ) -> int:
return super().get_dummy_input(include_res_hidden_states_tuple=A )
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : int = [-0.0_8_9_3, -0.1_2_3_4, -0.1_5_0_6, -0.0_3_3_2, 0.0_1_2_3, -0.0_2_1_1, 0.0_5_6_6, 0.0_1_4_3, 0.0_3_6_2]
super().test_output(A )
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = AttnSkipUpBlockaD # noqa F405
lowercase = 'up'
@property
def _lowercase( self ) -> Dict:
return super().get_dummy_input(include_res_hidden_states_tuple=A )
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : List[Any] = [0.0_3_6_1, 0.0_6_1_7, 0.2_7_8_7, -0.0_3_5_0, 0.0_3_4_2, 0.3_4_2_1, -0.0_8_4_3, 0.0_9_1_3, 0.3_0_1_5]
super().test_output(A )
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = UpDecoderBlockaD # noqa F405
lowercase = 'up'
@property
def _lowercase( self ) -> Union[str, Any]:
return super().get_dummy_input(include_temb=A )
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Union[str, Any] = {"""in_channels""": 32, """out_channels""": 32}
UpperCAmelCase : Tuple = self.dummy_input
return init_dict, inputs_dict
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Union[str, Any] = [0.4_4_0_4, 0.1_9_9_8, -0.9_8_8_6, -0.3_3_2_0, -0.3_1_2_8, -0.7_0_3_4, -0.6_9_5_5, -0.2_3_3_8, -0.3_1_3_7]
super().test_output(A )
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = AttnUpDecoderBlockaD # noqa F405
lowercase = 'up'
@property
def _lowercase( self ) -> Dict:
return super().get_dummy_input(include_temb=A )
def _lowercase( self ) -> str:
UpperCAmelCase : str = {"""in_channels""": 32, """out_channels""": 32}
UpperCAmelCase : Union[str, Any] = self.dummy_input
return init_dict, inputs_dict
def _lowercase( self ) -> int:
UpperCAmelCase : str = [0.6_7_3_8, 0.4_4_9_1, 0.1_0_5_5, 1.0_7_1_0, 0.7_3_1_6, 0.3_3_3_9, 0.3_3_5_2, 0.1_0_2_3, 0.3_5_6_8]
super().test_output(A )
| 672 |
'''simple docstring'''
from sklearn.metrics import mean_squared_error
import datasets
a : Union[str, Any] = """\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
a : int = """\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
"""
a : int = """
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
\"raw_values\" : Returns a full set of errors in case of multioutput input.
\"uniform_average\" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric(\"mse\")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{'mse': 0.6123724356957945}
If you're using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mse': array([0.41666667, 1. ])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
def _lowercase( self ) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"""
] , )
def _lowercase( self ) -> List[Any]:
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("""float""" ) ),
"references": datasets.Sequence(datasets.Value("""float""" ) ),
}
else:
return {
"predictions": datasets.Value("""float""" ),
"references": datasets.Value("""float""" ),
}
def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]:
UpperCAmelCase : List[Any] = mean_squared_error(
A , A , sample_weight=A , multioutput=A , squared=A )
return {"mse": mse}
| 672 | 1 |
'''simple docstring'''
import argparse
import re
import requests
import torch
# git clone https://github.com/salesforce/BLIP.git
from models.blip import blip_decoder
from models.blip_itm import blip_itm
from models.blip_vqa import blip_vqa
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers import (
BertTokenizer,
BlipConfig,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
)
def __lowerCamelCase ( _lowercase , _lowercase ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg"""
UpperCAmelCase : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert("""RGB""" )
UpperCAmelCase : Optional[Any] = transforms.Compose(
[
transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ),
transforms.ToTensor(),
transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ),
] )
UpperCAmelCase : str = transform(_lowercase ).unsqueeze(0 ).to(_lowercase )
return image
def __lowerCamelCase ( _lowercase ) -> str:
if "visual_encoder" in key:
UpperCAmelCase : List[Any] = re.sub("""visual_encoder*""" , """vision_model.encoder""" , _lowercase )
if "blocks" in key:
UpperCAmelCase : Dict = re.sub(R"""blocks""" , """layers""" , _lowercase )
if "attn" in key:
UpperCAmelCase : Dict = re.sub(R"""attn""" , """self_attn""" , _lowercase )
if "norm1" in key:
UpperCAmelCase : Optional[int] = re.sub(R"""norm1""" , """layer_norm1""" , _lowercase )
if "norm2" in key:
UpperCAmelCase : Dict = re.sub(R"""norm2""" , """layer_norm2""" , _lowercase )
if "encoder.norm" in key:
UpperCAmelCase : List[str] = re.sub(R"""encoder.norm""" , """post_layernorm""" , _lowercase )
if "encoder.patch_embed.proj" in key:
UpperCAmelCase : Optional[Any] = re.sub(R"""encoder.patch_embed.proj""" , """embeddings.patch_embedding""" , _lowercase )
if "encoder.pos_embed" in key:
UpperCAmelCase : Dict = re.sub(R"""encoder.pos_embed""" , """embeddings.position_embedding""" , _lowercase )
if "encoder.cls_token" in key:
UpperCAmelCase : Optional[Any] = re.sub(R"""encoder.cls_token""" , """embeddings.class_embedding""" , _lowercase )
if "self_attn" in key:
UpperCAmelCase : Any = re.sub(R"""self_attn.proj""" , """self_attn.projection""" , _lowercase )
return key
@torch.no_grad()
def __lowerCamelCase ( _lowercase , _lowercase=None ) -> str:
if config_path is not None:
UpperCAmelCase : Optional[int] = BlipConfig.from_pretrained(_lowercase )
else:
UpperCAmelCase : Union[str, Any] = BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} )
UpperCAmelCase : Tuple = BlipForConditionalGeneration(_lowercase ).eval()
UpperCAmelCase : int = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth"""
UpperCAmelCase : Tuple = blip_decoder(pretrained=_lowercase , image_size=3_8_4 , vit="""base""" )
UpperCAmelCase : Any = pt_model.eval()
UpperCAmelCase : int = pt_model.state_dict()
for key in modified_state_dict.copy():
UpperCAmelCase : Dict = modified_state_dict.pop(_lowercase )
UpperCAmelCase : Optional[int] = rename_key(_lowercase )
UpperCAmelCase : Union[str, Any] = value
hf_model.load_state_dict(_lowercase )
UpperCAmelCase : List[str] = 3_8_4
UpperCAmelCase : Optional[Any] = load_demo_image(image_size=_lowercase , device="""cpu""" )
UpperCAmelCase : Optional[int] = BertTokenizer.from_pretrained("""bert-base-uncased""" )
UpperCAmelCase : Optional[Any] = tokenizer(["""a picture of"""] ).input_ids
UpperCAmelCase : Dict = hf_model.generate(_lowercase , _lowercase )
assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2]
UpperCAmelCase : Tuple = hf_model.generate(_lowercase )
assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2]
if pytorch_dump_folder_path is not None:
hf_model.save_pretrained(_lowercase )
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth'
UpperCAmelCase : Optional[int] = (
"""https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth"""
)
UpperCAmelCase : Optional[int] = blip_vqa(pretrained=_lowercase , image_size=_lowercase , vit="""base""" )
vqa_model.eval()
UpperCAmelCase : Optional[int] = vqa_model.state_dict()
for key in modified_state_dict.copy():
UpperCAmelCase : Optional[int] = modified_state_dict.pop(_lowercase )
UpperCAmelCase : str = rename_key(_lowercase )
UpperCAmelCase : List[str] = value
UpperCAmelCase : Tuple = BlipForQuestionAnswering(_lowercase )
hf_vqa_model.load_state_dict(_lowercase )
UpperCAmelCase : List[Any] = ["""How many dogs are in this image?"""]
UpperCAmelCase : Dict = tokenizer(_lowercase , return_tensors="""pt""" ).input_ids
UpperCAmelCase : Any = hf_vqa_model.generate(_lowercase , _lowercase )
print(tokenizer.decode(answer[0] ) )
assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]"
if pytorch_dump_folder_path is not None:
hf_vqa_model.save_pretrained(pytorch_dump_folder_path + """_vqa""" )
UpperCAmelCase : Tuple = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth"""
UpperCAmelCase : List[Any] = blip_itm(pretrained=_lowercase , image_size=_lowercase , vit="""base""" )
itm_model.eval()
UpperCAmelCase : Tuple = itm_model.state_dict()
for key in modified_state_dict.copy():
UpperCAmelCase : str = modified_state_dict.pop(_lowercase )
UpperCAmelCase : List[str] = rename_key(_lowercase )
UpperCAmelCase : List[str] = value
UpperCAmelCase : Optional[int] = BlipForImageTextRetrieval(_lowercase )
UpperCAmelCase : int = ["""A picture of a woman with a dog sitting in a beach"""]
UpperCAmelCase : Optional[int] = tokenizer(
_lowercase , return_tensors="""pt""" , padding="""max_length""" , truncation=_lowercase , max_length=3_5 , ).input_ids
hf_itm_model.load_state_dict(_lowercase )
hf_itm_model.eval()
UpperCAmelCase : List[Any] = hf_itm_model(_lowercase , _lowercase , use_itm_head=_lowercase )
UpperCAmelCase : Optional[Any] = hf_itm_model(_lowercase , _lowercase , use_itm_head=_lowercase )
assert out[0].item() == 0.2110_6874_9427_7954
assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127
if pytorch_dump_folder_path is not None:
hf_itm_model.save_pretrained(pytorch_dump_folder_path + """_itm""" )
if __name__ == "__main__":
a : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
a : str = parser.parse_args()
convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 672 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : str = logging.get_logger(__name__)
a : Any = {
"""google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""",
"""google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json"""
# See all FNet models at https://huggingface.co/models?filter=fnet
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'fnet'
def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int:
super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A )
UpperCAmelCase : Optional[Any] = vocab_size
UpperCAmelCase : Dict = max_position_embeddings
UpperCAmelCase : List[str] = hidden_size
UpperCAmelCase : int = num_hidden_layers
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : List[str] = hidden_act
UpperCAmelCase : Tuple = hidden_dropout_prob
UpperCAmelCase : List[str] = initializer_range
UpperCAmelCase : List[Any] = type_vocab_size
UpperCAmelCase : int = layer_norm_eps
UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations
UpperCAmelCase : List[Any] = tpu_short_seq_length
| 672 | 1 |
'''simple docstring'''
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCamelCase_ ( __magic_name__ ):
lowercase = (DDPMParallelScheduler,)
def _lowercase( self , **A ) -> Optional[Any]:
UpperCAmelCase : List[Any] = {
"""num_train_timesteps""": 1000,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**A )
return config
def _lowercase( self ) -> Optional[int]:
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=A )
def _lowercase( self ) -> List[str]:
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=A , beta_end=A )
def _lowercase( self ) -> List[str]:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=A )
def _lowercase( self ) -> Any:
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=A )
def _lowercase( self ) -> int:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=A )
def _lowercase( self ) -> Optional[Any]:
self.check_over_configs(thresholding=A )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=A , prediction_type=A , sample_max_value=A , )
def _lowercase( self ) -> Tuple:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=A )
def _lowercase( self ) -> Any:
for t in [0, 500, 999]:
self.check_over_forward(time_step=A )
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Any = self.scheduler_classes[0]
UpperCAmelCase : Union[str, Any] = self.get_scheduler_config()
UpperCAmelCase : List[Any] = scheduler_class(**A )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : str = self.scheduler_classes[0]
UpperCAmelCase : Any = self.get_scheduler_config()
UpperCAmelCase : Dict = scheduler_class(**A )
UpperCAmelCase : List[Any] = len(A )
UpperCAmelCase : Union[str, Any] = self.dummy_model()
UpperCAmelCase : Tuple = self.dummy_sample_deter
UpperCAmelCase : Optional[Any] = self.dummy_sample_deter + 0.1
UpperCAmelCase : str = self.dummy_sample_deter - 0.1
UpperCAmelCase : int = samplea.shape[0]
UpperCAmelCase : Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 )
UpperCAmelCase : Union[str, Any] = torch.arange(A )[0:3, None].repeat(1 , A )
UpperCAmelCase : Any = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
UpperCAmelCase : List[str] = scheduler.batch_step_no_noise(A , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) )
UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(A ) )
UpperCAmelCase : str = torch.mean(torch.abs(A ) )
assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2
assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0]
UpperCAmelCase : Any = self.get_scheduler_config()
UpperCAmelCase : Optional[int] = scheduler_class(**A )
UpperCAmelCase : int = len(A )
UpperCAmelCase : Optional[Any] = self.dummy_model()
UpperCAmelCase : Optional[int] = self.dummy_sample_deter
UpperCAmelCase : str = torch.manual_seed(0 )
for t in reversed(range(A ) ):
# 1. predict noise residual
UpperCAmelCase : Optional[Any] = model(A , A )
# 2. predict previous mean of sample x_t-1
UpperCAmelCase : Dict = scheduler.step(A , A , A , generator=A ).prev_sample
UpperCAmelCase : Union[str, Any] = pred_prev_sample
UpperCAmelCase : Tuple = torch.sum(torch.abs(A ) )
UpperCAmelCase : int = torch.mean(torch.abs(A ) )
assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2
assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3
def _lowercase( self ) -> Dict:
UpperCAmelCase : int = self.scheduler_classes[0]
UpperCAmelCase : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""" )
UpperCAmelCase : int = scheduler_class(**A )
UpperCAmelCase : Dict = len(A )
UpperCAmelCase : Optional[Any] = self.dummy_model()
UpperCAmelCase : List[str] = self.dummy_sample_deter
UpperCAmelCase : Any = torch.manual_seed(0 )
for t in reversed(range(A ) ):
# 1. predict noise residual
UpperCAmelCase : Tuple = model(A , A )
# 2. predict previous mean of sample x_t-1
UpperCAmelCase : Dict = scheduler.step(A , A , A , generator=A ).prev_sample
UpperCAmelCase : Union[str, Any] = pred_prev_sample
UpperCAmelCase : str = torch.sum(torch.abs(A ) )
UpperCAmelCase : Any = torch.mean(torch.abs(A ) )
assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2
assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : str = self.scheduler_classes[0]
UpperCAmelCase : int = self.get_scheduler_config()
UpperCAmelCase : int = scheduler_class(**A )
UpperCAmelCase : Optional[int] = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=A )
UpperCAmelCase : Dict = scheduler.timesteps
for i, timestep in enumerate(A ):
if i == len(A ) - 1:
UpperCAmelCase : int = -1
else:
UpperCAmelCase : int = timesteps[i + 1]
UpperCAmelCase : str = scheduler.previous_timestep(A )
UpperCAmelCase : Union[str, Any] = prev_t.item()
self.assertEqual(A , A )
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0]
UpperCAmelCase : int = self.get_scheduler_config()
UpperCAmelCase : str = scheduler_class(**A )
UpperCAmelCase : str = [100, 87, 50, 51, 0]
with self.assertRaises(A , msg="""`custom_timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=A )
def _lowercase( self ) -> int:
UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0]
UpperCAmelCase : Any = self.get_scheduler_config()
UpperCAmelCase : List[Any] = scheduler_class(**A )
UpperCAmelCase : Dict = [100, 87, 50, 1, 0]
UpperCAmelCase : Dict = len(A )
with self.assertRaises(A , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=A , timesteps=A )
def _lowercase( self ) -> Any:
UpperCAmelCase : List[Any] = self.scheduler_classes[0]
UpperCAmelCase : Optional[Any] = self.get_scheduler_config()
UpperCAmelCase : List[str] = scheduler_class(**A )
UpperCAmelCase : int = [scheduler.config.num_train_timesteps]
with self.assertRaises(
A , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=A )
| 672 |
'''simple docstring'''
a : List[Any] = """Alexander Joslin"""
import operator as op
from .stack import Stack
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub}
UpperCAmelCase : Stack[int] = Stack()
UpperCAmelCase : Stack[str] = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(_lowercase ) )
elif i in operators:
# RULE 2
operator_stack.push(_lowercase )
elif i == ")":
# RULE 4
UpperCAmelCase : List[Any] = operator_stack.peek()
operator_stack.pop()
UpperCAmelCase : str = operand_stack.peek()
operand_stack.pop()
UpperCAmelCase : str = operand_stack.peek()
operand_stack.pop()
UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase )
operand_stack.push(_lowercase )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
a : Tuple = """(5 + ((4 * 2) * (2 + 3)))"""
# answer = 45
print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
| 672 | 1 |
'''simple docstring'''
a : dict[str, float] = {
"joule": 1.0,
"kilojoule": 1_0_0_0,
"megajoule": 1_0_0_0_0_0_0,
"gigajoule": 1_0_0_0_0_0_0_0_0_0,
"wattsecond": 1.0,
"watthour": 3_6_0_0,
"kilowatthour": 3_6_0_0_0_0_0,
"newtonmeter": 1.0,
"calorie_nutr": 4_1_8_6.8,
"kilocalorie_nutr": 4_1_8_6_8_0_0.0_0,
"electronvolt": 1.602176634E-19,
"britishthermalunit_it": 1_0_5_5.0_5_5_8_5,
"footpound": 1.3_5_5_8_1_8,
}
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> float:
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
UpperCAmelCase : Dict = (
F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n'''
F'''Valid values are: {', '.join(_lowercase )}'''
)
raise ValueError(_lowercase )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 672 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
a : List[Any] = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
a : List[str] = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias'''))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''',
F'''decoder.layers.{i}.encoder_attn.out_proj.weight''',
)
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''',
F'''decoder.layers.{i}.encoder_attn.out_proj.bias''',
)
)
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias'''))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''')
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
("""input_proj.weight""", """input_projection.weight"""),
("""input_proj.bias""", """input_projection.bias"""),
("""query_embed.weight""", """query_position_embeddings.weight"""),
("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""),
("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""),
("""class_embed.weight""", """class_labels_classifier.weight"""),
("""class_embed.bias""", """class_labels_classifier.bias"""),
("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""),
("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""),
("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""),
("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""),
("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""),
("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""),
("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""),
("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""),
("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""),
("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""),
("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""),
("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""),
("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""),
("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""),
("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""),
("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""),
]
)
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
UpperCAmelCase : List[str] = state_dict.pop(_lowercase )
UpperCAmelCase : List[str] = val
def __lowerCamelCase ( _lowercase ) -> Any:
UpperCAmelCase : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" )
UpperCAmelCase : Dict = value
else:
UpperCAmelCase : List[Any] = value
return new_state_dict
def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]:
UpperCAmelCase : Dict = """"""
if is_panoptic:
UpperCAmelCase : Tuple = """conditional_detr."""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' )
UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :]
UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6]
UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :]
UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2]
UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :]
UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:]
def __lowerCamelCase ( ) -> Dict:
UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
return im
@torch.no_grad()
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
UpperCAmelCase : str = ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
UpperCAmelCase : List[Any] = """resnet101"""
if "dc5" in model_name:
UpperCAmelCase : Optional[int] = True
UpperCAmelCase : List[Any] = """panoptic""" in model_name
if is_panoptic:
UpperCAmelCase : Union[str, Any] = 2_5_0
else:
UpperCAmelCase : int = 9_1
UpperCAmelCase : Tuple = """huggingface/label-files"""
UpperCAmelCase : List[Any] = """coco-detection-id2label.json"""
UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) )
UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()}
UpperCAmelCase : Optional[Any] = idalabel
UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()}
# load image processor
UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection"""
UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase )
# prepare image
UpperCAmelCase : Union[str, Any] = prepare_img()
UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" )
UpperCAmelCase : List[Any] = encoding["""pixel_values"""]
logger.info(F'''Converting model {model_name}...''' )
# load original model from torch hub
UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval()
UpperCAmelCase : List[Any] = conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
UpperCAmelCase : List[Any] = """conditional_detr.""" + src
rename_key(_lowercase , _lowercase , _lowercase )
UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase )
# query, key and value matrices need special treatment
read_in_q_k_v(_lowercase , is_panoptic=_lowercase )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model."""
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("""conditional_detr""" )
and not key.startswith("""class_labels_classifier""" )
and not key.startswith("""bbox_predictor""" )
):
UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase )
UpperCAmelCase : int = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
UpperCAmelCase : Any = state_dict.pop(_lowercase )
UpperCAmelCase : Optional[Any] = val
elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ):
continue
else:
UpperCAmelCase : List[Any] = state_dict.pop(_lowercase )
UpperCAmelCase : str = val
else:
if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ):
UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase )
UpperCAmelCase : Union[str, Any] = val
# finally, create HuggingFace model and load state dict
UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase )
model.load_state_dict(_lowercase )
model.eval()
model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" )
# verify our conversion
UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase )
UpperCAmelCase : int = model(_lowercase )
assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 )
assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 )
# Save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(_lowercase ).mkdir(exist_ok=_lowercase )
model.save_pretrained(_lowercase )
image_processor.save_pretrained(_lowercase )
if __name__ == "__main__":
a : Tuple = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
default="""conditional_detr_resnet50""",
type=str,
help="""Name of the CONDITIONAL_DETR model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
a : Optional[Any] = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 672 | 1 |
'''simple docstring'''
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[Any]:
UpperCAmelCase : List[str] = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""")
UpperCAmelCase : List[Any] = (
("""layer.""", """layer_"""),
("""word_embeddings.weight""", """word_embeddings"""),
("""position_embeddings.weight""", """position_embeddings"""),
("""token_type_embeddings.weight""", """token_type_embeddings"""),
(""".""", """/"""),
("""LayerNorm/weight""", """LayerNorm/gamma"""),
("""LayerNorm/bias""", """LayerNorm/beta"""),
("""weight""", """kernel"""),
)
if not os.path.isdir(_lowercase ):
os.makedirs(_lowercase )
UpperCAmelCase : List[Any] = model.state_dict()
def to_tf_var_name(_lowercase ):
for patt, repl in iter(_lowercase ):
UpperCAmelCase : Tuple = name.replace(_lowercase , _lowercase )
return F'''bert/{name}'''
def create_tf_var(_lowercase , _lowercase , _lowercase ):
UpperCAmelCase : List[str] = tf.dtypes.as_dtype(tensor.dtype )
UpperCAmelCase : Optional[int] = tf.get_variable(dtype=_lowercase , shape=tensor.shape , name=_lowercase , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(_lowercase )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
UpperCAmelCase : Optional[int] = to_tf_var_name(_lowercase )
UpperCAmelCase : int = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
UpperCAmelCase : Dict = torch_tensor.T
UpperCAmelCase : int = create_tf_var(tensor=_lowercase , name=_lowercase , session=_lowercase )
tf.keras.backend.set_value(_lowercase , _lowercase )
UpperCAmelCase : Tuple = session.run(_lowercase )
print(F'''Successfully created {tf_name}: {np.allclose(_lowercase , _lowercase )}''' )
UpperCAmelCase : Dict = tf.train.Saver(tf.trainable_variables() )
saver.save(_lowercase , os.path.join(_lowercase , model_name.replace("""-""" , """_""" ) + """.ckpt""" ) )
def __lowerCamelCase ( _lowercase=None ) -> int:
UpperCAmelCase : List[str] = argparse.ArgumentParser()
parser.add_argument("""--model_name""" , type=_lowercase , required=_lowercase , help="""model name e.g. bert-base-uncased""" )
parser.add_argument(
"""--cache_dir""" , type=_lowercase , default=_lowercase , required=_lowercase , help="""Directory containing pytorch model""" )
parser.add_argument("""--pytorch_model_path""" , type=_lowercase , required=_lowercase , help="""/path/to/<pytorch-model-name>.bin""" )
parser.add_argument("""--tf_cache_dir""" , type=_lowercase , required=_lowercase , help="""Directory in which to save tensorflow model""" )
UpperCAmelCase : Optional[Any] = parser.parse_args(_lowercase )
UpperCAmelCase : int = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=_lowercase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 672 |
'''simple docstring'''
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 672 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a : Optional[Any] = logging.get_logger(__name__)
a : List[Any] = {
"""microsoft/focalnet-tiny""": """https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json""",
}
class UpperCamelCase_ ( __magic_name__ , __magic_name__ ):
lowercase = 'focalnet'
def __init__( self , A=224 , A=4 , A=3 , A=96 , A=False , A=[192, 384, 768, 768] , A=[2, 2, 6, 2] , A=[2, 2, 2, 2] , A=[3, 3, 3, 3] , A="gelu" , A=4.0 , A=0.0 , A=0.1 , A=False , A=1e-4 , A=False , A=False , A=False , A=0.0_2 , A=1e-5 , A=32 , A=None , A=None , **A , ) -> Tuple:
super().__init__(**A )
UpperCAmelCase : Optional[Any] = image_size
UpperCAmelCase : Any = patch_size
UpperCAmelCase : Dict = num_channels
UpperCAmelCase : Dict = embed_dim
UpperCAmelCase : Union[str, Any] = use_conv_embed
UpperCAmelCase : List[Any] = hidden_sizes
UpperCAmelCase : Optional[int] = depths
UpperCAmelCase : Optional[Any] = focal_levels
UpperCAmelCase : List[str] = focal_windows
UpperCAmelCase : Union[str, Any] = hidden_act
UpperCAmelCase : List[Any] = mlp_ratio
UpperCAmelCase : Dict = hidden_dropout_prob
UpperCAmelCase : Optional[int] = drop_path_rate
UpperCAmelCase : str = use_layerscale
UpperCAmelCase : Optional[Any] = layerscale_value
UpperCAmelCase : List[str] = use_post_layernorm
UpperCAmelCase : Tuple = use_post_layernorm_in_modulation
UpperCAmelCase : Optional[Any] = normalize_modulator
UpperCAmelCase : int = initializer_range
UpperCAmelCase : Union[str, Any] = layer_norm_eps
UpperCAmelCase : Any = encoder_stride
UpperCAmelCase : Any = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )]
UpperCAmelCase , UpperCAmelCase : List[Any] = get_aligned_output_features_output_indices(
out_features=A , out_indices=A , stage_names=self.stage_names )
| 672 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_barthez import BarthezTokenizer
else:
a : int = None
a : List[Any] = logging.get_logger(__name__)
a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
a : Union[str, Any] = {
"""vocab_file""": {
"""moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""",
"""moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""",
"""moussaKam/barthez-orangesum-title""": (
"""https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""",
"""moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""",
"""moussaKam/barthez-orangesum-title""": (
"""https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json"""
),
},
}
a : List[Any] = {
"""moussaKam/mbarthez""": 1_0_2_4,
"""moussaKam/barthez""": 1_0_2_4,
"""moussaKam/barthez-orangesum-title""": 1_0_2_4,
}
a : int = """▁"""
class UpperCamelCase_ ( __magic_name__ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ['input_ids', 'attention_mask']
lowercase = BarthezTokenizer
def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]:
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token
super().__init__(
A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , )
UpperCAmelCase : Union[str, Any] = vocab_file
UpperCAmelCase : int = False if not self.vocab_file else True
def _lowercase( self , A , A = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase : Optional[int] = [self.cls_token_id]
UpperCAmelCase : List[str] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowercase( self , A , A = None ) -> List[int]:
UpperCAmelCase : Optional[int] = [self.sep_token_id]
UpperCAmelCase : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowercase( self , A , A = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase : str = os.path.join(
A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ):
copyfile(self.vocab_file , A )
return (out_vocab_file,)
| 672 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : Any = logging.get_logger(__name__)
a : Optional[Any] = {
"""studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""",
"""studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""",
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'luke'
def __init__( self , A=50267 , A=500000 , A=768 , A=256 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.0_2 , A=1e-12 , A=True , A=None , A=1 , A=0 , A=2 , **A , ) -> Union[str, Any]:
super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A )
UpperCAmelCase : Dict = vocab_size
UpperCAmelCase : Optional[Any] = entity_vocab_size
UpperCAmelCase : Dict = hidden_size
UpperCAmelCase : Union[str, Any] = entity_emb_size
UpperCAmelCase : Any = num_hidden_layers
UpperCAmelCase : Dict = num_attention_heads
UpperCAmelCase : Optional[int] = hidden_act
UpperCAmelCase : List[str] = intermediate_size
UpperCAmelCase : str = hidden_dropout_prob
UpperCAmelCase : Any = attention_probs_dropout_prob
UpperCAmelCase : Tuple = max_position_embeddings
UpperCAmelCase : Optional[Any] = type_vocab_size
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : List[Any] = layer_norm_eps
UpperCAmelCase : Union[str, Any] = use_entity_aware_attention
UpperCAmelCase : Union[str, Any] = classifier_dropout
| 672 |
'''simple docstring'''
from collections.abc import Callable
import numpy as np
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array:
UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) )
UpperCAmelCase : str = np.zeros((n + 1,) )
UpperCAmelCase : Optional[Any] = ya
UpperCAmelCase : Union[str, Any] = xa
for k in range(_lowercase ):
UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] )
UpperCAmelCase : Optional[int] = y[k] + (
(step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 672 | 1 |
'''simple docstring'''
import argparse
import json
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification
def __lowerCamelCase ( _lowercase ) -> List[str]:
UpperCAmelCase : Tuple = SwinConfig()
UpperCAmelCase : Optional[Any] = swin_name.split("""_""" )
UpperCAmelCase : Any = name_split[1]
UpperCAmelCase : Dict = int(name_split[4] )
UpperCAmelCase : Optional[int] = int(name_split[3][-1] )
if model_size == "tiny":
UpperCAmelCase : Optional[Any] = 9_6
UpperCAmelCase : Union[str, Any] = (2, 2, 6, 2)
UpperCAmelCase : Union[str, Any] = (3, 6, 1_2, 2_4)
elif model_size == "small":
UpperCAmelCase : Union[str, Any] = 9_6
UpperCAmelCase : List[str] = (2, 2, 1_8, 2)
UpperCAmelCase : List[Any] = (3, 6, 1_2, 2_4)
elif model_size == "base":
UpperCAmelCase : Tuple = 1_2_8
UpperCAmelCase : List[Any] = (2, 2, 1_8, 2)
UpperCAmelCase : Any = (4, 8, 1_6, 3_2)
else:
UpperCAmelCase : Optional[Any] = 1_9_2
UpperCAmelCase : Tuple = (2, 2, 1_8, 2)
UpperCAmelCase : Dict = (6, 1_2, 2_4, 4_8)
if "in22k" in swin_name:
UpperCAmelCase : str = 2_1_8_4_1
else:
UpperCAmelCase : Optional[Any] = 1_0_0_0
UpperCAmelCase : Optional[int] = """huggingface/label-files"""
UpperCAmelCase : Dict = """imagenet-1k-id2label.json"""
UpperCAmelCase : Any = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) )
UpperCAmelCase : str = {int(_lowercase ): v for k, v in idalabel.items()}
UpperCAmelCase : List[Any] = idalabel
UpperCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()}
UpperCAmelCase : str = img_size
UpperCAmelCase : Union[str, Any] = num_classes
UpperCAmelCase : Union[str, Any] = embed_dim
UpperCAmelCase : List[str] = depths
UpperCAmelCase : Dict = num_heads
UpperCAmelCase : List[Any] = window_size
return config
def __lowerCamelCase ( _lowercase ) -> Any:
if "patch_embed.proj" in name:
UpperCAmelCase : str = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
UpperCAmelCase : int = name.replace("""patch_embed.norm""" , """embeddings.norm""" )
if "layers" in name:
UpperCAmelCase : Union[str, Any] = """encoder.""" + name
if "attn.proj" in name:
UpperCAmelCase : Dict = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
UpperCAmelCase : List[Any] = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
UpperCAmelCase : Tuple = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
UpperCAmelCase : Any = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
UpperCAmelCase : Tuple = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
UpperCAmelCase : Any = name.replace("""mlp.fc2""" , """output.dense""" )
if name == "norm.weight":
UpperCAmelCase : int = """layernorm.weight"""
if name == "norm.bias":
UpperCAmelCase : List[str] = """layernorm.bias"""
if "head" in name:
UpperCAmelCase : Optional[int] = name.replace("""head""" , """classifier""" )
else:
UpperCAmelCase : str = """swin.""" + name
return name
def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]:
for key in orig_state_dict.copy().keys():
UpperCAmelCase : List[str] = orig_state_dict.pop(_lowercase )
if "mask" in key:
continue
elif "qkv" in key:
UpperCAmelCase : Tuple = key.split(""".""" )
UpperCAmelCase : List[Any] = int(key_split[1] )
UpperCAmelCase : str = int(key_split[3] )
UpperCAmelCase : Optional[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
UpperCAmelCase : str = val[:dim, :]
UpperCAmelCase : Optional[Any] = val[
dim : dim * 2, :
]
UpperCAmelCase : List[Any] = val[-dim:, :]
else:
UpperCAmelCase : Optional[Any] = val[
:dim
]
UpperCAmelCase : Dict = val[
dim : dim * 2
]
UpperCAmelCase : Tuple = val[
-dim:
]
else:
UpperCAmelCase : str = val
return orig_state_dict
def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]:
UpperCAmelCase : Dict = timm.create_model(_lowercase , pretrained=_lowercase )
timm_model.eval()
UpperCAmelCase : Tuple = get_swin_config(_lowercase )
UpperCAmelCase : Optional[Any] = SwinForImageClassification(_lowercase )
model.eval()
UpperCAmelCase : Optional[Any] = convert_state_dict(timm_model.state_dict() , _lowercase )
model.load_state_dict(_lowercase )
UpperCAmelCase : Any = """http://images.cocodataset.org/val2017/000000039769.jpg"""
UpperCAmelCase : List[Any] = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) )
UpperCAmelCase : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
UpperCAmelCase : List[str] = image_processor(images=_lowercase , return_tensors="""pt""" )
UpperCAmelCase : List[Any] = timm_model(inputs["""pixel_values"""] )
UpperCAmelCase : str = model(**_lowercase ).logits
assert torch.allclose(_lowercase , _lowercase , atol=1e-3 )
print(F'''Saving model {swin_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(_lowercase )
if __name__ == "__main__":
a : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--swin_name""",
default="""swin_tiny_patch4_window7_224""",
type=str,
help="""Name of the Swin timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
a : List[Any] = parser.parse_args()
convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
| 672 |
'''simple docstring'''
from typing import List, Union
import numpy as np
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, logging
from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline
a : List[str] = logging.get_logger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def _lowercase( self , A ) -> Optional[int]:
if isinstance(A , A ):
UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()]
return labels
def __call__( self , A , A , A ) -> str:
if len(A ) == 0 or len(A ) == 0:
raise ValueError("""You must include at least one label and at least one sequence.""" )
if hypothesis_template.format(labels[0] ) == hypothesis_template:
raise ValueError(
(
"""The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """
"""Make sure the passed template includes formatting syntax such as {{}} where the label should go."""
).format(A ) )
if isinstance(A , A ):
UpperCAmelCase : Tuple = [sequences]
UpperCAmelCase : Optional[Any] = []
for sequence in sequences:
sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] )
return sequence_pairs, sequences
@add_end_docstrings(__magic_name__ )
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]:
UpperCAmelCase : Tuple = args_parser
super().__init__(*A , **A )
if self.entailment_id == -1:
logger.warning(
"""Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """
"""-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" )
@property
def _lowercase( self ) -> List[Any]:
for label, ind in self.model.config.labelaid.items():
if label.lower().startswith("""entail""" ):
return ind
return -1
def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str:
UpperCAmelCase : Tuple = self.framework
if self.tokenizer.pad_token is None:
# Override for tokenizers not supporting padding
logger.error(
"""Tokenizer was not supporting padding necessary for zero-shot, attempting to use """
""" `pad_token=eos_token`""" )
UpperCAmelCase : Any = self.tokenizer.eos_token
try:
UpperCAmelCase : Tuple = self.tokenizer(
A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , )
except Exception as e:
if "too short" in str(A ):
# tokenizers might yell that we want to truncate
# to a value that is not even reached by the input.
# In that case we don't want to truncate.
# It seems there's not a really better way to catch that
# exception.
UpperCAmelCase : List[str] = self.tokenizer(
A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , )
else:
raise e
return inputs
def _lowercase( self , **A ) -> Tuple:
if kwargs.get("""multi_class""" , A ) is not None:
UpperCAmelCase : Any = kwargs["""multi_class"""]
logger.warning(
"""The `multi_class` argument has been deprecated and renamed to `multi_label`. """
"""`multi_class` will be removed in a future version of Transformers.""" )
UpperCAmelCase : int = {}
if "candidate_labels" in kwargs:
UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] )
if "hypothesis_template" in kwargs:
UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""]
UpperCAmelCase : Dict = {}
if "multi_label" in kwargs:
UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""]
return preprocess_params, {}, postprocess_params
def __call__( self , A , *A , **A , ) -> Tuple:
if len(A ) == 0:
pass
elif len(A ) == 1 and "candidate_labels" not in kwargs:
UpperCAmelCase : Optional[Any] = args[0]
else:
raise ValueError(f'''Unable to understand extra arguments {args}''' )
return super().__call__(A , **A )
def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]:
UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A )
for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ):
UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] )
yield {
"candidate_label": candidate_label,
"sequence": sequences[0],
"is_last": i == len(A ) - 1,
**model_input,
}
def _lowercase( self , A ) -> Optional[int]:
UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""]
UpperCAmelCase : Tuple = inputs["""sequence"""]
UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names}
UpperCAmelCase : Tuple = self.model(**A )
UpperCAmelCase : Optional[int] = {
"""candidate_label""": candidate_label,
"""sequence""": sequence,
"""is_last""": inputs["""is_last"""],
**outputs,
}
return model_outputs
def _lowercase( self , A , A=False ) -> List[str]:
UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs]
UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs]
UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] )
UpperCAmelCase : Optional[Any] = logits.shape[0]
UpperCAmelCase : int = len(A )
UpperCAmelCase : List[Any] = N // n
UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) )
if multi_label or len(A ) == 1:
# softmax over the entailment vs. contradiction dim for each label independently
UpperCAmelCase : str = self.entailment_id
UpperCAmelCase : str = -1 if entailment_id == 0 else 0
UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]]
UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A )
UpperCAmelCase : int = scores[..., 1]
else:
# softmax the "entailment" logits over all candidate labels
UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id]
UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A )
UpperCAmelCase : int = list(reversed(scores[0].argsort() ) )
return {
"sequence": sequences[0],
"labels": [candidate_labels[i] for i in top_inds],
"scores": scores[0, top_inds].tolist(),
}
| 672 | 1 |
'''simple docstring'''
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import platform
import sys
a : List[str] = """3"""
print("""Python version:""", sys.version)
print("""OS platform:""", platform.platform())
print("""OS architecture:""", platform.machine())
try:
import torch
print("""Torch version:""", torch.__version__)
print("""Cuda available:""", torch.cuda.is_available())
print("""Cuda version:""", torch.version.cuda)
print("""CuDNN version:""", torch.backends.cudnn.version())
print("""Number of GPUs available:""", torch.cuda.device_count())
except ImportError:
print("""Torch version:""", None)
try:
import transformers
print("""transformers version:""", transformers.__version__)
except ImportError:
print("""transformers version:""", None)
| 672 |
'''simple docstring'''
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""")
@require_sentencepiece
@require_tokenizers
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = PegasusTokenizer
lowercase = PegasusTokenizerFast
lowercase = True
lowercase = True
def _lowercase( self ) -> Tuple:
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase : int = PegasusTokenizer(A )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowercase( self ) -> int:
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def _lowercase( self , **A ) -> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def _lowercase( self , A ) -> List[str]:
return ("This is a test", "This is a test")
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = """</s>"""
UpperCAmelCase : Optional[int] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(A ) , 1103 )
def _lowercase( self ) -> Optional[Any]:
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def _lowercase( self ) -> int:
UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : Union[str, Any] = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : List[Any] = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1]
UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
def _lowercase( self ) -> int:
UpperCAmelCase : str = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 96103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions."""
UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1]
UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def _lowercase( self ) -> Any:
UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""]
UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""]
UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" )
UpperCAmelCase : List[Any] = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
@slow
def _lowercase( self ) -> List[str]:
# fmt: off
UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = PegasusTokenizer
lowercase = PegasusTokenizerFast
lowercase = True
lowercase = True
def _lowercase( self ) -> List[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowercase( self ) -> Optional[Any]:
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def _lowercase( self , **A ) -> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def _lowercase( self , A ) -> str:
return ("This is a test", "This is a test")
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : str = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
@require_torch
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""]
UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""]
UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" )
UpperCAmelCase : Optional[int] = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
def _lowercase( self ) -> int:
UpperCAmelCase : Union[str, Any] = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids
self.assertListEqual(
A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
| 672 | 1 |
'''simple docstring'''
import itertools
import random
import unittest
import numpy as np
from transformers import ASTFeatureExtractor
from transformers.testing_utils import require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
a : int = random.Random()
if is_torch_available():
import torch
def __lowerCamelCase ( _lowercase , _lowercase=1.0 , _lowercase=None , _lowercase=None ) -> int:
if rng is None:
UpperCAmelCase : Optional[Any] = global_rng
UpperCAmelCase : Any = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class UpperCamelCase_ ( unittest.TestCase ):
def __init__( self , A , A=7 , A=400 , A=2000 , A=1 , A=0.0 , A=16000 , A=True , A=True , ) -> Optional[int]:
UpperCAmelCase : Optional[Any] = parent
UpperCAmelCase : int = batch_size
UpperCAmelCase : Any = min_seq_length
UpperCAmelCase : Any = max_seq_length
UpperCAmelCase : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
UpperCAmelCase : Union[str, Any] = feature_size
UpperCAmelCase : Union[str, Any] = padding_value
UpperCAmelCase : Union[str, Any] = sampling_rate
UpperCAmelCase : Optional[Any] = return_attention_mask
UpperCAmelCase : List[Any] = do_normalize
def _lowercase( self ) -> Union[str, Any]:
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def _lowercase( self , A=False , A=False ) -> Any:
def _flatten(A ):
return list(itertools.chain(*A ) )
if equal_length:
UpperCAmelCase : Optional[Any] = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
UpperCAmelCase : List[Any] = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
UpperCAmelCase : str = [np.asarray(A ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = ASTFeatureExtractor
def _lowercase( self ) -> Dict:
UpperCAmelCase : Any = ASTFeatureExtractionTester(self )
def _lowercase( self ) -> Any:
# Tests that all call wrap to encode_plus and batch_encode_plus
UpperCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
UpperCAmelCase : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
UpperCAmelCase : int = [np.asarray(A ) for speech_input in speech_inputs]
# Test not batched input
UpperCAmelCase : Union[str, Any] = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values
UpperCAmelCase : int = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values
self.assertTrue(np.allclose(A , A , atol=1e-3 ) )
# Test batched
UpperCAmelCase : Any = feat_extract(A , padding=A , return_tensors="""np""" ).input_values
UpperCAmelCase : Union[str, Any] = feat_extract(A , padding=A , return_tensors="""np""" ).input_values
for enc_seq_a, enc_seq_a in zip(A , A ):
self.assertTrue(np.allclose(A , A , atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
UpperCAmelCase : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)]
UpperCAmelCase : Tuple = np.asarray(A )
UpperCAmelCase : Tuple = feat_extract(A , return_tensors="""np""" ).input_values
UpperCAmelCase : Dict = feat_extract(A , return_tensors="""np""" ).input_values
for enc_seq_a, enc_seq_a in zip(A , A ):
self.assertTrue(np.allclose(A , A , atol=1e-3 ) )
@require_torch
def _lowercase( self ) -> List[Any]:
import torch
UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase : str = np.random.rand(100 ).astype(np.floataa )
UpperCAmelCase : Dict = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
UpperCAmelCase : List[str] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
UpperCAmelCase : str = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
def _lowercase( self , A ) -> List[Any]:
from datasets import load_dataset
UpperCAmelCase : Optional[int] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" )
# automatic decoding with librispeech
UpperCAmelCase : Tuple = ds.sort("""id""" ).select(range(A ) )[:num_samples]["""audio"""]
return [x["array"] for x in speech_samples]
@require_torch
def _lowercase( self ) -> Tuple:
# fmt: off
UpperCAmelCase : Dict = torch.tensor(
[-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6,
-1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3,
-1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6,
-0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] )
# fmt: on
UpperCAmelCase : List[str] = self._load_datasamples(1 )
UpperCAmelCase : Union[str, Any] = ASTFeatureExtractor()
UpperCAmelCase : Optional[int] = feature_extractor(A , return_tensors="""pt""" ).input_values
self.assertEquals(input_values.shape , (1, 1024, 128) )
self.assertTrue(torch.allclose(input_values[0, 0, :30] , A , atol=1e-4 ) )
| 672 |
'''simple docstring'''
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase_ :
def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int:
UpperCAmelCase : str = parent
UpperCAmelCase : List[Any] = batch_size
UpperCAmelCase : Dict = image_size
UpperCAmelCase : Tuple = num_channels
UpperCAmelCase : Union[str, Any] = num_stages
UpperCAmelCase : Any = hidden_sizes
UpperCAmelCase : str = depths
UpperCAmelCase : Optional[int] = is_training
UpperCAmelCase : Union[str, Any] = use_labels
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : str = hidden_act
UpperCAmelCase : List[str] = num_labels
UpperCAmelCase : Tuple = initializer_range
UpperCAmelCase : Optional[Any] = out_features
UpperCAmelCase : List[str] = out_indices
UpperCAmelCase : Any = scope
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : List[Any] = None
if self.use_labels:
UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase : List[str] = self.get_config()
return config, pixel_values, labels
def _lowercase( self ) -> Optional[Any]:
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def _lowercase( self , A , A , A ) -> Optional[Any]:
UpperCAmelCase : int = ConvNextVaModel(config=A )
model.to(A )
model.eval()
UpperCAmelCase : List[Any] = model(A )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _lowercase( self , A , A , A ) -> Any:
UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : int = model(A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowercase( self , A , A , A ) -> Any:
UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A )
model.to(A )
model.eval()
UpperCAmelCase : Any = model(A )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
UpperCAmelCase : Any = None
UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A )
model.to(A )
model.eval()
UpperCAmelCase : int = model(A )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _lowercase( self ) -> List[str]:
UpperCAmelCase : Dict = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs
UpperCAmelCase : str = {"""pixel_values""": pixel_values}
return config, inputs_dict
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs
UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
lowercase = (
{'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
lowercase = False
lowercase = False
lowercase = False
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Dict = ConvNextVaModelTester(self )
UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 )
def _lowercase( self ) -> int:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowercase( self ) -> List[str]:
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def _lowercase( self ) -> Dict:
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def _lowercase( self ) -> Any:
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def _lowercase( self ) -> int:
pass
def _lowercase( self ) -> Dict:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels()
UpperCAmelCase : Optional[int] = True
if model_class.__name__ in [
*get_values(A ),
*get_values(A ),
]:
continue
UpperCAmelCase : Any = model_class(A )
model.to(A )
model.train()
UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A )
UpperCAmelCase : List[str] = model(**A ).loss
loss.backward()
def _lowercase( self ) -> Tuple:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels()
UpperCAmelCase : List[str] = False
UpperCAmelCase : int = True
if (
model_class.__name__
in [*get_values(A ), *get_values(A )]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCAmelCase : Dict = model_class(A )
model.to(A )
model.gradient_checkpointing_enable()
model.train()
UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A )
UpperCAmelCase : Any = model(**A ).loss
loss.backward()
def _lowercase( self ) -> Tuple:
UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : int = model_class(A )
UpperCAmelCase : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : Tuple = [*signature.parameters.keys()]
UpperCAmelCase : Optional[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , A )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> List[str]:
def check_hidden_states_output(A , A , A ):
UpperCAmelCase : Optional[Any] = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) )
UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase : Optional[Any] = self.model_tester.num_stages
self.assertEqual(len(A ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : str = True
check_hidden_states_output(A , A , A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase : int = True
check_hidden_states_output(A , A , A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def _lowercase( self ) -> Any:
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A )
self.assertIsNotNone(A )
def __lowerCamelCase ( ) -> Optional[int]:
UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
@cached_property
def _lowercase( self ) -> str:
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A )
UpperCAmelCase : List[Any] = self.default_image_processor
UpperCAmelCase : Any = prepare_img()
UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A )
# forward pass
with torch.no_grad():
UpperCAmelCase : Optional[Any] = model(**A )
# verify the logits
UpperCAmelCase : Dict = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , A )
UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
| 672 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : Any = {
"""configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Any = [
"""NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""NezhaForNextSentencePrediction""",
"""NezhaForMaskedLM""",
"""NezhaForPreTraining""",
"""NezhaForMultipleChoice""",
"""NezhaForQuestionAnswering""",
"""NezhaForSequenceClassification""",
"""NezhaForTokenClassification""",
"""NezhaModel""",
"""NezhaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nezha import (
NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
NezhaPreTrainedModel,
)
else:
import sys
a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 672 |
'''simple docstring'''
from scipy.stats import pearsonr
import datasets
a : str = """
Pearson correlation coefficient and p-value for testing non-correlation.
The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.
"""
a : Dict = """
Args:
predictions (`list` of `int`): Predicted class labels, as returned by a model.
references (`list` of `int`): Ground truth labels.
return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.
Returns:
pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.
p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.
Examples:
Example 1-A simple example using only predictions and references.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])
>>> print(round(results['pearsonr'], 2))
-0.74
Example 2-The same as Example 1, but that also returns the `p-value`.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)
>>> print(sorted(list(results.keys())))
['p-value', 'pearsonr']
>>> print(round(results['pearsonr'], 2))
-0.74
>>> print(round(results['p-value'], 2))
0.15
"""
a : Optional[int] = """
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, Ilhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Antonio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
def _lowercase( self ) -> Optional[int]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , )
def _lowercase( self , A , A , A=False ) -> int:
if return_pvalue:
UpperCAmelCase : int = pearsonr(A , A )
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(A , A )[0] )}
| 672 | 1 |
'''simple docstring'''
from __future__ import annotations
from random import choice
def __lowerCamelCase ( _lowercase ) -> str:
return choice(_lowercase )
def __lowerCamelCase ( _lowercase , _lowercase ) -> int:
UpperCAmelCase : List[Any] = random_pivot(_lowercase )
# partition based on pivot
# linear time
UpperCAmelCase : List[Any] = [e for e in lst if e < pivot]
UpperCAmelCase : Union[str, Any] = [e for e in lst if e > pivot]
# if we get lucky, pivot might be the element we want.
# we can easily see this:
# small (elements smaller than k)
# + pivot (kth element)
# + big (elements larger than k)
if len(_lowercase ) == k - 1:
return pivot
# pivot is in elements bigger than k
elif len(_lowercase ) < k - 1:
return kth_number(_lowercase , k - len(_lowercase ) - 1 )
# pivot is in elements smaller than k
else:
return kth_number(_lowercase , _lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 672 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]:
UpperCAmelCase : Optional[int] = list(_lowercase )
UpperCAmelCase : Dict = list(_lowercase )
UpperCAmelCase : str = 0
for i in range(len(_lowercase ) ):
if lista[i] != lista[i]:
count += 1
UpperCAmelCase : Optional[Any] = """_"""
if count > 1:
return False
else:
return "".join(_lowercase )
def __lowerCamelCase ( _lowercase ) -> list[str]:
UpperCAmelCase : List[str] = []
while True:
UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase )
UpperCAmelCase : int = []
for i in range(len(_lowercase ) ):
for j in range(i + 1 , len(_lowercase ) ):
UpperCAmelCase : str = compare_string(binary[i] , binary[j] )
if k is False:
UpperCAmelCase : Union[str, Any] = """*"""
UpperCAmelCase : Optional[Any] = """*"""
temp.append("""X""" )
for i in range(len(_lowercase ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(_lowercase ) == 0:
return pi
UpperCAmelCase : List[Any] = list(set(_lowercase ) )
def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]:
UpperCAmelCase : Dict = []
for minterm in minterms:
UpperCAmelCase : List[str] = """"""
for _ in range(_lowercase ):
UpperCAmelCase : Dict = str(minterm % 2 ) + string
minterm //= 2
temp.append(_lowercase )
return temp
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool:
UpperCAmelCase : Optional[int] = list(_lowercase )
UpperCAmelCase : Dict = list(_lowercase )
UpperCAmelCase : Dict = 0
for i in range(len(_lowercase ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]:
UpperCAmelCase : Tuple = []
UpperCAmelCase : Optional[int] = [0] * len(_lowercase )
for i in range(len(chart[0] ) ):
UpperCAmelCase : Any = 0
UpperCAmelCase : Optional[Any] = -1
for j in range(len(_lowercase ) ):
if chart[j][i] == 1:
count += 1
UpperCAmelCase : str = j
if count == 1:
UpperCAmelCase : Optional[int] = 1
for i in range(len(_lowercase ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(_lowercase ) ):
UpperCAmelCase : List[str] = 0
temp.append(prime_implicants[i] )
while True:
UpperCAmelCase : int = 0
UpperCAmelCase : Tuple = -1
UpperCAmelCase : Union[str, Any] = 0
for i in range(len(_lowercase ) ):
UpperCAmelCase : Optional[Any] = chart[i].count(1 )
if count_n > max_n:
UpperCAmelCase : Union[str, Any] = count_n
UpperCAmelCase : Optional[Any] = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(_lowercase ) ):
UpperCAmelCase : Optional[Any] = 0
def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]:
UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )]
for i in range(len(_lowercase ) ):
UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" )
for j in range(len(_lowercase ) ):
if is_for_table(prime_implicants[i] , binary[j] , _lowercase ):
UpperCAmelCase : List[Any] = 1
return chart
def __lowerCamelCase ( ) -> None:
UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) )
UpperCAmelCase : List[Any] = [
float(_lowercase )
for x in input(
"""Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split()
]
UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase )
UpperCAmelCase : Tuple = check(_lowercase )
print("""Prime Implicants are:""" )
print(_lowercase )
UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase )
UpperCAmelCase : Tuple = selection(_lowercase , _lowercase )
print("""Essential Prime Implicants are:""" )
print(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 672 | 1 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
a : List[Any] = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
a : List[str] = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias'''))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''',
F'''decoder.layers.{i}.encoder_attn.out_proj.weight''',
)
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''',
F'''decoder.layers.{i}.encoder_attn.out_proj.bias''',
)
)
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias'''))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''')
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
("""input_proj.weight""", """input_projection.weight"""),
("""input_proj.bias""", """input_projection.bias"""),
("""query_embed.weight""", """query_position_embeddings.weight"""),
("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""),
("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""),
("""class_embed.weight""", """class_labels_classifier.weight"""),
("""class_embed.bias""", """class_labels_classifier.bias"""),
("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""),
("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""),
("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""),
("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""),
("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""),
("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""),
("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""),
("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""),
("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""),
("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""),
("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""),
("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""),
("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""),
("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""),
("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""),
("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""),
]
)
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
UpperCAmelCase : List[str] = state_dict.pop(_lowercase )
UpperCAmelCase : List[str] = val
def __lowerCamelCase ( _lowercase ) -> Any:
UpperCAmelCase : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" )
UpperCAmelCase : Dict = value
else:
UpperCAmelCase : List[Any] = value
return new_state_dict
def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]:
UpperCAmelCase : Dict = """"""
if is_panoptic:
UpperCAmelCase : Tuple = """conditional_detr."""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' )
UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :]
UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6]
UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :]
UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2]
UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :]
UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:]
def __lowerCamelCase ( ) -> Dict:
UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
return im
@torch.no_grad()
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
UpperCAmelCase : str = ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
UpperCAmelCase : List[Any] = """resnet101"""
if "dc5" in model_name:
UpperCAmelCase : Optional[int] = True
UpperCAmelCase : List[Any] = """panoptic""" in model_name
if is_panoptic:
UpperCAmelCase : Union[str, Any] = 2_5_0
else:
UpperCAmelCase : int = 9_1
UpperCAmelCase : Tuple = """huggingface/label-files"""
UpperCAmelCase : List[Any] = """coco-detection-id2label.json"""
UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) )
UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()}
UpperCAmelCase : Optional[Any] = idalabel
UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()}
# load image processor
UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection"""
UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase )
# prepare image
UpperCAmelCase : Union[str, Any] = prepare_img()
UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" )
UpperCAmelCase : List[Any] = encoding["""pixel_values"""]
logger.info(F'''Converting model {model_name}...''' )
# load original model from torch hub
UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval()
UpperCAmelCase : List[Any] = conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
UpperCAmelCase : List[Any] = """conditional_detr.""" + src
rename_key(_lowercase , _lowercase , _lowercase )
UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase )
# query, key and value matrices need special treatment
read_in_q_k_v(_lowercase , is_panoptic=_lowercase )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model."""
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("""conditional_detr""" )
and not key.startswith("""class_labels_classifier""" )
and not key.startswith("""bbox_predictor""" )
):
UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase )
UpperCAmelCase : int = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
UpperCAmelCase : Any = state_dict.pop(_lowercase )
UpperCAmelCase : Optional[Any] = val
elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ):
continue
else:
UpperCAmelCase : List[Any] = state_dict.pop(_lowercase )
UpperCAmelCase : str = val
else:
if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ):
UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase )
UpperCAmelCase : Union[str, Any] = val
# finally, create HuggingFace model and load state dict
UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase )
model.load_state_dict(_lowercase )
model.eval()
model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" )
# verify our conversion
UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase )
UpperCAmelCase : int = model(_lowercase )
assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 )
assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 )
# Save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(_lowercase ).mkdir(exist_ok=_lowercase )
model.save_pretrained(_lowercase )
image_processor.save_pretrained(_lowercase )
if __name__ == "__main__":
a : Tuple = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
default="""conditional_detr_resnet50""",
type=str,
help="""Name of the CONDITIONAL_DETR model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
a : Optional[Any] = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 672 |
'''simple docstring'''
a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)]
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : str = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0]
number //= 1_0_0_0_0_0
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0
a : Optional[Any] = True
a : List[Any] = False
def __lowerCamelCase ( _lowercase ) -> bool:
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
UpperCAmelCase : List[str] = chain(next_number(_lowercase ) )
UpperCAmelCase : Tuple = number_chain
while number < 1_0_0_0_0_0_0_0:
UpperCAmelCase : List[str] = number_chain
number *= 1_0
return number_chain
def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int:
for i in range(1 , _lowercase ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'''{solution() = }''')
| 672 | 1 |
'''simple docstring'''
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
a : List[str] = datasets.logging.get_logger(__name__)
a : List[Any] = """\
@InProceedings{moosavi2019minimum,
author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},
title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},
year = {2019},
booktitle = {Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers)},
publisher = {Association for Computational Linguistics},
address = {Florence, Italy},
}
@inproceedings{10.3115/1072399.1072405,
author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},
title = {A Model-Theoretic Coreference Scoring Scheme},
year = {1995},
isbn = {1558604022},
publisher = {Association for Computational Linguistics},
address = {USA},
url = {https://doi.org/10.3115/1072399.1072405},
doi = {10.3115/1072399.1072405},
booktitle = {Proceedings of the 6th Conference on Message Understanding},
pages = {45–52},
numpages = {8},
location = {Columbia, Maryland},
series = {MUC6 ’95}
}
@INPROCEEDINGS{Bagga98algorithmsfor,
author = {Amit Bagga and Breck Baldwin},
title = {Algorithms for Scoring Coreference Chains},
booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},
year = {1998},
pages = {563--566}
}
@INPROCEEDINGS{Luo05oncoreference,
author = {Xiaoqiang Luo},
title = {On coreference resolution performance metrics},
booktitle = {In Proc. of HLT/EMNLP},
year = {2005},
pages = {25--32},
publisher = {URL}
}
@inproceedings{moosavi-strube-2016-coreference,
title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",
author = \"Moosavi, Nafise Sadat and
Strube, Michael\",
booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",
month = aug,
year = \"2016\",
address = \"Berlin, Germany\",
publisher = \"Association for Computational Linguistics\",
url = \"https://www.aclweb.org/anthology/P16-1060\",
doi = \"10.18653/v1/P16-1060\",
pages = \"632--642\",
}
"""
a : Union[str, Any] = """\
CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which
implements of the common evaluation metrics including MUC [Vilain et al, 1995],
B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],
LEA [Moosavi and Strube, 2016] and the averaged CoNLL score
(the average of the F1 values of MUC, B-cubed and CEAFe)
[Denis and Baldridge, 2009a; Pradhan et al., 2011].
This wrapper of CoVal currently only work with CoNLL line format:
The CoNLL format has one word per line with all the annotation for this word in column separated by spaces:
Column Type Description
1 Document ID This is a variation on the document filename
2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.
3 Word number
4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.
5 Part-of-Speech
6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.
7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"
8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.
9 Word sense This is the word sense of the word in Column 3.
10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.
11 Named Entities These columns identifies the spans representing various named entities.
12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.
N Coreference Coreference chain information encoded in a parenthesis structure.
More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html
Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md
CoVal code was written by @ns-moosavi.
Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py
The test suite is taken from https://github.com/conll/reference-coreference-scorers/
Mention evaluation and the test suite are added by @andreasvc.
Parsing CoNLL files is developed by Leo Born.
"""
a : List[Any] = """
Calculates coreference evaluation metrics.
Args:
predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.
Each prediction is a word with its annotations as a string made of columns joined with spaces.
Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)
See the details on the format in the description of the metric.
references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.
Each reference is a word with its annotations as a string made of columns joined with spaces.
Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)
See the details on the format in the description of the metric.
keep_singletons: After extracting all mentions of key or system files,
mentions whose corresponding coreference chain is of size one,
are considered as singletons. The default evaluation mode will include
singletons in evaluations if they are included in the key or the system files.
By setting 'keep_singletons=False', all singletons in the key and system files
will be excluded from the evaluation.
NP_only: Most of the recent coreference resolvers only resolve NP mentions and
leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.
min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.
Minimum spans are determined using the MINA algorithm.
Returns:
'mentions': mentions
'muc': MUC metric [Vilain et al, 1995]
'bcub': B-cubed [Bagga and Baldwin, 1998]
'ceafe': CEAFe [Luo et al., 2005]
'lea': LEA [Moosavi and Strube, 2016]
'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)
Examples:
>>> coval = datasets.load_metric('coval')
>>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',
... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',
... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',
... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',
... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',
... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']
>>> references = [words]
>>> predictions = [words]
>>> results = coval.compute(predictions=predictions, references=references)
>>> print(results) # doctest:+ELLIPSIS
{'mentions/recall': 1.0,[...] 'conll_score': 100.0}
"""
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=False , _lowercase=False , _lowercase=True , _lowercase=False , _lowercase="dummy_doc" ) -> Optional[Any]:
UpperCAmelCase : Any = {doc: key_lines}
UpperCAmelCase : str = {doc: sys_lines}
UpperCAmelCase : Any = {}
UpperCAmelCase : Dict = 0
UpperCAmelCase : Optional[Any] = 0
UpperCAmelCase : Any = 0
UpperCAmelCase : Tuple = 0
UpperCAmelCase : List[str] = 0
UpperCAmelCase : List[str] = 0
UpperCAmelCase , UpperCAmelCase : List[str] = reader.get_doc_mentions(_lowercase , key_doc_lines[doc] , _lowercase )
key_singletons_num += singletons_num
if NP_only or min_span:
UpperCAmelCase : Tuple = reader.set_annotated_parse_trees(_lowercase , key_doc_lines[doc] , _lowercase , _lowercase )
UpperCAmelCase , UpperCAmelCase : str = reader.get_doc_mentions(_lowercase , sys_doc_lines[doc] , _lowercase )
sys_singletons_num += singletons_num
if NP_only or min_span:
UpperCAmelCase : Optional[int] = reader.set_annotated_parse_trees(_lowercase , key_doc_lines[doc] , _lowercase , _lowercase )
if remove_nested:
UpperCAmelCase , UpperCAmelCase : Dict = reader.remove_nested_coref_mentions(_lowercase , _lowercase )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
UpperCAmelCase , UpperCAmelCase : Optional[int] = reader.remove_nested_coref_mentions(_lowercase , _lowercase )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
UpperCAmelCase : Dict = reader.get_mention_assignments(_lowercase , _lowercase )
UpperCAmelCase : List[str] = reader.get_mention_assignments(_lowercase , _lowercase )
UpperCAmelCase : Any = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"""Number of removed nested coreferring mentions in the key """
F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' )
logger.info(
"""Number of resulting singleton clusters in the key """
F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' )
if not keep_singletons:
logger.info(
F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '''
"""files, respectively""" )
return doc_coref_infos
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]:
UpperCAmelCase : str = get_coref_infos(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
UpperCAmelCase : Optional[int] = {}
UpperCAmelCase : List[Any] = 0
UpperCAmelCase : Optional[int] = 0
for name, metric in metrics:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = evaluator.evaluate_documents(_lowercase , _lowercase , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} )
logger.info(
name.ljust(1_0 ) , F'''Recall: {recall * 1_0_0:.2f}''' , F''' Precision: {precision * 1_0_0:.2f}''' , F''' F1: {fa * 1_0_0:.2f}''' , )
if conll_subparts_num == 3:
UpperCAmelCase : Dict = (conll / 3) * 1_0_0
logger.info(F'''CoNLL score: {conll:.2f}''' )
output_scores.update({"""conll_score""": conll} )
return output_scores
def __lowerCamelCase ( _lowercase ) -> List[Any]:
UpperCAmelCase : List[Any] = False
for line in key_lines:
if not line.startswith("""#""" ):
if len(line.split() ) > 6:
UpperCAmelCase : Tuple = line.split()[5]
if not parse_col == "-":
UpperCAmelCase : Tuple = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
def _lowercase( self ) -> List[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Sequence(datasets.Value("""string""" ) ),
} ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[
"""https://github.com/ns-moosavi/coval""",
"""https://www.aclweb.org/anthology/P16-1060""",
"""http://www.conll.cemantix.org/2012/data.html""",
] , )
def _lowercase( self , A , A , A=True , A=False , A=False , A=False ) -> Tuple:
UpperCAmelCase : Union[str, Any] = [
("""mentions""", evaluator.mentions),
("""muc""", evaluator.muc),
("""bcub""", evaluator.b_cubed),
("""ceafe""", evaluator.ceafe),
("""lea""", evaluator.lea),
]
if min_span:
UpperCAmelCase : int = util.check_gold_parse_annotation(A )
if not has_gold_parse:
raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
UpperCAmelCase : Union[str, Any] = evaluate(
key_lines=A , sys_lines=A , metrics=A , NP_only=A , remove_nested=A , keep_singletons=A , min_span=A , )
return score
| 672 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a : Optional[Any] = {
"""configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""],
"""tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Dict = ["""BertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[Any] = [
"""BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BertForMaskedLM""",
"""BertForMultipleChoice""",
"""BertForNextSentencePrediction""",
"""BertForPreTraining""",
"""BertForQuestionAnswering""",
"""BertForSequenceClassification""",
"""BertForTokenClassification""",
"""BertLayer""",
"""BertLMHeadModel""",
"""BertModel""",
"""BertPreTrainedModel""",
"""load_tf_weights_in_bert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[str] = [
"""TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBertEmbeddings""",
"""TFBertForMaskedLM""",
"""TFBertForMultipleChoice""",
"""TFBertForNextSentencePrediction""",
"""TFBertForPreTraining""",
"""TFBertForQuestionAnswering""",
"""TFBertForSequenceClassification""",
"""TFBertForTokenClassification""",
"""TFBertLMHeadModel""",
"""TFBertMainLayer""",
"""TFBertModel""",
"""TFBertPreTrainedModel""",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : int = ["""TFBertTokenizer"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[Any] = [
"""FlaxBertForCausalLM""",
"""FlaxBertForMaskedLM""",
"""FlaxBertForMultipleChoice""",
"""FlaxBertForNextSentencePrediction""",
"""FlaxBertForPreTraining""",
"""FlaxBertForQuestionAnswering""",
"""FlaxBertForSequenceClassification""",
"""FlaxBertForTokenClassification""",
"""FlaxBertModel""",
"""FlaxBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 672 | 1 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__magic_name__ )
class UpperCamelCase_ ( __magic_name__ ):
lowercase = field(default='image-classification' , metadata={'include_in_asdict_even_if_is_default': True} )
lowercase = Features({'image': Image()} )
lowercase = Features({'labels': ClassLabel} )
lowercase = "image"
lowercase = "labels"
def _lowercase( self , A ) -> Dict:
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
UpperCAmelCase : List[Any] = copy.deepcopy(self )
UpperCAmelCase : List[str] = self.label_schema.copy()
UpperCAmelCase : Union[str, Any] = features[self.label_column]
UpperCAmelCase : Optional[int] = label_schema
return task_template
@property
def _lowercase( self ) -> Dict[str, str]:
return {
self.image_column: "image",
self.label_column: "labels",
}
| 672 |
'''simple docstring'''
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any:
UpperCAmelCase : Optional[int] = False
UpperCAmelCase : Any = search_prob
UpperCAmelCase : Any = start_temperate
UpperCAmelCase : Optional[Any] = []
UpperCAmelCase : Optional[Any] = 0
UpperCAmelCase : Optional[Any] = None
while not search_end:
UpperCAmelCase : List[str] = current_state.score()
if best_state is None or current_score > best_state.score():
UpperCAmelCase : List[Any] = current_state
scores.append(_lowercase )
iterations += 1
UpperCAmelCase : Dict = None
UpperCAmelCase : Union[str, Any] = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor
UpperCAmelCase : int = neighbors.pop(_lowercase )
UpperCAmelCase : Tuple = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
UpperCAmelCase : int = picked_neighbor
else:
UpperCAmelCase : Optional[Any] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
UpperCAmelCase : Optional[int] = picked_neighbor
UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
UpperCAmelCase : Optional[int] = True
else:
UpperCAmelCase : Optional[int] = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(_lowercase ) , _lowercase )
plt.xlabel("""Iterations""" )
plt.ylabel("""Function values""" )
plt.show()
return best_state
if __name__ == "__main__":
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa)
a : Dict = simulated_annealing(
prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True
)
print(
"""The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa)
a : Dict = simulated_annealing(
prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True
)
print(
"""The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]:
return (3 * x**2) - (6 * y)
a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a : Any = simulated_annealing(prob, find_max=False, visualization=True)
print(
"""The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F'''{local_min.score()}'''
)
a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a : Dict = simulated_annealing(prob, find_max=True, visualization=True)
print(
"""The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F'''{local_min.score()}'''
)
| 672 | 1 |
'''simple docstring'''
from datetime import datetime as dt
import os
from github import Github
a : int = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""feature request""",
"""new model""",
"""wip""",
]
def __lowerCamelCase ( ) -> Dict:
UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] )
UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" )
UpperCAmelCase : int = repo.get_issues(state="""open""" )
for issue in open_issues:
UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase )
UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 3_0
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state="""closed""" )
elif (
(dt.utcnow() - issue.updated_at).days > 2_3
and (dt.utcnow() - issue.created_at).days >= 3_0
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
if __name__ == "__main__":
main()
| 672 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : Any = {
"""configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Any = [
"""NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""NezhaForNextSentencePrediction""",
"""NezhaForMaskedLM""",
"""NezhaForPreTraining""",
"""NezhaForMultipleChoice""",
"""NezhaForQuestionAnswering""",
"""NezhaForSequenceClassification""",
"""NezhaForTokenClassification""",
"""NezhaModel""",
"""NezhaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nezha import (
NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
NezhaPreTrainedModel,
)
else:
import sys
a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 672 | 1 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from .config import config_command_parser
from .config_args import default_config_file, load_config_from_file # noqa: F401
from .default import default_command_parser
from .update import update_command_parser
def __lowerCamelCase ( _lowercase=None ) -> Optional[int]:
UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser(add_help=_lowercase , allow_abbrev=_lowercase )
# The main config parser
UpperCAmelCase : Union[str, Any] = config_command_parser(_lowercase )
# The subparser to add commands to
UpperCAmelCase : Union[str, Any] = config_parser.add_subparsers(title="""subcommands""" , dest="""subcommand""" )
# Then add other parsers with the parent parser
default_command_parser(_lowercase , parents=[parent_parser] )
update_command_parser(_lowercase , parents=[parent_parser] )
return config_parser
def __lowerCamelCase ( ) -> Any:
UpperCAmelCase : Dict = get_config_parser()
UpperCAmelCase : Any = config_parser.parse_args()
if not hasattr(_lowercase , """func""" ):
config_parser.print_help()
exit(1 )
# Run
args.func(_lowercase )
if __name__ == "__main__":
main()
| 672 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
a : Tuple = False
class UpperCamelCase_ ( unittest.TestCase ):
pass
@slow
@require_torch_gpu
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
UpperCAmelCase : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" )
UpperCAmelCase : List[Any] = torch.manual_seed(0 )
UpperCAmelCase : List[str] = pipe(
image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images
UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 672 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
a : int = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Tuple = [
"""VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTMAEForPreTraining""",
"""ViTMAELayer""",
"""ViTMAEModel""",
"""ViTMAEPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : int = [
"""TFViTMAEForPreTraining""",
"""TFViTMAEModel""",
"""TFViTMAEPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_mae import (
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMAEForPreTraining,
ViTMAELayer,
ViTMAEModel,
ViTMAEPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel
else:
import sys
a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 672 |
'''simple docstring'''
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
a : Any = get_logger()
a : Optional[dict] = None
class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ):
def __init__( self , A=None , A=None , **A ) -> str:
super().__init__(features=A )
import jax
from jaxlib.xla_client import Device
if isinstance(A , A ):
raise ValueError(
f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` '''
"""is not serializable neither with `pickle` nor with `dill`. Instead you can surround """
"""the device with `str()` to get its string identifier that will be internally mapped """
"""to the actual `jaxlib.xla_extension.Device`.""" )
UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
UpperCAmelCase : Any = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
f'''Device with string identifier {self.device} not listed among the available '''
f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default '''
f'''device: {str(jax.devices()[0] )}.''' )
UpperCAmelCase : List[Any] = str(jax.devices()[0] )
UpperCAmelCase : Union[str, Any] = jnp_array_kwargs
@staticmethod
def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]:
import jax
return {str(A ): device for device in jax.devices()}
def _lowercase( self , A ) -> str:
import jax
import jax.numpy as jnp
if isinstance(A , A ) and column:
if all(
isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(A , axis=0 )
return column
def _lowercase( self , A ) -> Tuple:
import jax
import jax.numpy as jnp
if isinstance(A , (str, bytes, type(A )) ):
return value
elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
UpperCAmelCase : List[str] = {}
if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
UpperCAmelCase : str = {"""dtype""": jnp.intaa}
else:
UpperCAmelCase : int = {"""dtype""": jnp.intaa}
elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
UpperCAmelCase : Any = {"""dtype""": jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(A , PIL.Image.Image ):
UpperCAmelCase : List[str] = np.asarray(A )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
UpperCAmelCase : Dict = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} )
def _lowercase( self , A ) -> Tuple:
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(A , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ):
UpperCAmelCase : Optional[int] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(A , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] )
elif isinstance(A , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] )
return self._tensorize(A )
def _lowercase( self , A ) -> Dict:
return map_nested(self._recursive_tensorize , A , map_list=A )
def _lowercase( self , A ) -> Mapping:
UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A )
UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A )
return self.recursive_tensorize(A )
def _lowercase( self , A ) -> "jax.Array":
UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A )
UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] )
UpperCAmelCase : Optional[int] = self.recursive_tensorize(A )
UpperCAmelCase : Any = self._consolidate(A )
return column
def _lowercase( self , A ) -> Mapping:
UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A )
UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A )
UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A )
for column_name in batch:
UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] )
return batch
| 672 | 1 |
'''simple docstring'''
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
a : Any = get_logger()
a : Optional[dict] = None
class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ):
def __init__( self , A=None , A=None , **A ) -> str:
super().__init__(features=A )
import jax
from jaxlib.xla_client import Device
if isinstance(A , A ):
raise ValueError(
f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` '''
"""is not serializable neither with `pickle` nor with `dill`. Instead you can surround """
"""the device with `str()` to get its string identifier that will be internally mapped """
"""to the actual `jaxlib.xla_extension.Device`.""" )
UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
UpperCAmelCase : Any = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
f'''Device with string identifier {self.device} not listed among the available '''
f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default '''
f'''device: {str(jax.devices()[0] )}.''' )
UpperCAmelCase : List[Any] = str(jax.devices()[0] )
UpperCAmelCase : Union[str, Any] = jnp_array_kwargs
@staticmethod
def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]:
import jax
return {str(A ): device for device in jax.devices()}
def _lowercase( self , A ) -> str:
import jax
import jax.numpy as jnp
if isinstance(A , A ) and column:
if all(
isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(A , axis=0 )
return column
def _lowercase( self , A ) -> Tuple:
import jax
import jax.numpy as jnp
if isinstance(A , (str, bytes, type(A )) ):
return value
elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
UpperCAmelCase : List[str] = {}
if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
UpperCAmelCase : str = {"""dtype""": jnp.intaa}
else:
UpperCAmelCase : int = {"""dtype""": jnp.intaa}
elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
UpperCAmelCase : Any = {"""dtype""": jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(A , PIL.Image.Image ):
UpperCAmelCase : List[str] = np.asarray(A )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
UpperCAmelCase : Dict = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} )
def _lowercase( self , A ) -> Tuple:
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(A , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ):
UpperCAmelCase : Optional[int] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(A , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] )
elif isinstance(A , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] )
return self._tensorize(A )
def _lowercase( self , A ) -> Dict:
return map_nested(self._recursive_tensorize , A , map_list=A )
def _lowercase( self , A ) -> Mapping:
UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A )
UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A )
return self.recursive_tensorize(A )
def _lowercase( self , A ) -> "jax.Array":
UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A )
UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] )
UpperCAmelCase : Optional[int] = self.recursive_tensorize(A )
UpperCAmelCase : Any = self._consolidate(A )
return column
def _lowercase( self , A ) -> Mapping:
UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A )
UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A )
UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A )
for column_name in batch:
UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] )
return batch
| 672 |
'''simple docstring'''
from datetime import datetime as dt
import os
from github import Github
a : int = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""feature request""",
"""new model""",
"""wip""",
]
def __lowerCamelCase ( ) -> Dict:
UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] )
UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" )
UpperCAmelCase : int = repo.get_issues(state="""open""" )
for issue in open_issues:
UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase )
UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 3_0
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state="""closed""" )
elif (
(dt.utcnow() - issue.updated_at).days > 2_3
and (dt.utcnow() - issue.created_at).days >= 3_0
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
if __name__ == "__main__":
main()
| 672 | 1 |
'''simple docstring'''
from bisect import bisect
from itertools import accumulate
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str:
UpperCAmelCase : int = sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : x[0] / x[1] , reverse=_lowercase )
UpperCAmelCase , UpperCAmelCase : Tuple = [i[0] for i in r], [i[1] for i in r]
UpperCAmelCase : Any = list(accumulate(_lowercase ) )
UpperCAmelCase : int = bisect(_lowercase , _lowercase )
return (
0
if k == 0
else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k])
if k != n
else sum(vl[:k] )
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 672 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class UpperCamelCase_ :
def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any:
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : List[Any] = batch_size
UpperCAmelCase : Union[str, Any] = seq_length
UpperCAmelCase : Optional[int] = is_training
UpperCAmelCase : str = use_input_mask
UpperCAmelCase : Optional[int] = use_token_type_ids
UpperCAmelCase : Dict = use_labels
UpperCAmelCase : str = vocab_size
UpperCAmelCase : Optional[int] = hidden_size
UpperCAmelCase : str = num_hidden_layers
UpperCAmelCase : Any = num_attention_heads
UpperCAmelCase : Union[str, Any] = intermediate_size
UpperCAmelCase : str = hidden_act
UpperCAmelCase : Any = hidden_dropout_prob
UpperCAmelCase : str = attention_probs_dropout_prob
UpperCAmelCase : Tuple = max_position_embeddings
UpperCAmelCase : Optional[Any] = type_vocab_size
UpperCAmelCase : Optional[Any] = type_sequence_label_size
UpperCAmelCase : str = initializer_range
UpperCAmelCase : List[Any] = num_labels
UpperCAmelCase : Dict = num_choices
UpperCAmelCase : Tuple = scope
def _lowercase( self ) -> Dict:
UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Optional[Any] = None
if self.use_input_mask:
UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Optional[Any] = None
if self.use_token_type_ids:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase : Union[str, Any] = None
UpperCAmelCase : Dict = None
UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowercase( self ) -> Dict:
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , )
def _lowercase( self , A , A , A , A , A , A , A ) -> str:
UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A )
model.to(A )
model.eval()
UpperCAmelCase : Dict = model(A , attention_mask=A )
UpperCAmelCase : Optional[int] = model(A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]:
UpperCAmelCase : Optional[int] = True
UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A )
model.to(A )
model.eval()
UpperCAmelCase : List[Any] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , )
UpperCAmelCase : str = model(
A , attention_mask=A , encoder_hidden_states=A , )
UpperCAmelCase : List[Any] = model(A , attention_mask=A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int:
UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A )
model.to(A )
model.eval()
UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int:
UpperCAmelCase : Dict = True
UpperCAmelCase : Tuple = True
UpperCAmelCase : str = OpenLlamaForCausalLM(config=A )
model.to(A )
model.eval()
# first forward pass
UpperCAmelCase : Union[str, Any] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , )
UpperCAmelCase : str = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCAmelCase : List[Any] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0]
UpperCAmelCase : Optional[Any] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0]
# select random slice
UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : Tuple = config_and_inputs
UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else ()
lowercase = (
{
'feature-extraction': OpenLlamaModel,
'text-classification': OpenLlamaForSequenceClassification,
'text-generation': OpenLlamaForCausalLM,
'zero-shot': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Dict = OpenLlamaModelTester(self )
UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 )
def _lowercase( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def _lowercase( self ) -> int:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> str:
UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase : int = type
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> str:
UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : List[str] = 3
UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""]
UpperCAmelCase : str = input_ids.ne(1 ).to(A )
UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Dict = 3
UpperCAmelCase : Any = """single_label_classification"""
UpperCAmelCase : Dict = input_dict["""input_ids"""]
UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A )
UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowercase( self ) -> int:
UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Tuple = 3
UpperCAmelCase : Optional[Any] = """multi_label_classification"""
UpperCAmelCase : Dict = input_dict["""input_ids"""]
UpperCAmelCase : int = input_ids.ne(1 ).to(A )
UpperCAmelCase : int = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" )
def _lowercase( self ) -> Dict:
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def _lowercase( self , A ) -> str:
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size )
UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase : Any = OpenLlamaModel(A )
original_model.to(A )
original_model.eval()
UpperCAmelCase : List[str] = original_model(A ).last_hidden_state
UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0}
UpperCAmelCase : str = OpenLlamaModel(A )
scaled_model.to(A )
scaled_model.eval()
UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state
UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(A , A , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
| 672 | 1 |
'''simple docstring'''
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a : int = get_tests_dir("""fixtures/test_sentencepiece.model""")
@require_sentencepiece
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = XLMProphetNetTokenizer
lowercase = False
lowercase = True
def _lowercase( self ) -> Union[str, Any]:
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase : Optional[int] = XLMProphetNetTokenizer(A , keep_accents=A )
tokenizer.save_pretrained(self.tmpdirname )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Union[str, Any] = """[PAD]"""
UpperCAmelCase : Dict = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A )
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """[PAD]""" )
self.assertEqual(vocab_keys[1] , """[CLS]""" )
self.assertEqual(vocab_keys[-1] , """j""" )
self.assertEqual(len(A ) , 1012 )
def _lowercase( self ) -> Any:
self.assertEqual(self.get_tokenizer().vocab_size , 1012 )
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Optional[int] = XLMProphetNetTokenizer(A , keep_accents=A )
UpperCAmelCase : Union[str, Any] = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
A , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
UpperCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(A )
self.assertListEqual(
A , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
UpperCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(A )
self.assertListEqual(
A , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""[UNK]""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""[UNK]""",
""".""",
] , )
@cached_property
def _lowercase( self ) -> Optional[int]:
return XLMProphetNetTokenizer.from_pretrained("""microsoft/xprophetnet-large-wiki100-cased""" )
@slow
def _lowercase( self ) -> List[str]:
UpperCAmelCase : List[Any] = """Hello World!"""
UpperCAmelCase : str = [35389, 6672, 49, 2]
self.assertListEqual(A , self.big_tokenizer.encode(A ) )
@slow
def _lowercase( self ) -> List[str]:
# fmt: off
UpperCAmelCase : Optional[Any] = {"""input_ids""": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A , model_name="""microsoft/xprophetnet-large-wiki100-cased""" , revision="""1acad1643ddd54a44df6a1b797ada8373685d90e""" , )
| 672 |
'''simple docstring'''
import math
def __lowerCamelCase ( _lowercase ) -> bool:
assert isinstance(_lowercase , _lowercase ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = factor * value
UpperCAmelCase : List[Any] = value
while not is_prime(_lowercase ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **_lowercase )
return value
| 672 | 1 |
'''simple docstring'''
import argparse
import collections
import os
import re
import tempfile
import pandas as pd
from datasets import Dataset
from huggingface_hub import hf_hub_download, upload_folder
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/update_metadata.py
a : Optional[int] = """src/transformers"""
# This is to make sure the transformers module imported is the one in the repo.
a : Tuple = direct_transformers_import(TRANSFORMERS_PATH)
# Regexes that match TF/Flax/PT model names.
a : Optional[int] = re.compile(R"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""")
a : int = re.compile(R"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
a : Tuple = re.compile(R"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""")
# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
a : str = [
("""pretraining""", """MODEL_FOR_PRETRAINING_MAPPING_NAMES""", """AutoModelForPreTraining"""),
("""feature-extraction""", """MODEL_MAPPING_NAMES""", """AutoModel"""),
("""audio-classification""", """MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForAudioClassification"""),
("""text-generation""", """MODEL_FOR_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForCausalLM"""),
("""automatic-speech-recognition""", """MODEL_FOR_CTC_MAPPING_NAMES""", """AutoModelForCTC"""),
("""image-classification""", """MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForImageClassification"""),
("""image-segmentation""", """MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES""", """AutoModelForImageSegmentation"""),
("""fill-mask""", """MODEL_FOR_MASKED_LM_MAPPING_NAMES""", """AutoModelForMaskedLM"""),
("""object-detection""", """MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES""", """AutoModelForObjectDetection"""),
(
"""zero-shot-object-detection""",
"""MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES""",
"""AutoModelForZeroShotObjectDetection""",
),
("""question-answering""", """MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForQuestionAnswering"""),
("""text2text-generation""", """MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForSeq2SeqLM"""),
("""text-classification""", """MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForSequenceClassification"""),
("""automatic-speech-recognition""", """MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES""", """AutoModelForSpeechSeq2Seq"""),
(
"""table-question-answering""",
"""MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES""",
"""AutoModelForTableQuestionAnswering""",
),
("""token-classification""", """MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForTokenClassification"""),
("""multiple-choice""", """MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES""", """AutoModelForMultipleChoice"""),
(
"""next-sentence-prediction""",
"""MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES""",
"""AutoModelForNextSentencePrediction""",
),
(
"""audio-frame-classification""",
"""MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES""",
"""AutoModelForAudioFrameClassification""",
),
("""audio-xvector""", """MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES""", """AutoModelForAudioXVector"""),
(
"""document-question-answering""",
"""MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES""",
"""AutoModelForDocumentQuestionAnswering""",
),
(
"""visual-question-answering""",
"""MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES""",
"""AutoModelForVisualQuestionAnswering""",
),
("""image-to-text""", """MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES""", """AutoModelForVision2Seq"""),
(
"""zero-shot-image-classification""",
"""MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES""",
"""AutoModelForZeroShotImageClassification""",
),
("""depth-estimation""", """MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES""", """AutoModelForDepthEstimation"""),
("""video-classification""", """MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForVideoClassification"""),
("""mask-generation""", """MODEL_FOR_MASK_GENERATION_MAPPING_NAMES""", """AutoModelForMaskGeneration"""),
]
def __lowerCamelCase ( _lowercase ) -> Optional[int]:
UpperCAmelCase : Tuple = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , _lowercase )
return [m.group(0 ) for m in matches]
def __lowerCamelCase ( ) -> Optional[int]:
UpperCAmelCase : List[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
UpperCAmelCase : List[str] = {
config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items()
}
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
UpperCAmelCase : Tuple = collections.defaultdict(_lowercase )
UpperCAmelCase : List[Any] = collections.defaultdict(_lowercase )
UpperCAmelCase : List[Any] = collections.defaultdict(_lowercase )
# Let's lookup through all transformers object (once) and find if models are supported by a given backend.
for attr_name in dir(_lowercase ):
UpperCAmelCase : Optional[Any] = None
if _re_tf_models.match(_lowercase ) is not None:
UpperCAmelCase : Tuple = tf_models
UpperCAmelCase : Any = _re_tf_models.match(_lowercase ).groups()[0]
elif _re_flax_models.match(_lowercase ) is not None:
UpperCAmelCase : Any = flax_models
UpperCAmelCase : int = _re_flax_models.match(_lowercase ).groups()[0]
elif _re_pt_models.match(_lowercase ) is not None:
UpperCAmelCase : List[str] = pt_models
UpperCAmelCase : Any = _re_pt_models.match(_lowercase ).groups()[0]
if lookup_dict is not None:
while len(_lowercase ) > 0:
if attr_name in model_prefix_to_model_type:
UpperCAmelCase : List[str] = True
break
# Try again after removing the last word in the name
UpperCAmelCase : Dict = """""".join(camel_case_split(_lowercase )[:-1] )
UpperCAmelCase : Optional[int] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) )
UpperCAmelCase : Tuple = list(_lowercase )
all_models.sort()
UpperCAmelCase : Dict = {"""model_type""": all_models}
UpperCAmelCase : Any = [pt_models[t] for t in all_models]
UpperCAmelCase : Tuple = [tf_models[t] for t in all_models]
UpperCAmelCase : Optional[int] = [flax_models[t] for t in all_models]
# Now let's use the auto-mapping names to make sure
UpperCAmelCase : Dict = {}
for t in all_models:
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
UpperCAmelCase : List[Any] = """AutoProcessor"""
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
UpperCAmelCase : str = """AutoTokenizer"""
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
UpperCAmelCase : List[str] = """AutoFeatureExtractor"""
else:
# Default to AutoTokenizer if a model has nothing, for backward compatibility.
UpperCAmelCase : int = """AutoTokenizer"""
UpperCAmelCase : Dict = [processors[t] for t in all_models]
return pd.DataFrame(_lowercase )
def __lowerCamelCase ( _lowercase ) -> Any:
UpperCAmelCase : int = [
transformers_module.models.auto.modeling_auto,
transformers_module.models.auto.modeling_tf_auto,
transformers_module.models.auto.modeling_flax_auto,
]
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
UpperCAmelCase : List[Any] = [model_mapping, F'''TF_{model_mapping}''', F'''FLAX_{model_mapping}''']
UpperCAmelCase : Union[str, Any] = [auto_class, F'''TF_{auto_class}''', F'''Flax_{auto_class}''']
# Loop through all three frameworks
for module, cls, mapping in zip(_lowercase , _lowercase , _lowercase ):
# The type of pipeline may not exist in this framework
if not hasattr(_lowercase , _lowercase ):
continue
# First extract all model_names
UpperCAmelCase : Any = []
for name in getattr(_lowercase , _lowercase ).values():
if isinstance(_lowercase , _lowercase ):
model_names.append(_lowercase )
else:
model_names.extend(list(_lowercase ) )
# Add pipeline tag and auto model class for those models
table.update({model_name: (pipeline_tag, cls) for model_name in model_names} )
return table
def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]:
UpperCAmelCase : Optional[Any] = get_frameworks_table()
UpperCAmelCase : Optional[Any] = Dataset.from_pandas(_lowercase )
UpperCAmelCase : Union[str, Any] = hf_hub_download(
"""huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=_lowercase )
UpperCAmelCase : Tuple = Dataset.from_json(_lowercase )
UpperCAmelCase : Union[str, Any] = {
tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""])
for i in range(len(_lowercase ) )
}
UpperCAmelCase : List[Any] = update_pipeline_and_auto_class_table(_lowercase )
# Sort the model classes to avoid some nondeterministic updates to create false update commits.
UpperCAmelCase : Any = sorted(table.keys() )
UpperCAmelCase : Any = pd.DataFrame(
{
"""model_class""": model_classes,
"""pipeline_tag""": [table[m][0] for m in model_classes],
"""auto_class""": [table[m][1] for m in model_classes],
} )
UpperCAmelCase : int = Dataset.from_pandas(_lowercase )
with tempfile.TemporaryDirectory() as tmp_dir:
frameworks_dataset.to_json(os.path.join(_lowercase , """frameworks.json""" ) )
tags_dataset.to_json(os.path.join(_lowercase , """pipeline_tags.json""" ) )
if commit_sha is not None:
UpperCAmelCase : Optional[Any] = (
F'''Update with commit {commit_sha}\n\nSee: '''
F'''https://github.com/huggingface/transformers/commit/{commit_sha}'''
)
else:
UpperCAmelCase : Optional[int] = """Update"""
upload_folder(
repo_id="""huggingface/transformers-metadata""" , folder_path=_lowercase , repo_type="""dataset""" , token=_lowercase , commit_message=_lowercase , )
def __lowerCamelCase ( ) -> Optional[Any]:
UpperCAmelCase : Tuple = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS}
UpperCAmelCase : Tuple = transformers_module.pipelines.SUPPORTED_TASKS
UpperCAmelCase : Dict = []
for key in pipeline_tasks:
if key not in in_table:
UpperCAmelCase : Union[str, Any] = pipeline_tasks[key]["""pt"""]
if isinstance(_lowercase , (list, tuple) ):
UpperCAmelCase : int = model[0]
UpperCAmelCase : Union[str, Any] = model.__name__
if model not in in_table.values():
missing.append(_lowercase )
if len(_lowercase ) > 0:
UpperCAmelCase : Any = """, """.join(_lowercase )
raise ValueError(
"""The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """
F'''`utils/update_metadata.py`: {msg}. Please add them!''' )
if __name__ == "__main__":
a : Any = argparse.ArgumentParser()
parser.add_argument("""--token""", type=str, help="""The token to use to push to the transformers-metadata dataset.""")
parser.add_argument("""--commit_sha""", type=str, help="""The sha of the commit going with this update.""")
parser.add_argument("""--check-only""", action="""store_true""", help="""Activate to just check all pipelines are present.""")
a : Optional[int] = parser.parse_args()
if args.check_only:
check_pipeline_tags()
else:
update_metadata(args.token, args.commit_sha)
| 672 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool:
UpperCAmelCase : Union[str, Any] = set()
# Replace all the whitespace in our sentence
UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" )
for alpha in input_str:
if "a" <= alpha.lower() <= "z":
frequency.add(alpha.lower() )
return len(_lowercase ) == 2_6
def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool:
UpperCAmelCase : Tuple = [False] * 2_6
for char in input_str:
if char.islower():
UpperCAmelCase : Any = True
elif char.isupper():
UpperCAmelCase : Union[str, Any] = True
return all(_lowercase )
def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool:
return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6
def __lowerCamelCase ( ) -> None:
from timeit import timeit
UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest"""
print(timeit("""is_pangram()""" , setup=_lowercase ) )
print(timeit("""is_pangram_faster()""" , setup=_lowercase ) )
print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) )
# 5.348480500048026, 2.6477354579837993, 1.8470395830227062
# 5.036091582966037, 2.644472333951853, 1.8869528750656173
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 672 | 1 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase ) -> int:
return 1 if digit in (0, 1) else (digit * factorial(digit - 1 ))
def __lowerCamelCase ( _lowercase ) -> bool:
UpperCAmelCase : int = 0
UpperCAmelCase : Union[str, Any] = number
while duplicate > 0:
UpperCAmelCase , UpperCAmelCase : List[str] = divmod(_lowercase , 1_0 )
fact_sum += factorial(_lowercase )
return fact_sum == number
if __name__ == "__main__":
print("""Program to check whether a number is a Krisnamurthy Number or not.""")
a : Optional[int] = int(input("""Enter number: """).strip())
print(
F'''{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.'''
)
| 672 |
'''simple docstring'''
from sklearn.metrics import mean_squared_error
import datasets
a : Union[str, Any] = """\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
a : int = """\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
"""
a : int = """
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
\"raw_values\" : Returns a full set of errors in case of multioutput input.
\"uniform_average\" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric(\"mse\")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{'mse': 0.6123724356957945}
If you're using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mse': array([0.41666667, 1. ])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
def _lowercase( self ) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"""
] , )
def _lowercase( self ) -> List[Any]:
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("""float""" ) ),
"references": datasets.Sequence(datasets.Value("""float""" ) ),
}
else:
return {
"predictions": datasets.Value("""float""" ),
"references": datasets.Value("""float""" ),
}
def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]:
UpperCAmelCase : List[Any] = mean_squared_error(
A , A , sample_weight=A , multioutput=A , squared=A )
return {"mse": mse}
| 672 | 1 |
'''simple docstring'''
a : Dict = {
0: """0""",
1: """1""",
2: """2""",
3: """3""",
4: """4""",
5: """5""",
6: """6""",
7: """7""",
8: """8""",
9: """9""",
1_0: """a""",
1_1: """b""",
1_2: """c""",
1_3: """d""",
1_4: """e""",
1_5: """f""",
}
def __lowerCamelCase ( _lowercase ) -> str:
assert type(_lowercase ) in (int, float) and decimal == int(_lowercase )
UpperCAmelCase : List[Any] = int(_lowercase )
UpperCAmelCase : Optional[Any] = """"""
UpperCAmelCase : List[str] = False
if decimal < 0:
UpperCAmelCase : int = True
decimal *= -1
while decimal > 0:
UpperCAmelCase , UpperCAmelCase : Dict = divmod(_lowercase , 1_6 )
UpperCAmelCase : int = values[remainder] + hexadecimal
UpperCAmelCase : Optional[Any] = """0x""" + hexadecimal
if negative:
UpperCAmelCase : Dict = """-""" + hexadecimal
return hexadecimal
if __name__ == "__main__":
import doctest
doctest.testmod()
| 672 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : str = logging.get_logger(__name__)
a : Any = {
"""google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""",
"""google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json"""
# See all FNet models at https://huggingface.co/models?filter=fnet
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'fnet'
def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int:
super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A )
UpperCAmelCase : Optional[Any] = vocab_size
UpperCAmelCase : Dict = max_position_embeddings
UpperCAmelCase : List[str] = hidden_size
UpperCAmelCase : int = num_hidden_layers
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : List[str] = hidden_act
UpperCAmelCase : Tuple = hidden_dropout_prob
UpperCAmelCase : List[str] = initializer_range
UpperCAmelCase : List[Any] = type_vocab_size
UpperCAmelCase : int = layer_norm_eps
UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations
UpperCAmelCase : List[Any] = tpu_short_seq_length
| 672 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available
from ...utils import OptionalDependencyNotAvailable
a : int = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Union[str, Any] = ["""DPTFeatureExtractor"""]
a : Optional[Any] = ["""DPTImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : int = [
"""DPT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""DPTForDepthEstimation""",
"""DPTForSemanticSegmentation""",
"""DPTModel""",
"""DPTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_dpt import DPTFeatureExtractor
from .image_processing_dpt import DPTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dpt import (
DPT_PRETRAINED_MODEL_ARCHIVE_LIST,
DPTForDepthEstimation,
DPTForSemanticSegmentation,
DPTModel,
DPTPreTrainedModel,
)
else:
import sys
a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 672 |
'''simple docstring'''
a : List[Any] = """Alexander Joslin"""
import operator as op
from .stack import Stack
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub}
UpperCAmelCase : Stack[int] = Stack()
UpperCAmelCase : Stack[str] = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(_lowercase ) )
elif i in operators:
# RULE 2
operator_stack.push(_lowercase )
elif i == ")":
# RULE 4
UpperCAmelCase : List[Any] = operator_stack.peek()
operator_stack.pop()
UpperCAmelCase : str = operand_stack.peek()
operand_stack.pop()
UpperCAmelCase : str = operand_stack.peek()
operand_stack.pop()
UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase )
operand_stack.push(_lowercase )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
a : Tuple = """(5 + ((4 * 2) * (2 + 3)))"""
# answer = 45
print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
| 672 | 1 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
a : Optional[Any] = logging.getLogger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A , A , A , A=None ) -> Dict:
super().__init__(
A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , )
UpperCAmelCase : List[str] = None
def _lowercase( self , A ) -> int:
logger.info("""initializing retrieval""" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""" )
# needs to be set manually
UpperCAmelCase : Any = self._infer_socket_ifname()
# avoid clash with the NCCL port
UpperCAmelCase : int = str(distributed_port + 1 )
UpperCAmelCase : List[Any] = dist.new_group(ranks=A , backend="""gloo""" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def _lowercase( self ) -> List[str]:
return dist.get_rank(group=self.process_group ) == 0
def _lowercase( self , A , A , A=torch.floataa ) -> str:
UpperCAmelCase : Tuple = torch.empty(A , dtype=A )
dist.scatter(A , src=0 , scatter_list=A , group=self.process_group )
return target_tensor
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Optional[int] = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
UpperCAmelCase : List[Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , A )
return ifname
def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]:
# single GPU training
if not dist.is_initialized():
UpperCAmelCase , UpperCAmelCase : Any = self._main_retrieve(A , A )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A )
# distributed training
UpperCAmelCase : Optional[int] = dist.get_world_size(group=self.process_group )
# gather logic
UpperCAmelCase : str = None
if self._is_main():
UpperCAmelCase : List[Any] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )]
dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group )
# scatter logic
UpperCAmelCase : Dict = question_hidden_states.shape[0]
UpperCAmelCase : Tuple = []
UpperCAmelCase : List[str] = []
if self._is_main():
assert len(A ) == world_size
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self._main_retrieve(torch.cat(A ).numpy() , A )
UpperCAmelCase , UpperCAmelCase : Any = torch.tensor(A ), torch.tensor(A )
UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A )
UpperCAmelCase : List[Any] = self._chunk_tensor(A , A )
UpperCAmelCase : List[Any] = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa )
UpperCAmelCase : Optional[int] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
| 672 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
a : List[Any] = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
a : List[str] = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias'''))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''',
F'''decoder.layers.{i}.encoder_attn.out_proj.weight''',
)
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''',
F'''decoder.layers.{i}.encoder_attn.out_proj.bias''',
)
)
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias'''))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''')
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
("""input_proj.weight""", """input_projection.weight"""),
("""input_proj.bias""", """input_projection.bias"""),
("""query_embed.weight""", """query_position_embeddings.weight"""),
("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""),
("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""),
("""class_embed.weight""", """class_labels_classifier.weight"""),
("""class_embed.bias""", """class_labels_classifier.bias"""),
("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""),
("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""),
("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""),
("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""),
("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""),
("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""),
("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""),
("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""),
("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""),
("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""),
("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""),
("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""),
("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""),
("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""),
("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""),
("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""),
]
)
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
UpperCAmelCase : List[str] = state_dict.pop(_lowercase )
UpperCAmelCase : List[str] = val
def __lowerCamelCase ( _lowercase ) -> Any:
UpperCAmelCase : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" )
UpperCAmelCase : Dict = value
else:
UpperCAmelCase : List[Any] = value
return new_state_dict
def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]:
UpperCAmelCase : Dict = """"""
if is_panoptic:
UpperCAmelCase : Tuple = """conditional_detr."""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' )
UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :]
UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6]
UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :]
UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2]
UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :]
UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:]
def __lowerCamelCase ( ) -> Dict:
UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
return im
@torch.no_grad()
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
UpperCAmelCase : str = ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
UpperCAmelCase : List[Any] = """resnet101"""
if "dc5" in model_name:
UpperCAmelCase : Optional[int] = True
UpperCAmelCase : List[Any] = """panoptic""" in model_name
if is_panoptic:
UpperCAmelCase : Union[str, Any] = 2_5_0
else:
UpperCAmelCase : int = 9_1
UpperCAmelCase : Tuple = """huggingface/label-files"""
UpperCAmelCase : List[Any] = """coco-detection-id2label.json"""
UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) )
UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()}
UpperCAmelCase : Optional[Any] = idalabel
UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()}
# load image processor
UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection"""
UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase )
# prepare image
UpperCAmelCase : Union[str, Any] = prepare_img()
UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" )
UpperCAmelCase : List[Any] = encoding["""pixel_values"""]
logger.info(F'''Converting model {model_name}...''' )
# load original model from torch hub
UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval()
UpperCAmelCase : List[Any] = conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
UpperCAmelCase : List[Any] = """conditional_detr.""" + src
rename_key(_lowercase , _lowercase , _lowercase )
UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase )
# query, key and value matrices need special treatment
read_in_q_k_v(_lowercase , is_panoptic=_lowercase )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model."""
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("""conditional_detr""" )
and not key.startswith("""class_labels_classifier""" )
and not key.startswith("""bbox_predictor""" )
):
UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase )
UpperCAmelCase : int = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
UpperCAmelCase : Any = state_dict.pop(_lowercase )
UpperCAmelCase : Optional[Any] = val
elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ):
continue
else:
UpperCAmelCase : List[Any] = state_dict.pop(_lowercase )
UpperCAmelCase : str = val
else:
if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ):
UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase )
UpperCAmelCase : Union[str, Any] = val
# finally, create HuggingFace model and load state dict
UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase )
model.load_state_dict(_lowercase )
model.eval()
model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" )
# verify our conversion
UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase )
UpperCAmelCase : int = model(_lowercase )
assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 )
assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 )
# Save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(_lowercase ).mkdir(exist_ok=_lowercase )
model.save_pretrained(_lowercase )
image_processor.save_pretrained(_lowercase )
if __name__ == "__main__":
a : Tuple = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
default="""conditional_detr_resnet50""",
type=str,
help="""Name of the CONDITIONAL_DETR model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
a : Optional[Any] = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 672 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
a : List[Any] = {
"""configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Any = [
"""FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FalconForCausalLM""",
"""FalconModel""",
"""FalconPreTrainedModel""",
"""FalconForSequenceClassification""",
"""FalconForTokenClassification""",
"""FalconForQuestionAnswering""",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 672 |
'''simple docstring'''
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 672 | 1 |
'''simple docstring'''
import baseaa
def __lowerCamelCase ( _lowercase ) -> bytes:
return baseaa.aaaencode(string.encode("""utf-8""" ) )
def __lowerCamelCase ( _lowercase ) -> str:
return baseaa.aaadecode(_lowercase ).decode("""utf-8""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 672 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_barthez import BarthezTokenizer
else:
a : int = None
a : List[Any] = logging.get_logger(__name__)
a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
a : Union[str, Any] = {
"""vocab_file""": {
"""moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""",
"""moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""",
"""moussaKam/barthez-orangesum-title""": (
"""https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""",
"""moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""",
"""moussaKam/barthez-orangesum-title""": (
"""https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json"""
),
},
}
a : List[Any] = {
"""moussaKam/mbarthez""": 1_0_2_4,
"""moussaKam/barthez""": 1_0_2_4,
"""moussaKam/barthez-orangesum-title""": 1_0_2_4,
}
a : int = """▁"""
class UpperCamelCase_ ( __magic_name__ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ['input_ids', 'attention_mask']
lowercase = BarthezTokenizer
def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]:
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token
super().__init__(
A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , )
UpperCAmelCase : Union[str, Any] = vocab_file
UpperCAmelCase : int = False if not self.vocab_file else True
def _lowercase( self , A , A = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase : Optional[int] = [self.cls_token_id]
UpperCAmelCase : List[str] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowercase( self , A , A = None ) -> List[int]:
UpperCAmelCase : Optional[int] = [self.sep_token_id]
UpperCAmelCase : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowercase( self , A , A = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase : str = os.path.join(
A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ):
copyfile(self.vocab_file , A )
return (out_vocab_file,)
| 672 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a : int = {
"""configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[int] = [
"""SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Swinv2ForImageClassification""",
"""Swinv2ForMaskedImageModeling""",
"""Swinv2Model""",
"""Swinv2PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 672 |
'''simple docstring'''
from collections.abc import Callable
import numpy as np
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array:
UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) )
UpperCAmelCase : str = np.zeros((n + 1,) )
UpperCAmelCase : Optional[Any] = ya
UpperCAmelCase : Union[str, Any] = xa
for k in range(_lowercase ):
UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] )
UpperCAmelCase : Optional[int] = y[k] + (
(step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 672 | 1 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class UpperCamelCase_ ( unittest.TestCase ):
def __init__( self , A , A=13 , A=30 , A=2 , A=3 , A=True , A=True , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=10 , A=0.0_2 , ) -> Any:
UpperCAmelCase : str = parent
UpperCAmelCase : Any = batch_size
UpperCAmelCase : int = image_size
UpperCAmelCase : int = patch_size
UpperCAmelCase : Any = num_channels
UpperCAmelCase : List[str] = is_training
UpperCAmelCase : Optional[int] = use_labels
UpperCAmelCase : Optional[int] = hidden_size
UpperCAmelCase : Union[str, Any] = num_hidden_layers
UpperCAmelCase : Dict = num_attention_heads
UpperCAmelCase : int = intermediate_size
UpperCAmelCase : Tuple = hidden_act
UpperCAmelCase : List[Any] = hidden_dropout_prob
UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase : Union[str, Any] = type_sequence_label_size
UpperCAmelCase : Tuple = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase : List[Any] = (image_size // patch_size) ** 2
UpperCAmelCase : str = num_patches + 1
def _lowercase( self ) -> str:
UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : str = ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , )
return config, pixel_values
def _lowercase( self , A , A ) -> str:
UpperCAmelCase : int = FlaxViTModel(config=A )
UpperCAmelCase : Tuple = model(A )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase : Any = (self.image_size, self.image_size)
UpperCAmelCase : Dict = (self.patch_size, self.patch_size)
UpperCAmelCase : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) )
def _lowercase( self , A , A ) -> Dict:
UpperCAmelCase : Dict = self.type_sequence_label_size
UpperCAmelCase : Optional[int] = FlaxViTForImageClassification(config=A )
UpperCAmelCase : int = model(A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase : Tuple = 1
UpperCAmelCase : Union[str, Any] = FlaxViTForImageClassification(A )
UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase : List[str] = model(A )
def _lowercase( self ) -> int:
UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
UpperCAmelCase : Tuple = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_flax
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def _lowercase( self ) -> None:
UpperCAmelCase : Any = FlaxViTModelTester(self )
UpperCAmelCase : int = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 )
def _lowercase( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def _lowercase( self ) -> List[str]:
UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> Dict:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def _lowercase( self ) -> List[Any]:
UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : int = model_class(A )
UpperCAmelCase : Union[str, Any] = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : Any = [*signature.parameters.keys()]
UpperCAmelCase : List[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , A )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCAmelCase : List[Any] = self._prepare_for_class(A , A )
UpperCAmelCase : List[str] = model_class(A )
@jax.jit
def model_jitted(A , **A ):
return model(pixel_values=A , **A )
with self.subTest("""JIT Enabled""" ):
UpperCAmelCase : Tuple = model_jitted(**A ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
UpperCAmelCase : Union[str, Any] = model_jitted(**A ).to_tuple()
self.assertEqual(len(A ) , len(A ) )
for jitted_output, output in zip(A , A ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _lowercase( self ) -> Dict:
for model_class_name in self.all_model_classes:
UpperCAmelCase : List[str] = model_class_name.from_pretrained("""google/vit-base-patch16-224""" )
UpperCAmelCase : Any = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(A )
| 672 |
'''simple docstring'''
from typing import List, Union
import numpy as np
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, logging
from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline
a : List[str] = logging.get_logger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def _lowercase( self , A ) -> Optional[int]:
if isinstance(A , A ):
UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()]
return labels
def __call__( self , A , A , A ) -> str:
if len(A ) == 0 or len(A ) == 0:
raise ValueError("""You must include at least one label and at least one sequence.""" )
if hypothesis_template.format(labels[0] ) == hypothesis_template:
raise ValueError(
(
"""The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """
"""Make sure the passed template includes formatting syntax such as {{}} where the label should go."""
).format(A ) )
if isinstance(A , A ):
UpperCAmelCase : Tuple = [sequences]
UpperCAmelCase : Optional[Any] = []
for sequence in sequences:
sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] )
return sequence_pairs, sequences
@add_end_docstrings(__magic_name__ )
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]:
UpperCAmelCase : Tuple = args_parser
super().__init__(*A , **A )
if self.entailment_id == -1:
logger.warning(
"""Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """
"""-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" )
@property
def _lowercase( self ) -> List[Any]:
for label, ind in self.model.config.labelaid.items():
if label.lower().startswith("""entail""" ):
return ind
return -1
def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str:
UpperCAmelCase : Tuple = self.framework
if self.tokenizer.pad_token is None:
# Override for tokenizers not supporting padding
logger.error(
"""Tokenizer was not supporting padding necessary for zero-shot, attempting to use """
""" `pad_token=eos_token`""" )
UpperCAmelCase : Any = self.tokenizer.eos_token
try:
UpperCAmelCase : Tuple = self.tokenizer(
A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , )
except Exception as e:
if "too short" in str(A ):
# tokenizers might yell that we want to truncate
# to a value that is not even reached by the input.
# In that case we don't want to truncate.
# It seems there's not a really better way to catch that
# exception.
UpperCAmelCase : List[str] = self.tokenizer(
A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , )
else:
raise e
return inputs
def _lowercase( self , **A ) -> Tuple:
if kwargs.get("""multi_class""" , A ) is not None:
UpperCAmelCase : Any = kwargs["""multi_class"""]
logger.warning(
"""The `multi_class` argument has been deprecated and renamed to `multi_label`. """
"""`multi_class` will be removed in a future version of Transformers.""" )
UpperCAmelCase : int = {}
if "candidate_labels" in kwargs:
UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] )
if "hypothesis_template" in kwargs:
UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""]
UpperCAmelCase : Dict = {}
if "multi_label" in kwargs:
UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""]
return preprocess_params, {}, postprocess_params
def __call__( self , A , *A , **A , ) -> Tuple:
if len(A ) == 0:
pass
elif len(A ) == 1 and "candidate_labels" not in kwargs:
UpperCAmelCase : Optional[Any] = args[0]
else:
raise ValueError(f'''Unable to understand extra arguments {args}''' )
return super().__call__(A , **A )
def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]:
UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A )
for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ):
UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] )
yield {
"candidate_label": candidate_label,
"sequence": sequences[0],
"is_last": i == len(A ) - 1,
**model_input,
}
def _lowercase( self , A ) -> Optional[int]:
UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""]
UpperCAmelCase : Tuple = inputs["""sequence"""]
UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names}
UpperCAmelCase : Tuple = self.model(**A )
UpperCAmelCase : Optional[int] = {
"""candidate_label""": candidate_label,
"""sequence""": sequence,
"""is_last""": inputs["""is_last"""],
**outputs,
}
return model_outputs
def _lowercase( self , A , A=False ) -> List[str]:
UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs]
UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs]
UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] )
UpperCAmelCase : Optional[Any] = logits.shape[0]
UpperCAmelCase : int = len(A )
UpperCAmelCase : List[Any] = N // n
UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) )
if multi_label or len(A ) == 1:
# softmax over the entailment vs. contradiction dim for each label independently
UpperCAmelCase : str = self.entailment_id
UpperCAmelCase : str = -1 if entailment_id == 0 else 0
UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]]
UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A )
UpperCAmelCase : int = scores[..., 1]
else:
# softmax the "entailment" logits over all candidate labels
UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id]
UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A )
UpperCAmelCase : int = list(reversed(scores[0].argsort() ) )
return {
"sequence": sequences[0],
"labels": [candidate_labels[i] for i in top_inds],
"scores": scores[0, top_inds].tolist(),
}
| 672 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Iterator
class UpperCamelCase_ :
def __init__( self , A ) -> None:
UpperCAmelCase : Optional[Any] = value
UpperCAmelCase : Node | None = None
UpperCAmelCase : Node | None = None
class UpperCamelCase_ :
def __init__( self , A ) -> None:
UpperCAmelCase : int = tree
def _lowercase( self , A ) -> int:
if node is None:
return 0
return node.value + (
self.depth_first_search(node.left ) + self.depth_first_search(node.right )
)
def __iter__( self ) -> Iterator[int]:
yield self.depth_first_search(self.tree )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 672 |
'''simple docstring'''
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""")
@require_sentencepiece
@require_tokenizers
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = PegasusTokenizer
lowercase = PegasusTokenizerFast
lowercase = True
lowercase = True
def _lowercase( self ) -> Tuple:
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase : int = PegasusTokenizer(A )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowercase( self ) -> int:
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def _lowercase( self , **A ) -> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def _lowercase( self , A ) -> List[str]:
return ("This is a test", "This is a test")
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = """</s>"""
UpperCAmelCase : Optional[int] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(A ) , 1103 )
def _lowercase( self ) -> Optional[Any]:
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def _lowercase( self ) -> int:
UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : Union[str, Any] = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : List[Any] = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1]
UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
def _lowercase( self ) -> int:
UpperCAmelCase : str = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 96103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions."""
UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1]
UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def _lowercase( self ) -> Any:
UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""]
UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""]
UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" )
UpperCAmelCase : List[Any] = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
@slow
def _lowercase( self ) -> List[str]:
# fmt: off
UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = PegasusTokenizer
lowercase = PegasusTokenizerFast
lowercase = True
lowercase = True
def _lowercase( self ) -> List[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowercase( self ) -> Optional[Any]:
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def _lowercase( self , **A ) -> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def _lowercase( self , A ) -> str:
return ("This is a test", "This is a test")
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname )
UpperCAmelCase : str = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
@require_torch
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""]
UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""]
UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" )
UpperCAmelCase : Optional[int] = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
def _lowercase( self ) -> int:
UpperCAmelCase : Union[str, Any] = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids
self.assertListEqual(
A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
| 672 | 1 |
'''simple docstring'''
import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
a : str = logging.get_logger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'AutoTokenizer'
lowercase = ['tokenizer']
lowercase = {
'semantic_prompt': 1,
'coarse_prompt': 2,
'fine_prompt': 2,
}
def __init__( self , A , A=None ) -> Tuple:
super().__init__(A )
UpperCAmelCase : int = speaker_embeddings
@classmethod
def _lowercase( cls , A , A="speaker_embeddings_path.json" , **A ) -> int:
if speaker_embeddings_dict_path is not None:
UpperCAmelCase : List[str] = get_file_from_repo(
A , A , subfolder=kwargs.pop("""subfolder""" , A ) , cache_dir=kwargs.pop("""cache_dir""" , A ) , force_download=kwargs.pop("""force_download""" , A ) , proxies=kwargs.pop("""proxies""" , A ) , resume_download=kwargs.pop("""resume_download""" , A ) , local_files_only=kwargs.pop("""local_files_only""" , A ) , use_auth_token=kwargs.pop("""use_auth_token""" , A ) , revision=kwargs.pop("""revision""" , A ) , )
if speaker_embeddings_path is None:
logger.warning(
f'''`{os.path.join(A , A )}` does not exists
, no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json
dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' )
UpperCAmelCase : int = None
else:
with open(A ) as speaker_embeddings_json:
UpperCAmelCase : Dict = json.load(A )
else:
UpperCAmelCase : Optional[Any] = None
UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(A , **A )
return cls(tokenizer=A , speaker_embeddings=A )
def _lowercase( self , A , A="speaker_embeddings_path.json" , A="speaker_embeddings" , A = False , **A , ) -> Union[str, Any]:
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(A , A , """v2""" ) , exist_ok=A )
UpperCAmelCase : Optional[Any] = {}
UpperCAmelCase : List[str] = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
UpperCAmelCase : Union[str, Any] = self._load_voice_preset(A )
UpperCAmelCase : Any = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict["""repo_or_path"""] , A , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=A , )
UpperCAmelCase : Tuple = os.path.join(A , f'''{prompt_key}_{key}.npy''' )
UpperCAmelCase : List[str] = tmp_dict
with open(os.path.join(A , A ) , """w""" ) as fp:
json.dump(A , A )
super().save_pretrained(A , A , **A )
def _lowercase( self , A = None , **A ) -> Optional[int]:
UpperCAmelCase : List[str] = self.speaker_embeddings[voice_preset]
UpperCAmelCase : str = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' )
UpperCAmelCase : Optional[Any] = get_file_from_repo(
self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , A ) , cache_dir=kwargs.pop("""cache_dir""" , A ) , force_download=kwargs.pop("""force_download""" , A ) , proxies=kwargs.pop("""proxies""" , A ) , resume_download=kwargs.pop("""resume_download""" , A ) , local_files_only=kwargs.pop("""local_files_only""" , A ) , use_auth_token=kwargs.pop("""use_auth_token""" , A ) , revision=kwargs.pop("""revision""" , A ) , )
if path is None:
raise ValueError(
f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists
, no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}
embeddings.''' )
UpperCAmelCase : str = np.load(A )
return voice_preset_dict
def _lowercase( self , A = None ) -> Optional[Any]:
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' )
if not isinstance(voice_preset[key] , np.ndarray ):
raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
def __call__( self , A=None , A=None , A="pt" , A=256 , A=False , A=True , A=False , **A , ) -> str:
if voice_preset is not None and not isinstance(A , A ):
if (
isinstance(A , A )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
UpperCAmelCase : Union[str, Any] = self._load_voice_preset(A )
else:
if isinstance(A , A ) and not voice_preset.endswith(""".npz""" ):
UpperCAmelCase : Optional[Any] = voice_preset + """.npz"""
UpperCAmelCase : Union[str, Any] = np.load(A )
if voice_preset is not None:
self._validate_voice_preset_dict(A , **A )
UpperCAmelCase : List[Any] = BatchFeature(data=A , tensor_type=A )
UpperCAmelCase : Any = self.tokenizer(
A , return_tensors=A , padding="""max_length""" , max_length=A , return_attention_mask=A , return_token_type_ids=A , add_special_tokens=A , **A , )
if voice_preset is not None:
UpperCAmelCase : Optional[Any] = voice_preset
return encoded_text
| 672 |
'''simple docstring'''
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase_ :
def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int:
UpperCAmelCase : str = parent
UpperCAmelCase : List[Any] = batch_size
UpperCAmelCase : Dict = image_size
UpperCAmelCase : Tuple = num_channels
UpperCAmelCase : Union[str, Any] = num_stages
UpperCAmelCase : Any = hidden_sizes
UpperCAmelCase : str = depths
UpperCAmelCase : Optional[int] = is_training
UpperCAmelCase : Union[str, Any] = use_labels
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : str = hidden_act
UpperCAmelCase : List[str] = num_labels
UpperCAmelCase : Tuple = initializer_range
UpperCAmelCase : Optional[Any] = out_features
UpperCAmelCase : List[str] = out_indices
UpperCAmelCase : Any = scope
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : List[Any] = None
if self.use_labels:
UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase : List[str] = self.get_config()
return config, pixel_values, labels
def _lowercase( self ) -> Optional[Any]:
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def _lowercase( self , A , A , A ) -> Optional[Any]:
UpperCAmelCase : int = ConvNextVaModel(config=A )
model.to(A )
model.eval()
UpperCAmelCase : List[Any] = model(A )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _lowercase( self , A , A , A ) -> Any:
UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : int = model(A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowercase( self , A , A , A ) -> Any:
UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A )
model.to(A )
model.eval()
UpperCAmelCase : Any = model(A )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
UpperCAmelCase : Any = None
UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A )
model.to(A )
model.eval()
UpperCAmelCase : int = model(A )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _lowercase( self ) -> List[str]:
UpperCAmelCase : Dict = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs
UpperCAmelCase : str = {"""pixel_values""": pixel_values}
return config, inputs_dict
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs
UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
lowercase = (
{'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
lowercase = False
lowercase = False
lowercase = False
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Dict = ConvNextVaModelTester(self )
UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 )
def _lowercase( self ) -> int:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowercase( self ) -> List[str]:
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def _lowercase( self ) -> Dict:
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def _lowercase( self ) -> Any:
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def _lowercase( self ) -> int:
pass
def _lowercase( self ) -> Dict:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels()
UpperCAmelCase : Optional[int] = True
if model_class.__name__ in [
*get_values(A ),
*get_values(A ),
]:
continue
UpperCAmelCase : Any = model_class(A )
model.to(A )
model.train()
UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A )
UpperCAmelCase : List[str] = model(**A ).loss
loss.backward()
def _lowercase( self ) -> Tuple:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels()
UpperCAmelCase : List[str] = False
UpperCAmelCase : int = True
if (
model_class.__name__
in [*get_values(A ), *get_values(A )]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCAmelCase : Dict = model_class(A )
model.to(A )
model.gradient_checkpointing_enable()
model.train()
UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A )
UpperCAmelCase : Any = model(**A ).loss
loss.backward()
def _lowercase( self ) -> Tuple:
UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : int = model_class(A )
UpperCAmelCase : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : Tuple = [*signature.parameters.keys()]
UpperCAmelCase : Optional[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , A )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> List[str]:
def check_hidden_states_output(A , A , A ):
UpperCAmelCase : Optional[Any] = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) )
UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase : Optional[Any] = self.model_tester.num_stages
self.assertEqual(len(A ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : str = True
check_hidden_states_output(A , A , A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase : int = True
check_hidden_states_output(A , A , A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def _lowercase( self ) -> Any:
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A )
self.assertIsNotNone(A )
def __lowerCamelCase ( ) -> Optional[int]:
UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
@cached_property
def _lowercase( self ) -> str:
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A )
UpperCAmelCase : List[Any] = self.default_image_processor
UpperCAmelCase : Any = prepare_img()
UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A )
# forward pass
with torch.no_grad():
UpperCAmelCase : Optional[Any] = model(**A )
# verify the logits
UpperCAmelCase : Dict = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , A )
UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
| 672 | 1 |
'''simple docstring'''
import math
def __lowerCamelCase ( _lowercase ) -> bool:
assert isinstance(_lowercase , _lowercase ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = factor * value
UpperCAmelCase : List[Any] = value
while not is_prime(_lowercase ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **_lowercase )
return value
| 672 |
'''simple docstring'''
from scipy.stats import pearsonr
import datasets
a : str = """
Pearson correlation coefficient and p-value for testing non-correlation.
The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.
"""
a : Dict = """
Args:
predictions (`list` of `int`): Predicted class labels, as returned by a model.
references (`list` of `int`): Ground truth labels.
return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.
Returns:
pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.
p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.
Examples:
Example 1-A simple example using only predictions and references.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])
>>> print(round(results['pearsonr'], 2))
-0.74
Example 2-The same as Example 1, but that also returns the `p-value`.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)
>>> print(sorted(list(results.keys())))
['p-value', 'pearsonr']
>>> print(round(results['pearsonr'], 2))
-0.74
>>> print(round(results['p-value'], 2))
0.15
"""
a : Optional[int] = """
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, Ilhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Antonio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
def _lowercase( self ) -> Optional[int]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , )
def _lowercase( self , A , A , A=False ) -> int:
if return_pvalue:
UpperCAmelCase : int = pearsonr(A , A )
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(A , A )[0] )}
| 672 | 1 |
'''simple docstring'''
from __future__ import annotations
import requests
a : Optional[int] = set(
"""approved_at_utc approved_by author_flair_background_color
author_flair_css_class author_flair_richtext author_flair_template_id author_fullname
author_premium can_mod_post category clicked content_categories created_utc downs
edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta
is_original_content is_reddit_media_domain is_video link_flair_css_class
link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title
name permalink pwls quarantine saved score secure_media secure_media_embed selftext
subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type
total_awards_received ups upvote_ratio url user_reports""".split()
)
def __lowerCamelCase ( _lowercase , _lowercase = 1 , _lowercase = "new" , _lowercase = None ) -> dict:
UpperCAmelCase : List[Any] = wanted_data or []
if invalid_search_terms := ", ".join(sorted(set(_lowercase ) - valid_terms ) ):
UpperCAmelCase : Optional[int] = F'''Invalid search term: {invalid_search_terms}'''
raise ValueError(_lowercase )
UpperCAmelCase : Optional[int] = requests.get(
F'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={"""User-agent""": """A random string"""} , )
if response.status_code == 4_2_9:
raise requests.HTTPError
UpperCAmelCase : Tuple = response.json()
if not wanted_data:
return {id_: data["data"]["children"][id_] for id_ in range(_lowercase )}
UpperCAmelCase : Optional[int] = {}
for id_ in range(_lowercase ):
UpperCAmelCase : int = {
item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data
}
return data_dict
if __name__ == "__main__":
# If you get Error 429, that means you are rate limited.Try after some time
print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
| 672 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]:
UpperCAmelCase : Optional[int] = list(_lowercase )
UpperCAmelCase : Dict = list(_lowercase )
UpperCAmelCase : str = 0
for i in range(len(_lowercase ) ):
if lista[i] != lista[i]:
count += 1
UpperCAmelCase : Optional[Any] = """_"""
if count > 1:
return False
else:
return "".join(_lowercase )
def __lowerCamelCase ( _lowercase ) -> list[str]:
UpperCAmelCase : List[str] = []
while True:
UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase )
UpperCAmelCase : int = []
for i in range(len(_lowercase ) ):
for j in range(i + 1 , len(_lowercase ) ):
UpperCAmelCase : str = compare_string(binary[i] , binary[j] )
if k is False:
UpperCAmelCase : Union[str, Any] = """*"""
UpperCAmelCase : Optional[Any] = """*"""
temp.append("""X""" )
for i in range(len(_lowercase ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(_lowercase ) == 0:
return pi
UpperCAmelCase : List[Any] = list(set(_lowercase ) )
def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]:
UpperCAmelCase : Dict = []
for minterm in minterms:
UpperCAmelCase : List[str] = """"""
for _ in range(_lowercase ):
UpperCAmelCase : Dict = str(minterm % 2 ) + string
minterm //= 2
temp.append(_lowercase )
return temp
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool:
UpperCAmelCase : Optional[int] = list(_lowercase )
UpperCAmelCase : Dict = list(_lowercase )
UpperCAmelCase : Dict = 0
for i in range(len(_lowercase ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]:
UpperCAmelCase : Tuple = []
UpperCAmelCase : Optional[int] = [0] * len(_lowercase )
for i in range(len(chart[0] ) ):
UpperCAmelCase : Any = 0
UpperCAmelCase : Optional[Any] = -1
for j in range(len(_lowercase ) ):
if chart[j][i] == 1:
count += 1
UpperCAmelCase : str = j
if count == 1:
UpperCAmelCase : Optional[int] = 1
for i in range(len(_lowercase ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(_lowercase ) ):
UpperCAmelCase : List[str] = 0
temp.append(prime_implicants[i] )
while True:
UpperCAmelCase : int = 0
UpperCAmelCase : Tuple = -1
UpperCAmelCase : Union[str, Any] = 0
for i in range(len(_lowercase ) ):
UpperCAmelCase : Optional[Any] = chart[i].count(1 )
if count_n > max_n:
UpperCAmelCase : Union[str, Any] = count_n
UpperCAmelCase : Optional[Any] = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(_lowercase ) ):
UpperCAmelCase : Optional[Any] = 0
def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]:
UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )]
for i in range(len(_lowercase ) ):
UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" )
for j in range(len(_lowercase ) ):
if is_for_table(prime_implicants[i] , binary[j] , _lowercase ):
UpperCAmelCase : List[Any] = 1
return chart
def __lowerCamelCase ( ) -> None:
UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) )
UpperCAmelCase : List[Any] = [
float(_lowercase )
for x in input(
"""Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split()
]
UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase )
UpperCAmelCase : Tuple = check(_lowercase )
print("""Prime Implicants are:""" )
print(_lowercase )
UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase )
UpperCAmelCase : Tuple = selection(_lowercase , _lowercase )
print("""Essential Prime Implicants are:""" )
print(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 672 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
a : Optional[Any] = {
"""configuration_pix2struct""": [
"""PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""Pix2StructConfig""",
"""Pix2StructTextConfig""",
"""Pix2StructVisionConfig""",
],
"""processing_pix2struct""": ["""Pix2StructProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[str] = ["""Pix2StructImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[Any] = [
"""PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Pix2StructPreTrainedModel""",
"""Pix2StructForConditionalGeneration""",
"""Pix2StructVisionModel""",
"""Pix2StructTextModel""",
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 672 |
'''simple docstring'''
a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)]
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : str = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0]
number //= 1_0_0_0_0_0
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0
a : Optional[Any] = True
a : List[Any] = False
def __lowerCamelCase ( _lowercase ) -> bool:
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
UpperCAmelCase : List[str] = chain(next_number(_lowercase ) )
UpperCAmelCase : Tuple = number_chain
while number < 1_0_0_0_0_0_0_0:
UpperCAmelCase : List[str] = number_chain
number *= 1_0
return number_chain
def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int:
for i in range(1 , _lowercase ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'''{solution() = }''')
| 672 | 1 |
'''simple docstring'''
from __future__ import annotations
def __lowerCamelCase ( _lowercase ) -> list[int]:
UpperCAmelCase : Optional[int] = 2
UpperCAmelCase : Optional[Any] = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(_lowercase )
if n > 1:
factors.append(_lowercase )
return factors
if __name__ == "__main__":
import doctest
doctest.testmod()
| 672 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a : Optional[Any] = {
"""configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""],
"""tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Dict = ["""BertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[Any] = [
"""BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BertForMaskedLM""",
"""BertForMultipleChoice""",
"""BertForNextSentencePrediction""",
"""BertForPreTraining""",
"""BertForQuestionAnswering""",
"""BertForSequenceClassification""",
"""BertForTokenClassification""",
"""BertLayer""",
"""BertLMHeadModel""",
"""BertModel""",
"""BertPreTrainedModel""",
"""load_tf_weights_in_bert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[str] = [
"""TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBertEmbeddings""",
"""TFBertForMaskedLM""",
"""TFBertForMultipleChoice""",
"""TFBertForNextSentencePrediction""",
"""TFBertForPreTraining""",
"""TFBertForQuestionAnswering""",
"""TFBertForSequenceClassification""",
"""TFBertForTokenClassification""",
"""TFBertLMHeadModel""",
"""TFBertMainLayer""",
"""TFBertModel""",
"""TFBertPreTrainedModel""",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : int = ["""TFBertTokenizer"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[Any] = [
"""FlaxBertForCausalLM""",
"""FlaxBertForMaskedLM""",
"""FlaxBertForMultipleChoice""",
"""FlaxBertForNextSentencePrediction""",
"""FlaxBertForPreTraining""",
"""FlaxBertForQuestionAnswering""",
"""FlaxBertForSequenceClassification""",
"""FlaxBertForTokenClassification""",
"""FlaxBertModel""",
"""FlaxBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 672 | 1 |
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 672 |
'''simple docstring'''
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any:
UpperCAmelCase : Optional[int] = False
UpperCAmelCase : Any = search_prob
UpperCAmelCase : Any = start_temperate
UpperCAmelCase : Optional[Any] = []
UpperCAmelCase : Optional[Any] = 0
UpperCAmelCase : Optional[Any] = None
while not search_end:
UpperCAmelCase : List[str] = current_state.score()
if best_state is None or current_score > best_state.score():
UpperCAmelCase : List[Any] = current_state
scores.append(_lowercase )
iterations += 1
UpperCAmelCase : Dict = None
UpperCAmelCase : Union[str, Any] = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor
UpperCAmelCase : int = neighbors.pop(_lowercase )
UpperCAmelCase : Tuple = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
UpperCAmelCase : int = picked_neighbor
else:
UpperCAmelCase : Optional[Any] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
UpperCAmelCase : Optional[int] = picked_neighbor
UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
UpperCAmelCase : Optional[int] = True
else:
UpperCAmelCase : Optional[int] = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(_lowercase ) , _lowercase )
plt.xlabel("""Iterations""" )
plt.ylabel("""Function values""" )
plt.show()
return best_state
if __name__ == "__main__":
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa)
a : Dict = simulated_annealing(
prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True
)
print(
"""The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa)
a : Dict = simulated_annealing(
prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True
)
print(
"""The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]:
return (3 * x**2) - (6 * y)
a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a : Any = simulated_annealing(prob, find_max=False, visualization=True)
print(
"""The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F'''{local_min.score()}'''
)
a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a : Dict = simulated_annealing(prob, find_max=True, visualization=True)
print(
"""The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F'''{local_min.score()}'''
)
| 672 | 1 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase = 1 , _lowercase = 1_0_0_0 ) -> int:
UpperCAmelCase : Union[str, Any] = 1
UpperCAmelCase : str = 0
for divide_by_number in range(_lowercase , digit + 1 ):
UpperCAmelCase : list[int] = []
UpperCAmelCase : Any = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(_lowercase ):
UpperCAmelCase : Optional[int] = len(_lowercase )
UpperCAmelCase : Any = divide_by_number
else:
has_been_divided.append(_lowercase )
UpperCAmelCase : Tuple = now_divide * 1_0 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 672 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : Any = {
"""configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Any = [
"""NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""NezhaForNextSentencePrediction""",
"""NezhaForMaskedLM""",
"""NezhaForPreTraining""",
"""NezhaForMultipleChoice""",
"""NezhaForQuestionAnswering""",
"""NezhaForSequenceClassification""",
"""NezhaForTokenClassification""",
"""NezhaModel""",
"""NezhaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nezha import (
NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
NezhaPreTrainedModel,
)
else:
import sys
a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 672 | 1 |
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase_ :
def __init__( self , A , A=3 , A=32 , A=3 , A=10 , A=[10, 20, 30, 40] , A=[1, 1, 2, 1] , A=True , A=True , A="relu" , A=3 , A=None , ) -> Dict:
UpperCAmelCase : int = parent
UpperCAmelCase : Dict = batch_size
UpperCAmelCase : Optional[int] = image_size
UpperCAmelCase : Optional[Any] = num_channels
UpperCAmelCase : str = embeddings_size
UpperCAmelCase : List[Any] = hidden_sizes
UpperCAmelCase : Dict = depths
UpperCAmelCase : Optional[int] = is_training
UpperCAmelCase : Dict = use_labels
UpperCAmelCase : str = hidden_act
UpperCAmelCase : List[str] = num_labels
UpperCAmelCase : int = scope
UpperCAmelCase : Optional[int] = len(A )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : Optional[Any] = None
if self.use_labels:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def _lowercase( self ) -> Any:
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def _lowercase( self , A , A , A ) -> Optional[int]:
UpperCAmelCase : int = TFRegNetModel(config=A )
UpperCAmelCase : int = model(A , training=A )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _lowercase( self , A , A , A ) -> Union[str, Any]:
UpperCAmelCase : List[str] = self.num_labels
UpperCAmelCase : List[str] = TFRegNetForImageClassification(A )
UpperCAmelCase : Tuple = model(A , labels=A , training=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = config_and_inputs
UpperCAmelCase : Optional[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
lowercase = (
{'feature-extraction': TFRegNetModel, 'image-classification': TFRegNetForImageClassification}
if is_tf_available()
else {}
)
lowercase = False
lowercase = False
lowercase = False
lowercase = False
lowercase = False
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Union[str, Any] = TFRegNetModelTester(self )
UpperCAmelCase : str = ConfigTester(self , config_class=A , has_text_modality=A )
def _lowercase( self ) -> Any:
return
@unittest.skip(reason="""RegNet does not use inputs_embeds""" )
def _lowercase( self ) -> List[Any]:
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , )
@slow
def _lowercase( self ) -> Optional[int]:
super().test_keras_fit()
@unittest.skip(reason="""RegNet does not support input and output embeddings""" )
def _lowercase( self ) -> Optional[Any]:
pass
def _lowercase( self ) -> Any:
UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : int = model_class(A )
UpperCAmelCase : List[str] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : List[str] = [*signature.parameters.keys()]
UpperCAmelCase : List[str] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , A )
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> Optional[Any]:
def check_hidden_states_output(A , A , A ):
UpperCAmelCase : Any = model_class(A )
UpperCAmelCase : int = model(**self._prepare_for_class(A , A ) , training=A )
UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase : Tuple = self.model_tester.num_stages
self.assertEqual(len(A ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : int = ["""basic""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
UpperCAmelCase : Union[str, Any] = layer_type
UpperCAmelCase : List[Any] = True
check_hidden_states_output(A , A , A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase : List[Any] = True
check_hidden_states_output(A , A , A )
def _lowercase( self ) -> Dict:
UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(A , A , A , A={} ):
UpperCAmelCase : List[str] = model(A , return_dict=A , **A )
UpperCAmelCase : Any = model(A , return_dict=A , **A ).to_tuple()
def recursive_check(A , A ):
if isinstance(A , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(A , A ):
recursive_check(A , A )
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(A , A ) ) , msg=(
"""Tuple and dict output are not equal. Difference:"""
f''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}'''
) , )
recursive_check(A , A )
for model_class in self.all_model_classes:
UpperCAmelCase : Union[str, Any] = model_class(A )
UpperCAmelCase : str = self._prepare_for_class(A , A )
UpperCAmelCase : List[str] = self._prepare_for_class(A , A )
check_equivalence(A , A , A )
UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A )
UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A )
check_equivalence(A , A , A )
UpperCAmelCase : int = self._prepare_for_class(A , A )
UpperCAmelCase : Tuple = self._prepare_for_class(A , A )
check_equivalence(A , A , A , {"""output_hidden_states""": True} )
UpperCAmelCase : str = self._prepare_for_class(A , A , return_labels=A )
UpperCAmelCase : Optional[int] = self._prepare_for_class(A , A , return_labels=A )
check_equivalence(A , A , A , {"""output_hidden_states""": True} )
def _lowercase( self ) -> List[str]:
UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def _lowercase( self ) -> Union[str, Any]:
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Dict = TFRegNetModel.from_pretrained(A )
self.assertIsNotNone(A )
def __lowerCamelCase ( ) -> Optional[int]:
UpperCAmelCase : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
@cached_property
def _lowercase( self ) -> Optional[int]:
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Optional[Any] = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
UpperCAmelCase : Union[str, Any] = self.default_image_processor
UpperCAmelCase : str = prepare_img()
UpperCAmelCase : str = image_processor(images=A , return_tensors="""tf""" )
# forward pass
UpperCAmelCase : int = model(**A , training=A )
# verify the logits
UpperCAmelCase : Optional[int] = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , A )
UpperCAmelCase : Union[str, Any] = tf.constant([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] )
tf.debugging.assert_near(outputs.logits[0, :3] , A , atol=1e-4 )
| 672 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
a : Tuple = False
class UpperCamelCase_ ( unittest.TestCase ):
pass
@slow
@require_torch_gpu
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
UpperCAmelCase : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" )
UpperCAmelCase : List[Any] = torch.manual_seed(0 )
UpperCAmelCase : List[str] = pipe(
image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images
UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 672 | 1 |
'''simple docstring'''
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class UpperCamelCase_ ( datasets.BeamBasedBuilder ):
def _lowercase( self ) -> Optional[Any]:
return datasets.DatasetInfo(
features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=A , )
def _lowercase( self , A , A ) -> Dict:
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )]
def _lowercase( self , A , A ) -> List[str]:
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(A )
class UpperCamelCase_ ( datasets.BeamBasedBuilder ):
def _lowercase( self ) -> Dict:
return datasets.DatasetInfo(
features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=A , )
def _lowercase( self , A , A ) -> Optional[Any]:
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} )
]
def _lowercase( self , A , A ) -> Optional[int]:
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(A )
def __lowerCamelCase ( ) -> Any:
return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )]
def __lowerCamelCase ( ) -> int:
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )]
class UpperCamelCase_ ( __magic_name__ ):
@require_beam
def _lowercase( self ) -> List[str]:
UpperCAmelCase : int = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase : Any = DummyBeamDataset(cache_dir=A , beam_runner="""DirectRunner""" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(A , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train.arrow''' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) )
UpperCAmelCase : List[str] = builder.as_dataset()
self.assertEqual(dset["""train"""].num_rows , A )
self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , A )
self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(A , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) )
del dset
@require_beam
def _lowercase( self ) -> Any:
import apache_beam as beam
UpperCAmelCase : List[str] = beam.io.parquetio.WriteToParquet
UpperCAmelCase : Union[str, Any] = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase : Union[str, Any] = DummyBeamDataset(cache_dir=A , beam_runner="""DirectRunner""" )
with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock:
UpperCAmelCase : List[Any] = partial(A , num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
A , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
A , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) )
UpperCAmelCase : Dict = builder.as_dataset()
self.assertEqual(dset["""train"""].num_rows , A )
self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , A )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) )
self.assertTrue(
os.path.exists(os.path.join(A , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) )
del dset
@require_beam
def _lowercase( self ) -> List[str]:
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase : Tuple = DummyBeamDataset(cache_dir=A )
self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare )
@require_beam
def _lowercase( self ) -> int:
UpperCAmelCase : Tuple = len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase : Any = NestedBeamDataset(cache_dir=A , beam_runner="""DirectRunner""" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(A , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train.arrow''' ) ) )
self.assertDictEqual(
builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) )
UpperCAmelCase : Optional[Any] = builder.as_dataset()
self.assertEqual(dset["""train"""].num_rows , A )
self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , A )
self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(A , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) )
del dset
| 672 |
'''simple docstring'''
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
a : Any = get_logger()
a : Optional[dict] = None
class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ):
def __init__( self , A=None , A=None , **A ) -> str:
super().__init__(features=A )
import jax
from jaxlib.xla_client import Device
if isinstance(A , A ):
raise ValueError(
f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` '''
"""is not serializable neither with `pickle` nor with `dill`. Instead you can surround """
"""the device with `str()` to get its string identifier that will be internally mapped """
"""to the actual `jaxlib.xla_extension.Device`.""" )
UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
UpperCAmelCase : Any = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
f'''Device with string identifier {self.device} not listed among the available '''
f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default '''
f'''device: {str(jax.devices()[0] )}.''' )
UpperCAmelCase : List[Any] = str(jax.devices()[0] )
UpperCAmelCase : Union[str, Any] = jnp_array_kwargs
@staticmethod
def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]:
import jax
return {str(A ): device for device in jax.devices()}
def _lowercase( self , A ) -> str:
import jax
import jax.numpy as jnp
if isinstance(A , A ) and column:
if all(
isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(A , axis=0 )
return column
def _lowercase( self , A ) -> Tuple:
import jax
import jax.numpy as jnp
if isinstance(A , (str, bytes, type(A )) ):
return value
elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
UpperCAmelCase : List[str] = {}
if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
UpperCAmelCase : str = {"""dtype""": jnp.intaa}
else:
UpperCAmelCase : int = {"""dtype""": jnp.intaa}
elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
UpperCAmelCase : Any = {"""dtype""": jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(A , PIL.Image.Image ):
UpperCAmelCase : List[str] = np.asarray(A )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
UpperCAmelCase : Dict = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} )
def _lowercase( self , A ) -> Tuple:
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(A , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ):
UpperCAmelCase : Optional[int] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(A , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] )
elif isinstance(A , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] )
return self._tensorize(A )
def _lowercase( self , A ) -> Dict:
return map_nested(self._recursive_tensorize , A , map_list=A )
def _lowercase( self , A ) -> Mapping:
UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A )
UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A )
return self.recursive_tensorize(A )
def _lowercase( self , A ) -> "jax.Array":
UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A )
UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] )
UpperCAmelCase : Optional[int] = self.recursive_tensorize(A )
UpperCAmelCase : Any = self._consolidate(A )
return column
def _lowercase( self , A ) -> Mapping:
UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A )
UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A )
UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A )
for column_name in batch:
UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] )
return batch
| 672 | 1 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionAttendAndExcitePipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_numpy, skip_mps, slow
from diffusers.utils.testing_utils import require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
a : int = False
@skip_mps
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = StableDiffusionAttendAndExcitePipeline
lowercase = False
lowercase = TEXT_TO_IMAGE_PARAMS
lowercase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} )
lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS
lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS
@classmethod
def _lowercase( cls ) -> Tuple:
super().setUpClass()
torch.use_deterministic_algorithms(A )
@classmethod
def _lowercase( cls ) -> Dict:
super().tearDownClass()
torch.use_deterministic_algorithms(A )
def _lowercase( self ) -> Optional[Any]:
torch.manual_seed(0 )
UpperCAmelCase : Optional[Any] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=A , )
UpperCAmelCase : int = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=A , set_alpha_to_one=A , )
torch.manual_seed(0 )
UpperCAmelCase : Union[str, Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
UpperCAmelCase : Optional[int] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , )
UpperCAmelCase : Optional[Any] = CLIPTextModel(A )
UpperCAmelCase : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
UpperCAmelCase : Optional[int] = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def _lowercase( self , A , A=0 ) -> Any:
if str(A ).startswith("""mps""" ):
UpperCAmelCase : Tuple = torch.manual_seed(A )
else:
UpperCAmelCase : List[Any] = torch.Generator(device=A ).manual_seed(A )
UpperCAmelCase : str = {
"""prompt""": """a cat and a frog""",
"""token_indices""": [2, 5],
"""generator""": generator,
"""num_inference_steps""": 1,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
"""max_iter_to_alter""": 2,
"""thresholds""": {0: 0.7},
}
return inputs
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : List[str] = """cpu"""
UpperCAmelCase : Optional[Any] = self.get_dummy_components()
UpperCAmelCase : Union[str, Any] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(A )
UpperCAmelCase : List[Any] = pipe(**A ).images
UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 64, 64, 3) )
UpperCAmelCase : Optional[int] = np.array(
[0.6_3_9_0_5_3_6_4, 0.6_2_8_9_7_3_0_7, 0.4_8_5_9_9_0_1_7, 0.5_1_3_3_6_2_4, 0.5_5_5_0_0_4_8, 0.4_5_7_6_9_5_1_6, 0.5_0_3_2_6_9_7_3, 0.5_0_2_3_1_3_9, 0.4_5_3_8_4_4_9_6] )
UpperCAmelCase : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A , 1e-3 )
def _lowercase( self ) -> Optional[Any]:
super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 )
def _lowercase( self ) -> str:
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def _lowercase( self ) -> Dict:
self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 )
def _lowercase( self ) -> List[str]:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def _lowercase( self ) -> Optional[Any]:
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 )
def _lowercase( self ) -> Union[str, Any]:
super().test_save_load_local(expected_max_difference=5e-4 )
def _lowercase( self ) -> Optional[int]:
super().test_save_load_optional_components(expected_max_difference=4e-4 )
@require_torch_gpu
@slow
class UpperCamelCase_ ( unittest.TestCase ):
@classmethod
def _lowercase( cls ) -> Dict:
super().setUpClass()
torch.use_deterministic_algorithms(A )
@classmethod
def _lowercase( cls ) -> Optional[int]:
super().tearDownClass()
torch.use_deterministic_algorithms(A )
def _lowercase( self ) -> Any:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Tuple = torch.manual_seed(51 )
UpperCAmelCase : List[str] = StableDiffusionAttendAndExcitePipeline.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , safety_checker=A , torch_dtype=torch.floataa )
pipe.to("""cuda""" )
UpperCAmelCase : Dict = """a painting of an elephant with glasses"""
UpperCAmelCase : str = [5, 7]
UpperCAmelCase : Optional[Any] = pipe(
prompt=A , token_indices=A , guidance_scale=7.5 , generator=A , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0]
UpperCAmelCase : Optional[int] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""" )
assert np.abs((expected_image - image).max() ) < 5e-1
| 672 |
'''simple docstring'''
from datetime import datetime as dt
import os
from github import Github
a : int = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""feature request""",
"""new model""",
"""wip""",
]
def __lowerCamelCase ( ) -> Dict:
UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] )
UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" )
UpperCAmelCase : int = repo.get_issues(state="""open""" )
for issue in open_issues:
UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase )
UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 3_0
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state="""closed""" )
elif (
(dt.utcnow() - issue.updated_at).days > 2_3
and (dt.utcnow() - issue.created_at).days >= 3_0
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
if __name__ == "__main__":
main()
| 672 | 1 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
@slow
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Optional[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" )
UpperCAmelCase : Optional[int] = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] )
# The dog is cute and lives in the garden house
UpperCAmelCase : Optional[Any] = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim
UpperCAmelCase : Tuple = torch.tensor(
[[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
UpperCAmelCase : str = model(A )["""last_hidden_state"""].detach()
self.assertEqual(output.shape , A )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , A , atol=1e-3 ) )
@slow
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" )
UpperCAmelCase : Optional[int] = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] )
# The dog is cute and lives in the garden house
UpperCAmelCase : int = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim
UpperCAmelCase : str = torch.tensor(
[[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
UpperCAmelCase : Optional[int] = model(A )["""last_hidden_state"""].detach()
self.assertEqual(output.shape , A )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , A , atol=1e-3 ) )
| 672 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class UpperCamelCase_ :
def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any:
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : List[Any] = batch_size
UpperCAmelCase : Union[str, Any] = seq_length
UpperCAmelCase : Optional[int] = is_training
UpperCAmelCase : str = use_input_mask
UpperCAmelCase : Optional[int] = use_token_type_ids
UpperCAmelCase : Dict = use_labels
UpperCAmelCase : str = vocab_size
UpperCAmelCase : Optional[int] = hidden_size
UpperCAmelCase : str = num_hidden_layers
UpperCAmelCase : Any = num_attention_heads
UpperCAmelCase : Union[str, Any] = intermediate_size
UpperCAmelCase : str = hidden_act
UpperCAmelCase : Any = hidden_dropout_prob
UpperCAmelCase : str = attention_probs_dropout_prob
UpperCAmelCase : Tuple = max_position_embeddings
UpperCAmelCase : Optional[Any] = type_vocab_size
UpperCAmelCase : Optional[Any] = type_sequence_label_size
UpperCAmelCase : str = initializer_range
UpperCAmelCase : List[Any] = num_labels
UpperCAmelCase : Dict = num_choices
UpperCAmelCase : Tuple = scope
def _lowercase( self ) -> Dict:
UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Optional[Any] = None
if self.use_input_mask:
UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Optional[Any] = None
if self.use_token_type_ids:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase : Union[str, Any] = None
UpperCAmelCase : Dict = None
UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowercase( self ) -> Dict:
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , )
def _lowercase( self , A , A , A , A , A , A , A ) -> str:
UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A )
model.to(A )
model.eval()
UpperCAmelCase : Dict = model(A , attention_mask=A )
UpperCAmelCase : Optional[int] = model(A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]:
UpperCAmelCase : Optional[int] = True
UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A )
model.to(A )
model.eval()
UpperCAmelCase : List[Any] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , )
UpperCAmelCase : str = model(
A , attention_mask=A , encoder_hidden_states=A , )
UpperCAmelCase : List[Any] = model(A , attention_mask=A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int:
UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A )
model.to(A )
model.eval()
UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int:
UpperCAmelCase : Dict = True
UpperCAmelCase : Tuple = True
UpperCAmelCase : str = OpenLlamaForCausalLM(config=A )
model.to(A )
model.eval()
# first forward pass
UpperCAmelCase : Union[str, Any] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , )
UpperCAmelCase : str = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCAmelCase : List[Any] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0]
UpperCAmelCase : Optional[Any] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0]
# select random slice
UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : Tuple = config_and_inputs
UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else ()
lowercase = (
{
'feature-extraction': OpenLlamaModel,
'text-classification': OpenLlamaForSequenceClassification,
'text-generation': OpenLlamaForCausalLM,
'zero-shot': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Dict = OpenLlamaModelTester(self )
UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 )
def _lowercase( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def _lowercase( self ) -> int:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> str:
UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase : int = type
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> str:
UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : List[str] = 3
UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""]
UpperCAmelCase : str = input_ids.ne(1 ).to(A )
UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Dict = 3
UpperCAmelCase : Any = """single_label_classification"""
UpperCAmelCase : Dict = input_dict["""input_ids"""]
UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A )
UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowercase( self ) -> int:
UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Tuple = 3
UpperCAmelCase : Optional[Any] = """multi_label_classification"""
UpperCAmelCase : Dict = input_dict["""input_ids"""]
UpperCAmelCase : int = input_ids.ne(1 ).to(A )
UpperCAmelCase : int = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" )
def _lowercase( self ) -> Dict:
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def _lowercase( self , A ) -> str:
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size )
UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase : Any = OpenLlamaModel(A )
original_model.to(A )
original_model.eval()
UpperCAmelCase : List[str] = original_model(A ).last_hidden_state
UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0}
UpperCAmelCase : str = OpenLlamaModel(A )
scaled_model.to(A )
scaled_model.eval()
UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state
UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(A , A , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
| 672 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.