code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class UpperCamelCase_ ( nn.Module ): def __init__( self , A = 16 , A = 88 , A = None , A = 1 , A = 0.0 , A = 32 , A = None , A = False , A = None , A = None , A = "geglu" , A = None , ) -> Optional[int]: super().__init__() UpperCAmelCase : str = nn.ModuleList( [ TransformeraDModel( num_attention_heads=A , attention_head_dim=A , in_channels=A , num_layers=A , dropout=A , norm_num_groups=A , cross_attention_dim=A , attention_bias=A , sample_size=A , num_vector_embeds=A , activation_fn=A , num_embeds_ada_norm=A , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference UpperCAmelCase : int = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` UpperCAmelCase : int = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` UpperCAmelCase : Optional[int] = [1, 0] def _lowercase( self , A , A , A=None , A=None , A=None , A = True , ) -> List[str]: UpperCAmelCase : List[str] = hidden_states UpperCAmelCase : str = [] UpperCAmelCase : Union[str, Any] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens UpperCAmelCase : str = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] UpperCAmelCase : List[Any] = self.transformer_index_for_condition[i] UpperCAmelCase : Union[str, Any] = self.transformers[transformer_index]( A , encoder_hidden_states=A , timestep=A , cross_attention_kwargs=A , return_dict=A , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] UpperCAmelCase : int = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) UpperCAmelCase : Optional[int] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=A )
672
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: return ("This is a test", "This is a test") def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """</s>""" UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(A ) , 1103 ) def _lowercase( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> str: return ("This is a test", "This is a test") def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : str = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
672
1
'''simple docstring''' import os import sys import unittest a : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path a : Optional[int] = os.path.join(git_repo_path, """src""", """transformers""") a : Optional[int] = """ {0} = None """ a : Optional[int] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ a : List[str] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Any: UpperCAmelCase : List[str] = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" ) self.assertIsNone(A ) UpperCAmelCase : str = find_backend(""" if not is_tokenizers_available():""" ) self.assertEqual(A , """tokenizers""" ) UpperCAmelCase : Union[str, Any] = find_backend(""" if not is_tensorflow_text_available():""" ) self.assertEqual(A , """tensorflow_text""" ) UpperCAmelCase : List[Any] = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" ) self.assertEqual(A , """sentencepiece_and_tokenizers""" ) UpperCAmelCase : Optional[int] = find_backend( """ if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" ) self.assertEqual(A , """sentencepiece_and_tensorflow_text""" ) UpperCAmelCase : List[str] = find_backend( """ if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" ) self.assertEqual(A , """sentencepiece_and_tokenizers_and_vision""" ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Any = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , A ) self.assertIn("""tensorflow_text""" , A ) self.assertIn("""sentencepiece_and_tokenizers""" , A ) # Likewise, we can't assert on the exact content of a key self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertModel""" , objects["""tf"""] ) self.assertIn("""FlaxBertModel""" , objects["""flax"""] ) self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertTokenizer""" , objects["""tensorflow_text"""] ) self.assertIn("""convert_slow_tokenizer""" , objects["""sentencepiece_and_tokenizers"""] ) def _lowercase( self ) -> Any: UpperCAmelCase : Any = create_dummy_object("""CONSTANT""" , """'torch'""" ) self.assertEqual(A , """\nCONSTANT = None\n""" ) UpperCAmelCase : str = create_dummy_object("""function""" , """'torch'""" ) self.assertEqual( A , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) UpperCAmelCase : str = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') """ UpperCAmelCase : str = create_dummy_object("""FakeClass""" , """'torch'""" ) self.assertEqual(A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[int] = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) """ UpperCAmelCase : Union[str, Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] , A )
672
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Any = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : int = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ConvNextVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase : Any = model_class(A ) model.to(A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : List[str] = False UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
672
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : int = logging.get_logger(__name__) a : str = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'speech_to_text_2' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=10000 , A=6 , A=2048 , A=4 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=2 , A=True , A=1 , A=0 , A=2 , A=1024 , **A , ) -> List[str]: UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : List[str] = d_model UpperCAmelCase : Any = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Optional[Any] = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : List[str] = activation_function UpperCAmelCase : Tuple = init_std UpperCAmelCase : List[str] = decoder_layerdrop UpperCAmelCase : Optional[Any] = use_cache UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Dict = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : int = max_target_positions super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , decoder_start_token_id=A , **A , )
672
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : Any = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
1
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = StableUnCLIPPipeline lowercase = TEXT_TO_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_BATCH_PARAMS lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false lowercase = False def _lowercase( self ) -> List[Any]: UpperCAmelCase : int = 32 UpperCAmelCase : int = embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) UpperCAmelCase : Dict = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=A , projection_dim=A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase : int = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=A , num_layers=1 , ) torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=A , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase : Any = StableUnCLIPImageNormalizer(embedding_dim=A ) UpperCAmelCase : Any = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) UpperCAmelCase : str = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=A , layers_per_block=1 , upcast_attention=A , use_linear_projection=A , ) torch.manual_seed(0 ) UpperCAmelCase : Any = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type="""v_prediction""" , set_alpha_to_one=A , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = AutoencoderKL() UpperCAmelCase : str = { # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def _lowercase( self , A , A=0 ) -> Optional[int]: if str(A ).startswith("""mps""" ): UpperCAmelCase : Union[str, Any] = torch.manual_seed(A ) else: UpperCAmelCase : Dict = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _lowercase( self ) -> Dict: UpperCAmelCase : List[str] = torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : List[str] = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=A ) @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) UpperCAmelCase : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase : Union[str, Any] = pipe("""anime turle""" , generator=A , output_type="""np""" ) UpperCAmelCase : List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A , A ) def _lowercase( self ) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase : Any = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) UpperCAmelCase : Any = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase : Dict = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
672
'''simple docstring''' a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a : Optional[Any] = True a : List[Any] = False def __lowerCamelCase ( _lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : List[str] = chain(next_number(_lowercase ) ) UpperCAmelCase : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase : List[str] = number_chain number *= 1_0 return number_chain def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , _lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
672
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( _lowercase ) -> bool: UpperCAmelCase : Tuple = str(_lowercase ) return n == n[::-1] def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0 ) -> List[Any]: UpperCAmelCase : int = 0 for i in range(1 , _lowercase ): if is_palindrome(_lowercase ) and is_palindrome(bin(_lowercase ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
672
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Any = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
672
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a : Optional[Any] = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = ["""GLPNFeatureExtractor"""] a : Tuple = ["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
'''simple docstring''' import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy a : Union[str, Any] = logging.get_logger(__name__) a : str = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } a : List[Any] = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } a : Union[str, Any] = { """jukebox""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_LYRIC_TOKENS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=512 , A=5 , A="<|endoftext|>" , **A , ) -> Any: UpperCAmelCase : Any = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) UpperCAmelCase : Any = version UpperCAmelCase : Any = max_n_lyric_tokens UpperCAmelCase : Optional[Any] = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase : Tuple = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase : Tuple = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase : List[Any] = json.load(A ) UpperCAmelCase : Any = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: UpperCAmelCase : str = oov.replace(r"""\-'""" , r"""\-+'""" ) UpperCAmelCase : Union[str, Any] = regex.compile(A ) UpperCAmelCase : Dict = {v: k for k, v in self.artists_encoder.items()} UpperCAmelCase : Any = {v: k for k, v in self.genres_encoder.items()} UpperCAmelCase : Optional[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def _lowercase( self ) -> Any: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def _lowercase( self ) -> Union[str, Any]: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : str = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): UpperCAmelCase : str = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] UpperCAmelCase : Optional[Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) UpperCAmelCase : List[str] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def _lowercase( self , A ) -> Dict: return list(A ) def _lowercase( self , A , A , A , **A ) -> Optional[int]: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = self.prepare_for_tokenization(A , A , A ) UpperCAmelCase : Optional[int] = self._tokenize(A ) return artist, genre, lyrics def _lowercase( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": UpperCAmelCase : List[Any] = artists[idx].lower() UpperCAmelCase : Dict = [genres[idx].lower()] else: UpperCAmelCase : Any = self._normalize(artists[idx] ) + """.v2""" UpperCAmelCase : Union[str, Any] = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": UpperCAmelCase : Union[str, Any] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) UpperCAmelCase : Any = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" UpperCAmelCase : Dict = {vocab[index]: index + 1 for index in range(len(A ) )} UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : Any = len(A ) + 1 UpperCAmelCase : Optional[int] = self.vocab UpperCAmelCase : str = {v: k for k, v in self.vocab.items()} UpperCAmelCase : Any = """""" else: UpperCAmelCase : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) UpperCAmelCase : Optional[int] = self._run_strip_accents(A ) UpperCAmelCase : List[str] = lyrics.replace("""\\""" , """\n""" ) UpperCAmelCase : Optional[int] = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def _lowercase( self , A ) -> str: UpperCAmelCase : Dict = unicodedata.normalize("""NFD""" , A ) UpperCAmelCase : Any = [] for char in text: UpperCAmelCase : Dict = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def _lowercase( self , A ) -> str: UpperCAmelCase : Union[str, Any] = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) UpperCAmelCase : List[str] = frozenset(A ) UpperCAmelCase : Dict = re.compile(r"""_+""" ) UpperCAmelCase : List[str] = """""".join([c if c in accepted else """_""" for c in text.lower()] ) UpperCAmelCase : Any = pattern.sub("""_""" , A ).strip("""_""" ) return text def _lowercase( self , A ) -> str: return " ".join(A ) def _lowercase( self , A , A = None , A = False ) -> Dict: # Convert to TensorType if not isinstance(A , A ): UpperCAmelCase : Any = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf UpperCAmelCase : Optional[int] = tf.constant UpperCAmelCase : Dict = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch UpperCAmelCase : Optional[Any] = torch.tensor UpperCAmelCase : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 UpperCAmelCase : Any = jnp.array UpperCAmelCase : Optional[Any] = _is_jax else: UpperCAmelCase : List[str] = np.asarray UpperCAmelCase : List[str] = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: UpperCAmelCase : List[Any] = [inputs] if not is_tensor(A ): UpperCAmelCase : Dict = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: UpperCAmelCase : Tuple = [0, 0, 0] UpperCAmelCase : Optional[int] = [artist] * len(self.version ) UpperCAmelCase : List[str] = [genres] * len(self.version ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = self.tokenize(A , A , A ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = self._convert_token_to_id(A , A , A ) UpperCAmelCase : int = [-INFINITY] * len(full_tokens[-1] ) UpperCAmelCase : List[str] = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def _lowercase( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : List[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) UpperCAmelCase : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) UpperCAmelCase : Union[str, Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def _lowercase( self , A , A , A ) -> Tuple: UpperCAmelCase : Union[str, Any] = self.artists_decoder.get(A ) UpperCAmelCase : Any = [self.genres_decoder.get(A ) for genre in genres_index] UpperCAmelCase : Dict = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
672
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
1
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A=None , A=None , **A ) -> str: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase : List[Any] = str(jax.devices()[0] ) UpperCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def _lowercase( self , A ) -> str: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _lowercase( self , A ) -> Tuple: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase : List[str] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase : str = {"""dtype""": jnp.intaa} else: UpperCAmelCase : int = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase : Any = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): UpperCAmelCase : List[str] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase( self , A ) -> Tuple: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): UpperCAmelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _lowercase( self , A ) -> Dict: return map_nested(self._recursive_tensorize , A , map_list=A ) def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A ) UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _lowercase( self , A ) -> "jax.Array": UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A ) UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) UpperCAmelCase : Any = self._consolidate(A ) return column def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A ) UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) for column_name in batch: UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
672
1
'''simple docstring''' from typing import List import numpy as np def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Optional[Any] = {key: len(_lowercase ) for key, value in gen_kwargs.items() if isinstance(_lowercase , _lowercase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( """Sharding is ambiguous for this dataset: """ + """we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n""" + """\n""".join(F'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() ) + """\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, """ + """and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.""" ) ) UpperCAmelCase : Dict = max(lists_lengths.values() , default=0 ) return max(1 , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> List[range]: UpperCAmelCase : Dict = [] for group_idx in range(_lowercase ): UpperCAmelCase : Tuple = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break UpperCAmelCase : int = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 UpperCAmelCase : List[str] = range(_lowercase , start + num_shards_to_add ) shards_indices_per_group.append(_lowercase ) return shards_indices_per_group def __lowerCamelCase ( _lowercase , _lowercase ) -> List[dict]: UpperCAmelCase : List[Any] = _number_of_shards_in_gen_kwargs(_lowercase ) if num_shards == 1: return [dict(_lowercase )] else: UpperCAmelCase : int = _distribute_shards(num_shards=_lowercase , max_num_jobs=_lowercase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(_lowercase , _lowercase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(_lowercase ) ) ] def __lowerCamelCase ( _lowercase ) -> dict: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , _lowercase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __lowerCamelCase ( _lowercase , _lowercase ) -> dict: UpperCAmelCase : str = {len(_lowercase ) for value in gen_kwargs.values() if isinstance(_lowercase , _lowercase )} UpperCAmelCase : int = {} for size in list_sizes: UpperCAmelCase : int = list(range(_lowercase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes UpperCAmelCase : List[Any] = dict(_lowercase ) for key, value in shuffled_kwargs.items(): if isinstance(_lowercase , _lowercase ): UpperCAmelCase : Dict = [value[i] for i in indices_per_size[len(_lowercase )]] return shuffled_kwargs
672
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : int = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
672
1
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=4 , ) -> Dict: UpperCAmelCase : Any = parent UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : List[str] = seq_length UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : str = use_attention_mask UpperCAmelCase : Dict = use_token_type_ids UpperCAmelCase : Optional[Any] = use_labels UpperCAmelCase : Dict = vocab_size UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Dict = hidden_act UpperCAmelCase : Union[str, Any] = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : Dict = type_vocab_size UpperCAmelCase : List[str] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : Optional[int] = num_choices def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_attention_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowercase( self ) -> int: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = True lowercase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase( self ) -> int: UpperCAmelCase : Dict = FlaxRoFormerModelTester(self ) @slow def _lowercase( self ) -> int: for model_class_name in self.all_model_classes: UpperCAmelCase : str = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=A ) UpperCAmelCase : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : int = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) UpperCAmelCase : List[str] = jnp.array([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase : List[Any] = model(A )[0] UpperCAmelCase : Dict = 50000 UpperCAmelCase : Any = (1, 6, vocab_size) self.assertEqual(output.shape , A ) UpperCAmelCase : int = jnp.array( [[[-0.1_2_0_5, -1.0_2_6_5, 0.2_9_2_2], [-1.5_1_3_4, 0.1_9_7_4, 0.1_5_1_9], [-5.0_1_3_5, -3.9_0_0_3, -0.8_4_0_4]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , A , atol=1e-4 ) )
672
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
672
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( __magic_name__ ): lowercase = (UniPCMultistepScheduler,) lowercase = (('num_inference_steps', 25),) def _lowercase( self , **A ) -> List[str]: UpperCAmelCase : List[str] = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """solver_order""": 2, """solver_type""": """bh2""", } config.update(**A ) return config def _lowercase( self , A=0 , **A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase : Optional[Any] = kwargs.pop("""num_inference_steps""" , A ) UpperCAmelCase : Optional[int] = self.dummy_sample UpperCAmelCase : Dict = 0.1 * sample UpperCAmelCase : int = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase : str = self.get_scheduler_config(**A ) UpperCAmelCase : Tuple = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals UpperCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) UpperCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(A ) new_scheduler.set_timesteps(A ) # copy over dummy past residuals UpperCAmelCase : int = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase , UpperCAmelCase : List[Any] = sample, sample for t in range(A , time_step + scheduler.config.solver_order + 1 ): UpperCAmelCase : Any = scheduler.step(A , A , A , **A ).prev_sample UpperCAmelCase : str = new_scheduler.step(A , A , A , **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowercase( self , A=0 , **A ) -> int: UpperCAmelCase : Dict = dict(self.forward_default_kwargs ) UpperCAmelCase : Tuple = kwargs.pop("""num_inference_steps""" , A ) UpperCAmelCase : Any = self.dummy_sample UpperCAmelCase : Optional[int] = 0.1 * sample UpperCAmelCase : List[str] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase : List[str] = self.get_scheduler_config() UpperCAmelCase : List[Any] = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase : Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) UpperCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(A ) # copy over dummy past residuals new_scheduler.set_timesteps(A ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase : List[str] = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase : Tuple = scheduler.step(A , A , A , **A ).prev_sample UpperCAmelCase : int = new_scheduler.step(A , A , A , **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowercase( self , A=None , **A ) -> Any: if scheduler is None: UpperCAmelCase : Optional[int] = self.scheduler_classes[0] UpperCAmelCase : List[str] = self.get_scheduler_config(**A ) UpperCAmelCase : Optional[int] = scheduler_class(**A ) UpperCAmelCase : int = self.scheduler_classes[0] UpperCAmelCase : Optional[Any] = self.get_scheduler_config(**A ) UpperCAmelCase : str = scheduler_class(**A ) UpperCAmelCase : int = 10 UpperCAmelCase : Tuple = self.dummy_model() UpperCAmelCase : List[str] = self.dummy_sample_deter scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Optional[int] = model(A , A ) UpperCAmelCase : Optional[Any] = scheduler.step(A , A , A ).prev_sample return sample def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase : Dict = kwargs.pop("""num_inference_steps""" , A ) for scheduler_class in self.scheduler_classes: UpperCAmelCase : List[Any] = self.get_scheduler_config() UpperCAmelCase : Optional[Any] = scheduler_class(**A ) UpperCAmelCase : List[Any] = self.dummy_sample UpperCAmelCase : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(A , """set_timesteps""" ): scheduler.set_timesteps(A ) elif num_inference_steps is not None and not hasattr(A , """set_timesteps""" ): UpperCAmelCase : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase : Dict = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] UpperCAmelCase : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] UpperCAmelCase : Optional[Any] = scheduler.timesteps[5] UpperCAmelCase : Optional[Any] = scheduler.timesteps[6] UpperCAmelCase : Optional[int] = scheduler.step(A , A , A , **A ).prev_sample UpperCAmelCase : int = scheduler.step(A , A , A , **A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowercase( self ) -> Any: # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCAmelCase : Tuple = UniPCMultistepScheduler(**self.get_scheduler_config() ) UpperCAmelCase : Any = self.full_loop(scheduler=A ) UpperCAmelCase : Tuple = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 UpperCAmelCase : str = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase : Union[str, Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase : str = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase : str = self.full_loop(scheduler=A ) UpperCAmelCase : List[str] = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def _lowercase( self ) -> str: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=A ) def _lowercase( self ) -> Optional[int]: self.check_over_configs(thresholding=A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=A , prediction_type=A , sample_max_value=A , solver_order=A , solver_type=A , ) def _lowercase( self ) -> Tuple: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def _lowercase( self ) -> str: for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=A , solver_type=A , prediction_type=A , ) UpperCAmelCase : int = self.full_loop( solver_order=A , solver_type=A , prediction_type=A , ) assert not torch.isnan(A ).any(), "Samples have nan numbers" def _lowercase( self ) -> Optional[int]: self.check_over_configs(lower_order_final=A ) self.check_over_configs(lower_order_final=A ) def _lowercase( self ) -> Any: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=A , time_step=0 ) def _lowercase( self ) -> List[str]: UpperCAmelCase : List[Any] = self.full_loop() UpperCAmelCase : List[Any] = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[Any] = self.full_loop(prediction_type="""v_prediction""" ) UpperCAmelCase : int = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1e-3 def _lowercase( self ) -> int: UpperCAmelCase : Dict = self.scheduler_classes[0] UpperCAmelCase : Union[str, Any] = self.get_scheduler_config(thresholding=A , dynamic_thresholding_ratio=0 ) UpperCAmelCase : Optional[int] = scheduler_class(**A ) UpperCAmelCase : Dict = 10 UpperCAmelCase : Union[str, Any] = self.dummy_model() UpperCAmelCase : str = self.dummy_sample_deter.half() scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Optional[int] = model(A , A ) UpperCAmelCase : Optional[Any] = scheduler.step(A , A , A ).prev_sample assert sample.dtype == torch.floataa def _lowercase( self , **A ) -> Union[str, Any]: for scheduler_class in self.scheduler_classes: UpperCAmelCase : List[str] = self.get_scheduler_config(**A ) UpperCAmelCase : Tuple = scheduler_class(**A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
672
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
672
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer a : Union[str, Any] = logging.get_logger(__name__) a : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a : Optional[int] = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } a : Union[str, Any] = { """squeezebert/squeezebert-uncased""": 5_1_2, """squeezebert/squeezebert-mnli""": 5_1_2, """squeezebert/squeezebert-mnli-headless""": 5_1_2, } a : Tuple = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = SqueezeBertTokenizer def __init__( self , A=None , A=None , A=True , A="[UNK]" , A="[SEP]" , A="[PAD]" , A="[CLS]" , A="[MASK]" , A=True , A=None , **A , ) -> Union[str, Any]: super().__init__( A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , ) UpperCAmelCase : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , A ) != do_lower_case or normalizer_state.get("""strip_accents""" , A ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , A ) != tokenize_chinese_chars ): UpperCAmelCase : Tuple = getattr(A , normalizer_state.pop("""type""" ) ) UpperCAmelCase : Optional[int] = do_lower_case UpperCAmelCase : Any = strip_accents UpperCAmelCase : List[Any] = tokenize_chinese_chars UpperCAmelCase : Dict = normalizer_class(**A ) UpperCAmelCase : int = do_lower_case def _lowercase( self , A , A=None ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[Any] = [self.sep_token_id] UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase( self , A , A = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(A , name=A ) return tuple(A )
672
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
1
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a : int = logging.get_logger(__name__) a : str = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } a : Dict = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } a : Tuple = { """vinai/phobert-base""": 2_5_6, """vinai/phobert-large""": 2_5_6, } def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = set() UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase : Union[str, Any] = char UpperCAmelCase : str = set(_lowercase ) return pairs class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A , A , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[str]: super().__init__( bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : str = vocab_file UpperCAmelCase : Any = merges_file UpperCAmelCase : Optional[int] = {} UpperCAmelCase : Dict = 0 UpperCAmelCase : List[Any] = 1 UpperCAmelCase : int = 2 UpperCAmelCase : Tuple = 3 self.add_from_file(A ) UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(A , encoding="""utf-8""" ) as merges_handle: UpperCAmelCase : str = merges_handle.read().split("""\n""" )[:-1] UpperCAmelCase : List[Any] = [tuple(merge.split()[:-1] ) for merge in merges] UpperCAmelCase : Any = dict(zip(A , range(len(A ) ) ) ) UpperCAmelCase : Union[str, Any] = {} def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[Any] = [self.cls_token_id] UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Tuple = [self.sep_token_id] UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowercase( self ) -> Tuple: return len(self.encoder ) def _lowercase( self ) -> Tuple: return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase( self , A ) -> Any: if token in self.cache: return self.cache[token] UpperCAmelCase : Optional[int] = tuple(A ) UpperCAmelCase : List[str] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) UpperCAmelCase : Union[str, Any] = get_pairs(A ) if not pairs: return token while True: UpperCAmelCase : Dict = min(A , key=lambda A : self.bpe_ranks.get(A , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase : int = bigram UpperCAmelCase : List[Any] = [] UpperCAmelCase : Union[str, Any] = 0 while i < len(A ): try: UpperCAmelCase : Any = word.index(A , A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase : Optional[int] = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase : Optional[Any] = tuple(A ) UpperCAmelCase : List[Any] = new_word if len(A ) == 1: break else: UpperCAmelCase : Optional[int] = get_pairs(A ) UpperCAmelCase : List[str] = """@@ """.join(A ) UpperCAmelCase : List[str] = word[:-4] UpperCAmelCase : int = word return word def _lowercase( self , A ) -> List[Any]: UpperCAmelCase : Dict = [] UpperCAmelCase : Optional[Any] = re.findall(r"""\S+\n?""" , A ) for token in words: split_tokens.extend(list(self.bpe(A ).split(""" """ ) ) ) return split_tokens def _lowercase( self , A ) -> Dict: return self.encoder.get(A , self.encoder.get(self.unk_token ) ) def _lowercase( self , A ) -> Dict: return self.decoder.get(A , self.unk_token ) def _lowercase( self , A ) -> Optional[Any]: UpperCAmelCase : List[Any] = """ """.join(A ).replace("""@@ """ , """""" ).strip() return out_string def _lowercase( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : List[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) if os.path.abspath(self.merges_file ) != os.path.abspath(A ): copyfile(self.merges_file , A ) return out_vocab_file, out_merge_file def _lowercase( self , A ) -> List[str]: if isinstance(A , A ): try: with open(A , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return UpperCAmelCase : int = f.readlines() for lineTmp in lines: UpperCAmelCase : int = lineTmp.strip() UpperCAmelCase : Optional[Any] = line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) UpperCAmelCase : int = line[:idx] UpperCAmelCase : Union[str, Any] = len(self.encoder )
672
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class UpperCamelCase_ ( __magic_name__ ): lowercase = 42 lowercase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(""">=""", """0.0.12""") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class UpperCamelCase_ ( __magic_name__ ): lowercase = 42 lowercase = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
672
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations UpperCAmelCase : List[Any] = tpu_short_seq_length
672
1
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> set: UpperCAmelCase : Any = set() # edges = list of graph's edges UpperCAmelCase : Dict = get_edges(_lowercase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: UpperCAmelCase , UpperCAmelCase : Optional[Any] = edges.pop() chosen_vertices.add(_lowercase ) chosen_vertices.add(_lowercase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_lowercase ) return chosen_vertices def __lowerCamelCase ( _lowercase ) -> set: UpperCAmelCase : Any = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
672
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
1
'''simple docstring''' import numpy # List of input, output pairs a : Optional[int] = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) a : List[str] = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) a : int = [2, 4, 1, 5] a : Optional[Any] = len(train_data) a : List[Any] = 0.0_0_9 def __lowerCamelCase ( _lowercase , _lowercase="train" ) -> Dict: return calculate_hypothesis_value(_lowercase , _lowercase ) - output( _lowercase , _lowercase ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 for i in range(len(_lowercase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def __lowerCamelCase ( _lowercase , _lowercase ) -> Dict: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def __lowerCamelCase ( _lowercase , _lowercase=m ) -> Any: UpperCAmelCase : Dict = 0 for i in range(_lowercase ): if index == -1: summation_value += _error(_lowercase ) else: summation_value += _error(_lowercase ) * train_data[i][0][index] return summation_value def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : Tuple = summation_of_cost_derivative(_lowercase , _lowercase ) / m return cost_derivative_value def __lowerCamelCase ( ) -> List[Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase : int = 0.00_0002 UpperCAmelCase : str = 0 UpperCAmelCase : Tuple = 0 while True: j += 1 UpperCAmelCase : Tuple = [0, 0, 0, 0] for i in range(0 , len(_lowercase ) ): UpperCAmelCase : Dict = get_cost_derivative(i - 1 ) UpperCAmelCase : List[str] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _lowercase , _lowercase , atol=_lowercase , rtol=_lowercase , ): break UpperCAmelCase : List[Any] = temp_parameter_vector print(("""Number of iterations:""", j) ) def __lowerCamelCase ( ) -> List[str]: for i in range(len(_lowercase ) ): print(("""Actual output value:""", output(_lowercase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(_lowercase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
672
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
1
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __lowerCamelCase ( _lowercase , _lowercase ) -> float: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(_lowercase , _lowercase ) ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[list[float] | float]]: if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( """Wrong input data's dimensions... """ F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(_lowercase ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( """Wrong input data's shape... """ F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(_lowercase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: UpperCAmelCase : Any = ( """Input data have different datatype... """ F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(_lowercase ) UpperCAmelCase : Any = [] for value in value_array: UpperCAmelCase : int = euclidean(_lowercase , dataset[0] ) UpperCAmelCase : Any = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : List[Any] = euclidean(_lowercase , _lowercase ) if dist > temp_dist: UpperCAmelCase : str = temp_dist UpperCAmelCase : Any = dataset_value.tolist() answer.append([vector, dist] ) return answer def __lowerCamelCase ( _lowercase , _lowercase ) -> float: return np.dot(_lowercase , _lowercase ) / (norm(_lowercase ) * norm(_lowercase )) if __name__ == "__main__": import doctest doctest.testmod()
672
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
1
'''simple docstring''' from itertools import count def __lowerCamelCase ( _lowercase = 5_0 ) -> int: UpperCAmelCase : int = [1] * min_block_length for n in count(_lowercase ): fill_count_functions.append(1 ) for block_length in range(_lowercase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_0_0_0_0_0_0: break return n if __name__ == "__main__": print(F'''{solution() = }''')
672
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
1
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
1
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a : Optional[Any] = logging.get_logger(__name__) a : Any = { """huggingface/time-series-transformer-tourism-monthly""": ( """https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json""" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'time_series_transformer' lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , A = None , A = None , A = "student_t" , A = "nll" , A = 1 , A = [1, 2, 3, 4, 5, 6, 7] , A = "mean" , A = 0 , A = 0 , A = 0 , A = 0 , A = None , A = None , A = 32 , A = 32 , A = 2 , A = 2 , A = 2 , A = 2 , A = True , A = "gelu" , A = 64 , A = 0.1 , A = 0.1 , A = 0.1 , A = 0.1 , A = 0.1 , A = 100 , A = 0.0_2 , A=True , **A , ) -> int: # time series specific configuration UpperCAmelCase : List[Any] = prediction_length UpperCAmelCase : List[str] = context_length or prediction_length UpperCAmelCase : Any = distribution_output UpperCAmelCase : Union[str, Any] = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Any = num_time_features UpperCAmelCase : str = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Union[str, Any] = num_dynamic_real_features UpperCAmelCase : Union[str, Any] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(A ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) UpperCAmelCase : Union[str, Any] = cardinality else: UpperCAmelCase : str = [0] if embedding_dimension and num_static_categorical_features > 0: if len(A ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) UpperCAmelCase : List[str] = embedding_dimension else: UpperCAmelCase : Optional[Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : int = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : str = input_size * len(A ) + self._number_of_features UpperCAmelCase : List[str] = d_model UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_attention_heads UpperCAmelCase : int = encoder_ffn_dim UpperCAmelCase : Any = decoder_ffn_dim UpperCAmelCase : Dict = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : Optional[Any] = dropout UpperCAmelCase : Dict = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Union[str, Any] = encoder_layerdrop UpperCAmelCase : Optional[Any] = decoder_layerdrop UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : List[str] = init_std UpperCAmelCase : Optional[int] = use_cache super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
672
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
1
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> str: if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) UpperCAmelCase : Dict = str(bin(_lowercase ) )[2:] # remove the leading "0b" UpperCAmelCase : Tuple = str(bin(_lowercase ) )[2:] # remove the leading "0b" UpperCAmelCase : List[str] = max(len(_lowercase ) , len(_lowercase ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(_lowercase ) , b_binary.zfill(_lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
672
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: return ("This is a test", "This is a test") def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """</s>""" UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(A ) , 1103 ) def _lowercase( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> str: return ("This is a test", "This is a test") def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : str = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
672
1
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class UpperCamelCase_ : def __init__( self ) -> str: UpperCAmelCase : int = {} def _lowercase( self , A ) -> None: UpperCAmelCase : Any = {} def _lowercase( self , A , A , A ) -> None: if nodea not in self.connections: self.add_node(A ) if nodea not in self.connections: self.add_node(A ) UpperCAmelCase : List[str] = probability def _lowercase( self ) -> list[str]: return list(self.connections ) def _lowercase( self , A ) -> str: UpperCAmelCase : List[str] = 0 UpperCAmelCase : Dict = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> dict[str, int]: UpperCAmelCase : Optional[Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : Optional[Any] = Counter(graph.get_nodes() ) UpperCAmelCase : List[Any] = start for _ in range(_lowercase ): UpperCAmelCase : Tuple = graph.transition(_lowercase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
672
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Any = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : int = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ConvNextVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase : Any = model_class(A ) model.to(A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : List[str] = False UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
672
1
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
672
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging a : Optional[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[int]: if isinstance(_lowercase , np.ndarray ): return list(tensor.shape ) UpperCAmelCase : int = tf.shape(_lowercase ) if tensor.shape == tf.TensorShape(_lowercase ): return dynamic UpperCAmelCase : Optional[Any] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(_lowercase )] def __lowerCamelCase ( _lowercase , _lowercase = None , _lowercase = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=_lowercase , name=_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=1e-5 , _lowercase=-1 ) -> int: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_lowercase , _lowercase ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized UpperCAmelCase , UpperCAmelCase : Tuple = tf.nn.moments(_lowercase , axes=[axis] , keepdims=_lowercase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis UpperCAmelCase : Union[str, Any] = [1] * inputs.shape.rank UpperCAmelCase : List[Any] = shape_list(_lowercase )[axis] UpperCAmelCase : Dict = tf.reshape(_lowercase , _lowercase ) UpperCAmelCase : int = tf.reshape(_lowercase , _lowercase ) # Compute layer normalization using the batch_normalization # function. UpperCAmelCase : Optional[Any] = tf.nn.batch_normalization( _lowercase , _lowercase , _lowercase , offset=_lowercase , scale=_lowercase , variance_epsilon=_lowercase , ) return outputs def __lowerCamelCase ( _lowercase , _lowercase=0 , _lowercase=-1 ) -> int: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input UpperCAmelCase : List[str] = tf.shape(_lowercase ) UpperCAmelCase : Tuple = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) UpperCAmelCase : Optional[Any] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(_lowercase , _lowercase ) def __lowerCamelCase ( _lowercase ) -> tf.Tensor: if not isinstance(_lowercase , tf.Tensor ): UpperCAmelCase : Optional[int] = tf.convert_to_tensor(_lowercase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: UpperCAmelCase : Tuple = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: UpperCAmelCase : Dict = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) UpperCAmelCase : List[Any] = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __lowerCamelCase ( _lowercase , _lowercase , _lowercase = "input_ids" ) -> None: tf.debugging.assert_less( _lowercase , tf.cast(_lowercase , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(_lowercase )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = 6_4_5_1_2 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. UpperCAmelCase : Optional[int] = [x for x in data if len(_lowercase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) UpperCAmelCase : Dict = np.asarray(_lowercase ) UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Union[str, Any] = np.array_split(_lowercase , _lowercase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 UpperCAmelCase : int = np.array_split(_lowercase , _lowercase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(_lowercase ): UpperCAmelCase : Union[str, Any] = chunk_data else: UpperCAmelCase : int = data def __lowerCamelCase ( _lowercase , _lowercase ) -> int: if name in group.attrs: UpperCAmelCase : List[str] = [n.decode("""utf8""" ) if hasattr(_lowercase , """decode""" ) else n for n in group.attrs[name]] else: UpperCAmelCase : str = [] UpperCAmelCase : int = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(_lowercase , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def __lowerCamelCase ( _lowercase ) -> Tuple: def _expand_single_ad_tensor(_lowercase ): if isinstance(_lowercase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(_lowercase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , _lowercase )
672
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
1
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: return ("This is a test", "This is a test") def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """</s>""" UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(A ) , 1103 ) def _lowercase( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> str: return ("This is a test", "This is a test") def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : str = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
672
'''simple docstring''' a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a : Optional[Any] = True a : List[Any] = False def __lowerCamelCase ( _lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : List[str] = chain(next_number(_lowercase ) ) UpperCAmelCase : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase : List[str] = number_chain number *= 1_0 return number_chain def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , _lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
672
1
'''simple docstring''' a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a : Optional[Any] = True a : List[Any] = False def __lowerCamelCase ( _lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : List[str] = chain(next_number(_lowercase ) ) UpperCAmelCase : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase : List[str] = number_chain number *= 1_0 return number_chain def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , _lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
'''simple docstring''' from statistics import mean, stdev def __lowerCamelCase ( _lowercase , _lowercase = 3 ) -> list: UpperCAmelCase : Union[str, Any] = min(_lowercase ) UpperCAmelCase : Optional[int] = max(_lowercase ) # normalize data return [round((x - x_min) / (x_max - x_min) , _lowercase ) for x in data] def __lowerCamelCase ( _lowercase , _lowercase = 3 ) -> list: UpperCAmelCase : List[str] = mean(_lowercase ) UpperCAmelCase : Tuple = stdev(_lowercase ) # standardize data return [round((x - mu) / (sigma) , _lowercase ) for x in data]
672
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Any = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
672
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class UpperCamelCase_ ( __magic_name__ ): lowercase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
'''simple docstring''' from math import ceil, sqrt def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0 ) -> int: UpperCAmelCase : Any = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: UpperCAmelCase : Optional[Any] = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: UpperCAmelCase : Any = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'''{solution() = }''')
672
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
1
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean a : Any = 0 a : Union[str, Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a : str = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right a : str = tuple[int, int] class UpperCamelCase_ : def __init__( self , A , A , A , A , A , A , ) -> None: UpperCAmelCase : str = pos_x UpperCAmelCase : Dict = pos_y UpperCAmelCase : Optional[Any] = (pos_y, pos_x) UpperCAmelCase : List[Any] = goal_x UpperCAmelCase : Tuple = goal_y UpperCAmelCase : Union[str, Any] = g_cost UpperCAmelCase : str = parent UpperCAmelCase : List[str] = self.calculate_heuristic() UpperCAmelCase : Any = self.g_cost + self.h_cost def _lowercase( self ) -> float: UpperCAmelCase : int = self.pos_x - self.goal_x UpperCAmelCase : Dict = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(A ) + abs(A ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , A ) -> bool: return self.f_cost < other.f_cost class UpperCamelCase_ : def __init__( self , A , A ) -> Optional[Any]: UpperCAmelCase : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , A ) UpperCAmelCase : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , A ) UpperCAmelCase : List[Any] = [self.start] UpperCAmelCase : list[Node] = [] UpperCAmelCase : Dict = False def _lowercase( self ) -> list[TPosition]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(A ) self.closed_nodes.append(A ) UpperCAmelCase : Any = self.get_successors(A ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A ) else: # retrieve the best current path UpperCAmelCase : int = self.open_nodes.pop(self.open_nodes.index(A ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A ) else: self.open_nodes.append(A ) return [self.start.pos] def _lowercase( self , A ) -> list[Node]: UpperCAmelCase : str = [] for action in delta: UpperCAmelCase : Dict = parent.pos_x + action[1] UpperCAmelCase : str = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A , A , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , A , ) ) return successors def _lowercase( self , A ) -> list[TPosition]: UpperCAmelCase : Any = node UpperCAmelCase : Dict = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase : Optional[Any] = current_node.parent path.reverse() return path class UpperCamelCase_ : def __init__( self , A , A ) -> None: UpperCAmelCase : List[Any] = AStar(A , A ) UpperCAmelCase : Dict = AStar(A , A ) UpperCAmelCase : Tuple = False def _lowercase( self ) -> list[TPosition]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase : str = self.fwd_astar.open_nodes.pop(0 ) UpperCAmelCase : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( A , A ) self.fwd_astar.closed_nodes.append(A ) self.bwd_astar.closed_nodes.append(A ) UpperCAmelCase : Union[str, Any] = current_bwd_node UpperCAmelCase : str = current_fwd_node UpperCAmelCase : Optional[int] = { self.fwd_astar: self.fwd_astar.get_successors(A ), self.bwd_astar: self.bwd_astar.get_successors(A ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(A ) else: # retrieve the best current path UpperCAmelCase : Optional[Any] = astar.open_nodes.pop( astar.open_nodes.index(A ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(A ) else: astar.open_nodes.append(A ) return [self.fwd_astar.start.pos] def _lowercase( self , A , A ) -> list[TPosition]: UpperCAmelCase : Optional[Any] = self.fwd_astar.retrace_path(A ) UpperCAmelCase : List[Any] = self.bwd_astar.retrace_path(A ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase : int = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] a : Optional[int] = (0, 0) a : str = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a : Union[str, Any] = time.time() a : Dict = AStar(init, goal) a : Tuple = a_star.search() a : Optional[int] = time.time() - start_time print(F'''AStar execution time = {end_time:f} seconds''') a : Optional[int] = time.time() a : Dict = BidirectionalAStar(init, goal) a : str = time.time() - bd_start_time print(F'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
672
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A=None , A=None , **A ) -> str: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase : List[Any] = str(jax.devices()[0] ) UpperCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def _lowercase( self , A ) -> str: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _lowercase( self , A ) -> Tuple: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase : List[str] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase : str = {"""dtype""": jnp.intaa} else: UpperCAmelCase : int = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase : Any = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): UpperCAmelCase : List[str] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase( self , A ) -> Tuple: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): UpperCAmelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _lowercase( self , A ) -> Dict: return map_nested(self._recursive_tensorize , A , map_list=A ) def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A ) UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _lowercase( self , A ) -> "jax.Array": UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A ) UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) UpperCAmelCase : Any = self._consolidate(A ) return column def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A ) UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) for column_name in batch: UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
672
1
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a : List[str] = 1_6 a : List[Any] = 3_2 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = 1_6 ) -> Any: UpperCAmelCase : Dict = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCAmelCase : Optional[Any] = DatasetDict( { """train""": dataset["""train"""].select(_lowercase ), """validation""": dataset["""train"""].select(_lowercase ), """test""": dataset["""validation"""], } ) def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase : str = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowercase , max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase : Any = datasets.map( _lowercase , batched=_lowercase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase : int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase : Any = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase : List[str] = 1_6 elif accelerator.mixed_precision != "no": UpperCAmelCase : Any = 8 else: UpperCAmelCase : Tuple = None return tokenizer.pad( _lowercase , padding="""longest""" , max_length=_lowercase , pad_to_multiple_of=_lowercase , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCAmelCase : int = DataLoader( tokenized_datasets["""train"""] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) UpperCAmelCase : Tuple = DataLoader( tokenized_datasets["""validation"""] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) UpperCAmelCase : Tuple = DataLoader( tokenized_datasets["""test"""] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) return train_dataloader, eval_dataloader, test_dataloader def __lowerCamelCase ( _lowercase , _lowercase ) -> List[Any]: # New Code # UpperCAmelCase : List[Any] = [] # Download the dataset UpperCAmelCase : List[Any] = load_dataset("""glue""" , """mrpc""" ) # Create our splits UpperCAmelCase : Dict = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator UpperCAmelCase : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase : List[str] = config["""lr"""] UpperCAmelCase : str = int(config["""num_epochs"""] ) UpperCAmelCase : str = int(config["""seed"""] ) UpperCAmelCase : Tuple = int(config["""batch_size"""] ) UpperCAmelCase : Union[str, Any] = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation UpperCAmelCase : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase : str = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase : Optional[int] = MAX_GPU_BATCH_SIZE set_seed(_lowercase ) # New Code # # Create our folds: UpperCAmelCase : Optional[int] = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_lowercase ): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = get_fold_dataloaders( _lowercase , _lowercase , _lowercase , _lowercase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase : Optional[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase : Any = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase : Union[str, Any] = AdamW(params=model.parameters() , lr=_lowercase ) # Instantiate scheduler UpperCAmelCase : Any = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=1_0_0 , num_training_steps=(len(_lowercase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Now we train the model for epoch in range(_lowercase ): model.train() for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase : Optional[Any] = model(**_lowercase ) UpperCAmelCase : Any = outputs.loss UpperCAmelCase : Any = loss / gradient_accumulation_steps accelerator.backward(_lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**_lowercase ) UpperCAmelCase : Any = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_lowercase , references=_lowercase , ) UpperCAmelCase : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowercase ) # New Code # # We also run predictions on the test set at the very end UpperCAmelCase : Optional[Any] = [] for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**_lowercase ) UpperCAmelCase : List[str] = outputs.logits UpperCAmelCase , UpperCAmelCase : Dict = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_lowercase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: UpperCAmelCase : Dict = torch.cat(_lowercase , dim=0 ) UpperCAmelCase : int = torch.stack(_lowercase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) UpperCAmelCase : List[Any] = metric.compute(predictions=_lowercase , references=_lowercase ) accelerator.print("""Average test metrics from all folds:""" , _lowercase ) def __lowerCamelCase ( ) -> Optional[Any]: UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_lowercase , default=_lowercase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=_lowercase , default=3 , help="""The number of splits to perform across the dataset""" ) UpperCAmelCase : Optional[int] = parser.parse_args() UpperCAmelCase : Optional[int] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
672
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : int = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
672
1
'''simple docstring''' from torch import nn def __lowerCamelCase ( _lowercase ) -> Optional[int]: if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'''Unsupported activation function: {act_fn}''' )
672
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
672
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class UpperCamelCase_ : lowercase = LEDConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , A=4 , ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Dict = use_labels UpperCAmelCase : Dict = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : int = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : List[str] = attention_probs_dropout_prob UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : str = eos_token_id UpperCAmelCase : Tuple = pad_token_id UpperCAmelCase : str = bos_token_id UpperCAmelCase : Any = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after UpperCAmelCase : Tuple = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests UpperCAmelCase : Tuple = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) UpperCAmelCase : Tuple = prepare_led_inputs_dict(A , A , A ) UpperCAmelCase : List[Any] = tf.concat( [tf.zeros_like(A )[:, :-1], tf.ones_like(A )[:, -1:]] , axis=-1 , ) UpperCAmelCase : Tuple = global_attention_mask return config, inputs_dict def _lowercase( self , A , A ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = TFLEDModel(config=A ).get_decoder() UpperCAmelCase : Union[str, Any] = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : int = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : str = 1 # first forward pass UpperCAmelCase : Optional[int] = model(A , attention_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase : Any = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase : Dict = model(A , attention_mask=A )[0] UpperCAmelCase : List[Any] = model(A , attention_mask=A , past_key_values=A )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A , A , rtol=1e-3 ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> Optional[Any]: if attention_mask is None: UpperCAmelCase : str = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowercase = (TFLEDForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = TFLEDModelTester(self ) UpperCAmelCase : Any = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> str: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[int] = tf.zeros_like(inputs_dict["""attention_mask"""] ) UpperCAmelCase : List[str] = 2 UpperCAmelCase : Any = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["""global_attention_mask"""] , ) UpperCAmelCase : int = True UpperCAmelCase : Any = self.model_tester.seq_length UpperCAmelCase : Any = self.model_tester.encoder_seq_length def check_decoder_attentions_output(A ): UpperCAmelCase : Union[str, Any] = outputs.decoder_attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(A ): UpperCAmelCase : Optional[Any] = [t.numpy() for t in outputs.encoder_attentions] UpperCAmelCase : Optional[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : Dict = False UpperCAmelCase : Optional[int] = False UpperCAmelCase : Dict = model_class(A ) UpperCAmelCase : int = model(self._prepare_for_class(A , A ) ) UpperCAmelCase : Any = len(A ) self.assertEqual(config.output_hidden_states , A ) check_encoder_attentions_output(A ) if self.is_encoder_decoder: UpperCAmelCase : Dict = model_class(A ) UpperCAmelCase : Dict = model(self._prepare_for_class(A , A ) ) self.assertEqual(config.output_hidden_states , A ) check_decoder_attentions_output(A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase : Any = True UpperCAmelCase : Dict = model_class(A ) UpperCAmelCase : int = model(self._prepare_for_class(A , A ) ) self.assertEqual(config.output_hidden_states , A ) check_encoder_attentions_output(A ) # Check attention is always last and order is fine UpperCAmelCase : Any = True UpperCAmelCase : Any = True UpperCAmelCase : int = model_class(A ) UpperCAmelCase : Dict = model(self._prepare_for_class(A , A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(A ) ) self.assertEqual(model.config.output_hidden_states , A ) check_encoder_attentions_output(A ) @unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""" ) def _lowercase( self ) -> List[Any]: pass def _lowercase( self ) -> Optional[int]: # TODO: Head-masking not yet implement pass def __lowerCamelCase ( _lowercase ) -> List[str]: return tf.constant(_lowercase , dtype=tf.intaa ) a : int = 1E-4 @slow @require_tf class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ).led # change to intended input here UpperCAmelCase : List[Any] = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase : Optional[Any] = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase : Tuple = prepare_led_inputs_dict(model.config , A , A ) UpperCAmelCase : List[Any] = model(**A )[0] UpperCAmelCase : Optional[Any] = (1, 1024, 768) self.assertEqual(output.shape , A ) # change to expected output here UpperCAmelCase : int = tf.convert_to_tensor( [[2.3_0_5_0, 2.8_2_7_9, 0.6_5_3_1], [-1.8_4_5_7, -0.1_4_5_5, -3.5_6_6_1], [-1.0_1_8_6, 0.4_5_8_6, -2.2_0_4_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , A , atol=1e-3 ) def _lowercase( self ) -> str: UpperCAmelCase : str = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ) # change to intended input here UpperCAmelCase : List[str] = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase : Union[str, Any] = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase : Optional[int] = prepare_led_inputs_dict(model.config , A , A ) UpperCAmelCase : Union[str, Any] = model(**A )[0] UpperCAmelCase : Optional[Any] = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , A ) # change to expected output here UpperCAmelCase : str = tf.convert_to_tensor( [[3_3.6_5_0_7, 6.4_5_7_2, 1_6.8_0_8_9], [5.8_7_3_9, -2.4_2_3_8, 1_1.2_9_0_2], [-3.2_1_3_9, -4.3_1_4_9, 4.2_7_8_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , A , atol=1e-3 , rtol=1e-3 )
672
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
672
1
'''simple docstring''' import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> Dict: UpperCAmelCase : List[Any] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Optional[int] = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : List[str] = num_stages UpperCAmelCase : Optional[int] = hidden_sizes UpperCAmelCase : Optional[Any] = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_labels UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Optional[int] = num_labels UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : Any = out_features UpperCAmelCase : str = out_indices UpperCAmelCase : Dict = scope def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : Dict = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[int]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> List[str]: UpperCAmelCase : Optional[Any] = ConvNextModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Optional[int] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Tuple: UpperCAmelCase : List[str] = ConvNextForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[str] = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ConvNextBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[str] = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Dict = ConvNextBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Optional[Any] = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) lowercase = True lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ConvNextModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> Union[str, Any]: return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def _lowercase( self ) -> int: pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[str] = model_class(A ) UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : str = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> str: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A ) def _lowercase( self ) -> Optional[Any]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : str = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : List[str] = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Any = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Any = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : Dict = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> int: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Optional[Any]: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[int] = ConvNextModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Union[str, Any]: UpperCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> Dict: return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(A ) UpperCAmelCase : Union[str, Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Dict = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Any = model(**A ) # verify the logits UpperCAmelCase : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Optional[int] = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase , __magic_name__ ): lowercase = (ConvNextBackbone,) if is_torch_available() else () lowercase = ConvNextConfig lowercase = False def _lowercase( self ) -> Dict: UpperCAmelCase : int = ConvNextModelTester(self )
672
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[str] = logging.get_logger(__name__) a : Optional[Any] = { """caidas/swin2sr-classicalsr-x2-64""": ( """https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json""" ), } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'swin2sr' lowercase = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , A=64 , A=1 , A=3 , A=180 , A=[6, 6, 6, 6, 6, 6] , A=[6, 6, 6, 6, 6, 6] , A=8 , A=2.0 , A=True , A=0.0 , A=0.0 , A=0.1 , A="gelu" , A=False , A=0.0_2 , A=1e-5 , A=2 , A=1.0 , A="1conv" , A="pixelshuffle" , **A , ) -> List[str]: super().__init__(**A ) UpperCAmelCase : List[str] = image_size UpperCAmelCase : Dict = patch_size UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : Union[str, Any] = embed_dim UpperCAmelCase : Dict = depths UpperCAmelCase : Dict = len(A ) UpperCAmelCase : Dict = num_heads UpperCAmelCase : str = window_size UpperCAmelCase : Tuple = mlp_ratio UpperCAmelCase : List[str] = qkv_bias UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : List[str] = drop_path_rate UpperCAmelCase : Tuple = hidden_act UpperCAmelCase : List[str] = use_absolute_embeddings UpperCAmelCase : List[str] = layer_norm_eps UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Any = upscale UpperCAmelCase : Tuple = img_range UpperCAmelCase : Tuple = resi_connection UpperCAmelCase : Tuple = upsampler
672
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
1
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> str: UpperCAmelCase : Optional[Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" UpperCAmelCase : Union[str, Any] = """""" UpperCAmelCase : Any = """""" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_lowercase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring UpperCAmelCase , UpperCAmelCase : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i UpperCAmelCase : int = [1 for i in range(len(_lowercase ) )] # for each character in new_string find corresponding palindromic string UpperCAmelCase : Optional[Any] = 0 for j in range(len(_lowercase ) ): UpperCAmelCase : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_lowercase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 UpperCAmelCase : List[Any] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: UpperCAmelCase : Any = j - k + 1 # noqa: E741 UpperCAmelCase : List[str] = j + k - 1 # update max_length and start position if max_length < length[j]: UpperCAmelCase : Union[str, Any] = length[j] UpperCAmelCase : List[str] = j # create that string UpperCAmelCase : List[Any] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
672
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations UpperCAmelCase : List[Any] = tpu_short_seq_length
672
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a : int = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[List[ImageInput]]: if isinstance(_lowercase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_lowercase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_lowercase ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class UpperCamelCase_ ( __magic_name__ ): lowercase = ['pixel_values'] def __init__( self , A = True , A = None , A = PILImageResampling.BILINEAR , A = True , A = None , A = True , A = 1 / 255 , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) UpperCAmelCase : Dict = size if size is not None else {"""shortest_edge""": 224} UpperCAmelCase : List[Any] = get_size_dict(A , default_to_square=A ) UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase : Any = get_size_dict(A , param_name="""crop_size""" ) UpperCAmelCase : str = do_resize UpperCAmelCase : str = size UpperCAmelCase : Optional[Any] = do_center_crop UpperCAmelCase : Union[str, Any] = crop_size UpperCAmelCase : Dict = resample UpperCAmelCase : str = do_rescale UpperCAmelCase : Tuple = rescale_factor UpperCAmelCase : Optional[int] = do_normalize UpperCAmelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase( self , A , A , A = PILImageResampling.BILINEAR , A = None , **A , ) -> np.ndarray: UpperCAmelCase : List[str] = get_size_dict(A , default_to_square=A ) if "shortest_edge" in size: UpperCAmelCase : List[str] = get_resize_output_image_size(A , size["""shortest_edge"""] , default_to_square=A ) elif "height" in size and "width" in size: UpperCAmelCase : List[str] = (size["""height"""], size["""width"""]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(A , size=A , resample=A , data_format=A , **A ) def _lowercase( self , A , A , A = None , **A , ) -> np.ndarray: UpperCAmelCase : List[str] = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def _lowercase( self , A , A , A = None , **A , ) -> List[str]: return rescale(A , scale=A , data_format=A , **A ) def _lowercase( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def _lowercase( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase : List[str] = to_numpy_array(A ) if do_resize: UpperCAmelCase : str = self.resize(image=A , size=A , resample=A ) if do_center_crop: UpperCAmelCase : Tuple = self.center_crop(A , size=A ) if do_rescale: UpperCAmelCase : Optional[Any] = self.rescale(image=A , scale=A ) if do_normalize: UpperCAmelCase : List[Any] = self.normalize(image=A , mean=A , std=A ) UpperCAmelCase : int = to_channel_dimension_format(A , A ) return image def _lowercase( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: UpperCAmelCase : Any = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : int = resample if resample is not None else self.resample UpperCAmelCase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase : Tuple = image_std if image_std is not None else self.image_std UpperCAmelCase : Optional[int] = size if size is not None else self.size UpperCAmelCase : Union[str, Any] = get_size_dict(A , default_to_square=A ) UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase : Dict = get_size_dict(A , param_name="""crop_size""" ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) UpperCAmelCase : List[Any] = make_batched(A ) UpperCAmelCase : Dict = [ [ self._preprocess_image( image=A , do_resize=A , size=A , resample=A , do_center_crop=A , crop_size=A , do_rescale=A , rescale_factor=A , do_normalize=A , image_mean=A , image_std=A , data_format=A , ) for img in video ] for video in videos ] UpperCAmelCase : int = {"""pixel_values""": videos} return BatchFeature(data=A , tensor_type=A )
672
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
1
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC a : Any = parse(importlib.metadata.version("""torch""")) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' ) UpperCAmelCase : Tuple = STR_OPERATION_TO_FUNC[operation] if isinstance(_lowercase , _lowercase ): UpperCAmelCase : Any = parse(importlib.metadata.version(_lowercase ) ) return operation(_lowercase , parse(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Union[str, Any]: return compare_versions(_lowercase , _lowercase , _lowercase )
672
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
1
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase , UpperCAmelCase : Tuple = 9, 1_4 # noqa: F841 UpperCAmelCase : Any = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] UpperCAmelCase : int = defaultdict(_lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) UpperCAmelCase : Tuple = mst(_lowercase ) UpperCAmelCase : Optional[int] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: UpperCAmelCase : int = tuple(answer[:2] ) UpperCAmelCase : Optional[Any] = tuple(edge[::-1] ) assert edge in result or reverse in result
672
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() a : Union[str, Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase , _lowercase=False , _lowercase=False ) -> Dict: UpperCAmelCase : Any = """backbone.""" if is_semantic else """""" UpperCAmelCase : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (F'''{prefix}cls_token''', """beit.embeddings.cls_token"""), (F'''{prefix}patch_embed.proj.weight''', """beit.embeddings.patch_embeddings.projection.weight"""), (F'''{prefix}patch_embed.proj.bias''', """beit.embeddings.patch_embeddings.projection.bias"""), (F'''{prefix}pos_embed''', """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=False , _lowercase=False ) -> Dict: for i in range(config.num_hidden_layers ): UpperCAmelCase : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values UpperCAmelCase : Union[str, Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase : Optional[int] = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' ) UpperCAmelCase : Any = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' ) UpperCAmelCase : List[Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase : Optional[int] = q_bias UpperCAmelCase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : Union[str, Any] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCAmelCase : str = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' ) UpperCAmelCase : Dict = gamma_a UpperCAmelCase : Tuple = gamma_a def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Any: UpperCAmelCase : Any = dct.pop(_lowercase ) UpperCAmelCase : Optional[int] = val def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=False ) -> str: UpperCAmelCase : Any = False if """rvlcdip""" in checkpoint_url else True UpperCAmelCase : int = BeitConfig(use_absolute_position_embeddings=_lowercase , use_mask_token=_lowercase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCAmelCase : Tuple = 1_0_2_4 UpperCAmelCase : Tuple = 4_0_9_6 UpperCAmelCase : str = 2_4 UpperCAmelCase : Optional[Any] = 1_6 # labels if "rvlcdip" in checkpoint_url: UpperCAmelCase : List[Any] = 1_6 UpperCAmelCase : Union[str, Any] = """huggingface/label-files""" UpperCAmelCase : Optional[int] = """rvlcdip-id2label.json""" UpperCAmelCase : Any = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : str = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Dict = idalabel UpperCAmelCase : Any = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCAmelCase : Dict = torch.hub.load_state_dict_from_url(_lowercase , map_location="""cpu""" )["""model"""] UpperCAmelCase : Any = create_rename_keys(_lowercase , has_lm_head=_lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) read_in_q_k_v(_lowercase , _lowercase , has_lm_head=_lowercase ) # load HuggingFace model UpperCAmelCase : List[Any] = BeitForMaskedImageModeling(_lowercase ) if has_lm_head else BeitForImageClassification(_lowercase ) model.eval() model.load_state_dict(_lowercase ) # Check outputs on an image UpperCAmelCase : Dict = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_lowercase ) UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Optional[Any] = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : Union[str, Any] = encoding["""pixel_values"""] UpperCAmelCase : int = model(_lowercase ) UpperCAmelCase : int = outputs.logits # verify logits UpperCAmelCase : Any = [1, 1_6] if """rvlcdip""" in checkpoint_url else [1, 1_9_6, 8_1_9_2] assert logits.shape == torch.Size(_lowercase ), "Shape of logits not as expected" Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowercase ) if push_to_hub: if has_lm_head: UpperCAmelCase : Union[str, Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: UpperCAmelCase : int = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(_lowercase , _lowercase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=_lowercase , ) model.push_to_hub( repo_path_or_name=Path(_lowercase , _lowercase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=_lowercase , ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) a : int = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
672
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
1
'''simple docstring''' a : Union[str, Any] = 6_5_5_2_1 def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 1 UpperCAmelCase : Any = 0 for plain_chr in plain_text: UpperCAmelCase : Optional[int] = (a + ord(_lowercase )) % MOD_ADLER UpperCAmelCase : Optional[int] = (b + a) % MOD_ADLER return (b << 1_6) | a
672
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: a : List[str] = None a : Dict = logging.get_logger(__name__) a : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Any = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/tokenizer.json""", }, } a : int = { """camembert-base""": 5_1_2, } a : Dict = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = CamembertTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=["<s>NOTUSED", "</s>NOTUSED"] , **A , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Optional[int] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , sep_token=A , cls_token=A , unk_token=A , pad_token=A , mask_token=A , additional_special_tokens=A , **A , ) UpperCAmelCase : Optional[Any] = vocab_file UpperCAmelCase : List[str] = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Dict = [self.sep_token_id] UpperCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : Union[str, Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
1
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() a : Tuple = logging.get_logger("""transformers.models.speecht5""") a : Any = { """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } a : Union[str, Any] = { """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } a : str = { """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } a : Dict = { """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } a : Union[str, Any] = { """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } a : List[str] = { """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } a : List[str] = { """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } a : Union[str, Any] = { """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } a : Union[str, Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } a : Any = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } a : Tuple = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } a : Any = [] a : List[str] = [ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] a : Optional[Any] = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] a : Optional[int] = IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] a : Optional[Any] = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]: for attribute in key.split(""".""" ): UpperCAmelCase : str = getattr(_lowercase , _lowercase ) if weight_type is not None: UpperCAmelCase : Optional[Any] = getattr(_lowercase , _lowercase ).shape else: UpperCAmelCase : Tuple = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase : Any = value elif weight_type == "weight_g": UpperCAmelCase : List[str] = value elif weight_type == "weight_v": UpperCAmelCase : Dict = value elif weight_type == "bias": UpperCAmelCase : List[str] = value elif weight_type == "running_mean": UpperCAmelCase : Any = value elif weight_type == "running_var": UpperCAmelCase : Tuple = value elif weight_type == "num_batches_tracked": UpperCAmelCase : Any = value else: UpperCAmelCase : Union[str, Any] = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> List[Any]: for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[Any]: UpperCAmelCase : Optional[Any] = [] if task == "s2t": UpperCAmelCase : List[str] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase : Any = MAPPING_S2T UpperCAmelCase : List[Any] = IGNORE_KEYS_S2T elif task == "t2s": UpperCAmelCase : Optional[int] = None UpperCAmelCase : Optional[Any] = MAPPING_T2S UpperCAmelCase : Any = IGNORE_KEYS_T2S elif task == "s2s": UpperCAmelCase : List[Any] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase : List[Any] = MAPPING_S2S UpperCAmelCase : Dict = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(_lowercase , _lowercase ): logger.info(F'''{name} was ignored''' ) continue UpperCAmelCase : List[Any] = False if "conv_layers" in name: load_conv_layer( _lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase : List[str] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = key.split(""".*.""" ) if prefix in name and suffix in name: UpperCAmelCase : List[str] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCAmelCase : Dict = True if "*" in mapped_key: UpperCAmelCase : Tuple = name.split(_lowercase )[0].split(""".""" )[-2] UpperCAmelCase : Optional[Any] = mapped_key.replace("""*""" , _lowercase ) if "weight_g" in name: UpperCAmelCase : List[Any] = """weight_g""" elif "weight_v" in name: UpperCAmelCase : List[str] = """weight_v""" elif "bias" in name: UpperCAmelCase : List[str] = """bias""" elif "weight" in name: UpperCAmelCase : str = """weight""" elif "running_mean" in name: UpperCAmelCase : Dict = """running_mean""" elif "running_var" in name: UpperCAmelCase : str = """running_var""" elif "num_batches_tracked" in name: UpperCAmelCase : str = """num_batches_tracked""" else: UpperCAmelCase : Optional[Any] = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) continue if not is_used: unused_weights.append(_lowercase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : Tuple = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase : Any = name.split(""".""" ) UpperCAmelCase : List[Any] = int(items[0] ) UpperCAmelCase : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCAmelCase : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase : Tuple = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowercase ) @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , ) -> Union[str, Any]: if config_path is not None: UpperCAmelCase : Any = SpeechTaConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : str = SpeechTaConfig() if task == "s2t": UpperCAmelCase : Optional[Any] = config.max_text_positions UpperCAmelCase : int = SpeechTaForSpeechToText(_lowercase ) elif task == "t2s": UpperCAmelCase : Dict = 1_8_7_6 UpperCAmelCase : Any = 6_0_0 UpperCAmelCase : Optional[Any] = config.max_speech_positions UpperCAmelCase : List[str] = SpeechTaForTextToSpeech(_lowercase ) elif task == "s2s": UpperCAmelCase : List[Any] = 1_8_7_6 UpperCAmelCase : Optional[Any] = config.max_speech_positions UpperCAmelCase : List[Any] = SpeechTaForSpeechToSpeech(_lowercase ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: UpperCAmelCase : Optional[int] = SpeechTaTokenizer(_lowercase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it UpperCAmelCase : Optional[Any] = AddedToken("""<mask>""" , lstrip=_lowercase , rstrip=_lowercase ) UpperCAmelCase : Optional[int] = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) UpperCAmelCase : List[Any] = SpeechTaFeatureExtractor() UpperCAmelCase : List[Any] = SpeechTaProcessor(tokenizer=_lowercase , feature_extractor=_lowercase ) processor.save_pretrained(_lowercase ) UpperCAmelCase : str = torch.load(_lowercase ) recursively_load_weights(fairseq_checkpoint["""model"""] , _lowercase , _lowercase ) model.save_pretrained(_lowercase ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(_lowercase ) model.push_to_hub(_lowercase ) if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() parser.add_argument( """--task""", default="""s2t""", type=str, help="""Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) a : Tuple = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
672
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: return ("This is a test", "This is a test") def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """</s>""" UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(A ) , 1103 ) def _lowercase( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> str: return ("This is a test", "This is a test") def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : str = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
672
1
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets a : str = """\ @inproceedings{snover-etal-2006-study, title = \"A Study of Translation Edit Rate with Targeted Human Annotation\", author = \"Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John\", booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\", month = aug # \" 8-12\", year = \"2006\", address = \"Cambridge, Massachusetts, USA\", publisher = \"Association for Machine Translation in the Americas\", url = \"https://aclanthology.org/2006.amta-papers.25\", pages = \"223--231\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ a : Optional[int] = """\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. """ a : Optional[Any] = """ Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: 'score' (float): TER score (num_edits / sum_ref_lengths * 100) 'num_edits' (int): The cumulative number of edits 'ref_length' (float): The cumulative average reference length Examples: Example 1: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0} Example 2: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0} Example 3: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5} Example 4: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0} Example 5: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Any: if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def _lowercase( self , A , A , A = False , A = False , A = False , A = False , ) -> Tuple: UpperCAmelCase : Optional[int] = len(references[0] ) if any(len(A ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) UpperCAmelCase : Union[str, Any] = [[refs[i] for refs in references] for i in range(A )] UpperCAmelCase : Optional[int] = TER( normalized=A , no_punct=A , asian_support=A , case_sensitive=A , ) UpperCAmelCase : List[str] = sb_ter.corpus_score(A , A ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
672
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Any = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : int = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ConvNextVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase : Any = model_class(A ) model.to(A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : List[str] = False UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
672
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a : Optional[int] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): lowercase = ['pixel_values'] def __init__( self , A = True , A = None , A = PILImageResampling.BILINEAR , A = True , A = None , A = True , A = 1 / 255 , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) UpperCAmelCase : Any = size if size is not None else {"""shortest_edge""": 256} UpperCAmelCase : Dict = get_size_dict(A , default_to_square=A ) UpperCAmelCase : List[str] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase : List[str] = get_size_dict(A ) UpperCAmelCase : Optional[int] = do_resize UpperCAmelCase : Any = size UpperCAmelCase : int = resample UpperCAmelCase : str = do_center_crop UpperCAmelCase : List[Any] = crop_size UpperCAmelCase : str = do_rescale UpperCAmelCase : Tuple = rescale_factor UpperCAmelCase : Tuple = do_normalize UpperCAmelCase : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase( self , A , A , A = PILImageResampling.BICUBIC , A = None , **A , ) -> np.ndarray: UpperCAmelCase : List[str] = get_size_dict(A , default_to_square=A ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCAmelCase : Optional[int] = get_resize_output_image_size(A , size=size["""shortest_edge"""] , default_to_square=A ) return resize(A , size=A , resample=A , data_format=A , **A ) def _lowercase( self , A , A , A = None , **A , ) -> np.ndarray: UpperCAmelCase : Optional[Any] = get_size_dict(A ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def _lowercase( self , A , A , A = None , **A ) -> np.ndarray: return rescale(A , scale=A , data_format=A , **A ) def _lowercase( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def _lowercase( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> Any: UpperCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : Optional[int] = size if size is not None else self.size UpperCAmelCase : Optional[Any] = get_size_dict(A , default_to_square=A ) UpperCAmelCase : str = resample if resample is not None else self.resample UpperCAmelCase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase : Dict = crop_size if crop_size is not None else self.crop_size UpperCAmelCase : Any = get_size_dict(A ) UpperCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : Any = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean UpperCAmelCase : Dict = image_std if image_std is not None else self.image_std UpperCAmelCase : Tuple = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase : Tuple = [to_numpy_array(A ) for image in images] if do_resize: UpperCAmelCase : Optional[Any] = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: UpperCAmelCase : int = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: UpperCAmelCase : Optional[Any] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: UpperCAmelCase : str = [self.normalize(image=A , mean=A , std=A ) for image in images] UpperCAmelCase : int = [to_channel_dimension_format(A , A ) for image in images] UpperCAmelCase : int = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
672
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
1
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def __lowerCamelCase ( _lowercase , _lowercase=1 ) -> Optional[int]: if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def __lowerCamelCase ( _lowercase , _lowercase=0 ) -> Tuple: UpperCAmelCase : Tuple = [] for old_item in old_list: UpperCAmelCase : List[Any] = old_item.replace("""in_layers.0""" , """norm1""" ) UpperCAmelCase : Dict = new_item.replace("""in_layers.2""" , """conv1""" ) UpperCAmelCase : Any = new_item.replace("""out_layers.0""" , """norm2""" ) UpperCAmelCase : int = new_item.replace("""out_layers.3""" , """conv2""" ) UpperCAmelCase : Optional[Any] = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) UpperCAmelCase : Dict = new_item.replace("""skip_connection""" , """conv_shortcut""" ) UpperCAmelCase : str = shave_segments(_lowercase , n_shave_prefix_segments=_lowercase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def __lowerCamelCase ( _lowercase , _lowercase=0 ) -> str: UpperCAmelCase : Dict = [] for old_item in old_list: UpperCAmelCase : Dict = old_item UpperCAmelCase : str = new_item.replace("""norm.weight""" , """group_norm.weight""" ) UpperCAmelCase : Optional[Any] = new_item.replace("""norm.bias""" , """group_norm.bias""" ) UpperCAmelCase : Optional[Any] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) UpperCAmelCase : Union[str, Any] = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) UpperCAmelCase : Union[str, Any] = shave_segments(_lowercase , n_shave_prefix_segments=_lowercase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None ) -> Dict: assert isinstance(_lowercase , _lowercase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase : Optional[Any] = old_checkpoint[path] UpperCAmelCase : str = old_tensor.shape[0] // 3 UpperCAmelCase : Optional[int] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase : str = old_tensor.shape[0] // config["""num_head_channels"""] // 3 UpperCAmelCase : int = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase : Optional[Any] = query.reshape(_lowercase ) UpperCAmelCase : Optional[Any] = key.reshape(_lowercase ) UpperCAmelCase : Any = value.reshape(_lowercase ) for path in paths: UpperCAmelCase : Any = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase : Any = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) UpperCAmelCase : Optional[Any] = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) UpperCAmelCase : int = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase : List[Any] = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase : Union[str, Any] = old_checkpoint[path["""old"""]][:, :, 0] else: UpperCAmelCase : str = old_checkpoint[path["""old"""]] def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = {} UpperCAmelCase : List[Any] = checkpoint["""time_embed.0.weight"""] UpperCAmelCase : Optional[Any] = checkpoint["""time_embed.0.bias"""] UpperCAmelCase : List[str] = checkpoint["""time_embed.2.weight"""] UpperCAmelCase : int = checkpoint["""time_embed.2.bias"""] UpperCAmelCase : Any = checkpoint["""input_blocks.0.0.weight"""] UpperCAmelCase : str = checkpoint["""input_blocks.0.0.bias"""] UpperCAmelCase : Optional[Any] = checkpoint["""out.0.weight"""] UpperCAmelCase : List[Any] = checkpoint["""out.0.bias"""] UpperCAmelCase : Optional[Any] = checkpoint["""out.2.weight"""] UpperCAmelCase : List[str] = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only UpperCAmelCase : Any = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) UpperCAmelCase : Any = { layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key] for layer_id in range(_lowercase ) } # Retrieves the keys for the middle blocks only UpperCAmelCase : str = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) UpperCAmelCase : Any = { layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key] for layer_id in range(_lowercase ) } # Retrieves the keys for the output blocks only UpperCAmelCase : List[Any] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) UpperCAmelCase : List[str] = { layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key] for layer_id in range(_lowercase ) } for i in range(1 , _lowercase ): UpperCAmelCase : str = (i - 1) // (config["""num_res_blocks"""] + 1) UpperCAmelCase : Union[str, Any] = (i - 1) % (config["""num_res_blocks"""] + 1) UpperCAmelCase : Optional[int] = [key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key] UpperCAmelCase : Optional[int] = [key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key] if F'''input_blocks.{i}.0.op.weight''' in checkpoint: UpperCAmelCase : Optional[Any] = checkpoint[ F'''input_blocks.{i}.0.op.weight''' ] UpperCAmelCase : Dict = checkpoint[ F'''input_blocks.{i}.0.op.bias''' ] continue UpperCAmelCase : int = renew_resnet_paths(_lowercase ) UpperCAmelCase : List[Any] = {"""old""": F'''input_blocks.{i}.0''', """new""": F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} UpperCAmelCase : List[Any] = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( _lowercase , _lowercase , _lowercase , additional_replacements=[meta_path, resnet_op] , config=_lowercase ) if len(_lowercase ): UpperCAmelCase : Any = renew_attention_paths(_lowercase ) UpperCAmelCase : Optional[Any] = { """old""": F'''input_blocks.{i}.1''', """new""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } UpperCAmelCase : Any = { F'''input_blocks.{i}.1.qkv.bias''': { """key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', """query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', """value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''input_blocks.{i}.1.qkv.weight''': { """key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', """query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', """value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( _lowercase , _lowercase , _lowercase , additional_replacements=[meta_path] , attention_paths_to_split=_lowercase , config=_lowercase , ) UpperCAmelCase : Optional[Any] = middle_blocks[0] UpperCAmelCase : Tuple = middle_blocks[1] UpperCAmelCase : Any = middle_blocks[2] UpperCAmelCase : int = renew_resnet_paths(_lowercase ) assign_to_checkpoint(_lowercase , _lowercase , _lowercase , config=_lowercase ) UpperCAmelCase : Dict = renew_resnet_paths(_lowercase ) assign_to_checkpoint(_lowercase , _lowercase , _lowercase , config=_lowercase ) UpperCAmelCase : int = renew_attention_paths(_lowercase ) UpperCAmelCase : Union[str, Any] = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( _lowercase , _lowercase , _lowercase , attention_paths_to_split=_lowercase , config=_lowercase ) for i in range(_lowercase ): UpperCAmelCase : int = i // (config["""num_res_blocks"""] + 1) UpperCAmelCase : List[str] = i % (config["""num_res_blocks"""] + 1) UpperCAmelCase : Optional[Any] = [shave_segments(_lowercase , 2 ) for name in output_blocks[i]] UpperCAmelCase : List[str] = {} for layer in output_block_layers: UpperCAmelCase , UpperCAmelCase : Any = layer.split(""".""" )[0], shave_segments(_lowercase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(_lowercase ) else: UpperCAmelCase : Tuple = [layer_name] if len(_lowercase ) > 1: UpperCAmelCase : List[Any] = [key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key] UpperCAmelCase : Union[str, Any] = [key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key] UpperCAmelCase : int = renew_resnet_paths(_lowercase ) UpperCAmelCase : Dict = renew_resnet_paths(_lowercase ) UpperCAmelCase : List[str] = {"""old""": F'''output_blocks.{i}.0''', """new""": F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(_lowercase , _lowercase , _lowercase , additional_replacements=[meta_path] , config=_lowercase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase : int = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) UpperCAmelCase : Dict = checkpoint[ F'''output_blocks.{i}.{index}.conv.weight''' ] UpperCAmelCase : List[str] = checkpoint[ F'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(_lowercase ) == 2: UpperCAmelCase : Any = [] if len(_lowercase ): UpperCAmelCase : Dict = renew_attention_paths(_lowercase ) UpperCAmelCase : List[str] = { """old""": F'''output_blocks.{i}.1''', """new""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } UpperCAmelCase : str = { F'''output_blocks.{i}.1.qkv.bias''': { """key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', """query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', """value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''output_blocks.{i}.1.qkv.weight''': { """key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', """query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', """value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( _lowercase , _lowercase , _lowercase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=_lowercase , ) else: UpperCAmelCase : List[str] = renew_resnet_paths(_lowercase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase : Tuple = """.""".join(["""output_blocks""", str(_lowercase ), path["""old"""]] ) UpperCAmelCase : List[str] = """.""".join(["""up_blocks""", str(_lowercase ), """resnets""", str(_lowercase ), path["""new"""]] ) UpperCAmelCase : List[Any] = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": a : Any = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") a : Union[str, Any] = parser.parse_args() a : Tuple = torch.load(args.checkpoint_path) with open(args.config_file) as f: a : Tuple = json.loads(f.read()) a : str = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] a : Optional[Any] = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: a : Optional[int] = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) a : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) a : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
672
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
1
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[Any]: UpperCAmelCase : Dict = 0 if start < end: UpperCAmelCase : Optional[Any] = randint(_lowercase , _lowercase ) UpperCAmelCase : Dict = a[end] UpperCAmelCase : Any = a[pivot] UpperCAmelCase : List[Any] = temp UpperCAmelCase , UpperCAmelCase : Optional[int] = _in_place_partition(_lowercase , _lowercase , _lowercase ) count += _in_place_quick_sort(_lowercase , _lowercase , p - 1 ) count += _in_place_quick_sort(_lowercase , p + 1 , _lowercase ) return count def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[int] = randint(_lowercase , _lowercase ) UpperCAmelCase : int = a[end] UpperCAmelCase : Tuple = a[pivot] UpperCAmelCase : str = temp UpperCAmelCase : List[Any] = start - 1 for index in range(_lowercase , _lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCAmelCase : Dict = new_pivot_index + 1 UpperCAmelCase : Dict = a[new_pivot_index] UpperCAmelCase : Optional[int] = a[index] UpperCAmelCase : Any = temp UpperCAmelCase : List[Any] = a[new_pivot_index + 1] UpperCAmelCase : Union[str, Any] = a[end] UpperCAmelCase : Optional[Any] = temp return new_pivot_index + 1, count a : Any = TemporaryFile() a : Dict = 1_0_0 # 1000 elements are to be sorted a , a : Union[str, Any] = 0, 1 # mean and standard deviation a : Optional[int] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("""The array is""") print(X) outfile.seek(0) # using the same array a : List[str] = np.load(outfile) a : str = len(M) - 1 a : List[str] = _in_place_quick_sort(M, 0, r) print( """No of Comparisons for 100 elements selected from a standard normal distribution""" """is :""" ) print(z)
672
'''simple docstring''' a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a : Optional[Any] = True a : List[Any] = False def __lowerCamelCase ( _lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : List[str] = chain(next_number(_lowercase ) ) UpperCAmelCase : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase : List[str] = number_chain number *= 1_0 return number_chain def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , _lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
672
1
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) a : Optional[int] = """hf-internal-testing/tiny-random-bert""" a : Tuple = os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""") a : Dict = """9b8c223d42b2188cb49d29af482996f9d0f3e5a6""" class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Tuple: UpperCAmelCase : List[Any] = cached_file(A , A ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(A ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(A , A ) ) ) with open(os.path.join(A , """refs""" , """main""" ) ) as f: UpperCAmelCase : str = f.read() self.assertEqual(A , os.path.join(A , """snapshots""" , A , A ) ) self.assertTrue(os.path.isfile(A ) ) # File is cached at the same place the second time. UpperCAmelCase : Union[str, Any] = cached_file(A , A ) self.assertEqual(A , A ) # Using a specific revision to test the full commit hash. UpperCAmelCase : List[str] = cached_file(A , A , revision="""9b8c223""" ) self.assertEqual(A , os.path.join(A , """snapshots""" , A , A ) ) def _lowercase( self ) -> Union[str, Any]: with self.assertRaisesRegex(A , """is not a valid model identifier""" ): UpperCAmelCase : Optional[Any] = cached_file("""tiny-random-bert""" , A ) with self.assertRaisesRegex(A , """is not a valid git identifier""" ): UpperCAmelCase : List[Any] = cached_file(A , A , revision="""aaaa""" ) with self.assertRaisesRegex(A , """does not appear to have a file named""" ): UpperCAmelCase : Optional[Any] = cached_file(A , """conf""" ) def _lowercase( self ) -> str: with self.assertRaisesRegex(A , """does not appear to have a file named""" ): UpperCAmelCase : List[str] = cached_file(A , """conf""" ) with open(os.path.join(A , """refs""" , """main""" ) ) as f: UpperCAmelCase : List[Any] = f.read() self.assertTrue(os.path.isfile(os.path.join(A , """.no_exist""" , A , """conf""" ) ) ) UpperCAmelCase : Tuple = cached_file(A , """conf""" , _raise_exceptions_for_missing_entries=A ) self.assertIsNone(A ) UpperCAmelCase : List[Any] = cached_file(A , """conf""" , local_files_only=A , _raise_exceptions_for_missing_entries=A ) self.assertIsNone(A ) UpperCAmelCase : Tuple = mock.Mock() UpperCAmelCase : int = 500 UpperCAmelCase : Any = {} UpperCAmelCase : Dict = HTTPError UpperCAmelCase : List[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=A ) as mock_head: UpperCAmelCase : List[str] = cached_file(A , """conf""" , _raise_exceptions_for_connection_errors=A ) self.assertIsNone(A ) # This check we did call the fake head request mock_head.assert_called() def _lowercase( self ) -> List[str]: self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" , A ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , A ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , A ) ) def _lowercase( self ) -> List[str]: # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("""bert-base-cased""" , """ahah.txt""" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(A , """is not a valid model identifier""" ): get_file_from_repo("""bert-base-case""" , A ) # The function raises if the revision does not exist. with self.assertRaisesRegex(A , """is not a valid git identifier""" ): get_file_from_repo("""bert-base-cased""" , A , revision="""ahaha""" ) UpperCAmelCase : List[Any] = get_file_from_repo("""bert-base-cased""" , A ) # The name is the cached name which is not very easy to test, so instead we load the content. UpperCAmelCase : Dict = json.loads(open(A , """r""" ).read() ) self.assertEqual(config["""hidden_size"""] , 768 ) def _lowercase( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : List[Any] = Path(A ) / """a.txt""" filename.touch() self.assertEqual(get_file_from_repo(A , """a.txt""" ) , str(A ) ) self.assertIsNone(get_file_from_repo(A , """b.txt""" ) )
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __lowerCamelCase ( _lowercase , _lowercase , **_lowercase ) -> Optional[Any]: UpperCAmelCase : int = AutoConfig.from_pretrained(_lowercase , **_lowercase ) UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_config(_lowercase ) model.save_pretrained(_lowercase ) AutoTokenizer.from_pretrained(_lowercase ).save_pretrained(_lowercase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
672
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Any = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
672
1
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand a : int = ( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) a : Tuple = ( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) a : List[str] = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) a : List[str] = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) a : List[str] = ( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 1_4]), ("""2H 5D 3C AS 5S""", False, [1_4, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [1_4, 1_3, 1_2, 1_1, 1_0]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) a : Union[str, Any] = ( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) a : str = ( ("""JH AH TH KH QH""", 2_3), ("""JH 9H TH KH QH""", 2_2), ("""JC KH JS JD JH""", 2_1), ("""KH KC 3S 3H 3D""", 2_0), ("""8C 9C 5C 3C TC""", 1_9), ("""JS QS 9H TS KH""", 1_8), ("""7C 7S KH 2H 7H""", 1_7), ("""3C KH 5D 5S KH""", 1_6), ("""QH 8H KD JH 8S""", 1_5), ("""2D 6D 9D TH 7D""", 1_4), ) def __lowerCamelCase ( ) -> Tuple: UpperCAmelCase , UpperCAmelCase : Dict = randrange(len(_lowercase ) ), randrange(len(_lowercase ) ) UpperCAmelCase : Dict = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] UpperCAmelCase , UpperCAmelCase : List[Any] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowerCamelCase ( _lowercase = 1_0_0 ) -> Optional[int]: return (generate_random_hand() for _ in range(_lowercase )) @pytest.mark.parametrize("""hand, expected""" , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Dict: assert PokerHand(_lowercase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Union[str, Any]: assert PokerHand(_lowercase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : Optional[Any] = PokerHand(_lowercase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Union[str, Any]: assert PokerHand(_lowercase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> int: assert PokerHand(_lowercase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: assert PokerHand(_lowercase ).compare_with(PokerHand(_lowercase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: assert PokerHand(_lowercase ).compare_with(PokerHand(_lowercase ) ) == expected def __lowerCamelCase ( ) -> Tuple: UpperCAmelCase : Tuple = [PokerHand(_lowercase ) for hand in SORTED_HANDS] UpperCAmelCase : int = poker_hands.copy() shuffle(_lowercase ) UpperCAmelCase : int = chain(sorted(_lowercase ) ) for index, hand in enumerate(_lowercase ): assert hand == poker_hands[index] def __lowerCamelCase ( ) -> int: # Test that five high straights are compared correctly. UpperCAmelCase : Union[str, Any] = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=_lowercase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowerCamelCase ( ) -> Any: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. UpperCAmelCase : Any = PokerHand("""2C 4S AS 3D 5C""" ) UpperCAmelCase : List[Any] = True UpperCAmelCase : List[str] = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowerCamelCase ( ) -> Tuple: # Problem number 54 from Project Euler # Testing from poker_hands.txt file UpperCAmelCase : Dict = 0 UpperCAmelCase : List[str] = os.path.abspath(os.path.dirname(_lowercase ) ) UpperCAmelCase : Union[str, Any] = os.path.join(_lowercase , """poker_hands.txt""" ) with open(_lowercase ) as file_hand: for line in file_hand: UpperCAmelCase : Tuple = line[:1_4].strip() UpperCAmelCase : Tuple = line[1_5:].strip() UpperCAmelCase , UpperCAmelCase : Optional[Any] = PokerHand(_lowercase ), PokerHand(_lowercase ) UpperCAmelCase : Optional[Any] = player.compare_with(_lowercase ) if output == "Win": answer += 1 assert answer == 3_7_6
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
672
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
1
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def __lowerCamelCase ( _lowercase ) -> typing.Counter[int]: UpperCAmelCase : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(_lowercase , max_perimeter + 1 ): UpperCAmelCase : Tuple = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(_lowercase ): UpperCAmelCase : Optional[int] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __lowerCamelCase ( _lowercase = 1_0_0_0 ) -> int: UpperCAmelCase : Dict = pythagorean_triple(_lowercase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F'''Perimeter {solution()} has maximum solutions''')
672
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A=None , A=None , **A ) -> str: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase : List[Any] = str(jax.devices()[0] ) UpperCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def _lowercase( self , A ) -> str: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _lowercase( self , A ) -> Tuple: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase : List[str] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase : str = {"""dtype""": jnp.intaa} else: UpperCAmelCase : int = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase : Any = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): UpperCAmelCase : List[str] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase( self , A ) -> Tuple: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): UpperCAmelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _lowercase( self , A ) -> Dict: return map_nested(self._recursive_tensorize , A , map_list=A ) def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A ) UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _lowercase( self , A ) -> "jax.Array": UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A ) UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) UpperCAmelCase : Any = self._consolidate(A ) return column def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A ) UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) for column_name in batch: UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
672
1
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : Dict = int(_lowercase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = t // 3_6_0_0, (t // 6_0) % 6_0, t % 6_0 return F'''{h}:{m:02d}:{s:02d}''' if h != 0 else F'''{m:02d}:{s:02d}''' def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=3_0_0 ) -> Union[str, Any]: # docstyle-ignore return F''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def __lowerCamelCase ( _lowercase ) -> Dict: UpperCAmelCase : Any = """<table border=\"1\" class=\"dataframe\">\n""" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: UpperCAmelCase : str = F'''{elt:.6f}''' if isinstance(_lowercase , _lowercase ) else str(_lowercase ) html_code += F''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class UpperCamelCase_ : lowercase = 5 lowercase = 0.2 def __init__( self , A , A = None , A = True , A = None , A = 300 , ) -> int: UpperCAmelCase : Tuple = total UpperCAmelCase : Any = """""" if prefix is None else prefix UpperCAmelCase : Dict = leave UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Optional[int] = width UpperCAmelCase : str = None UpperCAmelCase : int = None UpperCAmelCase : Optional[Any] = None def _lowercase( self , A , A = False , A = None ) -> Tuple: UpperCAmelCase : List[Any] = value if comment is not None: UpperCAmelCase : List[str] = comment if self.last_value is None: UpperCAmelCase : Optional[int] = time.time() UpperCAmelCase : int = value UpperCAmelCase : int = None UpperCAmelCase : str = self.warmup UpperCAmelCase : Optional[int] = 1 self.update_bar(A ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 UpperCAmelCase : Any = time.time() UpperCAmelCase : str = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: UpperCAmelCase : Union[str, Any] = self.elapsed_time / (value - self.start_value) else: UpperCAmelCase : Optional[int] = None if value >= self.total: UpperCAmelCase : Dict = self.total UpperCAmelCase : List[str] = None if not self.leave: self.close() elif self.average_time_per_item is not None: UpperCAmelCase : Optional[int] = self.average_time_per_item * (self.total - value) self.update_bar(A ) UpperCAmelCase : str = value UpperCAmelCase : Optional[int] = current_time if self.average_time_per_item is None: UpperCAmelCase : Dict = 1 else: UpperCAmelCase : Dict = max(int(self.update_every / self.average_time_per_item ) , 1 ) def _lowercase( self , A , A=None ) -> Any: UpperCAmelCase : List[Any] = """ """ * (len(str(self.total ) ) - len(str(A ) )) + str(A ) if self.elapsed_time is None: UpperCAmelCase : Optional[int] = f'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: UpperCAmelCase : Tuple = f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: UpperCAmelCase : List[Any] = ( f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' f''' {format_time(self.predicted_remaining )}''' ) self.label += f''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else f''', {self.comment}]''' self.display() def _lowercase( self ) -> Optional[int]: UpperCAmelCase : str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: UpperCAmelCase : List[Any] = disp.display(disp.HTML(self.html_code ) , display_id=A ) else: self.output.update(disp.HTML(self.html_code ) ) def _lowercase( self ) -> Any: if self.parent is None and self.output is not None: self.output.update(disp.HTML("""""" ) ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A=None ) -> int: super().__init__(A ) UpperCAmelCase : Optional[int] = None if column_names is None else [column_names] UpperCAmelCase : List[str] = None def _lowercase( self ) -> Any: UpperCAmelCase : int = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: UpperCAmelCase : Union[str, Any] = disp.display(disp.HTML(self.html_code ) , display_id=A ) else: self.output.update(disp.HTML(self.html_code ) ) def _lowercase( self , A ) -> Dict: if self.inner_table is None: UpperCAmelCase : Optional[Any] = [list(values.keys() ), list(values.values() )] else: UpperCAmelCase : Dict = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(A ) UpperCAmelCase : Dict = columns self.inner_table.append([values[c] for c in columns] ) def _lowercase( self , A , A=None , A=300 ) -> int: UpperCAmelCase : Optional[int] = NotebookProgressBar(A , prefix=A , parent=self , width=A ) return self.child_bar def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = None self.display() class UpperCamelCase_ ( __magic_name__ ): def __init__( self ) -> Union[str, Any]: UpperCAmelCase : List[str] = None UpperCAmelCase : int = None UpperCAmelCase : Any = False def _lowercase( self , A , A , A , **A ) -> Any: UpperCAmelCase : List[Any] = """Epoch""" if args.evaluation_strategy == IntervalStrategy.EPOCH else """Step""" UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : Optional[int] = [self.first_column] + ["""Training Loss"""] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("""Validation Loss""" ) UpperCAmelCase : List[Any] = NotebookTrainingTracker(state.max_steps , A ) def _lowercase( self , A , A , A , **A ) -> List[str]: UpperCAmelCase : Optional[int] = int(state.epoch ) if int(state.epoch ) == state.epoch else f'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=f'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) UpperCAmelCase : Union[str, Any] = False def _lowercase( self , A , A , A , A=None , **A ) -> List[Any]: if not has_length(A ): return if self.prediction_bar is None: if self.training_tracker is not None: UpperCAmelCase : List[str] = self.training_tracker.add_child(len(A ) ) else: UpperCAmelCase : str = NotebookProgressBar(len(A ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def _lowercase( self , A , A , A , **A ) -> Any: if self.prediction_bar is not None: self.prediction_bar.close() UpperCAmelCase : Union[str, Any] = None def _lowercase( self , A , A , A , A=None , **A ) -> Any: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: UpperCAmelCase : Optional[Any] = {"""Training Loss""": logs["""loss"""]} # First column is necessarily Step sine we're not in epoch eval strategy UpperCAmelCase : int = state.global_step self.training_tracker.write_line(A ) def _lowercase( self , A , A , A , A=None , **A ) -> List[Any]: if self.training_tracker is not None: UpperCAmelCase : str = {"""Training Loss""": """No log""", """Validation Loss""": """No log"""} for log in reversed(state.log_history ): if "loss" in log: UpperCAmelCase : Optional[Any] = log["""loss"""] break if self.first_column == "Epoch": UpperCAmelCase : Any = int(state.epoch ) else: UpperCAmelCase : List[str] = state.global_step UpperCAmelCase : str = """eval""" for k in metrics: if k.endswith("""_loss""" ): UpperCAmelCase : str = re.sub(r"""\_loss$""" , """""" , A ) UpperCAmelCase : Optional[Any] = metrics.pop("""total_flos""" , A ) UpperCAmelCase : Optional[int] = metrics.pop("""epoch""" , A ) UpperCAmelCase : Union[str, Any] = metrics.pop(f'''{metric_key_prefix}_runtime''' , A ) UpperCAmelCase : List[str] = metrics.pop(f'''{metric_key_prefix}_samples_per_second''' , A ) UpperCAmelCase : Tuple = metrics.pop(f'''{metric_key_prefix}_steps_per_second''' , A ) UpperCAmelCase : Any = metrics.pop(f'''{metric_key_prefix}_jit_compilation_time''' , A ) for k, v in metrics.items(): if k == f'''{metric_key_prefix}_loss''': UpperCAmelCase : List[Any] = v else: UpperCAmelCase : str = k.split("""_""" ) UpperCAmelCase : List[Any] = """ """.join([part.capitalize() for part in splits[1:]] ) UpperCAmelCase : Optional[int] = v self.training_tracker.write_line(A ) self.training_tracker.remove_child() UpperCAmelCase : str = None # Evaluation takes a long time so we should force the next update. UpperCAmelCase : str = True def _lowercase( self , A , A , A , **A ) -> Any: self.training_tracker.update( state.global_step , comment=f'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=A ) UpperCAmelCase : Any = None
672
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : int = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
672
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a : Any = logging.get_logger(__name__) a : Optional[int] = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'git_vision_model' def __init__( self , A=768 , A=3072 , A=12 , A=12 , A=3 , A=224 , A=16 , A="quick_gelu" , A=1e-5 , A=0.0 , A=0.0_2 , **A , ) -> Optional[Any]: super().__init__(**A ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : str = intermediate_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : Tuple = num_attention_heads UpperCAmelCase : Union[str, Any] = num_channels UpperCAmelCase : Dict = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : List[str] = layer_norm_eps UpperCAmelCase : Optional[Any] = hidden_act @classmethod def _lowercase( cls , A , **A ) -> "PretrainedConfig": cls._set_token_in_kwargs(A ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": UpperCAmelCase : Any = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'git' def __init__( self , A=None , A=30522 , A=768 , A=6 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=1024 , A=0.0_2 , A=1e-12 , A=0 , A="absolute" , A=True , A=False , A=101 , A=102 , A=None , **A , ) -> Any: super().__init__(bos_token_id=A , eos_token_id=A , pad_token_id=A , **A ) if vision_config is None: UpperCAmelCase : Tuple = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) UpperCAmelCase : str = GitVisionConfig(**A ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Any = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : int = hidden_act UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : Any = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : List[str] = position_embedding_type UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : Any = tie_word_embeddings UpperCAmelCase : List[Any] = num_image_with_embedding UpperCAmelCase : Tuple = bos_token_id UpperCAmelCase : List[Any] = eos_token_id def _lowercase( self ) -> Dict: UpperCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : List[Any] = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
672
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
672
1
'''simple docstring''' import math def __lowerCamelCase ( _lowercase , _lowercase ) -> float: return math.pow(_lowercase , 2 ) - a def __lowerCamelCase ( _lowercase ) -> float: return 2 * x def __lowerCamelCase ( _lowercase ) -> float: UpperCAmelCase : List[Any] = 2.0 while start <= a: UpperCAmelCase : Union[str, Any] = math.pow(_lowercase , 2 ) return start def __lowerCamelCase ( _lowercase , _lowercase = 9_9_9_9 , _lowercase = 0.00_0000_0000_0001 ) -> float: if a < 0: raise ValueError("""math domain error""" ) UpperCAmelCase : List[str] = get_initial_point(_lowercase ) for _ in range(_lowercase ): UpperCAmelCase : List[Any] = value UpperCAmelCase : Tuple = value - fx(_lowercase , _lowercase ) / fx_derivative(_lowercase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
672
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
672
1
'''simple docstring''' from math import sqrt def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0 ) -> int: UpperCAmelCase : int = 0 UpperCAmelCase : int = 0 UpperCAmelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowercase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F'''{solution() = }''')
672
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
1
'''simple docstring''' import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = DownBlockaD # noqa F405 lowercase = 'down' def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = [-0.0_2_3_2, -0.9_8_6_9, 0.8_0_5_4, -0.0_6_3_7, -0.1_6_8_8, -1.4_2_6_4, 0.4_4_7_0, -1.3_3_9_4, 0.0_9_0_4] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = ResnetDownsampleBlockaD # noqa F405 lowercase = 'down' def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = [0.0_7_1_0, 0.2_4_1_0, -0.7_3_2_0, -1.0_7_5_7, -1.1_3_4_3, 0.3_5_4_0, -0.0_1_3_3, -0.2_5_7_6, 0.0_9_4_8] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = AttnDownBlockaD # noqa F405 lowercase = 'down' def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[int] = [0.0_6_3_6, 0.8_9_6_4, -0.6_2_3_4, -1.0_1_3_1, 0.0_8_4_4, 0.4_9_3_5, 0.3_4_3_7, 0.0_9_1_1, -0.2_9_5_7] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = CrossAttnDownBlockaD # noqa F405 lowercase = 'down' def _lowercase( self ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : Dict = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : Optional[int] = 32 return init_dict, inputs_dict def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = [0.2_2_3_8, -0.7_3_9_6, -0.2_2_5_5, -0.3_8_2_9, 0.1_9_2_5, 1.1_6_6_5, 0.0_6_0_3, -0.7_2_9_5, 0.1_9_8_3] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = SimpleCrossAttnDownBlockaD # noqa F405 lowercase = 'down' @property def _lowercase( self ) -> List[Any]: return super().get_dummy_input(include_encoder_hidden_states=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : Dict = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : int = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def _lowercase( self ) -> str: UpperCAmelCase : str = [0.7_9_2_1, -0.0_9_9_2, -0.1_9_6_2, -0.7_6_9_5, -0.4_2_4_2, 0.7_8_0_4, 0.4_7_3_7, 0.2_7_6_5, 0.3_3_3_8] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = SkipDownBlockaD # noqa F405 lowercase = 'down' @property def _lowercase( self ) -> int: return super().get_dummy_input(include_skip_sample=A ) def _lowercase( self ) -> int: UpperCAmelCase : List[str] = [-0.0_8_4_5, -0.2_0_8_7, -0.2_4_6_5, 0.0_9_7_1, 0.1_9_0_0, -0.0_4_8_4, 0.2_6_6_4, 0.4_1_7_9, 0.5_0_6_9] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = AttnSkipDownBlockaD # noqa F405 lowercase = 'down' @property def _lowercase( self ) -> Any: return super().get_dummy_input(include_skip_sample=A ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : int = [0.5_5_3_9, 0.1_6_0_9, 0.4_9_2_4, 0.0_5_3_7, -0.1_9_9_5, 0.4_0_5_0, 0.0_9_7_9, -0.2_7_2_1, -0.0_6_4_2] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = DownEncoderBlockaD # noqa F405 lowercase = 'down' @property def _lowercase( self ) -> Union[str, Any]: return super().get_dummy_input(include_temb=A ) def _lowercase( self ) -> Any: UpperCAmelCase : Tuple = { """in_channels""": 32, """out_channels""": 32, } UpperCAmelCase : Tuple = self.dummy_input return init_dict, inputs_dict def _lowercase( self ) -> Dict: UpperCAmelCase : List[Any] = [1.1_1_0_2, 0.5_3_0_2, 0.4_8_7_2, -0.0_0_2_3, -0.8_0_4_2, 0.0_4_8_3, -0.3_4_8_9, -0.5_6_3_2, 0.7_6_2_6] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = AttnDownEncoderBlockaD # noqa F405 lowercase = 'down' @property def _lowercase( self ) -> Optional[Any]: return super().get_dummy_input(include_temb=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Any = { """in_channels""": 32, """out_channels""": 32, } UpperCAmelCase : Any = self.dummy_input return init_dict, inputs_dict def _lowercase( self ) -> List[str]: UpperCAmelCase : List[str] = [0.8_9_6_6, -0.1_4_8_6, 0.8_5_6_8, 0.8_1_4_1, -0.9_0_4_6, -0.1_3_4_2, -0.0_9_7_2, -0.7_4_1_7, 0.1_5_3_8] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = UNetMidBlockaD # noqa F405 lowercase = 'mid' def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = { """in_channels""": 32, """temb_channels""": 128, } UpperCAmelCase : Dict = self.dummy_input return init_dict, inputs_dict def _lowercase( self ) -> Any: UpperCAmelCase : Tuple = [-0.1_0_6_2, 1.7_2_4_8, 0.3_4_9_4, 1.4_5_6_9, -0.0_9_1_0, -1.2_4_2_1, -0.9_9_8_4, 0.6_7_3_6, 1.0_0_2_8] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = UNetMidBlockaDCrossAttn # noqa F405 lowercase = 'mid' def _lowercase( self ) -> List[str]: UpperCAmelCase , UpperCAmelCase : List[str] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : Any = 32 return init_dict, inputs_dict def _lowercase( self ) -> str: UpperCAmelCase : int = [0.0_1_8_7, 2.4_2_2_0, 0.4_4_8_4, 1.1_2_0_3, -0.6_1_2_1, -1.5_1_2_2, -0.8_2_7_0, 0.7_8_5_1, 1.8_3_3_5] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = UNetMidBlockaDSimpleCrossAttn # noqa F405 lowercase = 'mid' @property def _lowercase( self ) -> Any: return super().get_dummy_input(include_encoder_hidden_states=A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : Optional[Any] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : Optional[int] = 32 return init_dict, inputs_dict def _lowercase( self ) -> Dict: UpperCAmelCase : List[str] = [0.7_1_4_3, 1.9_9_7_4, 0.5_4_4_8, 1.3_9_7_7, 0.1_2_8_2, -1.1_2_3_7, -1.4_2_3_8, 0.5_5_3_0, 0.8_8_8_0] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = UpBlockaD # noqa F405 lowercase = 'up' @property def _lowercase( self ) -> str: return super().get_dummy_input(include_res_hidden_states_tuple=A ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = [-0.2_0_4_1, -0.4_1_6_5, -0.3_0_2_2, 0.0_0_4_1, -0.6_6_2_8, -0.7_0_5_3, 0.1_9_2_8, -0.0_3_2_5, 0.0_5_2_3] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = ResnetUpsampleBlockaD # noqa F405 lowercase = 'up' @property def _lowercase( self ) -> Optional[int]: return super().get_dummy_input(include_res_hidden_states_tuple=A ) def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = [0.2_2_8_7, 0.3_5_4_9, -0.1_3_4_6, 0.4_7_9_7, -0.1_7_1_5, -0.9_6_4_9, 0.7_3_0_5, -0.5_8_6_4, -0.6_2_4_4] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = CrossAttnUpBlockaD # noqa F405 lowercase = 'up' @property def _lowercase( self ) -> List[str]: return super().get_dummy_input(include_res_hidden_states_tuple=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : Any = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : str = 32 return init_dict, inputs_dict def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = [-0.1_4_0_3, -0.3_5_1_5, -0.0_4_2_0, -0.1_4_2_5, 0.3_1_6_7, 0.5_0_9_4, -0.2_1_8_1, 0.5_9_3_1, 0.5_5_8_2] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = SimpleCrossAttnUpBlockaD # noqa F405 lowercase = 'up' @property def _lowercase( self ) -> List[str]: return super().get_dummy_input(include_res_hidden_states_tuple=A , include_encoder_hidden_states=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : Optional[int] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : Tuple = 32 return init_dict, inputs_dict def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = [0.2_6_4_5, 0.1_4_8_0, 0.0_9_0_9, 0.8_0_4_4, -0.9_7_5_8, -0.9_0_8_3, 0.0_9_9_4, -1.1_4_5_3, -0.7_4_0_2] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = AttnUpBlockaD # noqa F405 lowercase = 'up' @property def _lowercase( self ) -> List[str]: return super().get_dummy_input(include_res_hidden_states_tuple=A ) @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def _lowercase( self ) -> Any: UpperCAmelCase : Union[str, Any] = [0.0_9_7_9, 0.1_3_2_6, 0.0_0_2_1, 0.0_6_5_9, 0.2_2_4_9, 0.0_0_5_9, 0.1_1_3_2, 0.5_9_5_2, 0.1_0_3_3] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = SkipUpBlockaD # noqa F405 lowercase = 'up' @property def _lowercase( self ) -> int: return super().get_dummy_input(include_res_hidden_states_tuple=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : int = [-0.0_8_9_3, -0.1_2_3_4, -0.1_5_0_6, -0.0_3_3_2, 0.0_1_2_3, -0.0_2_1_1, 0.0_5_6_6, 0.0_1_4_3, 0.0_3_6_2] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = AttnSkipUpBlockaD # noqa F405 lowercase = 'up' @property def _lowercase( self ) -> Dict: return super().get_dummy_input(include_res_hidden_states_tuple=A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[Any] = [0.0_3_6_1, 0.0_6_1_7, 0.2_7_8_7, -0.0_3_5_0, 0.0_3_4_2, 0.3_4_2_1, -0.0_8_4_3, 0.0_9_1_3, 0.3_0_1_5] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = UpDecoderBlockaD # noqa F405 lowercase = 'up' @property def _lowercase( self ) -> Union[str, Any]: return super().get_dummy_input(include_temb=A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Union[str, Any] = {"""in_channels""": 32, """out_channels""": 32} UpperCAmelCase : Tuple = self.dummy_input return init_dict, inputs_dict def _lowercase( self ) -> Tuple: UpperCAmelCase : Union[str, Any] = [0.4_4_0_4, 0.1_9_9_8, -0.9_8_8_6, -0.3_3_2_0, -0.3_1_2_8, -0.7_0_3_4, -0.6_9_5_5, -0.2_3_3_8, -0.3_1_3_7] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = AttnUpDecoderBlockaD # noqa F405 lowercase = 'up' @property def _lowercase( self ) -> Dict: return super().get_dummy_input(include_temb=A ) def _lowercase( self ) -> str: UpperCAmelCase : str = {"""in_channels""": 32, """out_channels""": 32} UpperCAmelCase : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def _lowercase( self ) -> int: UpperCAmelCase : str = [0.6_7_3_8, 0.4_4_9_1, 0.1_0_5_5, 1.0_7_1_0, 0.7_3_1_6, 0.3_3_3_9, 0.3_3_5_2, 0.1_0_2_3, 0.3_5_6_8] super().test_output(A )
672
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
1
'''simple docstring''' import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg""" UpperCAmelCase : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert("""RGB""" ) UpperCAmelCase : Optional[Any] = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) UpperCAmelCase : str = transform(_lowercase ).unsqueeze(0 ).to(_lowercase ) return image def __lowerCamelCase ( _lowercase ) -> str: if "visual_encoder" in key: UpperCAmelCase : List[Any] = re.sub("""visual_encoder*""" , """vision_model.encoder""" , _lowercase ) if "blocks" in key: UpperCAmelCase : Dict = re.sub(R"""blocks""" , """layers""" , _lowercase ) if "attn" in key: UpperCAmelCase : Dict = re.sub(R"""attn""" , """self_attn""" , _lowercase ) if "norm1" in key: UpperCAmelCase : Optional[int] = re.sub(R"""norm1""" , """layer_norm1""" , _lowercase ) if "norm2" in key: UpperCAmelCase : Dict = re.sub(R"""norm2""" , """layer_norm2""" , _lowercase ) if "encoder.norm" in key: UpperCAmelCase : List[str] = re.sub(R"""encoder.norm""" , """post_layernorm""" , _lowercase ) if "encoder.patch_embed.proj" in key: UpperCAmelCase : Optional[Any] = re.sub(R"""encoder.patch_embed.proj""" , """embeddings.patch_embedding""" , _lowercase ) if "encoder.pos_embed" in key: UpperCAmelCase : Dict = re.sub(R"""encoder.pos_embed""" , """embeddings.position_embedding""" , _lowercase ) if "encoder.cls_token" in key: UpperCAmelCase : Optional[Any] = re.sub(R"""encoder.cls_token""" , """embeddings.class_embedding""" , _lowercase ) if "self_attn" in key: UpperCAmelCase : Any = re.sub(R"""self_attn.proj""" , """self_attn.projection""" , _lowercase ) return key @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase=None ) -> str: if config_path is not None: UpperCAmelCase : Optional[int] = BlipConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : Union[str, Any] = BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) UpperCAmelCase : Tuple = BlipForConditionalGeneration(_lowercase ).eval() UpperCAmelCase : int = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth""" UpperCAmelCase : Tuple = blip_decoder(pretrained=_lowercase , image_size=3_8_4 , vit="""base""" ) UpperCAmelCase : Any = pt_model.eval() UpperCAmelCase : int = pt_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase : Dict = modified_state_dict.pop(_lowercase ) UpperCAmelCase : Optional[int] = rename_key(_lowercase ) UpperCAmelCase : Union[str, Any] = value hf_model.load_state_dict(_lowercase ) UpperCAmelCase : List[str] = 3_8_4 UpperCAmelCase : Optional[Any] = load_demo_image(image_size=_lowercase , device="""cpu""" ) UpperCAmelCase : Optional[int] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) UpperCAmelCase : Optional[Any] = tokenizer(["""a picture of"""] ).input_ids UpperCAmelCase : Dict = hf_model.generate(_lowercase , _lowercase ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] UpperCAmelCase : Tuple = hf_model.generate(_lowercase ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(_lowercase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' UpperCAmelCase : Optional[int] = ( """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth""" ) UpperCAmelCase : Optional[int] = blip_vqa(pretrained=_lowercase , image_size=_lowercase , vit="""base""" ) vqa_model.eval() UpperCAmelCase : Optional[int] = vqa_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase : Optional[int] = modified_state_dict.pop(_lowercase ) UpperCAmelCase : str = rename_key(_lowercase ) UpperCAmelCase : List[str] = value UpperCAmelCase : Tuple = BlipForQuestionAnswering(_lowercase ) hf_vqa_model.load_state_dict(_lowercase ) UpperCAmelCase : List[Any] = ["""How many dogs are in this image?"""] UpperCAmelCase : Dict = tokenizer(_lowercase , return_tensors="""pt""" ).input_ids UpperCAmelCase : Any = hf_vqa_model.generate(_lowercase , _lowercase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + """_vqa""" ) UpperCAmelCase : Tuple = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth""" UpperCAmelCase : List[Any] = blip_itm(pretrained=_lowercase , image_size=_lowercase , vit="""base""" ) itm_model.eval() UpperCAmelCase : Tuple = itm_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase : str = modified_state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = rename_key(_lowercase ) UpperCAmelCase : List[str] = value UpperCAmelCase : Optional[int] = BlipForImageTextRetrieval(_lowercase ) UpperCAmelCase : int = ["""A picture of a woman with a dog sitting in a beach"""] UpperCAmelCase : Optional[int] = tokenizer( _lowercase , return_tensors="""pt""" , padding="""max_length""" , truncation=_lowercase , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(_lowercase ) hf_itm_model.eval() UpperCAmelCase : List[Any] = hf_itm_model(_lowercase , _lowercase , use_itm_head=_lowercase ) UpperCAmelCase : Optional[Any] = hf_itm_model(_lowercase , _lowercase , use_itm_head=_lowercase ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + """_itm""" ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") a : str = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
672
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations UpperCAmelCase : List[Any] = tpu_short_seq_length
672
1
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( __magic_name__ ): lowercase = (DDPMParallelScheduler,) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[Any] = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**A ) return config def _lowercase( self ) -> Optional[int]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=A ) def _lowercase( self ) -> List[str]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=A , beta_end=A ) def _lowercase( self ) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A ) def _lowercase( self ) -> Any: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=A ) def _lowercase( self ) -> int: for clip_sample in [True, False]: self.check_over_configs(clip_sample=A ) def _lowercase( self ) -> Optional[Any]: self.check_over_configs(thresholding=A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=A , prediction_type=A , sample_max_value=A , ) def _lowercase( self ) -> Tuple: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=A ) def _lowercase( self ) -> Any: for t in [0, 500, 999]: self.check_over_forward(time_step=A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = self.scheduler_classes[0] UpperCAmelCase : Union[str, Any] = self.get_scheduler_config() UpperCAmelCase : List[Any] = scheduler_class(**A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : str = self.scheduler_classes[0] UpperCAmelCase : Any = self.get_scheduler_config() UpperCAmelCase : Dict = scheduler_class(**A ) UpperCAmelCase : List[Any] = len(A ) UpperCAmelCase : Union[str, Any] = self.dummy_model() UpperCAmelCase : Tuple = self.dummy_sample_deter UpperCAmelCase : Optional[Any] = self.dummy_sample_deter + 0.1 UpperCAmelCase : str = self.dummy_sample_deter - 0.1 UpperCAmelCase : int = samplea.shape[0] UpperCAmelCase : Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCAmelCase : Union[str, Any] = torch.arange(A )[0:3, None].repeat(1 , A ) UpperCAmelCase : Any = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCAmelCase : List[str] = scheduler.batch_step_no_noise(A , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(A ) ) UpperCAmelCase : str = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2 assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3 def _lowercase( self ) -> List[Any]: UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] UpperCAmelCase : Any = self.get_scheduler_config() UpperCAmelCase : Optional[int] = scheduler_class(**A ) UpperCAmelCase : int = len(A ) UpperCAmelCase : Optional[Any] = self.dummy_model() UpperCAmelCase : Optional[int] = self.dummy_sample_deter UpperCAmelCase : str = torch.manual_seed(0 ) for t in reversed(range(A ) ): # 1. predict noise residual UpperCAmelCase : Optional[Any] = model(A , A ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase : Dict = scheduler.step(A , A , A , generator=A ).prev_sample UpperCAmelCase : Union[str, Any] = pred_prev_sample UpperCAmelCase : Tuple = torch.sum(torch.abs(A ) ) UpperCAmelCase : int = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def _lowercase( self ) -> Dict: UpperCAmelCase : int = self.scheduler_classes[0] UpperCAmelCase : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""" ) UpperCAmelCase : int = scheduler_class(**A ) UpperCAmelCase : Dict = len(A ) UpperCAmelCase : Optional[Any] = self.dummy_model() UpperCAmelCase : List[str] = self.dummy_sample_deter UpperCAmelCase : Any = torch.manual_seed(0 ) for t in reversed(range(A ) ): # 1. predict noise residual UpperCAmelCase : Tuple = model(A , A ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase : Dict = scheduler.step(A , A , A , generator=A ).prev_sample UpperCAmelCase : Union[str, Any] = pred_prev_sample UpperCAmelCase : str = torch.sum(torch.abs(A ) ) UpperCAmelCase : Any = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : str = self.scheduler_classes[0] UpperCAmelCase : int = self.get_scheduler_config() UpperCAmelCase : int = scheduler_class(**A ) UpperCAmelCase : Optional[int] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=A ) UpperCAmelCase : Dict = scheduler.timesteps for i, timestep in enumerate(A ): if i == len(A ) - 1: UpperCAmelCase : int = -1 else: UpperCAmelCase : int = timesteps[i + 1] UpperCAmelCase : str = scheduler.previous_timestep(A ) UpperCAmelCase : Union[str, Any] = prev_t.item() self.assertEqual(A , A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] UpperCAmelCase : int = self.get_scheduler_config() UpperCAmelCase : str = scheduler_class(**A ) UpperCAmelCase : str = [100, 87, 50, 51, 0] with self.assertRaises(A , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=A ) def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] UpperCAmelCase : Any = self.get_scheduler_config() UpperCAmelCase : List[Any] = scheduler_class(**A ) UpperCAmelCase : Dict = [100, 87, 50, 1, 0] UpperCAmelCase : Dict = len(A ) with self.assertRaises(A , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=A , timesteps=A ) def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = self.scheduler_classes[0] UpperCAmelCase : Optional[Any] = self.get_scheduler_config() UpperCAmelCase : List[str] = scheduler_class(**A ) UpperCAmelCase : int = [scheduler.config.num_train_timesteps] with self.assertRaises( A , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=A )
672
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
1
'''simple docstring''' a : dict[str, float] = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.602176634E-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.3_5_5_8_1_8, } def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCAmelCase : Dict = ( F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' F'''Valid values are: {', '.join(_lowercase )}''' ) raise ValueError(_lowercase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
672
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
1
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[Any]: UpperCAmelCase : List[str] = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""") UpperCAmelCase : List[Any] = ( ("""layer.""", """layer_"""), ("""word_embeddings.weight""", """word_embeddings"""), ("""position_embeddings.weight""", """position_embeddings"""), ("""token_type_embeddings.weight""", """token_type_embeddings"""), (""".""", """/"""), ("""LayerNorm/weight""", """LayerNorm/gamma"""), ("""LayerNorm/bias""", """LayerNorm/beta"""), ("""weight""", """kernel"""), ) if not os.path.isdir(_lowercase ): os.makedirs(_lowercase ) UpperCAmelCase : List[Any] = model.state_dict() def to_tf_var_name(_lowercase ): for patt, repl in iter(_lowercase ): UpperCAmelCase : Tuple = name.replace(_lowercase , _lowercase ) return F'''bert/{name}''' def create_tf_var(_lowercase , _lowercase , _lowercase ): UpperCAmelCase : List[str] = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase : Optional[int] = tf.get_variable(dtype=_lowercase , shape=tensor.shape , name=_lowercase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowercase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase : Optional[int] = to_tf_var_name(_lowercase ) UpperCAmelCase : int = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase : Dict = torch_tensor.T UpperCAmelCase : int = create_tf_var(tensor=_lowercase , name=_lowercase , session=_lowercase ) tf.keras.backend.set_value(_lowercase , _lowercase ) UpperCAmelCase : Tuple = session.run(_lowercase ) print(F'''Successfully created {tf_name}: {np.allclose(_lowercase , _lowercase )}''' ) UpperCAmelCase : Dict = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowercase , os.path.join(_lowercase , model_name.replace("""-""" , """_""" ) + """.ckpt""" ) ) def __lowerCamelCase ( _lowercase=None ) -> int: UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=_lowercase , required=_lowercase , help="""model name e.g. bert-base-uncased""" ) parser.add_argument( """--cache_dir""" , type=_lowercase , default=_lowercase , required=_lowercase , help="""Directory containing pytorch model""" ) parser.add_argument("""--pytorch_model_path""" , type=_lowercase , required=_lowercase , help="""/path/to/<pytorch-model-name>.bin""" ) parser.add_argument("""--tf_cache_dir""" , type=_lowercase , required=_lowercase , help="""Directory in which to save tensorflow model""" ) UpperCAmelCase : Optional[Any] = parser.parse_args(_lowercase ) UpperCAmelCase : int = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowercase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
672
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a : Optional[Any] = logging.get_logger(__name__) a : List[Any] = { """microsoft/focalnet-tiny""": """https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ , __magic_name__ ): lowercase = 'focalnet' def __init__( self , A=224 , A=4 , A=3 , A=96 , A=False , A=[192, 384, 768, 768] , A=[2, 2, 6, 2] , A=[2, 2, 2, 2] , A=[3, 3, 3, 3] , A="gelu" , A=4.0 , A=0.0 , A=0.1 , A=False , A=1e-4 , A=False , A=False , A=False , A=0.0_2 , A=1e-5 , A=32 , A=None , A=None , **A , ) -> Tuple: super().__init__(**A ) UpperCAmelCase : Optional[Any] = image_size UpperCAmelCase : Any = patch_size UpperCAmelCase : Dict = num_channels UpperCAmelCase : Dict = embed_dim UpperCAmelCase : Union[str, Any] = use_conv_embed UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Optional[Any] = focal_levels UpperCAmelCase : List[str] = focal_windows UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : List[Any] = mlp_ratio UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : Optional[int] = drop_path_rate UpperCAmelCase : str = use_layerscale UpperCAmelCase : Optional[Any] = layerscale_value UpperCAmelCase : List[str] = use_post_layernorm UpperCAmelCase : Tuple = use_post_layernorm_in_modulation UpperCAmelCase : Optional[Any] = normalize_modulator UpperCAmelCase : int = initializer_range UpperCAmelCase : Union[str, Any] = layer_norm_eps UpperCAmelCase : Any = encoder_stride UpperCAmelCase : Any = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] UpperCAmelCase , UpperCAmelCase : List[Any] = get_aligned_output_features_output_indices( out_features=A , out_indices=A , stage_names=self.stage_names )
672
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : Any = logging.get_logger(__name__) a : Optional[Any] = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'luke' def __init__( self , A=50267 , A=500000 , A=768 , A=256 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.0_2 , A=1e-12 , A=True , A=None , A=1 , A=0 , A=2 , **A , ) -> Union[str, Any]: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Dict = vocab_size UpperCAmelCase : Optional[Any] = entity_vocab_size UpperCAmelCase : Dict = hidden_size UpperCAmelCase : Union[str, Any] = entity_emb_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : Any = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Dict = initializer_range UpperCAmelCase : List[Any] = layer_norm_eps UpperCAmelCase : Union[str, Any] = use_entity_aware_attention UpperCAmelCase : Union[str, Any] = classifier_dropout
672
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
1
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Tuple = SwinConfig() UpperCAmelCase : Optional[Any] = swin_name.split("""_""" ) UpperCAmelCase : Any = name_split[1] UpperCAmelCase : Dict = int(name_split[4] ) UpperCAmelCase : Optional[int] = int(name_split[3][-1] ) if model_size == "tiny": UpperCAmelCase : Optional[Any] = 9_6 UpperCAmelCase : Union[str, Any] = (2, 2, 6, 2) UpperCAmelCase : Union[str, Any] = (3, 6, 1_2, 2_4) elif model_size == "small": UpperCAmelCase : Union[str, Any] = 9_6 UpperCAmelCase : List[str] = (2, 2, 1_8, 2) UpperCAmelCase : List[Any] = (3, 6, 1_2, 2_4) elif model_size == "base": UpperCAmelCase : Tuple = 1_2_8 UpperCAmelCase : List[Any] = (2, 2, 1_8, 2) UpperCAmelCase : Any = (4, 8, 1_6, 3_2) else: UpperCAmelCase : Optional[Any] = 1_9_2 UpperCAmelCase : Tuple = (2, 2, 1_8, 2) UpperCAmelCase : Dict = (6, 1_2, 2_4, 4_8) if "in22k" in swin_name: UpperCAmelCase : str = 2_1_8_4_1 else: UpperCAmelCase : Optional[Any] = 1_0_0_0 UpperCAmelCase : Optional[int] = """huggingface/label-files""" UpperCAmelCase : Dict = """imagenet-1k-id2label.json""" UpperCAmelCase : Any = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : str = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : List[Any] = idalabel UpperCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()} UpperCAmelCase : str = img_size UpperCAmelCase : Union[str, Any] = num_classes UpperCAmelCase : Union[str, Any] = embed_dim UpperCAmelCase : List[str] = depths UpperCAmelCase : Dict = num_heads UpperCAmelCase : List[Any] = window_size return config def __lowerCamelCase ( _lowercase ) -> Any: if "patch_embed.proj" in name: UpperCAmelCase : str = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: UpperCAmelCase : int = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: UpperCAmelCase : Union[str, Any] = """encoder.""" + name if "attn.proj" in name: UpperCAmelCase : Dict = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: UpperCAmelCase : List[Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: UpperCAmelCase : Tuple = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCAmelCase : Any = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: UpperCAmelCase : Tuple = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCAmelCase : Any = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": UpperCAmelCase : int = """layernorm.weight""" if name == "norm.bias": UpperCAmelCase : List[str] = """layernorm.bias""" if "head" in name: UpperCAmelCase : Optional[int] = name.replace("""head""" , """classifier""" ) else: UpperCAmelCase : str = """swin.""" + name return name def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: for key in orig_state_dict.copy().keys(): UpperCAmelCase : List[str] = orig_state_dict.pop(_lowercase ) if "mask" in key: continue elif "qkv" in key: UpperCAmelCase : Tuple = key.split(""".""" ) UpperCAmelCase : List[Any] = int(key_split[1] ) UpperCAmelCase : str = int(key_split[3] ) UpperCAmelCase : Optional[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase : str = val[:dim, :] UpperCAmelCase : Optional[Any] = val[ dim : dim * 2, : ] UpperCAmelCase : List[Any] = val[-dim:, :] else: UpperCAmelCase : Optional[Any] = val[ :dim ] UpperCAmelCase : Dict = val[ dim : dim * 2 ] UpperCAmelCase : Tuple = val[ -dim: ] else: UpperCAmelCase : str = val return orig_state_dict def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : Dict = timm.create_model(_lowercase , pretrained=_lowercase ) timm_model.eval() UpperCAmelCase : Tuple = get_swin_config(_lowercase ) UpperCAmelCase : Optional[Any] = SwinForImageClassification(_lowercase ) model.eval() UpperCAmelCase : Optional[Any] = convert_state_dict(timm_model.state_dict() , _lowercase ) model.load_state_dict(_lowercase ) UpperCAmelCase : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : List[Any] = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) UpperCAmelCase : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) UpperCAmelCase : List[str] = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = timm_model(inputs["""pixel_values"""] ) UpperCAmelCase : str = model(**_lowercase ).logits assert torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print(F'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) a : List[Any] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
672
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
1
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys a : List[str] = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
672
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: return ("This is a test", "This is a test") def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """</s>""" UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(A ) , 1103 ) def _lowercase( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> str: return ("This is a test", "This is a test") def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : str = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
672
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin a : int = random.Random() if is_torch_available(): import torch def __lowerCamelCase ( _lowercase , _lowercase=1.0 , _lowercase=None , _lowercase=None ) -> int: if rng is None: UpperCAmelCase : Optional[Any] = global_rng UpperCAmelCase : Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A=7 , A=400 , A=2000 , A=1 , A=0.0 , A=16000 , A=True , A=True , ) -> Optional[int]: UpperCAmelCase : Optional[Any] = parent UpperCAmelCase : int = batch_size UpperCAmelCase : Any = min_seq_length UpperCAmelCase : Any = max_seq_length UpperCAmelCase : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase : Union[str, Any] = feature_size UpperCAmelCase : Union[str, Any] = padding_value UpperCAmelCase : Union[str, Any] = sampling_rate UpperCAmelCase : Optional[Any] = return_attention_mask UpperCAmelCase : List[Any] = do_normalize def _lowercase( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowercase( self , A=False , A=False ) -> Any: def _flatten(A ): return list(itertools.chain(*A ) ) if equal_length: UpperCAmelCase : Optional[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase : List[Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase : str = [np.asarray(A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = ASTFeatureExtractor def _lowercase( self ) -> Dict: UpperCAmelCase : Any = ASTFeatureExtractionTester(self ) def _lowercase( self ) -> Any: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : int = [np.asarray(A ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase : Union[str, Any] = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values UpperCAmelCase : int = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test batched UpperCAmelCase : Any = feat_extract(A , padding=A , return_tensors="""np""" ).input_values UpperCAmelCase : Union[str, Any] = feat_extract(A , padding=A , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase : Tuple = np.asarray(A ) UpperCAmelCase : Tuple = feat_extract(A , return_tensors="""np""" ).input_values UpperCAmelCase : Dict = feat_extract(A , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) @require_torch def _lowercase( self ) -> List[Any]: import torch UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : str = np.random.rand(100 ).astype(np.floataa ) UpperCAmelCase : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase : List[str] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase : str = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _lowercase( self , A ) -> List[Any]: from datasets import load_dataset UpperCAmelCase : Optional[int] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech UpperCAmelCase : Tuple = ds.sort("""id""" ).select(range(A ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] @require_torch def _lowercase( self ) -> Tuple: # fmt: off UpperCAmelCase : Dict = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on UpperCAmelCase : List[str] = self._load_datasamples(1 ) UpperCAmelCase : Union[str, Any] = ASTFeatureExtractor() UpperCAmelCase : Optional[int] = feature_extractor(A , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , A , atol=1e-4 ) )
672
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Any = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : int = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ConvNextVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase : Any = model_class(A ) model.to(A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : List[str] = False UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
672
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
1
'''simple docstring''' from __future__ import annotations from random import choice def __lowerCamelCase ( _lowercase ) -> str: return choice(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = random_pivot(_lowercase ) # partition based on pivot # linear time UpperCAmelCase : List[Any] = [e for e in lst if e < pivot] UpperCAmelCase : Union[str, Any] = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_lowercase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_lowercase ) < k - 1: return kth_number(_lowercase , k - len(_lowercase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_lowercase , _lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
672
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
'''simple docstring''' a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a : Optional[Any] = True a : List[Any] = False def __lowerCamelCase ( _lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : List[str] = chain(next_number(_lowercase ) ) UpperCAmelCase : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase : List[str] = number_chain number *= 1_0 return number_chain def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , _lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
672
1
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets a : List[str] = datasets.logging.get_logger(__name__) a : List[Any] = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ a : Union[str, Any] = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ a : List[Any] = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=False , _lowercase=False , _lowercase=True , _lowercase=False , _lowercase="dummy_doc" ) -> Optional[Any]: UpperCAmelCase : Any = {doc: key_lines} UpperCAmelCase : str = {doc: sys_lines} UpperCAmelCase : Any = {} UpperCAmelCase : Dict = 0 UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Any = 0 UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[str] = 0 UpperCAmelCase , UpperCAmelCase : List[str] = reader.get_doc_mentions(_lowercase , key_doc_lines[doc] , _lowercase ) key_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase : Tuple = reader.set_annotated_parse_trees(_lowercase , key_doc_lines[doc] , _lowercase , _lowercase ) UpperCAmelCase , UpperCAmelCase : str = reader.get_doc_mentions(_lowercase , sys_doc_lines[doc] , _lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase : Optional[int] = reader.set_annotated_parse_trees(_lowercase , key_doc_lines[doc] , _lowercase , _lowercase ) if remove_nested: UpperCAmelCase , UpperCAmelCase : Dict = reader.remove_nested_coref_mentions(_lowercase , _lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters UpperCAmelCase , UpperCAmelCase : Optional[int] = reader.remove_nested_coref_mentions(_lowercase , _lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters UpperCAmelCase : Dict = reader.get_mention_assignments(_lowercase , _lowercase ) UpperCAmelCase : List[str] = reader.get_mention_assignments(_lowercase , _lowercase ) UpperCAmelCase : Any = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( """Number of resulting singleton clusters in the key """ F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' """files, respectively""" ) return doc_coref_infos def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : str = get_coref_infos(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Optional[int] = {} UpperCAmelCase : List[Any] = 0 UpperCAmelCase : Optional[int] = 0 for name, metric in metrics: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = evaluator.evaluate_documents(_lowercase , _lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(1_0 ) , F'''Recall: {recall * 1_0_0:.2f}''' , F''' Precision: {precision * 1_0_0:.2f}''' , F''' F1: {fa * 1_0_0:.2f}''' , ) if conll_subparts_num == 3: UpperCAmelCase : Dict = (conll / 3) * 1_0_0 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({"""conll_score""": conll} ) return output_scores def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : List[Any] = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: UpperCAmelCase : Tuple = line.split()[5] if not parse_col == "-": UpperCAmelCase : Tuple = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def _lowercase( self , A , A , A=True , A=False , A=False , A=False ) -> Tuple: UpperCAmelCase : Union[str, Any] = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: UpperCAmelCase : int = util.check_gold_parse_annotation(A ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" UpperCAmelCase : Union[str, Any] = evaluate( key_lines=A , sys_lines=A , metrics=A , NP_only=A , remove_nested=A , keep_singletons=A , min_span=A , ) return score
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): lowercase = field(default='image-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) lowercase = Features({'image': Image()} ) lowercase = Features({'labels': ClassLabel} ) lowercase = "image" lowercase = "labels" def _lowercase( self , A ) -> Dict: if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) UpperCAmelCase : List[Any] = copy.deepcopy(self ) UpperCAmelCase : List[str] = self.label_schema.copy() UpperCAmelCase : Union[str, Any] = features[self.label_column] UpperCAmelCase : Optional[int] = label_schema return task_template @property def _lowercase( self ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
672
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Any = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
672
1
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : int = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def __lowerCamelCase ( _lowercase=None ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser(add_help=_lowercase , allow_abbrev=_lowercase ) # The main config parser UpperCAmelCase : Union[str, Any] = config_command_parser(_lowercase ) # The subparser to add commands to UpperCAmelCase : Union[str, Any] = config_parser.add_subparsers(title="""subcommands""" , dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(_lowercase , parents=[parent_parser] ) update_command_parser(_lowercase , parents=[parent_parser] ) return config_parser def __lowerCamelCase ( ) -> Any: UpperCAmelCase : Dict = get_config_parser() UpperCAmelCase : Any = config_parser.parse_args() if not hasattr(_lowercase , """func""" ): config_parser.print_help() exit(1 ) # Run args.func(_lowercase ) if __name__ == "__main__": main()
672
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a : int = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A=None , A=None , **A ) -> str: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase : List[Any] = str(jax.devices()[0] ) UpperCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def _lowercase( self , A ) -> str: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _lowercase( self , A ) -> Tuple: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase : List[str] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase : str = {"""dtype""": jnp.intaa} else: UpperCAmelCase : int = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase : Any = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): UpperCAmelCase : List[str] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase( self , A ) -> Tuple: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): UpperCAmelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _lowercase( self , A ) -> Dict: return map_nested(self._recursive_tensorize , A , map_list=A ) def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A ) UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _lowercase( self , A ) -> "jax.Array": UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A ) UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) UpperCAmelCase : Any = self._consolidate(A ) return column def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A ) UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) for column_name in batch: UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
672
1
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A=None , A=None , **A ) -> str: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase : List[Any] = str(jax.devices()[0] ) UpperCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def _lowercase( self , A ) -> str: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _lowercase( self , A ) -> Tuple: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase : List[str] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase : str = {"""dtype""": jnp.intaa} else: UpperCAmelCase : int = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase : Any = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): UpperCAmelCase : List[str] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase( self , A ) -> Tuple: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): UpperCAmelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _lowercase( self , A ) -> Dict: return map_nested(self._recursive_tensorize , A , map_list=A ) def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A ) UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _lowercase( self , A ) -> "jax.Array": UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A ) UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) UpperCAmelCase : Any = self._consolidate(A ) return column def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A ) UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) for column_name in batch: UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
672
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : int = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
672
1
'''simple docstring''' from bisect import bisect from itertools import accumulate def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : int = sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : x[0] / x[1] , reverse=_lowercase ) UpperCAmelCase , UpperCAmelCase : Tuple = [i[0] for i in r], [i[1] for i in r] UpperCAmelCase : Any = list(accumulate(_lowercase ) ) UpperCAmelCase : int = bisect(_lowercase , _lowercase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
672
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
672
1
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : int = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = XLMProphetNetTokenizer lowercase = False lowercase = True def _lowercase( self ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : Optional[int] = XLMProphetNetTokenizer(A , keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Union[str, Any] = """[PAD]""" UpperCAmelCase : Dict = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """[PAD]""" ) self.assertEqual(vocab_keys[1] , """[CLS]""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(A ) , 1012 ) def _lowercase( self ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[int] = XLMProphetNetTokenizer(A , keep_accents=A ) UpperCAmelCase : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """[UNK]""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """[UNK]""", """.""", ] , ) @cached_property def _lowercase( self ) -> Optional[int]: return XLMProphetNetTokenizer.from_pretrained("""microsoft/xprophetnet-large-wiki100-cased""" ) @slow def _lowercase( self ) -> List[str]: UpperCAmelCase : List[Any] = """Hello World!""" UpperCAmelCase : str = [35389, 6672, 49, 2] self.assertListEqual(A , self.big_tokenizer.encode(A ) ) @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : Optional[Any] = {"""input_ids""": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""microsoft/xprophetnet-large-wiki100-cased""" , revision="""1acad1643ddd54a44df6a1b797ada8373685d90e""" , )
672
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
672
1
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py a : Optional[int] = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. a : Tuple = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. a : Optional[int] = re.compile(R"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") a : int = re.compile(R"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. a : Tuple = re.compile(R"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) a : str = [ ("""pretraining""", """MODEL_FOR_PRETRAINING_MAPPING_NAMES""", """AutoModelForPreTraining"""), ("""feature-extraction""", """MODEL_MAPPING_NAMES""", """AutoModel"""), ("""audio-classification""", """MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForAudioClassification"""), ("""text-generation""", """MODEL_FOR_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForCausalLM"""), ("""automatic-speech-recognition""", """MODEL_FOR_CTC_MAPPING_NAMES""", """AutoModelForCTC"""), ("""image-classification""", """MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForImageClassification"""), ("""image-segmentation""", """MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES""", """AutoModelForImageSegmentation"""), ("""fill-mask""", """MODEL_FOR_MASKED_LM_MAPPING_NAMES""", """AutoModelForMaskedLM"""), ("""object-detection""", """MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES""", """AutoModelForObjectDetection"""), ( """zero-shot-object-detection""", """MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES""", """AutoModelForZeroShotObjectDetection""", ), ("""question-answering""", """MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForQuestionAnswering"""), ("""text2text-generation""", """MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForSeq2SeqLM"""), ("""text-classification""", """MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForSequenceClassification"""), ("""automatic-speech-recognition""", """MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES""", """AutoModelForSpeechSeq2Seq"""), ( """table-question-answering""", """MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForTableQuestionAnswering""", ), ("""token-classification""", """MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForTokenClassification"""), ("""multiple-choice""", """MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES""", """AutoModelForMultipleChoice"""), ( """next-sentence-prediction""", """MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES""", """AutoModelForNextSentencePrediction""", ), ( """audio-frame-classification""", """MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForAudioFrameClassification""", ), ("""audio-xvector""", """MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES""", """AutoModelForAudioXVector"""), ( """document-question-answering""", """MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForDocumentQuestionAnswering""", ), ( """visual-question-answering""", """MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForVisualQuestionAnswering""", ), ("""image-to-text""", """MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES""", """AutoModelForVision2Seq"""), ( """zero-shot-image-classification""", """MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForZeroShotImageClassification""", ), ("""depth-estimation""", """MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES""", """AutoModelForDepthEstimation"""), ("""video-classification""", """MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForVideoClassification"""), ("""mask-generation""", """MODEL_FOR_MASK_GENERATION_MAPPING_NAMES""", """AutoModelForMaskGeneration"""), ] def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : Tuple = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , _lowercase ) return [m.group(0 ) for m in matches] def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : List[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase : List[str] = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase : Tuple = collections.defaultdict(_lowercase ) UpperCAmelCase : List[Any] = collections.defaultdict(_lowercase ) UpperCAmelCase : List[Any] = collections.defaultdict(_lowercase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(_lowercase ): UpperCAmelCase : Optional[Any] = None if _re_tf_models.match(_lowercase ) is not None: UpperCAmelCase : Tuple = tf_models UpperCAmelCase : Any = _re_tf_models.match(_lowercase ).groups()[0] elif _re_flax_models.match(_lowercase ) is not None: UpperCAmelCase : Any = flax_models UpperCAmelCase : int = _re_flax_models.match(_lowercase ).groups()[0] elif _re_pt_models.match(_lowercase ) is not None: UpperCAmelCase : List[str] = pt_models UpperCAmelCase : Any = _re_pt_models.match(_lowercase ).groups()[0] if lookup_dict is not None: while len(_lowercase ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase : List[str] = True break # Try again after removing the last word in the name UpperCAmelCase : Dict = """""".join(camel_case_split(_lowercase )[:-1] ) UpperCAmelCase : Optional[int] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase : Tuple = list(_lowercase ) all_models.sort() UpperCAmelCase : Dict = {"""model_type""": all_models} UpperCAmelCase : Any = [pt_models[t] for t in all_models] UpperCAmelCase : Tuple = [tf_models[t] for t in all_models] UpperCAmelCase : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase : Dict = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase : List[Any] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase : str = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase : List[str] = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase : int = """AutoTokenizer""" UpperCAmelCase : Dict = [processors[t] for t in all_models] return pd.DataFrame(_lowercase ) def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : int = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase : List[Any] = [model_mapping, F'''TF_{model_mapping}''', F'''FLAX_{model_mapping}'''] UpperCAmelCase : Union[str, Any] = [auto_class, F'''TF_{auto_class}''', F'''Flax_{auto_class}'''] # Loop through all three frameworks for module, cls, mapping in zip(_lowercase , _lowercase , _lowercase ): # The type of pipeline may not exist in this framework if not hasattr(_lowercase , _lowercase ): continue # First extract all model_names UpperCAmelCase : Any = [] for name in getattr(_lowercase , _lowercase ).values(): if isinstance(_lowercase , _lowercase ): model_names.append(_lowercase ) else: model_names.extend(list(_lowercase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : Optional[Any] = get_frameworks_table() UpperCAmelCase : Optional[Any] = Dataset.from_pandas(_lowercase ) UpperCAmelCase : Union[str, Any] = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=_lowercase ) UpperCAmelCase : Tuple = Dataset.from_json(_lowercase ) UpperCAmelCase : Union[str, Any] = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(_lowercase ) ) } UpperCAmelCase : List[Any] = update_pipeline_and_auto_class_table(_lowercase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase : Any = sorted(table.keys() ) UpperCAmelCase : Any = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) UpperCAmelCase : int = Dataset.from_pandas(_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(_lowercase , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(_lowercase , """pipeline_tags.json""" ) ) if commit_sha is not None: UpperCAmelCase : Optional[Any] = ( F'''Update with commit {commit_sha}\n\nSee: ''' F'''https://github.com/huggingface/transformers/commit/{commit_sha}''' ) else: UpperCAmelCase : Optional[int] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=_lowercase , repo_type="""dataset""" , token=_lowercase , commit_message=_lowercase , ) def __lowerCamelCase ( ) -> Optional[Any]: UpperCAmelCase : Tuple = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase : Tuple = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase : Dict = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase : Union[str, Any] = pipeline_tasks[key]["""pt"""] if isinstance(_lowercase , (list, tuple) ): UpperCAmelCase : int = model[0] UpperCAmelCase : Union[str, Any] = model.__name__ if model not in in_table.values(): missing.append(_lowercase ) if len(_lowercase ) > 0: UpperCAmelCase : Any = """, """.join(_lowercase ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ F'''`utils/update_metadata.py`: {msg}. Please add them!''' ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() parser.add_argument("""--token""", type=str, help="""The token to use to push to the transformers-metadata dataset.""") parser.add_argument("""--commit_sha""", type=str, help="""The sha of the commit going with this update.""") parser.add_argument("""--check-only""", action="""store_true""", help="""Activate to just check all pipelines are present.""") a : Optional[int] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
672
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
1
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def __lowerCamelCase ( _lowercase ) -> bool: UpperCAmelCase : int = 0 UpperCAmelCase : Union[str, Any] = number while duplicate > 0: UpperCAmelCase , UpperCAmelCase : List[str] = divmod(_lowercase , 1_0 ) fact_sum += factorial(_lowercase ) return fact_sum == number if __name__ == "__main__": print("""Program to check whether a number is a Krisnamurthy Number or not.""") a : Optional[int] = int(input("""Enter number: """).strip()) print( F'''{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.''' )
672
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
1
'''simple docstring''' a : Dict = { 0: """0""", 1: """1""", 2: """2""", 3: """3""", 4: """4""", 5: """5""", 6: """6""", 7: """7""", 8: """8""", 9: """9""", 1_0: """a""", 1_1: """b""", 1_2: """c""", 1_3: """d""", 1_4: """e""", 1_5: """f""", } def __lowerCamelCase ( _lowercase ) -> str: assert type(_lowercase ) in (int, float) and decimal == int(_lowercase ) UpperCAmelCase : List[Any] = int(_lowercase ) UpperCAmelCase : Optional[Any] = """""" UpperCAmelCase : List[str] = False if decimal < 0: UpperCAmelCase : int = True decimal *= -1 while decimal > 0: UpperCAmelCase , UpperCAmelCase : Dict = divmod(_lowercase , 1_6 ) UpperCAmelCase : int = values[remainder] + hexadecimal UpperCAmelCase : Optional[Any] = """0x""" + hexadecimal if negative: UpperCAmelCase : Dict = """-""" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
672
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations UpperCAmelCase : List[Any] = tpu_short_seq_length
672
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable a : int = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = ["""DPTFeatureExtractor"""] a : Optional[Any] = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
1
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : Optional[Any] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Dict: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : List[str] = None def _lowercase( self , A ) -> int: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Any = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : int = str(distributed_port + 1 ) UpperCAmelCase : List[Any] = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> List[str]: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : Tuple = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[int] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : List[Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : Any = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : Optional[int] = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : str = None if self._is_main(): UpperCAmelCase : List[Any] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : Dict = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : List[str] = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[Any] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Any = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : List[Any] = self._chunk_tensor(A , A ) UpperCAmelCase : List[Any] = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[int] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
672
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : List[Any] = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
1
'''simple docstring''' import baseaa def __lowerCamelCase ( _lowercase ) -> bytes: return baseaa.aaaencode(string.encode("""utf-8""" ) ) def __lowerCamelCase ( _lowercase ) -> str: return baseaa.aaadecode(_lowercase ).decode("""utf-8""" ) if __name__ == "__main__": import doctest doctest.testmod()
672
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : int = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
1
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A=13 , A=30 , A=2 , A=3 , A=True , A=True , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=10 , A=0.0_2 , ) -> Any: UpperCAmelCase : str = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : int = image_size UpperCAmelCase : int = patch_size UpperCAmelCase : Any = num_channels UpperCAmelCase : List[str] = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : int = intermediate_size UpperCAmelCase : Tuple = hidden_act UpperCAmelCase : List[Any] = hidden_dropout_prob UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase : List[Any] = (image_size // patch_size) ** 2 UpperCAmelCase : str = num_patches + 1 def _lowercase( self ) -> str: UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : str = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , ) return config, pixel_values def _lowercase( self , A , A ) -> str: UpperCAmelCase : int = FlaxViTModel(config=A ) UpperCAmelCase : Tuple = model(A ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase : Any = (self.image_size, self.image_size) UpperCAmelCase : Dict = (self.patch_size, self.patch_size) UpperCAmelCase : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _lowercase( self , A , A ) -> Dict: UpperCAmelCase : Dict = self.type_sequence_label_size UpperCAmelCase : Optional[int] = FlaxViTForImageClassification(config=A ) UpperCAmelCase : int = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase : Tuple = 1 UpperCAmelCase : Union[str, Any] = FlaxViTForImageClassification(A ) UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : List[str] = model(A ) def _lowercase( self ) -> int: UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[Any] = config_and_inputs UpperCAmelCase : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _lowercase( self ) -> None: UpperCAmelCase : Any = FlaxViTModelTester(self ) UpperCAmelCase : int = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> Dict: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : Union[str, Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Any = [*signature.parameters.keys()] UpperCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase : List[Any] = self._prepare_for_class(A , A ) UpperCAmelCase : List[str] = model_class(A ) @jax.jit def model_jitted(A , **A ): return model(pixel_values=A , **A ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase : Tuple = model_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase : Union[str, Any] = model_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase( self ) -> Dict: for model_class_name in self.all_model_classes: UpperCAmelCase : List[str] = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) UpperCAmelCase : Any = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(A )
672
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class UpperCamelCase_ : def __init__( self , A ) -> None: UpperCAmelCase : Optional[Any] = value UpperCAmelCase : Node | None = None UpperCAmelCase : Node | None = None class UpperCamelCase_ : def __init__( self , A ) -> None: UpperCAmelCase : int = tree def _lowercase( self , A ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
672
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: return ("This is a test", "This is a test") def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """</s>""" UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(A ) , 1103 ) def _lowercase( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> str: return ("This is a test", "This is a test") def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : str = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
672
1
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer a : str = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'AutoTokenizer' lowercase = ['tokenizer'] lowercase = { 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self , A , A=None ) -> Tuple: super().__init__(A ) UpperCAmelCase : int = speaker_embeddings @classmethod def _lowercase( cls , A , A="speaker_embeddings_path.json" , **A ) -> int: if speaker_embeddings_dict_path is not None: UpperCAmelCase : List[str] = get_file_from_repo( A , A , subfolder=kwargs.pop("""subfolder""" , A ) , cache_dir=kwargs.pop("""cache_dir""" , A ) , force_download=kwargs.pop("""force_download""" , A ) , proxies=kwargs.pop("""proxies""" , A ) , resume_download=kwargs.pop("""resume_download""" , A ) , local_files_only=kwargs.pop("""local_files_only""" , A ) , use_auth_token=kwargs.pop("""use_auth_token""" , A ) , revision=kwargs.pop("""revision""" , A ) , ) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(A , A )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) UpperCAmelCase : int = None else: with open(A ) as speaker_embeddings_json: UpperCAmelCase : Dict = json.load(A ) else: UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(A , **A ) return cls(tokenizer=A , speaker_embeddings=A ) def _lowercase( self , A , A="speaker_embeddings_path.json" , A="speaker_embeddings" , A = False , **A , ) -> Union[str, Any]: if self.speaker_embeddings is not None: os.makedirs(os.path.join(A , A , """v2""" ) , exist_ok=A ) UpperCAmelCase : Optional[Any] = {} UpperCAmelCase : List[str] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": UpperCAmelCase : Union[str, Any] = self._load_voice_preset(A ) UpperCAmelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] , A , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=A , ) UpperCAmelCase : Tuple = os.path.join(A , f'''{prompt_key}_{key}.npy''' ) UpperCAmelCase : List[str] = tmp_dict with open(os.path.join(A , A ) , """w""" ) as fp: json.dump(A , A ) super().save_pretrained(A , A , **A ) def _lowercase( self , A = None , **A ) -> Optional[int]: UpperCAmelCase : List[str] = self.speaker_embeddings[voice_preset] UpperCAmelCase : str = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) UpperCAmelCase : Optional[Any] = get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , A ) , cache_dir=kwargs.pop("""cache_dir""" , A ) , force_download=kwargs.pop("""force_download""" , A ) , proxies=kwargs.pop("""proxies""" , A ) , resume_download=kwargs.pop("""resume_download""" , A ) , local_files_only=kwargs.pop("""local_files_only""" , A ) , use_auth_token=kwargs.pop("""use_auth_token""" , A ) , revision=kwargs.pop("""revision""" , A ) , ) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) UpperCAmelCase : str = np.load(A ) return voice_preset_dict def _lowercase( self , A = None ) -> Optional[Any]: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , A=None , A=None , A="pt" , A=256 , A=False , A=True , A=False , **A , ) -> str: if voice_preset is not None and not isinstance(A , A ): if ( isinstance(A , A ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): UpperCAmelCase : Union[str, Any] = self._load_voice_preset(A ) else: if isinstance(A , A ) and not voice_preset.endswith(""".npz""" ): UpperCAmelCase : Optional[Any] = voice_preset + """.npz""" UpperCAmelCase : Union[str, Any] = np.load(A ) if voice_preset is not None: self._validate_voice_preset_dict(A , **A ) UpperCAmelCase : List[Any] = BatchFeature(data=A , tensor_type=A ) UpperCAmelCase : Any = self.tokenizer( A , return_tensors=A , padding="""max_length""" , max_length=A , return_attention_mask=A , return_token_type_ids=A , add_special_tokens=A , **A , ) if voice_preset is not None: UpperCAmelCase : Optional[Any] = voice_preset return encoded_text
672
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Any = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : int = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ConvNextVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase : Any = model_class(A ) model.to(A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : List[str] = False UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
672
1
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
672
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
1
'''simple docstring''' from __future__ import annotations import requests a : Optional[int] = set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def __lowerCamelCase ( _lowercase , _lowercase = 1 , _lowercase = "new" , _lowercase = None ) -> dict: UpperCAmelCase : List[Any] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(_lowercase ) - valid_terms ) ): UpperCAmelCase : Optional[int] = F'''Invalid search term: {invalid_search_terms}''' raise ValueError(_lowercase ) UpperCAmelCase : Optional[int] = requests.get( F'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={"""User-agent""": """A random string"""} , ) if response.status_code == 4_2_9: raise requests.HTTPError UpperCAmelCase : Tuple = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(_lowercase )} UpperCAmelCase : Optional[int] = {} for id_ in range(_lowercase ): UpperCAmelCase : int = { item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
672
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a : Optional[Any] = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
'''simple docstring''' a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a : Optional[Any] = True a : List[Any] = False def __lowerCamelCase ( _lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : List[str] = chain(next_number(_lowercase ) ) UpperCAmelCase : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase : List[str] = number_chain number *= 1_0 return number_chain def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , _lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
672
1
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( _lowercase ) -> list[int]: UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : Optional[Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_lowercase ) if n > 1: factors.append(_lowercase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
672
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Any = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
672
1
'''simple docstring''' def __lowerCamelCase ( _lowercase = 1 , _lowercase = 1_0_0_0 ) -> int: UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : str = 0 for divide_by_number in range(_lowercase , digit + 1 ): UpperCAmelCase : list[int] = [] UpperCAmelCase : Any = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(_lowercase ): UpperCAmelCase : Optional[int] = len(_lowercase ) UpperCAmelCase : Any = divide_by_number else: has_been_divided.append(_lowercase ) UpperCAmelCase : Tuple = now_divide * 1_0 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=3 , A=32 , A=3 , A=10 , A=[10, 20, 30, 40] , A=[1, 1, 2, 1] , A=True , A=True , A="relu" , A=3 , A=None , ) -> Dict: UpperCAmelCase : int = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Optional[int] = image_size UpperCAmelCase : Optional[Any] = num_channels UpperCAmelCase : str = embeddings_size UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : Dict = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : int = scope UpperCAmelCase : Optional[int] = len(A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Optional[Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Any: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[int]: UpperCAmelCase : int = TFRegNetModel(config=A ) UpperCAmelCase : int = model(A , training=A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Union[str, Any]: UpperCAmelCase : List[str] = self.num_labels UpperCAmelCase : List[str] = TFRegNetForImageClassification(A ) UpperCAmelCase : Tuple = model(A , labels=A , training=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = config_and_inputs UpperCAmelCase : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowercase = ( {'feature-extraction': TFRegNetModel, 'image-classification': TFRegNetForImageClassification} if is_tf_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = TFRegNetModelTester(self ) UpperCAmelCase : str = ConfigTester(self , config_class=A , has_text_modality=A ) def _lowercase( self ) -> Any: return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def _lowercase( self ) -> List[Any]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def _lowercase( self ) -> Optional[int]: super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def _lowercase( self ) -> Optional[Any]: pass def _lowercase( self ) -> Any: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : List[str] = [*signature.parameters.keys()] UpperCAmelCase : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> Optional[Any]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Any = model_class(A ) UpperCAmelCase : int = model(**self._prepare_for_class(A , A ) , training=A ) UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase : Union[str, Any] = layer_type UpperCAmelCase : List[Any] = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : List[Any] = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Dict: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(A , A , A , A={} ): UpperCAmelCase : List[str] = model(A , return_dict=A , **A ) UpperCAmelCase : Any = model(A , return_dict=A , **A ).to_tuple() def recursive_check(A , A ): if isinstance(A , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(A , A ): recursive_check(A , A ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(A , A ) ) , msg=( """Tuple and dict output are not equal. Difference:""" f''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ) , ) recursive_check(A , A ) for model_class in self.all_model_classes: UpperCAmelCase : Union[str, Any] = model_class(A ) UpperCAmelCase : str = self._prepare_for_class(A , A ) UpperCAmelCase : List[str] = self._prepare_for_class(A , A ) check_equivalence(A , A , A ) UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) check_equivalence(A , A , A ) UpperCAmelCase : int = self._prepare_for_class(A , A ) UpperCAmelCase : Tuple = self._prepare_for_class(A , A ) check_equivalence(A , A , A , {"""output_hidden_states""": True} ) UpperCAmelCase : str = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Optional[int] = self._prepare_for_class(A , A , return_labels=A ) check_equivalence(A , A , A , {"""output_hidden_states""": True} ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Union[str, Any]: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Dict = TFRegNetModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> Optional[int]: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[Any] = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCAmelCase : Union[str, Any] = self.default_image_processor UpperCAmelCase : str = prepare_img() UpperCAmelCase : str = image_processor(images=A , return_tensors="""tf""" ) # forward pass UpperCAmelCase : int = model(**A , training=A ) # verify the logits UpperCAmelCase : Optional[int] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Union[str, Any] = tf.constant([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , A , atol=1e-4 )
672
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
1
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class UpperCamelCase_ ( datasets.BeamBasedBuilder ): def _lowercase( self ) -> Optional[Any]: return datasets.DatasetInfo( features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=A , ) def _lowercase( self , A , A ) -> Dict: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )] def _lowercase( self , A , A ) -> List[str]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(A ) class UpperCamelCase_ ( datasets.BeamBasedBuilder ): def _lowercase( self ) -> Dict: return datasets.DatasetInfo( features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=A , ) def _lowercase( self , A , A ) -> Optional[Any]: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} ) ] def _lowercase( self , A , A ) -> Optional[int]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(A ) def __lowerCamelCase ( ) -> Any: return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] def __lowerCamelCase ( ) -> int: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] class UpperCamelCase_ ( __magic_name__ ): @require_beam def _lowercase( self ) -> List[str]: UpperCAmelCase : int = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase : Any = DummyBeamDataset(cache_dir=A , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(A , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) UpperCAmelCase : List[str] = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , A ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , A ) self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(A , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _lowercase( self ) -> Any: import apache_beam as beam UpperCAmelCase : List[str] = beam.io.parquetio.WriteToParquet UpperCAmelCase : Union[str, Any] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase : Union[str, Any] = DummyBeamDataset(cache_dir=A , beam_runner="""DirectRunner""" ) with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock: UpperCAmelCase : List[Any] = partial(A , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( A , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertTrue( os.path.exists( os.path.join( A , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) UpperCAmelCase : Dict = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , A ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , A ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) ) self.assertTrue( os.path.exists(os.path.join(A , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _lowercase( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase : Tuple = DummyBeamDataset(cache_dir=A ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _lowercase( self ) -> int: UpperCAmelCase : Tuple = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase : Any = NestedBeamDataset(cache_dir=A , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(A , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) ) UpperCAmelCase : Optional[Any] = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , A ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , A ) self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(A , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset
672
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A=None , A=None , **A ) -> str: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase : List[Any] = str(jax.devices()[0] ) UpperCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def _lowercase( self , A ) -> str: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _lowercase( self , A ) -> Tuple: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase : List[str] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase : str = {"""dtype""": jnp.intaa} else: UpperCAmelCase : int = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase : Any = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): UpperCAmelCase : List[str] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase( self , A ) -> Tuple: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): UpperCAmelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _lowercase( self , A ) -> Dict: return map_nested(self._recursive_tensorize , A , map_list=A ) def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A ) UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _lowercase( self , A ) -> "jax.Array": UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A ) UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) UpperCAmelCase : Any = self._consolidate(A ) return column def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A ) UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) for column_name in batch: UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
672
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin a : int = False @skip_mps class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = StableDiffusionAttendAndExcitePipeline lowercase = False lowercase = TEXT_TO_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def _lowercase( cls ) -> Tuple: super().setUpClass() torch.use_deterministic_algorithms(A ) @classmethod def _lowercase( cls ) -> Dict: super().tearDownClass() torch.use_deterministic_algorithms(A ) def _lowercase( self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=A , ) UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=A , set_alpha_to_one=A , ) torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) UpperCAmelCase : Optional[Any] = CLIPTextModel(A ) UpperCAmelCase : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase : Optional[int] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _lowercase( self , A , A=0 ) -> Any: if str(A ).startswith("""mps""" ): UpperCAmelCase : Tuple = torch.manual_seed(A ) else: UpperCAmelCase : List[Any] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : str = { """prompt""": """a cat and a frog""", """token_indices""": [2, 5], """generator""": generator, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", """max_iter_to_alter""": 2, """thresholds""": {0: 0.7}, } return inputs def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = """cpu""" UpperCAmelCase : Optional[Any] = self.get_dummy_components() UpperCAmelCase : Union[str, Any] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(A ) UpperCAmelCase : List[Any] = pipe(**A ).images UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) UpperCAmelCase : Optional[int] = np.array( [0.6_3_9_0_5_3_6_4, 0.6_2_8_9_7_3_0_7, 0.4_8_5_9_9_0_1_7, 0.5_1_3_3_6_2_4, 0.5_5_5_0_0_4_8, 0.4_5_7_6_9_5_1_6, 0.5_0_3_2_6_9_7_3, 0.5_0_2_3_1_3_9, 0.4_5_3_8_4_4_9_6] ) UpperCAmelCase : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A , 1e-3 ) def _lowercase( self ) -> Optional[Any]: super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def _lowercase( self ) -> str: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _lowercase( self ) -> Dict: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def _lowercase( self ) -> List[str]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _lowercase( self ) -> Optional[Any]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def _lowercase( self ) -> Union[str, Any]: super().test_save_load_local(expected_max_difference=5e-4 ) def _lowercase( self ) -> Optional[int]: super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class UpperCamelCase_ ( unittest.TestCase ): @classmethod def _lowercase( cls ) -> Dict: super().setUpClass() torch.use_deterministic_algorithms(A ) @classmethod def _lowercase( cls ) -> Optional[int]: super().tearDownClass() torch.use_deterministic_algorithms(A ) def _lowercase( self ) -> Any: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = torch.manual_seed(51 ) UpperCAmelCase : List[str] = StableDiffusionAttendAndExcitePipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , safety_checker=A , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) UpperCAmelCase : Dict = """a painting of an elephant with glasses""" UpperCAmelCase : str = [5, 7] UpperCAmelCase : Optional[Any] = pipe( prompt=A , token_indices=A , guidance_scale=7.5 , generator=A , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0] UpperCAmelCase : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""" ) assert np.abs((expected_image - image).max() ) < 5e-1
672
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : int = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
672
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) UpperCAmelCase : Optional[int] = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase : Optional[Any] = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase : Tuple = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase : str = model(A )["""last_hidden_state"""].detach() self.assertEqual(output.shape , A ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , A , atol=1e-3 ) ) @slow def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) UpperCAmelCase : Optional[int] = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase : int = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase : str = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase : Optional[int] = model(A )["""last_hidden_state"""].detach() self.assertEqual(output.shape , A ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , A , atol=1e-3 ) )
672
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
672
1