code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Union[str, Any] = """huggingface/label-files""" UpperCAmelCase : Tuple = """imagenet-1k-id2label.json""" UpperCAmelCase : Tuple = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : str = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : str = {v: k for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" UpperCAmelCase : Dict = BitConfig( conv_layer=__lowerCAmelCase , num_labels=1_0_0_0 , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase , ) return config def __lowerCamelCase ( _lowercase ) -> Any: if "stem.conv" in name: UpperCAmelCase : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: UpperCAmelCase : str = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: UpperCAmelCase : int = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): UpperCAmelCase : str = """bit.""" + name if "bit" not in name and "classifier" not in name: UpperCAmelCase : Optional[int] = """bit.encoder.""" + name return name def __lowerCamelCase ( ) -> List[str]: UpperCAmelCase : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : List[Any] = get_config(__lowerCAmelCase ) # load original model from timm UpperCAmelCase : str = create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model UpperCAmelCase : int = timm_model.state_dict() for key in state_dict.copy().keys(): UpperCAmelCase : int = state_dict.pop(__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = val.squeeze() if """head""" in key else val # load HuggingFace model UpperCAmelCase : Any = BitForImageClassification(__lowerCAmelCase ) model.eval() model.load_state_dict(__lowerCAmelCase ) # create image processor UpperCAmelCase : Dict = create_transform(**resolve_data_config({} , model=__lowerCAmelCase ) ) UpperCAmelCase : Union[str, Any] = transform.transforms UpperCAmelCase : Union[str, Any] = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } UpperCAmelCase : Tuple = BitImageProcessor( do_resize=__lowerCAmelCase , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__lowerCAmelCase , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=__lowerCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Optional[int] = transform(__lowerCAmelCase ).unsqueeze(0 ) UpperCAmelCase : Any = processor(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase ) # verify logits with torch.no_grad(): UpperCAmelCase : Optional[int] = model(__lowerCAmelCase ) UpperCAmelCase : List[Any] = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) UpperCAmelCase : Optional[int] = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print(F'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(F'''ybelkada/{model_name}''' ) processor.push_to_hub(F'''ybelkada/{model_name}''' ) if __name__ == "__main__": a : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) a : List[Any] = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
712
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Any = { """configuration_blip_2""": [ """BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Blip2Config""", """Blip2QFormerConfig""", """Blip2VisionConfig""", ], """processing_blip_2""": ["""Blip2Processor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Blip2Model""", """Blip2QFormerModel""", """Blip2PreTrainedModel""", """Blip2ForConditionalGeneration""", """Blip2VisionModel""", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys a : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
713
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Dict = logging.get_logger(__name__) a : List[str] = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'beit' def __init__( self , A=8192 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.0 , A=0.0 , A=0.0_2 , A=1e-12 , A=224 , A=16 , A=3 , A=False , A=False , A=False , A=False , A=0.1 , A=0.1 , A=True , A=[3, 5, 7, 11] , A=[1, 2, 3, 6] , A=True , A=0.4 , A=256 , A=1 , A=False , A=255 , **A , ) -> List[Any]: super().__init__(**_UpperCAmelCase ) UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Any = initializer_range UpperCAmelCase : Optional[Any] = layer_norm_eps UpperCAmelCase : Any = image_size UpperCAmelCase : int = patch_size UpperCAmelCase : int = num_channels UpperCAmelCase : int = use_mask_token UpperCAmelCase : Tuple = use_absolute_position_embeddings UpperCAmelCase : Any = use_relative_position_bias UpperCAmelCase : Optional[Any] = use_shared_relative_position_bias UpperCAmelCase : Optional[Any] = layer_scale_init_value UpperCAmelCase : List[Any] = drop_path_rate UpperCAmelCase : Optional[int] = use_mean_pooling # decode head attributes (semantic segmentation) UpperCAmelCase : Optional[Any] = out_indices UpperCAmelCase : Optional[Any] = pool_scales # auxiliary head attributes (semantic segmentation) UpperCAmelCase : Union[str, Any] = use_auxiliary_head UpperCAmelCase : int = auxiliary_loss_weight UpperCAmelCase : str = auxiliary_channels UpperCAmelCase : List[str] = auxiliary_num_convs UpperCAmelCase : List[str] = auxiliary_concat_input UpperCAmelCase : Tuple = semantic_loss_ignore_index class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
714
'''simple docstring''' a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a : Optional[Any] = True a : List[Any] = False def __lowerCamelCase ( _lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : List[str] = chain(next_number(_lowercase ) ) UpperCAmelCase : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase : List[str] = number_chain number *= 1_0 return number_chain def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , _lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
672
0
import doctest from collections import deque import numpy as np class UpperCamelCase_ : def __init__( self ) -> None: UpperCAmelCase : int = [2, 1, 2, -1] UpperCAmelCase : Union[str, Any] = [1, 2, 3, 4] def _lowercase( self ) -> list[float]: UpperCAmelCase : Tuple = len(self.first_signal ) UpperCAmelCase : Tuple = len(self.second_signal ) UpperCAmelCase : Dict = max(_UpperCamelCase , _UpperCamelCase ) # create a zero matrix of max_length x max_length UpperCAmelCase : Tuple = [[0] * max_length for i in range(_UpperCamelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_UpperCamelCase ): UpperCAmelCase : Tuple = deque(self.second_signal ) rotated_signal.rotate(_UpperCamelCase ) for j, item in enumerate(_UpperCamelCase ): matrix[i][j] += item # multiply the matrix with the first signal UpperCAmelCase : Dict = np.matmul(np.transpose(_UpperCamelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_UpperCamelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A = True , A = None , A = 32 , A = True , A = 1 / 255 , A = True , A = True , A = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , A = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , A = True , A=7 , A=30 , A=400 , A=3 , ) -> List[Any]: UpperCAmelCase : Optional[Any] = parent UpperCAmelCase : List[Any] = do_resize UpperCAmelCase : Dict = size if size is not None else {'shortest_edge': 288} UpperCAmelCase : str = size_divisor UpperCAmelCase : List[str] = do_rescale UpperCAmelCase : int = rescale_factor UpperCAmelCase : Dict = do_normalize UpperCAmelCase : str = do_center_crop UpperCAmelCase : Optional[int] = image_mean UpperCAmelCase : Dict = image_std UpperCAmelCase : int = do_pad UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : List[str] = min_resolution UpperCAmelCase : Dict = max_resolution def _lowercase( self ) -> List[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _lowercase( self , A , A=False ) -> Optional[int]: if not batched: UpperCAmelCase : Optional[Any] = self.size['shortest_edge'] UpperCAmelCase : Tuple = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase : Optional[Any] = image.size else: UpperCAmelCase : Union[str, Any] = image.shape[1], image.shape[2] UpperCAmelCase : Union[str, Any] = size / min(_A , _A ) if h < w: UpperCAmelCase : List[str] = size, scale * w else: UpperCAmelCase : Tuple = scale * h, size UpperCAmelCase : Optional[int] = int((1333 / 800) * size ) if max(_A , _A ) > max_size: UpperCAmelCase : Union[str, Any] = max_size / max(_A , _A ) UpperCAmelCase : Optional[Any] = newh * scale UpperCAmelCase : Any = neww * scale UpperCAmelCase : Union[str, Any] = int(newh + 0.5 ), int(neww + 0.5 ) UpperCAmelCase : Optional[Any] = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase : List[Any] = [] for image in image_inputs: UpperCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase : Union[str, Any] = max(_A , key=lambda A : item[0] )[0] UpperCAmelCase : List[str] = max(_A , key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase_ ( a__ , unittest.TestCase ): lowercase = BridgeTowerImageProcessor if is_vision_available() else None def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = BridgeTowerImageProcessingTester(self ) @property def _lowercase( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase( self ) -> str: UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , """image_mean""" ) ) self.assertTrue(hasattr(_A , """image_std""" ) ) self.assertTrue(hasattr(_A , """do_normalize""" ) ) self.assertTrue(hasattr(_A , """do_resize""" ) ) self.assertTrue(hasattr(_A , """size""" ) ) self.assertTrue(hasattr(_A , """size_divisor""" ) ) def _lowercase( self ) -> Union[str, Any]: pass def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase : Optional[int] = image_processing(_A , return_tensors="""pt""" ).pixel_values UpperCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCAmelCase : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase : str = image_processing(_A , return_tensors="""pt""" ).pixel_values UpperCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase( self ) -> Dict: UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCAmelCase : int = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase : List[str] = image_processing(_A , return_tensors="""pt""" ).pixel_values UpperCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
716
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Any = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
672
0
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset a : Optional[Any] = """bert-base-cased""" a : Tuple = """google/pegasus-xsum""" a : int = [""" Sam ate lunch today.""", """Sams lunch ingredients."""] a : Tuple = ["""A very interesting story about what I ate for lunch.""", """Avocado, celery, turkey, coffee"""] a : List[str] = """patrickvonplaten/t5-tiny-random""" a : Tuple = """sshleifer/bart-tiny-random""" a : Any = """sshleifer/tiny-mbart""" a : str = """sshleifer/tiny-marian-en-de""" def __lowerCamelCase ( _lowercase , _lowercase ) -> List[Any]: UpperCAmelCase : str = "\n".join(_lowerCamelCase ) Path(_lowerCamelCase ).open("""w""" ).writelines(_lowerCamelCase ) def __lowerCamelCase ( _lowercase ) -> str: for split in ["train", "val", "test"]: _dump_articles(os.path.join(_lowerCamelCase , F'''{split}.source''' ) , _lowerCamelCase ) _dump_articles(os.path.join(_lowerCamelCase , F'''{split}.target''' ) , _lowerCamelCase ) return tmp_dir class UpperCamelCase_ ( _A ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def _lowercase( self , A ) -> Tuple: UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(__lowerCamelCase ) UpperCAmelCase : Tuple = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) UpperCAmelCase : Optional[Any] = max(len(tokenizer.encode(__lowerCamelCase ) ) for a in ARTICLES ) UpperCAmelCase : Optional[Any] = max(len(tokenizer.encode(__lowerCamelCase ) ) for a in SUMMARIES ) UpperCAmelCase : Tuple = 4 UpperCAmelCase : int = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated UpperCAmelCase : Optional[Any] = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. UpperCAmelCase : Any = SeqaSeqDataset( __lowerCamelCase , data_dir=__lowerCamelCase , type_path="""train""" , max_source_length=__lowerCamelCase , max_target_length=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , ) UpperCAmelCase : List[Any] = DataLoader(__lowerCamelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place UpperCAmelCase : str = shift_tokens_right(batch["""labels"""] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def _lowercase( self , A ) -> List[str]: UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(__lowerCamelCase ) UpperCAmelCase : Any = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) UpperCAmelCase : List[Any] = max(len(tokenizer.encode(__lowerCamelCase ) ) for a in ARTICLES ) UpperCAmelCase : int = max(len(tokenizer.encode(__lowerCamelCase ) ) for a in SUMMARIES ) UpperCAmelCase : List[str] = 4 UpperCAmelCase : str = LegacySeqaSeqDataset( __lowerCamelCase , data_dir=__lowerCamelCase , type_path="""train""" , max_source_length=20 , max_target_length=__lowerCamelCase , ) UpperCAmelCase : List[str] = DataLoader(__lowerCamelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def _lowercase( self ) -> List[str]: UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained("""facebook/mbart-large-cc25""" ) UpperCAmelCase : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) UpperCAmelCase : Optional[int] = tmp_dir.joinpath("""train.source""" ).open().readlines() UpperCAmelCase : Union[str, Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__lowerCamelCase , __lowerCamelCase , 128 , __lowerCamelCase ) UpperCAmelCase : List[str] = {x.name for x in tmp_dir.iterdir()} UpperCAmelCase : Tuple = {x.name for x in save_dir.iterdir()} UpperCAmelCase : List[str] = save_dir.joinpath("""train.source""" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__lowerCamelCase ) < len(__lowerCamelCase ) assert len(__lowerCamelCase ) == 1 assert len(packed_examples[0] ) == sum(len(__lowerCamelCase ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="""This test requires fairseq""" ) def _lowercase( self ) -> Any: if not FAIRSEQ_AVAILABLE: return UpperCAmelCase : Any = self._get_dataset(max_len=64 ) UpperCAmelCase : List[Any] = 64 UpperCAmelCase : str = ds.make_dynamic_sampler(__lowerCamelCase , required_batch_size_multiple=__lowerCamelCase ) UpperCAmelCase : Optional[Any] = [len(__lowerCamelCase ) for x in batch_sampler] assert len(set(__lowerCamelCase ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__lowerCamelCase ) == len(__lowerCamelCase ) # no dropped or added examples UpperCAmelCase : Any = DataLoader(__lowerCamelCase , batch_sampler=__lowerCamelCase , collate_fn=ds.collate_fn , num_workers=2 ) UpperCAmelCase : List[Any] = [] UpperCAmelCase : Union[str, Any] = [] for batch in data_loader: UpperCAmelCase : Union[str, Any] = batch["input_ids"].shape UpperCAmelCase : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple UpperCAmelCase : int = np.product(batch["""input_ids"""].shape ) num_src_per_batch.append(__lowerCamelCase ) if num_src_tokens > (max_tokens * 1.1): failures.append(__lowerCamelCase ) assert num_src_per_batch[0] == max(__lowerCamelCase ) if failures: raise AssertionError(f'''too many tokens in {len(__lowerCamelCase )} batches''' ) def _lowercase( self ) -> str: UpperCAmelCase : Dict = self._get_dataset(max_len=512 ) UpperCAmelCase : List[str] = 2 UpperCAmelCase : List[str] = ds.make_sortish_sampler(__lowerCamelCase , shuffle=__lowerCamelCase ) UpperCAmelCase : Any = DataLoader(__lowerCamelCase , batch_size=__lowerCamelCase , collate_fn=ds.collate_fn , num_workers=2 ) UpperCAmelCase : List[str] = DataLoader(__lowerCamelCase , batch_size=__lowerCamelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=__lowerCamelCase ) UpperCAmelCase : Optional[Any] = tokenizer.pad_token_id def count_pad_tokens(A , A="input_ids" ): return [batch[k].eq(__lowerCamelCase ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__lowerCamelCase , k="""labels""" ) ) < sum(count_pad_tokens(__lowerCamelCase , k="""labels""" ) ) assert sum(count_pad_tokens(__lowerCamelCase ) ) < sum(count_pad_tokens(__lowerCamelCase ) ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ) def _lowercase( self , A=1000 , A=128 ) -> Any: if os.getenv("""USE_REAL_DATA""" , __lowerCamelCase ): UpperCAmelCase : List[Any] = "examples/seq2seq/wmt_en_ro" UpperCAmelCase : Dict = max_len * 2 * 64 if not Path(__lowerCamelCase ).joinpath("""train.len""" ).exists(): save_len_file(__lowerCamelCase , __lowerCamelCase ) else: UpperCAmelCase : Tuple = "examples/seq2seq/test_data/wmt_en_ro" UpperCAmelCase : List[str] = max_len * 4 save_len_file(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__lowerCamelCase ) UpperCAmelCase : Tuple = SeqaSeqDataset( __lowerCamelCase , data_dir=__lowerCamelCase , type_path="""train""" , max_source_length=__lowerCamelCase , max_target_length=__lowerCamelCase , n_obs=__lowerCamelCase , ) return ds, max_tokens, tokenizer def _lowercase( self ) -> Any: UpperCAmelCase : Any = self._get_dataset() UpperCAmelCase : Dict = set(DistributedSortishSampler(__lowerCamelCase , 256 , num_replicas=2 , rank=0 , add_extra_examples=__lowerCamelCase ) ) UpperCAmelCase : Union[str, Any] = set(DistributedSortishSampler(__lowerCamelCase , 256 , num_replicas=2 , rank=1 , add_extra_examples=__lowerCamelCase ) ) assert idsa.intersection(__lowerCamelCase ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def _lowercase( self , A ) -> Optional[Any]: UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(__lowerCamelCase , use_fast=__lowerCamelCase ) if tok_name == MBART_TINY: UpperCAmelCase : str = SeqaSeqDataset( __lowerCamelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , src_lang="""EN""" , tgt_lang="""FR""" , ) UpperCAmelCase : int = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: UpperCAmelCase : Dict = SeqaSeqDataset( __lowerCamelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , ) UpperCAmelCase : int = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__lowerCamelCase ) == 1 if tok_name == BART_TINY else len(__lowerCamelCase ) == 0
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
'''simple docstring''' from math import factorial def __lowerCamelCase ( _lowercase = 2_0 ) -> int: UpperCAmelCase : Optional[Any] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... UpperCAmelCase : Dict = n // 2 return int(factorial(a_ ) / (factorial(a_ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: a = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
718
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Any = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> List[Any]: UpperCAmelCase : Dict = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCAmelCase : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : int = pipe( image=__UpperCamelCase , generator=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[Any] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
719
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A=None , A=None , **A ) -> str: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase : List[Any] = str(jax.devices()[0] ) UpperCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def _lowercase( self , A ) -> str: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _lowercase( self , A ) -> Tuple: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase : List[str] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase : str = {"""dtype""": jnp.intaa} else: UpperCAmelCase : int = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase : Any = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): UpperCAmelCase : List[str] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase( self , A ) -> Tuple: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): UpperCAmelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _lowercase( self , A ) -> Dict: return map_nested(self._recursive_tensorize , A , map_list=A ) def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A ) UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _lowercase( self , A ) -> "jax.Array": UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A ) UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) UpperCAmelCase : Any = self._consolidate(A ) return column def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A ) UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) for column_name in batch: UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
672
0
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a : List[str] = logging.get_logger(__name__) a : List[str] = { """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class UpperCamelCase_ ( _a ): lowercase = """t5""" lowercase = ["""past_key_values"""] lowercase = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self , A=32128 , A=512 , A=64 , A=2048 , A=6 , A=None , A=8 , A=32 , A=128 , A=0.1 , A=1e-6 , A=1.0 , A="relu" , A=True , A=True , A=0 , A=1 , **A , ) -> List[str]: UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : str = d_model UpperCAmelCase : Optional[Any] = d_kv UpperCAmelCase : List[Any] = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : Optional[int] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCAmelCase : str = num_heads UpperCAmelCase : Union[str, Any] = relative_attention_num_buckets UpperCAmelCase : str = relative_attention_max_distance UpperCAmelCase : Union[str, Any] = dropout_rate UpperCAmelCase : List[Any] = layer_norm_epsilon UpperCAmelCase : Tuple = initializer_factor UpperCAmelCase : List[Any] = feed_forward_proj UpperCAmelCase : Tuple = use_cache UpperCAmelCase : Dict = self.feed_forward_proj.split("""-""" ) UpperCAmelCase : int = act_info[-1] UpperCAmelCase : int = act_info[0] == """gated""" if len(snake_case_ ) > 1 and act_info[0] != "gated" or len(snake_case_ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """\'gated-gelu\' or \'relu\'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": UpperCAmelCase : int = """gelu_new""" super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , **snake_case_ , ) class UpperCamelCase_ ( _a ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Any = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: UpperCAmelCase : Optional[int] = """past_encoder_sequence + sequence""" UpperCAmelCase : int = {0: """batch"""} UpperCAmelCase : Tuple = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: UpperCAmelCase : List[Any] = {0: """batch""", 1: """decoder_sequence"""} UpperCAmelCase : str = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(snake_case_ , direction="""inputs""" ) return common_inputs @property def _lowercase( self ) -> int: return 13
720
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : int = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
672
0
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node a : Optional[int] = 4 a : Union[str, Any] = 3 class UpperCamelCase_ ( SCREAMING_SNAKE_CASE__ ): pass def __lowerCamelCase ( _lowercase ) -> List[str]: for shard in shards: for i in range(__UpperCamelCase ): yield {"i": i, "shard": shard} def __lowerCamelCase ( ) -> List[str]: UpperCAmelCase : Any = int(os.environ["""RANK"""] ) UpperCAmelCase : int = int(os.environ["""WORLD_SIZE"""] ) UpperCAmelCase : Union[str, Any] = ArgumentParser() parser.add_argument("""--streaming""" , type=__UpperCamelCase ) parser.add_argument("""--local_rank""" , type=__UpperCamelCase ) parser.add_argument("""--num_workers""" , type=__UpperCamelCase , default=0 ) UpperCAmelCase : Tuple = parser.parse_args() UpperCAmelCase : int = args.streaming UpperCAmelCase : Any = args.num_workers UpperCAmelCase : List[Any] = {"""shards""": [F'''shard_{shard_idx}''' for shard_idx in range(__UpperCamelCase )]} UpperCAmelCase : Any = IterableDataset.from_generator(__UpperCamelCase , gen_kwargs=__UpperCamelCase ) if not streaming: UpperCAmelCase : Any = Dataset.from_list(list(__UpperCamelCase ) ) UpperCAmelCase : List[Any] = split_dataset_by_node(__UpperCamelCase , rank=__UpperCamelCase , world_size=__UpperCamelCase ) UpperCAmelCase : List[str] = torch.utils.data.DataLoader(__UpperCamelCase , num_workers=__UpperCamelCase ) UpperCAmelCase : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCAmelCase : Optional[int] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) UpperCAmelCase : Tuple = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
721
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
672
0
'''simple docstring''' import baseaa def __lowerCamelCase ( _lowercase ) -> Optional[Any]: return baseaa.baaencode(string.encode("""utf-8""" ) ) def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: return baseaa.baadecode(snake_case__ ).decode("""utf-8""" ) if __name__ == "__main__": a : Dict = """Hello World!""" a : Optional[Any] = baseaa_encode(test) print(encoded) a : Dict = baseaa_decode(encoded) print(decoded)
700
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
672
0
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class UpperCamelCase_ ( lowercase__ ): @slow @require_torch def _lowercase( self ) -> Tuple: UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) UpperCAmelCase : Optional[int] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) UpperCAmelCase : int = bertabert.config.encoder.vocab_size UpperCAmelCase : Union[str, Any] = tokenizer.sep_token_id UpperCAmelCase : List[str] = tokenizer.cls_token_id UpperCAmelCase : str = 128 UpperCAmelCase : Optional[int] = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) UpperCAmelCase : str = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) UpperCAmelCase : List[Any] = train_dataset.select(range(32 ) ) UpperCAmelCase : Any = val_dataset.select(range(16 ) ) UpperCAmelCase : Any = 4 def _map_to_encoder_decoder_inputs(A ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCAmelCase : int = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=A , max_length=512 ) UpperCAmelCase : str = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=A , max_length=128 ) UpperCAmelCase : int = inputs.input_ids UpperCAmelCase : List[Any] = inputs.attention_mask UpperCAmelCase : List[Any] = outputs.input_ids UpperCAmelCase : Any = outputs.input_ids.copy() UpperCAmelCase : Any = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] UpperCAmelCase : List[Any] = outputs.attention_mask assert all(len(A ) == 512 for x in inputs.input_ids ) assert all(len(A ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(A ): UpperCAmelCase : Tuple = pred.label_ids UpperCAmelCase : Any = pred.predictions # all unnecessary tokens are removed UpperCAmelCase : List[Any] = tokenizer.batch_decode(A , skip_special_tokens=A ) UpperCAmelCase : int = tokenizer.batch_decode(A , skip_special_tokens=A ) UpperCAmelCase : List[str] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A ) )] ) / len(A ) return {"accuracy": accuracy} # map train dataset UpperCAmelCase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=A , batch_size=A , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset UpperCAmelCase : str = val_dataset.map( _map_to_encoder_decoder_inputs , batched=A , batch_size=A , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) UpperCAmelCase : Optional[Any] = self.get_auto_remove_tmp_dir() UpperCAmelCase : Optional[Any] = SeqaSeqTrainingArguments( output_dir=A , per_device_train_batch_size=A , per_device_eval_batch_size=A , predict_with_generate=A , evaluation_strategy="""steps""" , do_train=A , do_eval=A , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCAmelCase : Optional[Any] = SeqaSeqTrainer( model=A , args=A , compute_metrics=_compute_metrics , train_dataset=A , eval_dataset=A , tokenizer=A , ) # start training trainer.train()
701
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
0
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Tuple = RemBertConfig.from_json_file(_lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(_lowercase ) ) ) UpperCAmelCase : Union[str, Any] = RemBertModel(_lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_lowercase , _lowercase , _lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(_lowercase ) ) torch.save(model.state_dict() , _lowercase ) if __name__ == "__main__": a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
702
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : List[Any] = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCamelCase_ ( UpperCamelCase_ ): lowercase = 'decision_transformer' lowercase = ['past_key_values'] lowercase = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , A=17 , A=4 , A=128 , A=4096 , A=True , A=1 , A=1024 , A=3 , A=1 , A=None , A="relu" , A=0.1 , A=0.1 , A=0.1 , A=1e-5 , A=0.0_2 , A=True , A=True , A=50256 , A=50256 , A=False , A=False , **A , ) -> List[str]: UpperCAmelCase : List[str] = state_dim UpperCAmelCase : List[str] = act_dim UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = max_ep_len UpperCAmelCase : List[str] = action_tanh UpperCAmelCase : List[str] = vocab_size UpperCAmelCase : List[Any] = n_positions UpperCAmelCase : Union[str, Any] = n_layer UpperCAmelCase : List[str] = n_head UpperCAmelCase : Tuple = n_inner UpperCAmelCase : str = activation_function UpperCAmelCase : Dict = resid_pdrop UpperCAmelCase : Any = embd_pdrop UpperCAmelCase : Any = attn_pdrop UpperCAmelCase : Union[str, Any] = layer_norm_epsilon UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = scale_attn_weights UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : Union[str, Any] = scale_attn_by_inverse_layer_idx UpperCAmelCase : Dict = reorder_and_upcast_attn UpperCAmelCase : List[str] = bos_token_id UpperCAmelCase : Optional[int] = eos_token_id super().__init__(bos_token_id=__A , eos_token_id=__A , **__A )
703
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations UpperCAmelCase : List[Any] = tpu_short_seq_length
672
0
from sklearn.metrics import matthews_corrcoef import datasets a : List[str] = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" a : Optional[int] = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" a : Any = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def _lowercase( self , A , A , A=None ) -> List[Any]: return { "matthews_correlation": float(matthews_corrcoef(A , A , sample_weight=A ) ), }
704
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : Optional[int] = logging.get_logger(__name__) a : Dict = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Dict = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[Any] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Any: UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : List[str] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : List[Any] = encoder_attention_heads UpperCAmelCase : Dict = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Union[str, Any] = decoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_ffn_dim UpperCAmelCase : Union[str, Any] = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Optional[Any] = encoder_layerdrop UpperCAmelCase : List[Any] = decoder_layerdrop UpperCAmelCase : Tuple = use_cache UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Optional[int] = max_source_positions UpperCAmelCase : str = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Tuple = classifier_proj_size UpperCAmelCase : Tuple = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Any = apply_spec_augment UpperCAmelCase : Optional[int] = mask_time_prob UpperCAmelCase : Optional[int] = mask_time_length UpperCAmelCase : Optional[int] = mask_time_min_masks UpperCAmelCase : Optional[Any] = mask_feature_prob UpperCAmelCase : Optional[Any] = mask_feature_length UpperCAmelCase : Any = mask_feature_min_masks UpperCAmelCase : List[str] = median_filter_width super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , decoder_start_token_id=_a , suppress_tokens=_a , begin_suppress_tokens=_a , **_a , ) class UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): @property def _lowercase( self ) -> Any: UpperCAmelCase : Optional[int] = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : Optional[int] = {0: """batch"""} else: UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_a , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Tuple: UpperCAmelCase : int = OrderedDict() UpperCAmelCase : Dict = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=_a , framework=_a , sampling_rate=_a , time_duration=_a , frequency=_a , ) UpperCAmelCase : int = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : Union[str, Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : int = super().generate_dummy_inputs( preprocessor.tokenizer , _a , _a , _a , _a ) UpperCAmelCase : Optional[Any] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Dict = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : List[Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> List[Any]: return 1e-3
705
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
0
import argparse from collections import defaultdict import yaml a : Optional[Any] = """docs/source/en/_toctree.yml""" def __lowerCamelCase ( _lowercase ) -> Tuple: UpperCAmelCase : Any = defaultdict(snake_case__ ) for doc in model_doc: counts[doc["local"]] += 1 UpperCAmelCase : Any = [key for key, value in counts.items() if value > 1] UpperCAmelCase : Optional[Any] = [] for duplicate_key in duplicates: UpperCAmelCase : Dict = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(snake_case__ ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(snake_case__ , key=lambda _lowercase : s["title"].lower() ) def __lowerCamelCase ( _lowercase=False ) -> int: with open(snake_case__ , encoding="""utf-8""" ) as f: UpperCAmelCase : Union[str, Any] = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase : int = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase : List[Any] = content[api_idx]["""sections"""] # Then to the model doc UpperCAmelCase : Optional[int] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 UpperCAmelCase : List[str] = api_doc[model_idx]["""sections"""] UpperCAmelCase : List[str] = [(idx, section) for idx, section in enumerate(snake_case__ ) if """sections""" in section] UpperCAmelCase : Optional[Any] = False for idx, modality_doc in modalities_docs: UpperCAmelCase : int = modality_doc["""sections"""] UpperCAmelCase : Tuple = clean_model_doc_toc(snake_case__ ) if old_modality_doc != new_modality_doc: UpperCAmelCase : Optional[Any] = True if overwrite: UpperCAmelCase : Optional[int] = new_modality_doc if diff: if overwrite: UpperCAmelCase : Optional[int] = model_doc UpperCAmelCase : Union[str, Any] = api_doc with open(snake_case__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(snake_case__ , allow_unicode=snake_case__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a : int = parser.parse_args() check_model_doc(args.fix_and_overwrite)
706
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
0
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCamelCase_ ( __magic_name__ ): def __get__( self , A , A=None ) -> List[Any]: if obj is None: return self if self.fget is None: raise AttributeError("""unreadable attribute""" ) UpperCAmelCase : List[Any] = """__cached_""" + self.fget.__name__ UpperCAmelCase : Optional[Any] = getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if cached is None: UpperCAmelCase : str = self.fget(__lowerCAmelCase ) setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return cached def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: UpperCAmelCase : str = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'''invalid truth value {val!r}''' ) def __lowerCamelCase ( _lowercase ) -> List[str]: if is_torch_fx_proxy(__snake_case ): return True if is_torch_available(): import torch if isinstance(__snake_case , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__snake_case , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__snake_case , (jnp.ndarray, Tracer) ): return True return isinstance(__snake_case , np.ndarray ) def __lowerCamelCase ( _lowercase ) -> Any: return isinstance(__snake_case , np.ndarray ) def __lowerCamelCase ( _lowercase ) -> Dict: return _is_numpy(__snake_case ) def __lowerCamelCase ( _lowercase ) -> int: import torch return isinstance(__snake_case , torch.Tensor ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: return False if not is_torch_available() else _is_torch(__snake_case ) def __lowerCamelCase ( _lowercase ) -> str: import torch return isinstance(__snake_case , torch.device ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: return False if not is_torch_available() else _is_torch_device(__snake_case ) def __lowerCamelCase ( _lowercase ) -> List[Any]: import torch if isinstance(__snake_case , __snake_case ): if hasattr(__snake_case , __snake_case ): UpperCAmelCase : int = getattr(__snake_case , __snake_case ) else: return False return isinstance(__snake_case , torch.dtype ) def __lowerCamelCase ( _lowercase ) -> Any: return False if not is_torch_available() else _is_torch_dtype(__snake_case ) def __lowerCamelCase ( _lowercase ) -> Optional[Any]: import tensorflow as tf return isinstance(__snake_case , tf.Tensor ) def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: return False if not is_tf_available() else _is_tensorflow(__snake_case ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__snake_case , """is_symbolic_tensor""" ): return tf.is_symbolic_tensor(__snake_case ) return type(__snake_case ) == tf.Tensor def __lowerCamelCase ( _lowercase ) -> str: return False if not is_tf_available() else _is_tf_symbolic_tensor(__snake_case ) def __lowerCamelCase ( _lowercase ) -> List[str]: import jax.numpy as jnp # noqa: F811 return isinstance(__snake_case , jnp.ndarray ) def __lowerCamelCase ( _lowercase ) -> str: return False if not is_flax_available() else _is_jax(__snake_case ) def __lowerCamelCase ( _lowercase ) -> Optional[Any]: if isinstance(__snake_case , (dict, UserDict) ): return {k: to_py_obj(__snake_case ) for k, v in obj.items()} elif isinstance(__snake_case , (list, tuple) ): return [to_py_obj(__snake_case ) for o in obj] elif is_tf_tensor(__snake_case ): return obj.numpy().tolist() elif is_torch_tensor(__snake_case ): return obj.detach().cpu().tolist() elif is_jax_tensor(__snake_case ): return np.asarray(__snake_case ).tolist() elif isinstance(__snake_case , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def __lowerCamelCase ( _lowercase ) -> Any: if isinstance(__snake_case , (dict, UserDict) ): return {k: to_numpy(__snake_case ) for k, v in obj.items()} elif isinstance(__snake_case , (list, tuple) ): return np.array(__snake_case ) elif is_tf_tensor(__snake_case ): return obj.numpy() elif is_torch_tensor(__snake_case ): return obj.detach().cpu().numpy() elif is_jax_tensor(__snake_case ): return np.asarray(__snake_case ) else: return obj class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self ) -> Any: UpperCAmelCase : Optional[Any] = fields(self ) # Safety and consistency checks if not len(__lowerCAmelCase ): raise ValueError(f'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'''{self.__class__.__name__} should not have more than one required field.''' ) UpperCAmelCase : int = getattr(self , class_fields[0].name ) UpperCAmelCase : List[str] = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__lowerCAmelCase ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : Optional[Any] = first_field.items() UpperCAmelCase : int = True else: try: UpperCAmelCase : Optional[Any] = iter(__lowerCAmelCase ) UpperCAmelCase : Any = True except TypeError: UpperCAmelCase : int = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__lowerCAmelCase ): if ( not isinstance(__lowerCAmelCase , (list, tuple) ) or not len(__lowerCAmelCase ) == 2 or not isinstance(element[0] , __lowerCAmelCase ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase : Any = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: UpperCAmelCase : int = element[1] elif first_field is not None: UpperCAmelCase : int = first_field else: for field in class_fields: UpperCAmelCase : Optional[Any] = getattr(self , field.name ) if v is not None: UpperCAmelCase : Union[str, Any] = v def __delitem__( self , *A , **A ) -> Dict: raise Exception(f'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def _lowercase( self , *A , **A ) -> List[Any]: raise Exception(f'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def _lowercase( self , *A , **A ) -> Union[str, Any]: raise Exception(f'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def _lowercase( self , *A , **A ) -> Any: raise Exception(f'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self , A ) -> str: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : Tuple = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , A , A ) -> Dict: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__lowerCAmelCase , __lowerCAmelCase ) super().__setattr__(__lowerCAmelCase , __lowerCAmelCase ) def __setitem__( self , A , A ) -> Optional[int]: super().__setitem__(__lowerCAmelCase , __lowerCAmelCase ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__lowerCAmelCase , __lowerCAmelCase ) def _lowercase( self ) -> str: return tuple(self[k] for k in self.keys() ) class UpperCamelCase_ ( __magic_name__ , __magic_name__ ): @classmethod def _lowercase( cls , A ) -> int: raise ValueError( f'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'longest' lowercase = 'max_length' lowercase = 'do_not_pad' class UpperCamelCase_ ( __magic_name__ ): lowercase = 'pt' lowercase = 'tf' lowercase = 'np' lowercase = 'jax' class UpperCamelCase_ : def __init__( self , A ) -> Optional[int]: UpperCAmelCase : List[Any] = context_managers UpperCAmelCase : Optional[int] = ExitStack() def __enter__( self ) -> str: for context_manager in self.context_managers: self.stack.enter_context(__lowerCAmelCase ) def __exit__( self , *A , **A ) -> Dict: self.stack.__exit__(*__lowerCAmelCase , **__lowerCAmelCase ) def __lowerCamelCase ( _lowercase ) -> str: UpperCAmelCase : List[str] = infer_framework(__snake_case ) if framework == "tf": UpperCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : str = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : str = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = model_class.__name__ UpperCAmelCase : Union[str, Any] = infer_framework(__snake_case ) if framework == "tf": UpperCAmelCase : Dict = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : Optional[int] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : List[Any] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def __lowerCamelCase ( _lowercase , _lowercase = "" , _lowercase = "." ) -> Union[str, Any]: def _flatten_dict(_lowercase , _lowercase="" , _lowercase="." ): for k, v in d.items(): UpperCAmelCase : str = str(__snake_case ) + delimiter + str(__snake_case ) if parent_key else k if v and isinstance(__snake_case , __snake_case ): yield from flatten_dict(__snake_case , __snake_case , delimiter=__snake_case ).items() else: yield key, v return dict(_flatten_dict(__snake_case , __snake_case , __snake_case ) ) @contextmanager def __lowerCamelCase ( _lowercase , _lowercase = False ) -> List[Any]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def __lowerCamelCase ( _lowercase , _lowercase=None ) -> List[Any]: if is_numpy_array(__snake_case ): return np.transpose(__snake_case , axes=__snake_case ) elif is_torch_tensor(__snake_case ): return array.T if axes is None else array.permute(*__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.transpose(__snake_case , perm=__snake_case ) elif is_jax_tensor(__snake_case ): return jnp.transpose(__snake_case , axes=__snake_case ) else: raise ValueError(F'''Type not supported for transpose: {type(__snake_case )}.''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: if is_numpy_array(__snake_case ): return np.reshape(__snake_case , __snake_case ) elif is_torch_tensor(__snake_case ): return array.reshape(*__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.reshape(__snake_case , __snake_case ) elif is_jax_tensor(__snake_case ): return jnp.reshape(__snake_case , __snake_case ) else: raise ValueError(F'''Type not supported for reshape: {type(__snake_case )}.''' ) def __lowerCamelCase ( _lowercase , _lowercase=None ) -> Union[str, Any]: if is_numpy_array(__snake_case ): return np.squeeze(__snake_case , axis=__snake_case ) elif is_torch_tensor(__snake_case ): return array.squeeze() if axis is None else array.squeeze(dim=__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.squeeze(__snake_case , axis=__snake_case ) elif is_jax_tensor(__snake_case ): return jnp.squeeze(__snake_case , axis=__snake_case ) else: raise ValueError(F'''Type not supported for squeeze: {type(__snake_case )}.''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> int: if is_numpy_array(__snake_case ): return np.expand_dims(__snake_case , __snake_case ) elif is_torch_tensor(__snake_case ): return array.unsqueeze(dim=__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.expand_dims(__snake_case , axis=__snake_case ) elif is_jax_tensor(__snake_case ): return jnp.expand_dims(__snake_case , axis=__snake_case ) else: raise ValueError(F'''Type not supported for expand_dims: {type(__snake_case )}.''' ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: if is_numpy_array(__snake_case ): return np.size(__snake_case ) elif is_torch_tensor(__snake_case ): return array.numel() elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.size(__snake_case ) elif is_jax_tensor(__snake_case ): return array.size else: raise ValueError(F'''Type not supported for expand_dims: {type(__snake_case )}.''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: for key, value in auto_map.items(): if isinstance(__snake_case , (tuple, list) ): UpperCAmelCase : Dict = [F'''{repo_id}--{v}''' if (v is not None and """--""" not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase : str = F'''{repo_id}--{value}''' return auto_map def __lowerCamelCase ( _lowercase ) -> Dict: for base_class in inspect.getmro(__snake_case ): UpperCAmelCase : int = base_class.__module__ UpperCAmelCase : List[Any] = base_class.__name__ if module.startswith("""tensorflow""" ) or module.startswith("""keras""" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("""torch""" ) or name == "PreTrainedModel": return "pt" elif module.startswith("""flax""" ) or module.startswith("""jax""" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'''Could not infer framework from class {model_class}.''' )
707
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase_ ( metaclass=_UpperCAmelCase ): lowercase = ['torch', 'torchsde'] def __init__( self , *A , **A ) -> List[str]: requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def _lowercase( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def _lowercase( cls , *A , **A ) -> Dict: requires_backends(cls , ["""torch""", """torchsde"""] )
708
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
0
'''simple docstring''' import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# a : Tuple = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] a : Tuple = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] a : List[str] = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks a : Tuple = F'''down_blocks.{i}.resnets.{j}.''' a : Optional[int] = F'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 a : Dict = F'''down_blocks.{i}.attentions.{j}.''' a : int = F'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks a : Dict = F'''up_blocks.{i}.resnets.{j}.''' a : int = F'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 a : Any = F'''up_blocks.{i}.attentions.{j}.''' a : Optional[int] = F'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 a : Dict = F'''down_blocks.{i}.downsamplers.0.conv.''' a : int = F'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 a : Tuple = F'''up_blocks.{i}.upsamplers.0.''' a : Optional[Any] = F'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) a : Optional[Any] = '''mid_block.attentions.0.''' a : Optional[int] = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): a : List[str] = F'''mid_block.resnets.{j}.''' a : Optional[Any] = F'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Optional[Any] = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: UpperCAmelCase : str = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: UpperCAmelCase : str = v.replace(_lowercase , _lowercase ) UpperCAmelCase : Tuple = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: UpperCAmelCase : Any = v.replace(_lowercase , _lowercase ) UpperCAmelCase : Any = v UpperCAmelCase : Any = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# a : Any = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): a : List[str] = F'''encoder.down_blocks.{i}.resnets.{j}.''' a : Dict = F'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: a : int = F'''down_blocks.{i}.downsamplers.0.''' a : List[Any] = F'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) a : Tuple = F'''up_blocks.{i}.upsamplers.0.''' a : List[str] = F'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): a : Union[str, Any] = F'''decoder.up_blocks.{i}.resnets.{j}.''' a : Optional[Any] = F'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): a : Dict = F'''mid_block.resnets.{i}.''' a : Tuple = F'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) a : Optional[int] = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def __lowerCamelCase ( _lowercase ) -> int: return w.reshape(*w.shape , 1 , 1 ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : Optional[int] = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: UpperCAmelCase : Tuple = v.replace(_lowercase , _lowercase ) UpperCAmelCase : int = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: UpperCAmelCase : int = v.replace(_lowercase , _lowercase ) UpperCAmelCase : int = v UpperCAmelCase : Dict = {v: vae_state_dict[k] for k, v in mapping.items()} UpperCAmelCase : int = ["q", "k", "v", "proj_out"] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F'''mid.attn_1.{weight_name}.weight''' in k: print(F'''Reshaping {k} for SD format''' ) UpperCAmelCase : Optional[int] = reshape_weight_for_sd(_lowercase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# a : Optional[Any] = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] a : Dict = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} a : str = re.compile("""|""".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp a : Optional[int] = {'''q''': 0, '''k''': 1, '''v''': 2} def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: UpperCAmelCase : int = {} UpperCAmelCase : Optional[Any] = {} UpperCAmelCase : Dict = {} for k, v in text_enc_dict.items(): if ( k.endswith(""".self_attn.q_proj.weight""" ) or k.endswith(""".self_attn.k_proj.weight""" ) or k.endswith(""".self_attn.v_proj.weight""" ) ): UpperCAmelCase : Dict = k[: -len(""".q_proj.weight""" )] UpperCAmelCase : str = k[-len("""q_proj.weight""" )] if k_pre not in capture_qkv_weight: UpperCAmelCase : List[Any] = [None, None, None] UpperCAmelCase : Union[str, Any] = v continue if ( k.endswith(""".self_attn.q_proj.bias""" ) or k.endswith(""".self_attn.k_proj.bias""" ) or k.endswith(""".self_attn.v_proj.bias""" ) ): UpperCAmelCase : str = k[: -len(""".q_proj.bias""" )] UpperCAmelCase : Tuple = k[-len("""q_proj.bias""" )] if k_pre not in capture_qkv_bias: UpperCAmelCase : List[Any] = [None, None, None] UpperCAmelCase : str = v continue UpperCAmelCase : str = textenc_pattern.sub(lambda _lowercase : protected[re.escape(m.group(0 ) )] , _lowercase ) UpperCAmelCase : Any = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) UpperCAmelCase : str = textenc_pattern.sub(lambda _lowercase : protected[re.escape(m.group(0 ) )] , _lowercase ) UpperCAmelCase : Dict = torch.cat(_lowercase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) UpperCAmelCase : Optional[Any] = textenc_pattern.sub(lambda _lowercase : protected[re.escape(m.group(0 ) )] , _lowercase ) UpperCAmelCase : str = torch.cat(_lowercase ) return new_state_dict def __lowerCamelCase ( _lowercase ) -> Optional[int]: return text_enc_dict if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt.""" ) a : List[str] = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors a : Any = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""") a : Union[str, Any] = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""") a : Dict = osp.join(args.model_path, """text_encoder""", """model.safetensors""") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): a : Dict = load_file(unet_path, device="""cpu""") else: a : Optional[Any] = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""") a : int = torch.load(unet_path, map_location="""cpu""") if osp.exists(vae_path): a : Dict = load_file(vae_path, device="""cpu""") else: a : Any = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""") a : str = torch.load(vae_path, map_location="""cpu""") if osp.exists(text_enc_path): a : str = load_file(text_enc_path, device="""cpu""") else: a : Union[str, Any] = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""") a : Dict = torch.load(text_enc_path, map_location="""cpu""") # Convert the UNet model a : Any = convert_unet_state_dict(unet_state_dict) a : List[Any] = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model a : Optional[int] = convert_vae_state_dict(vae_state_dict) a : Tuple = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper a : Optional[int] = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm a : int = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} a : List[Any] = convert_text_enc_state_dict_vaa(text_enc_dict) a : Optional[int] = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: a : str = convert_text_enc_state_dict(text_enc_dict) a : List[Any] = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint a : Any = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: a : Optional[Any] = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: a : str = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
709
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
0
'''simple docstring''' import baseaa def __lowerCamelCase ( _lowercase ) -> Dict: return baseaa.baaencode(string.encode("""utf-8""" ) ) def __lowerCamelCase ( _lowercase ) -> Dict: return baseaa.baadecode(UpperCAmelCase__ ).decode("""utf-8""" ) if __name__ == "__main__": a : List[str] = '''Hello World!''' a : List[str] = baseaa_encode(test) print(encoded) a : str = baseaa_decode(encoded) print(decoded)
710
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: return ("This is a test", "This is a test") def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """</s>""" UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(A ) , 1103 ) def _lowercase( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> str: return ("This is a test", "This is a test") def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : str = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
672
0
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a : str = logging.get_logger(__name__) a : List[str] = { """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class UpperCamelCase_ ( __UpperCAmelCase ): lowercase = """t5""" lowercase = ["""past_key_values"""] lowercase = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self , A=32128 , A=512 , A=64 , A=2048 , A=6 , A=None , A=8 , A=32 , A=128 , A=0.1 , A=1e-6 , A=1.0 , A="relu" , A=True , A=True , A=0 , A=1 , **A , ) -> Optional[int]: UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : List[str] = d_model UpperCAmelCase : str = d_kv UpperCAmelCase : Tuple = d_ff UpperCAmelCase : List[Any] = num_layers UpperCAmelCase : Optional[int] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCAmelCase : Any = num_heads UpperCAmelCase : Dict = relative_attention_num_buckets UpperCAmelCase : Any = relative_attention_max_distance UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Union[str, Any] = layer_norm_epsilon UpperCAmelCase : str = initializer_factor UpperCAmelCase : Optional[Any] = feed_forward_proj UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : Tuple = self.feed_forward_proj.split("""-""" ) UpperCAmelCase : Optional[int] = act_info[-1] UpperCAmelCase : int = act_info[0] == """gated""" if len(UpperCAmelCase_ ) > 1 and act_info[0] != "gated" or len(UpperCAmelCase_ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """\'gated-gelu\' or \'relu\'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": UpperCAmelCase : Union[str, Any] = """gelu_new""" super().__init__( pad_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , **UpperCAmelCase_ , ) class UpperCamelCase_ ( __UpperCAmelCase ): @property def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: UpperCAmelCase : Tuple = """past_encoder_sequence + sequence""" UpperCAmelCase : Tuple = {0: """batch"""} UpperCAmelCase : List[str] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: UpperCAmelCase : Optional[int] = {0: """batch""", 1: """decoder_sequence"""} UpperCAmelCase : Union[str, Any] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase_ , direction="""inputs""" ) return common_inputs @property def _lowercase( self ) -> Tuple: return 13
711
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Any = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : int = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ConvNextVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase : Any = model_class(A ) model.to(A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : List[str] = False UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
672
0
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = np.inf def set_batch_size(_lowercase ) -> None: nonlocal batch_size if isinstance(_lowercase , _lowercase ): UpperCAmelCase : int = min(_lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_lowercase , _lowercase ): UpperCAmelCase : Tuple = min(_lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_lowercase , _lowercase ) and feature.dtype == "binary": UpperCAmelCase : Optional[Any] = min(_lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_lowercase , _lowercase ) return None if batch_size is np.inf else batch_size class UpperCamelCase_ ( UpperCamelCase_ ): def __init__( self , A , A = None , A = None , A = None , A = False , A = False , A = None , **A , ) -> int: super().__init__( UpperCamelCase__ , split=UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ , streaming=UpperCamelCase__ , num_proc=UpperCamelCase__ , **UpperCamelCase__ , ) UpperCAmelCase : Optional[int] = path_or_paths if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else {self.split: path_or_paths} UpperCAmelCase : Union[str, Any] = _PACKAGED_DATASETS_MODULES['''parquet'''][1] UpperCAmelCase : Optional[Any] = Parquet( cache_dir=UpperCamelCase__ , data_files=UpperCamelCase__ , features=UpperCamelCase__ , hash=UpperCamelCase__ , **UpperCamelCase__ , ) def _lowercase( self ) -> Dict: if self.streaming: UpperCAmelCase : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: UpperCAmelCase : Tuple = None UpperCAmelCase : Any = None UpperCAmelCase : str = None UpperCAmelCase : Optional[Any] = None self.builder.download_and_prepare( download_config=UpperCamelCase__ , download_mode=UpperCamelCase__ , verification_mode=UpperCamelCase__ , base_path=UpperCamelCase__ , num_proc=self.num_proc , ) UpperCAmelCase : str = self.builder.as_dataset( split=self.split , verification_mode=UpperCamelCase__ , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A = None , **A , ) -> str: UpperCAmelCase : Optional[Any] = dataset UpperCAmelCase : Any = path_or_buf UpperCAmelCase : Any = batch_size or get_writer_batch_size(dataset.features ) UpperCAmelCase : Tuple = parquet_writer_kwargs def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[int] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , """wb+""" ) as buffer: UpperCAmelCase : Optional[int] = self._write(file_obj=UpperCamelCase__ , batch_size=UpperCamelCase__ , **self.parquet_writer_kwargs ) else: UpperCAmelCase : List[Any] = self._write(file_obj=self.path_or_buf , batch_size=UpperCamelCase__ , **self.parquet_writer_kwargs ) return written def _lowercase( self , A , A , **A ) -> str: UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : str = parquet_writer_kwargs.pop("""path_or_buf""" , UpperCamelCase__ ) UpperCAmelCase : List[Any] = self.dataset.features.arrow_schema UpperCAmelCase : List[Any] = pq.ParquetWriter(UpperCamelCase__ , schema=UpperCamelCase__ , **UpperCamelCase__ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , UpperCamelCase__ ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating parquet from Arrow format""" , ): UpperCAmelCase : List[Any] = query_table( table=self.dataset._data , key=slice(UpperCamelCase__ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(UpperCamelCase__ ) written += batch.nbytes writer.close() return written
712
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
0
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : str = np.inf def set_batch_size(_lowercase ) -> None: nonlocal batch_size if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase : List[str] = min(__UpperCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase : Optional[int] = min(__UpperCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__UpperCamelCase , __UpperCamelCase ) and feature.dtype == "binary": UpperCAmelCase : Dict = min(__UpperCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__UpperCamelCase , __UpperCamelCase ) return None if batch_size is np.inf else batch_size class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A = None , A = None , A = None , A = False , A = False , A = None , **A , ) -> Any: super().__init__( _SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : str = path_or_paths if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} UpperCAmelCase : List[str] = _PACKAGED_DATASETS_MODULES["""parquet"""][1] UpperCAmelCase : Optional[Any] = Parquet( cache_dir=_SCREAMING_SNAKE_CASE , data_files=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , hash=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def _lowercase( self ) -> Tuple: if self.streaming: UpperCAmelCase : Any = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: UpperCAmelCase : List[Any] = None UpperCAmelCase : int = None UpperCAmelCase : Tuple = None UpperCAmelCase : List[Any] = None self.builder.download_and_prepare( download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) UpperCAmelCase : str = self.builder.as_dataset( split=self.split , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A = None , **A , ) -> Union[str, Any]: UpperCAmelCase : int = dataset UpperCAmelCase : Tuple = path_or_buf UpperCAmelCase : Tuple = batch_size or get_writer_batch_size(dataset.features ) UpperCAmelCase : List[Any] = parquet_writer_kwargs def _lowercase( self ) -> int: UpperCAmelCase : int = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , """wb+""" ) as buffer: UpperCAmelCase : List[str] = self._write(file_obj=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) else: UpperCAmelCase : Optional[int] = self._write(file_obj=self.path_or_buf , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) return written def _lowercase( self , A , A , **A ) -> int: UpperCAmelCase : List[str] = 0 UpperCAmelCase : Dict = parquet_writer_kwargs.pop("""path_or_buf""" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = self.dataset.features.arrow_schema UpperCAmelCase : Dict = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _SCREAMING_SNAKE_CASE ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating parquet from Arrow format""" , ): UpperCAmelCase : Optional[int] = query_table( table=self.dataset._data , key=slice(_SCREAMING_SNAKE_CASE , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_SCREAMING_SNAKE_CASE ) written += batch.nbytes writer.close() return written
713
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : int = logging.get_logger(__name__) a : List[str] = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCamelCase_ ( UpperCAmelCase__ ): lowercase = 'mobilenet_v1' def __init__( self , A=3 , A=224 , A=1.0 , A=8 , A="relu6" , A=True , A=0.9_9_9 , A=0.0_2 , A=0.0_0_1 , **A , ) -> Union[str, Any]: super().__init__(**A ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) UpperCAmelCase : List[str] = num_channels UpperCAmelCase : List[Any] = image_size UpperCAmelCase : List[str] = depth_multiplier UpperCAmelCase : Union[str, Any] = min_depth UpperCAmelCase : Tuple = hidden_act UpperCAmelCase : List[str] = tf_padding UpperCAmelCase : int = classifier_dropout_prob UpperCAmelCase : Any = initializer_range UpperCAmelCase : Dict = layer_norm_eps class UpperCamelCase_ ( UpperCAmelCase__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def _lowercase( self ) -> float: return 1e-4
714
'''simple docstring''' a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a : Optional[Any] = True a : List[Any] = False def __lowerCamelCase ( _lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : List[str] = chain(next_number(_lowercase ) ) UpperCAmelCase : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase : List[str] = number_chain number *= 1_0 return number_chain def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , _lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
672
0
import math from datetime import datetime, timedelta def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Union[str, Any] = year % 1_9 UpperCAmelCase : List[str] = year % 4 UpperCAmelCase : str = year % 7 UpperCAmelCase : List[str] = math.floor(year / 1_0_0 ) UpperCAmelCase : Optional[int] = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) UpperCAmelCase : Any = leap_day_inhibits / 4 UpperCAmelCase : Tuple = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 UpperCAmelCase : int = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCAmelCase : Union[str, Any] = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon UpperCAmelCase : Dict = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE_ , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE_ , 4 , 1_8 ) else: return datetime(SCREAMING_SNAKE_CASE_ , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): a : List[Any] = """will be""" if year > datetime.now().year else """was""" print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging a : Tuple = logging.get_logger(__name__) a : Tuple = """▁""" a : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} a : List[str] = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), } } a : Dict = { """facebook/mbart-large-en-ro""": 1_0_2_4, """facebook/mbart-large-cc25""": 1_0_2_4, } # fmt: off a : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class UpperCamelCase_ ( __snake_case ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = ['input_ids', 'attention_mask'] lowercase = [] lowercase = [] def __init__( self , A , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=None , A=None , A=None , A = None , A=None , **A , ) -> Tuple: UpperCAmelCase : int = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token UpperCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , tokenizer_file=A_ , src_lang=A_ , tgt_lang=A_ , additional_special_tokens=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) UpperCAmelCase : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase : Optional[int] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase : Any = 1 UpperCAmelCase : int = len(self.sp_model ) UpperCAmelCase : str = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(A_ ) } UpperCAmelCase : List[str] = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase : Any = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCAmelCase : int = src_lang if src_lang is not None else "en_XX" UpperCAmelCase : str = self.lang_code_to_id[self._src_lang] UpperCAmelCase : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> int: UpperCAmelCase : Dict = self.__dict__.copy() UpperCAmelCase : Tuple = None UpperCAmelCase : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , A ) -> List[Any]: UpperCAmelCase : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase : Optional[int] = {} UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _lowercase( self ) -> str: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _lowercase( self ) -> Dict: return self._src_lang @src_lang.setter def _lowercase( self , A ) -> Optional[Any]: UpperCAmelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase( self , A , A = None , A = False ) -> Any: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) UpperCAmelCase : int = [1] * len(self.prefix_tokens ) UpperCAmelCase : List[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _lowercase( self , A , A = None ) -> Optional[Any]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase( self , A , A = None ) -> List[Any]: UpperCAmelCase : Dict = [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A , A , A , **A ) -> Union[str, Any]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) UpperCAmelCase : Tuple = src_lang UpperCAmelCase : Tuple = self(A_ , add_special_tokens=A_ , return_tensors=A_ , **A_ ) UpperCAmelCase : Optional[int] = self.convert_tokens_to_ids(A_ ) UpperCAmelCase : Dict = tgt_lang_id return inputs def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowercase( self , A ) -> int: return self.sp_model.encode(A_ , out_type=A_ ) def _lowercase( self , A ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase : Optional[Any] = self.sp_model.PieceToId(A_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowercase( self , A ) -> int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _lowercase( self , A ) -> Union[str, Any]: UpperCAmelCase : Dict = "".join(A_ ).replace(A_ , """ """ ).strip() return out_string def _lowercase( self , A , A = None ) -> str: if not os.path.isdir(A_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : List[str] = os.path.join( A_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , """wb""" ) as fi: UpperCAmelCase : str = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,) def _lowercase( self , A , A = "en_XX" , A = None , A = "ro_RO" , **A , ) -> Union[str, Any]: UpperCAmelCase : str = src_lang UpperCAmelCase : Dict = tgt_lang return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def _lowercase( self ) -> List[str]: return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase( self ) -> Any: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase( self , A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.lang_code_to_id[src_lang] UpperCAmelCase : List[str] = [] UpperCAmelCase : Optional[Any] = [self.eos_token_id, self.cur_lang_code] def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : List[Any] = self.lang_code_to_id[lang] UpperCAmelCase : Any = [] UpperCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code]
716
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Any = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
672
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() a : Tuple = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase , _lowercase=False , _lowercase=False ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """backbone.""" if is_semantic else """""" UpperCAmelCase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (F'''{prefix}cls_token''', """beit.embeddings.cls_token"""), (F'''{prefix}patch_embed.proj.weight''', """beit.embeddings.patch_embeddings.projection.weight"""), (F'''{prefix}patch_embed.proj.bias''', """beit.embeddings.patch_embeddings.projection.bias"""), (F'''{prefix}pos_embed''', """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=False , _lowercase=False ) -> Optional[int]: for i in range(config.num_hidden_layers ): UpperCAmelCase : Union[str, Any] = """backbone.""" if is_semantic else """""" # queries, keys and values UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase : str = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' ) UpperCAmelCase : Dict = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' ) UpperCAmelCase : str = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase : List[str] = q_bias UpperCAmelCase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : Optional[Any] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCAmelCase : List[str] = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' ) UpperCAmelCase : Union[str, Any] = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' ) UpperCAmelCase : Union[str, Any] = gamma_a UpperCAmelCase : Dict = gamma_a def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Tuple: UpperCAmelCase : str = dct.pop(_lowercase ) UpperCAmelCase : int = val def __lowerCamelCase ( ) -> int: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=False ) -> str: UpperCAmelCase : Optional[Any] = False if """rvlcdip""" in checkpoint_url else True UpperCAmelCase : Union[str, Any] = BeitConfig(use_absolute_position_embeddings=_lowercase , use_mask_token=_lowercase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCAmelCase : Optional[Any] = 1_0_2_4 UpperCAmelCase : Optional[int] = 4_0_9_6 UpperCAmelCase : Optional[Any] = 2_4 UpperCAmelCase : Optional[Any] = 1_6 # labels if "rvlcdip" in checkpoint_url: UpperCAmelCase : Tuple = 1_6 UpperCAmelCase : int = """huggingface/label-files""" UpperCAmelCase : Optional[int] = """rvlcdip-id2label.json""" UpperCAmelCase : int = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : List[Any] = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : str = idalabel UpperCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCAmelCase : int = torch.hub.load_state_dict_from_url(_lowercase , map_location="""cpu""" )["""model"""] UpperCAmelCase : List[str] = create_rename_keys(_lowercase , has_lm_head=_lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) read_in_q_k_v(_lowercase , _lowercase , has_lm_head=_lowercase ) # load HuggingFace model UpperCAmelCase : Optional[int] = BeitForMaskedImageModeling(_lowercase ) if has_lm_head else BeitForImageClassification(_lowercase ) model.eval() model.load_state_dict(_lowercase ) # Check outputs on an image UpperCAmelCase : Union[str, Any] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_lowercase ) UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : Optional[int] = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] UpperCAmelCase : Optional[Any] = model(_lowercase ) UpperCAmelCase : Any = outputs.logits # verify logits UpperCAmelCase : Union[str, Any] = [1, 1_6] if """rvlcdip""" in checkpoint_url else [1, 1_9_6, 8_1_9_2] assert logits.shape == torch.Size(_lowercase ), "Shape of logits not as expected" Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowercase ) if push_to_hub: if has_lm_head: UpperCAmelCase : Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: UpperCAmelCase : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(_lowercase , _lowercase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=_lowercase , ) model.push_to_hub( repo_path_or_name=Path(_lowercase , _lowercase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=_lowercase , ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) a : int = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def __lowerCamelCase ( _lowercase , _lowercase , _lowercase = None ) -> List[str]: if version.parse(hfh.__version__ ).release < version.parse("""0.11.0""" ).release: # old versions of hfh don't url-encode the file path UpperCAmelCase : str = quote(__lowerCAmelCase ) return hfh.hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" , revision=__lowerCAmelCase )
718
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ ( __a , unittest.TestCase ): lowercase = DDIMPipeline lowercase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } lowercase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS lowercase = False def _lowercase( self ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) UpperCAmelCase : int = DDIMScheduler() UpperCAmelCase : int = {"""unet""": unet, """scheduler""": scheduler} return components def _lowercase( self , A , A=0 ) -> Union[str, Any]: if str(lowerCAmelCase_ ).startswith("""mps""" ): UpperCAmelCase : Any = torch.manual_seed(lowerCAmelCase_ ) else: UpperCAmelCase : int = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) UpperCAmelCase : Dict = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _lowercase( self ) -> List[str]: UpperCAmelCase : List[Any] = """cpu""" UpperCAmelCase : int = self.get_dummy_components() UpperCAmelCase : List[Any] = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) UpperCAmelCase : List[Any] = self.get_dummy_inputs(lowerCAmelCase_ ) UpperCAmelCase : Dict = pipe(**lowerCAmelCase_ ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) UpperCAmelCase : List[str] = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) UpperCAmelCase : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase_ , 1e-3 ) def _lowercase( self ) -> Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _lowercase( self ) -> Any: super().test_save_load_local(expected_max_difference=3e-3 ) def _lowercase( self ) -> Optional[int]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def _lowercase( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Dict: UpperCAmelCase : List[str] = """google/ddpm-cifar10-32""" UpperCAmelCase : List[Any] = UNetaDModel.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase : Union[str, Any] = DDIMScheduler() UpperCAmelCase : List[str] = DDIMPipeline(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) ddim.to(lowerCAmelCase_ ) ddim.set_progress_bar_config(disable=lowerCAmelCase_ ) UpperCAmelCase : Any = torch.manual_seed(0 ) UpperCAmelCase : List[str] = ddim(generator=lowerCAmelCase_ , eta=0.0 , output_type="""numpy""" ).images UpperCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Optional[int] = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase( self ) -> Dict: UpperCAmelCase : str = """google/ddpm-ema-bedroom-256""" UpperCAmelCase : List[Any] = UNetaDModel.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase : Dict = DDIMScheduler.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase : Dict = DDIMPipeline(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) ddpm.to(lowerCAmelCase_ ) ddpm.set_progress_bar_config(disable=lowerCAmelCase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = ddpm(generator=lowerCAmelCase_ , output_type="""numpy""" ).images UpperCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Tuple = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
719
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A=None , A=None , **A ) -> str: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase : List[Any] = str(jax.devices()[0] ) UpperCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def _lowercase( self , A ) -> str: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _lowercase( self , A ) -> Tuple: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase : List[str] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase : str = {"""dtype""": jnp.intaa} else: UpperCAmelCase : int = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase : Any = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): UpperCAmelCase : List[str] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase( self , A ) -> Tuple: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): UpperCAmelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _lowercase( self , A ) -> Dict: return map_nested(self._recursive_tensorize , A , map_list=A ) def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A ) UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _lowercase( self , A ) -> "jax.Array": UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A ) UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) UpperCAmelCase : Any = self._consolidate(A ) return column def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A ) UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) for column_name in batch: UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
672
0
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCamelCase_ : lowercase = 42 lowercase = None # Automatically constructed lowercase = "dict" lowercase = None lowercase = field(default='Translation' , init=__lowercase , repr=__lowercase ) def __call__( self ) -> List[str]: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def _lowercase( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class UpperCamelCase_ : lowercase = None lowercase = None lowercase = None # Automatically constructed lowercase = "dict" lowercase = None lowercase = field(default='TranslationVariableLanguages' , init=__lowercase , repr=__lowercase ) def _lowercase( self ) -> Any: UpperCAmelCase : Tuple = sorted(set(self.languages ) ) if self.languages else None UpperCAmelCase : List[Any] = len(self.languages ) if self.languages else None def __call__( self ) -> List[Any]: return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def _lowercase( self , A ) -> Any: UpperCAmelCase : str = set(self.languages ) if self.languages and set(__a ) - lang_set: raise ValueError( f'''Some languages in example ({', '.join(sorted(set(__a ) - lang_set ) )}) are not in valid set ({', '.join(__a )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. UpperCAmelCase : Any = [] for lang, text in translation_dict.items(): if isinstance(__a , __a ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. UpperCAmelCase : Tuple = zip(*sorted(__a ) ) return {"language": languages, "translation": translations} def _lowercase( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
720
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : int = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
672
0
'''simple docstring''' import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem a : Optional[Any] = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 a : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def __lowerCamelCase ( _lowercase ) -> Dict: if "://" in dataset_path: UpperCAmelCase : Optional[int] = dataset_path.split("""://""" )[1] return dataset_path def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: if fs is not None and fs.protocol != "file": return True else: return False def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Tuple: UpperCAmelCase : Optional[Any] = not is_remote_filesystem(_UpperCamelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(_UpperCamelCase ) , fs._strip_protocol(_UpperCamelCase ) ) else: fs.mv(_UpperCamelCase , _UpperCamelCase , recursive=_UpperCamelCase ) def __lowerCamelCase ( ) -> Union[str, Any]: if hasattr(fsspec.asyn , """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: UpperCAmelCase : int = None UpperCAmelCase : Tuple = None UpperCAmelCase : Optional[int] = threading.Lock()
721
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
672
0
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase_ ( __a , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): @property def _lowercase( self ) -> List[Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase( self ) -> Optional[int]: UpperCAmelCase : int = ort.SessionOptions() UpperCAmelCase : str = False return options def _lowercase( self ) -> List[str]: UpperCAmelCase : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) UpperCAmelCase : Dict = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=A__ , feature_extractor=A__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A__ ) UpperCAmelCase : List[Any] = """A red cat sitting on a park bench""" UpperCAmelCase : Tuple = np.random.RandomState(0 ) UpperCAmelCase : List[Any] = pipe( prompt=A__ , image=A__ , mask_image=A__ , guidance_scale=7.5 , num_inference_steps=10 , generator=A__ , output_type="""np""" , ) UpperCAmelCase : Tuple = output.images UpperCAmelCase : Dict = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : Optional[Any] = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase( self ) -> int: UpperCAmelCase : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) UpperCAmelCase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) UpperCAmelCase : int = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" ) UpperCAmelCase : Optional[int] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=A__ , safety_checker=A__ , feature_extractor=A__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A__ ) UpperCAmelCase : Dict = """A red cat sitting on a park bench""" UpperCAmelCase : Optional[int] = np.random.RandomState(0 ) UpperCAmelCase : Optional[Any] = pipe( prompt=A__ , image=A__ , mask_image=A__ , guidance_scale=7.5 , num_inference_steps=20 , generator=A__ , output_type="""np""" , ) UpperCAmelCase : Any = output.images UpperCAmelCase : List[str] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : Any = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
700
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
672
0
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class UpperCamelCase_ : def __init__( self , A ) -> Tuple: if isinstance(A , A ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden UpperCAmelCase : int = deepcopy(A ) elif os.path.exists(A ): with io.open(A , """r""" , encoding="""utf-8""" ) as f: UpperCAmelCase : int = json.load(A ) else: try: UpperCAmelCase : int = baseaa.urlsafe_baadecode(A ).decode("""utf-8""" ) UpperCAmelCase : List[Any] = json.loads(A ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) UpperCAmelCase : List[str] = config self.set_stage_and_offload() def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = self.get_value("""zero_optimization.stage""" , -1 ) # offload UpperCAmelCase : Union[str, Any] = False if self.is_zeroa() or self.is_zeroa(): UpperCAmelCase : Union[str, Any] = set(["""cpu""", """nvme"""] ) UpperCAmelCase : Any = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: UpperCAmelCase : Union[str, Any] = True def _lowercase( self , A ) -> List[str]: UpperCAmelCase : str = self.config # find the config node of interest if it exists UpperCAmelCase : Any = ds_key_long.split(""".""" ) UpperCAmelCase : List[Any] = nodes.pop() for node in nodes: UpperCAmelCase : int = config.get(A ) if config is None: return None, ds_key return config, ds_key def _lowercase( self , A , A=None ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.find_config_node(A ) if config is None: return default return config.get(A , A ) def _lowercase( self , A , A=False ) -> int: UpperCAmelCase : List[str] = self.config # find the config node of interest if it exists UpperCAmelCase : Tuple = ds_key_long.split(""".""" ) for node in nodes: UpperCAmelCase : Optional[int] = config UpperCAmelCase : Optional[Any] = config.get(A ) if config is None: if must_exist: raise ValueError(f'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(A ) def _lowercase( self , A ) -> List[str]: UpperCAmelCase : Dict = self.get_value(A ) return False if value is None else bool(A ) def _lowercase( self , A ) -> List[Any]: UpperCAmelCase : Optional[int] = self.get_value(A ) return False if value is None else not bool(A ) def _lowercase( self ) -> List[str]: return self._stage == 2 def _lowercase( self ) -> Any: return self._stage == 3 def _lowercase( self ) -> List[Any]: return self._offload class UpperCamelCase_ : def __init__( self , A ) -> str: UpperCAmelCase : List[str] = engine def _lowercase( self , A , **A ) -> List[str]: self.engine.backward(A , **A ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A ) -> Any: super().__init__(A , device_placement=A , scaler=A ) UpperCAmelCase : Any = hasattr(self.optimizer , """overflow""" ) def _lowercase( self , A=None ) -> str: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def _lowercase( self ) -> Any: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def _lowercase( self ) -> str: if self.__has_overflow__: return self.optimizer.overflow return False class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A ) -> Tuple: super().__init__(A , A ) def _lowercase( self ) -> str: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class UpperCamelCase_ : def __init__( self , A , A=0.0_0_1 , A=0 , **A ) -> Union[str, Any]: UpperCAmelCase : Any = params UpperCAmelCase : int = lr UpperCAmelCase : Tuple = weight_decay UpperCAmelCase : Dict = kwargs class UpperCamelCase_ : def __init__( self , A , A=None , A=0 , **A ) -> Optional[Any]: UpperCAmelCase : Tuple = optimizer UpperCAmelCase : Optional[int] = total_num_steps UpperCAmelCase : Tuple = warmup_num_steps UpperCAmelCase : Union[str, Any] = kwargs
701
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
0
'''simple docstring''' from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class UpperCamelCase_ ( __snake_case , __snake_case ): lowercase = 'pixel_values' lowercase = False lowercase = TimmBackboneConfig def __init__( self , A , **A ) -> Tuple: requires_backends(self , """timm""" ) super().__init__(__UpperCamelCase ) UpperCAmelCase : Optional[Any] = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(f'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(__UpperCamelCase , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) UpperCAmelCase : Optional[Any] = getattr(__UpperCamelCase , """use_pretrained_backbone""" , __UpperCamelCase ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. UpperCAmelCase : Dict = config.out_indices if getattr(__UpperCamelCase , """out_indices""" , __UpperCamelCase ) is not None else (-1,) UpperCAmelCase : Any = timm.create_model( config.backbone , pretrained=__UpperCamelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=__UpperCamelCase , **__UpperCamelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. UpperCAmelCase : int = self._backbone.return_layers UpperCAmelCase : Dict = {layer["""module"""]: str(__UpperCamelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(__UpperCamelCase ) @classmethod def _lowercase( cls , A , *A , **A ) -> List[str]: requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig UpperCAmelCase : int = kwargs.pop("""config""" , TimmBackboneConfig() ) UpperCAmelCase : str = kwargs.pop("""use_timm_backbone""" , __UpperCamelCase ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) UpperCAmelCase : Dict = kwargs.pop("""num_channels""" , config.num_channels ) UpperCAmelCase : Optional[Any] = kwargs.pop("""features_only""" , config.features_only ) UpperCAmelCase : Tuple = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) UpperCAmelCase : Any = kwargs.pop("""out_indices""" , config.out_indices ) UpperCAmelCase : Union[str, Any] = TimmBackboneConfig( backbone=__UpperCamelCase , num_channels=__UpperCamelCase , features_only=__UpperCamelCase , use_pretrained_backbone=__UpperCamelCase , out_indices=__UpperCamelCase , ) return super()._from_config(__UpperCamelCase , **__UpperCamelCase ) def _lowercase( self , A ) -> int: pass def _lowercase( self , A , A=None , A=None , A=None , **A ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase : Any = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone UpperCAmelCase : int = self._all_layers UpperCAmelCase : List[str] = self._backbone(__UpperCamelCase , **__UpperCamelCase ) UpperCAmelCase : Tuple = self._return_layers UpperCAmelCase : Any = tuple(hidden_states[i] for i in self.out_indices ) else: UpperCAmelCase : List[Any] = self._backbone(__UpperCamelCase , **__UpperCamelCase ) UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = tuple(__UpperCamelCase ) UpperCAmelCase : List[Any] = tuple(__UpperCamelCase ) if hidden_states is not None else None if not return_dict: UpperCAmelCase : int = (feature_maps,) if output_hidden_states: UpperCAmelCase : Union[str, Any] = output + (hidden_states,) return output return BackboneOutput(feature_maps=__UpperCamelCase , hidden_states=__UpperCamelCase , attentions=__UpperCamelCase )
702
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
0
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip a : List[str] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __lowerCamelCase ( _lowercase ) -> List[Any]: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: return max(metric_fn(lowerCAmelCase_ , lowerCAmelCase_ ) for gt in ground_truths ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : str = [line.strip() for line in open(lowerCAmelCase_ , """r""" ).readlines()] UpperCAmelCase : int = [] if args.gold_data_mode == "qa": UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase_ , sep="""\t""" , header=lowerCAmelCase_ ) for answer_list in data[1]: UpperCAmelCase : Any = ast.literal_eval(lowerCAmelCase_ ) answers.append(lowerCAmelCase_ ) else: UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase_ , """r""" ).readlines()] UpperCAmelCase : List[Any] = [[reference] for reference in references] UpperCAmelCase : str = 0 for prediction, ground_truths in zip(lowerCAmelCase_ , lowerCAmelCase_ ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) fa += metric_max_over_ground_truths(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase : Union[str, Any] = 100.0 * em / total UpperCAmelCase : Dict = 100.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[Any]: UpperCAmelCase : int = args.k UpperCAmelCase : List[str] = [line.strip() for line in open(lowerCAmelCase_ , """r""" ).readlines()] UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase_ , """r""" ).readlines()] UpperCAmelCase : str = 0 for hypo, reference in zip(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase : Union[str, Any] = set(hypo.split("""\t""" )[:k] ) UpperCAmelCase : int = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k UpperCAmelCase : str = 100.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: def strip_title(_lowercase ): if title.startswith("""\"""" ): UpperCAmelCase : int = title[1:] if title.endswith("""\"""" ): UpperCAmelCase : Optional[Any] = title[:-1] return title UpperCAmelCase : List[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase_ , return_tensors="""pt""" , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , )['''input_ids'''].to(args.device ) UpperCAmelCase : Any = rag_model.rag.question_encoder(lowerCAmelCase_ ) UpperCAmelCase : Any = question_enc_outputs[0] UpperCAmelCase : Optional[Any] = rag_model.retriever( lowerCAmelCase_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) UpperCAmelCase : Any = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) UpperCAmelCase : Any = [] for docs in all_docs: UpperCAmelCase : Optional[int] = [strip_title(lowerCAmelCase_ ) for title in docs['''title''']] provenance_strings.append("""\t""".join(lowerCAmelCase_ ) ) return provenance_strings def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: with torch.no_grad(): UpperCAmelCase : Dict = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase_ , return_tensors="""pt""" , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ ) UpperCAmelCase : Tuple = inputs_dict.input_ids.to(args.device ) UpperCAmelCase : int = inputs_dict.attention_mask.to(args.device ) UpperCAmelCase : int = rag_model.generate( # rag_model overwrites generate lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) UpperCAmelCase : Union[str, Any] = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) if args.print_predictions: for q, a in zip(lowerCAmelCase_ , lowerCAmelCase_ ): logger.info("""Q: {} - A: {}""".format(lowerCAmelCase_ , lowerCAmelCase_ ) ) return answers def __lowerCamelCase ( ) -> List[Any]: UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase_ , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=lowerCAmelCase_ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase_ , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase_ , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase_ , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase_ , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase_ , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=lowerCAmelCase_ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=lowerCAmelCase_ , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=lowerCAmelCase_ , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase_ , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=5_0 , type=lowerCAmelCase_ , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) UpperCAmelCase : Optional[Any] = parser.parse_args() UpperCAmelCase : List[str] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase : str = {} if args.model_type is None: UpperCAmelCase : int = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): UpperCAmelCase : Optional[int] = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration UpperCAmelCase : Optional[int] = args.n_docs if args.index_name is not None: UpperCAmelCase : str = args.index_name if args.index_path is not None: UpperCAmelCase : Any = args.index_path else: UpperCAmelCase : str = BartForConditionalGeneration UpperCAmelCase : Any = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase_ ) UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k UpperCAmelCase : str = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(lowerCAmelCase_ , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase_ ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): UpperCAmelCase : List[str] = RagRetriever.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase : List[Any] = model_class.from_pretrained(lowerCAmelCase_ , retriever=lowerCAmelCase_ , **lowerCAmelCase_ ) model.retriever.init_retrieval() else: UpperCAmelCase : Optional[Any] = model_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: UpperCAmelCase : Tuple = [] for line in tqdm(lowerCAmelCase_ ): questions.append(line.strip() ) if len(lowerCAmelCase_ ) == args.eval_batch_size: UpperCAmelCase : List[Any] = evaluate_batch_fn(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) preds_file.write("""\n""".join(lowerCAmelCase_ ) + """\n""" ) preds_file.flush() UpperCAmelCase : Any = [] if len(lowerCAmelCase_ ) > 0: UpperCAmelCase : List[Any] = evaluate_batch_fn(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) preds_file.write("""\n""".join(lowerCAmelCase_ ) ) preds_file.flush() score_fn(lowerCAmelCase_ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": a : int = get_args() main(args)
703
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations UpperCAmelCase : List[Any] = tpu_short_seq_length
672
0
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging a : Optional[int] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> Tuple: if isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ): return list(tensor.shape ) UpperCAmelCase : Optional[int] = tf.shape(SCREAMING_SNAKE_CASE__ ) if tensor.shape == tf.TensorShape(SCREAMING_SNAKE_CASE__ ): return dynamic UpperCAmelCase : List[str] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(SCREAMING_SNAKE_CASE__ )] def __lowerCamelCase ( _lowercase , _lowercase = None , _lowercase = None ) -> str: return tf.nn.softmax(logits=logits + 1e-9 , axis=SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=1e-5 , _lowercase=-1 ) -> Optional[int]: if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized UpperCAmelCase : str = tf.nn.moments(SCREAMING_SNAKE_CASE__ , axes=[axis] , keepdims=SCREAMING_SNAKE_CASE__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis UpperCAmelCase : Optional[Any] = [1] * inputs.shape.rank UpperCAmelCase : Any = shape_list(SCREAMING_SNAKE_CASE__ )[axis] UpperCAmelCase : List[str] = tf.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase : List[Any] = tf.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Compute layer normalization using the batch_normalization # function. UpperCAmelCase : List[Any] = tf.nn.batch_normalization( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , offset=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , variance_epsilon=SCREAMING_SNAKE_CASE__ , ) return outputs def __lowerCamelCase ( _lowercase , _lowercase=0 , _lowercase=-1 ) -> int: if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input UpperCAmelCase : int = tf.shape(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase : str = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) UpperCAmelCase : List[str] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( _lowercase ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , tf.Tensor ): UpperCAmelCase : Optional[Any] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: UpperCAmelCase : Optional[int] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: UpperCAmelCase : List[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) UpperCAmelCase : int = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __lowerCamelCase ( _lowercase , _lowercase , _lowercase = "input_ids" ) -> Union[str, Any]: tf.debugging.assert_less( SCREAMING_SNAKE_CASE__ , tf.cast(SCREAMING_SNAKE_CASE__ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(SCREAMING_SNAKE_CASE__ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Tuple: UpperCAmelCase : Any = 6_4_5_1_2 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. UpperCAmelCase : Optional[int] = [x for x in data if len(SCREAMING_SNAKE_CASE__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) UpperCAmelCase : str = np.asarray(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[Any] = np.array_split(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 UpperCAmelCase : Any = np.array_split(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase : List[Any] = chunk_data else: UpperCAmelCase : Union[str, Any] = data def __lowerCamelCase ( _lowercase , _lowercase ) -> Tuple: if name in group.attrs: UpperCAmelCase : Tuple = [n.decode("""utf8""" ) if hasattr(SCREAMING_SNAKE_CASE__ , """decode""" ) else n for n in group.attrs[name]] else: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[Any] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(SCREAMING_SNAKE_CASE__ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def __lowerCamelCase ( _lowercase ) -> Tuple: def _expand_single_ad_tensor(_lowercase ): if isinstance(SCREAMING_SNAKE_CASE__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(SCREAMING_SNAKE_CASE__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , SCREAMING_SNAKE_CASE__ )
704
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
0
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer a : Any = """bart""" a : int = True @st.cache(allow_output_mutation=a_ ) def __lowerCamelCase ( ) -> List[Any]: if LOAD_DENSE_INDEX: UpperCAmelCase : Any = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) UpperCAmelCase : Dict = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) UpperCAmelCase : Any = qar_model.eval() else: UpperCAmelCase : Tuple = (None, None) if MODEL_TYPE == "bart": UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) UpperCAmelCase : Tuple = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) UpperCAmelCase : Optional[int] = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) UpperCAmelCase : str = sas_model.eval() else: UpperCAmelCase : int = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a_ ) def __lowerCamelCase ( ) -> Optional[Any]: if LOAD_DENSE_INDEX: UpperCAmelCase : Union[str, Any] = faiss.StandardGpuResources() UpperCAmelCase : Optional[int] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )['''train'''] UpperCAmelCase : Dict = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 1_2_8) , ) UpperCAmelCase : List[str] = faiss.IndexFlatIP(1_2_8 ) UpperCAmelCase : List[str] = faiss.index_cpu_to_gpu(a_ , 1 , a_ ) wikiaab_gpu_index_flat.add(a_ ) # TODO fix for larger GPU else: UpperCAmelCase : Any = (None, None) UpperCAmelCase : Union[str, Any] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a_ ) def __lowerCamelCase ( ) -> Any: UpperCAmelCase : Optional[Any] = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) UpperCAmelCase : List[Any] = elia['''train_eli5'''] UpperCAmelCase : Optional[int] = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 1_2_8) ) UpperCAmelCase : str = faiss.IndexFlatIP(1_2_8 ) eli5_train_q_index.add(a_ ) return (elia_train, eli5_train_q_index) a , a , a : Any = load_indexes() a , a , a , a : Union[str, Any] = load_models() a , a : Optional[int] = load_train_data() def __lowerCamelCase ( _lowercase , _lowercase=1_0 ) -> Dict: UpperCAmelCase : Any = embed_questions_for_retrieval([question] , a_ , a_ ) UpperCAmelCase : Any = eli5_train_q_index.search(a_ , a_ ) UpperCAmelCase : Dict = [elia_train[int(a_ )] for i in I[0]] return nn_examples def __lowerCamelCase ( _lowercase , _lowercase="wiki40b" , _lowercase="dense" , _lowercase=1_0 ) -> List[Any]: if source == "none": UpperCAmelCase : int = (''' <P> '''.join(["""""" for _ in range(1_1 )] ).strip(), []) else: if method == "dense": UpperCAmelCase : List[str] = query_qa_dense_index( a_ , a_ , a_ , a_ , a_ , a_ ) else: UpperCAmelCase : Dict = query_es_index( a_ , a_ , index_name="""english_wiki40b_snippets_100w""" , n_results=a_ , ) UpperCAmelCase : Any = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] UpperCAmelCase : List[Any] = '''question: {} context: {}'''.format(a_ , a_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowercase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowercase : None), } ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=6_4 , _lowercase=2_5_6 , _lowercase=False , _lowercase=2 , _lowercase=0.95 , _lowercase=0.8 ) -> Dict: with torch.no_grad(): UpperCAmelCase : Optional[Any] = qa_sas_generate( a_ , a_ , a_ , num_answers=1 , num_beams=a_ , min_len=a_ , max_len=a_ , do_sample=a_ , temp=a_ , top_p=a_ , top_k=a_ , max_input_length=1_0_2_4 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar a : Any = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" a : Optional[int] = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia a : Dict = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) a : Optional[Any] = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] a : Optional[Any] = st.sidebar.checkbox("""Demo options""") if demo_options: a : str = st.sidebar.selectbox( """""", action_list, index=3, ) a : Optional[int] = action_list.index(action_st) a : List[str] = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) a : Dict = show_type == """Show full text of passages""" else: a : Any = 3 a : Tuple = True a : Dict = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: a : List[Any] = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) a : Tuple = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) a : List[Any] = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: a : Union[str, Any] = """wiki40b""" a : Tuple = """dense""" a : Dict = """beam""" a : Union[str, Any] = 2 a : Optional[int] = 6_4 a : Tuple = 2_5_6 a : List[str] = None a : List[Any] = None a : Any = st.sidebar.checkbox("""Generation options""") if generate_options: a : Tuple = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) a : Optional[int] = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) a : int = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=2_5_6, value=6_4, step=8, format=None, key=None ) a : int = st.sidebar.slider( """Maximum generation length""", min_value=6_4, max_value=5_1_2, value=2_5_6, step=1_6, format=None, key=None ) if sampled == "beam": a : Tuple = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: a : Optional[Any] = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) a : Union[str, Any] = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) a : Optional[Any] = None # start main text a : int = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] a : Optional[Any] = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": a : str = st.text_input("""Enter your question here:""", """""") else: a : List[Any] = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": a , a : Tuple = make_support(question, source=wiki_source, method="""dense""", n_results=1_0) a , a : List[str] = make_support(question, source=wiki_source, method="""sparse""", n_results=1_0) a : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] a : int = support_list[:1_0] a : Optional[Any] = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: a , a : Union[str, Any] = make_support(question, source=wiki_source, method=index_type, n_results=1_0) if action in [0, 3]: a , a : List[str] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): a : Tuple = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) a : Tuple = res[1].strip() if sec_titles == "": a : int = """[{}]({})""".format(res[0], wiki_url) else: a : Dict = sec_titles.split(""" & """) a : List[Any] = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: a : int = find_nearest_training(question) a : str = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) a : Union[str, Any] = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) a : int = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
705
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: UpperCAmelCase : List[str] = 3_8_4 if "tiny" in model_name: UpperCAmelCase : Any = [3, 3, 9, 3] UpperCAmelCase : Union[str, Any] = [9_6, 1_9_2, 3_8_4, 7_6_8] if "small" in model_name: UpperCAmelCase : Union[str, Any] = [3, 3, 2_7, 3] UpperCAmelCase : str = [9_6, 1_9_2, 3_8_4, 7_6_8] if "base" in model_name: UpperCAmelCase : Union[str, Any] = [3, 3, 2_7, 3] UpperCAmelCase : List[str] = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4] UpperCAmelCase : List[str] = 5_1_2 if "large" in model_name: UpperCAmelCase : Tuple = [3, 3, 2_7, 3] UpperCAmelCase : Optional[Any] = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6] UpperCAmelCase : Union[str, Any] = 7_6_8 if "xlarge" in model_name: UpperCAmelCase : Dict = [3, 3, 2_7, 3] UpperCAmelCase : Optional[int] = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] UpperCAmelCase : List[Any] = 1_0_2_4 # set label information UpperCAmelCase : Tuple = 1_5_0 UpperCAmelCase : Optional[Any] = """huggingface/label-files""" UpperCAmelCase : List[Any] = """ade20k-id2label.json""" UpperCAmelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Optional[Any] = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : int = {v: k for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = ConvNextConfig( depths=_lowercase , hidden_sizes=_lowercase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) UpperCAmelCase : Union[str, Any] = UperNetConfig( backbone_config=_lowercase , auxiliary_in_channels=_lowercase , num_labels=_lowercase , idalabel=_lowercase , labelaid=_lowercase , ) return config def __lowerCamelCase ( _lowercase ) -> Dict: UpperCAmelCase : Dict = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Optional[Any] = dct.pop(_lowercase ) UpperCAmelCase : List[Any] = val def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : int = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } UpperCAmelCase : Optional[Any] = model_name_to_url[model_name] UpperCAmelCase : int = torch.hub.load_state_dict_from_url(_lowercase , map_location="""cpu""" )["""state_dict"""] UpperCAmelCase : int = get_upernet_config(_lowercase ) UpperCAmelCase : List[str] = UperNetForSemanticSegmentation(_lowercase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) if "bn" in key: UpperCAmelCase : List[Any] = key.replace("""bn""" , """batch_norm""" ) UpperCAmelCase : str = val # rename keys UpperCAmelCase : int = create_rename_keys(_lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) model.load_state_dict(_lowercase ) # verify on image UpperCAmelCase : Optional[Any] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" UpperCAmelCase : List[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert("""RGB""" ) UpperCAmelCase : int = SegformerImageProcessor() UpperCAmelCase : Any = processor(_lowercase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): UpperCAmelCase : List[Any] = model(_lowercase ) if model_name == "upernet-convnext-tiny": UpperCAmelCase : Tuple = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": UpperCAmelCase : List[Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": UpperCAmelCase : Union[str, Any] = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": UpperCAmelCase : Union[str, Any] = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": UpperCAmelCase : List[Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _lowercase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_lowercase ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F'''upernet-convnext-{size}''' for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) a : int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
706
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
0
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) a : Tuple = ["""model.decoder.embed_positions.weights"""] def __lowerCamelCase ( _lowercase ) -> Optional[Any]: if "emb" in name: UpperCAmelCase : List[str] = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: UpperCAmelCase : Optional[int] = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: UpperCAmelCase : Optional[int] = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: UpperCAmelCase : Optional[Any] = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: UpperCAmelCase : Union[str, Any] = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: UpperCAmelCase : Optional[Any] = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: UpperCAmelCase : Dict = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: UpperCAmelCase : Union[str, Any] = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: UpperCAmelCase : Union[str, Any] = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: UpperCAmelCase : List[str] = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: UpperCAmelCase : Any = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def __lowerCamelCase ( _lowercase , _lowercase ) -> Tuple[Dict, Dict]: UpperCAmelCase : str = list(state_dict.keys() ) UpperCAmelCase : Optional[Any] = {} for key in keys: UpperCAmelCase : Optional[int] = state_dict.pop(lowercase_ ) UpperCAmelCase : List[Any] = rename_keys(lowercase_ ) if "in_proj_weight" in key: # split fused qkv proj UpperCAmelCase : Tuple = val[:hidden_size, :] UpperCAmelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :] UpperCAmelCase : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCAmelCase : Optional[Any] = val else: UpperCAmelCase : List[str] = val return state_dict, enc_dec_proj_state_dict def __lowerCamelCase ( _lowercase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values UpperCAmelCase : List[Any] = 1_0_2_4 UpperCAmelCase : List[str] = 2_4 UpperCAmelCase : Any = 1_6 elif checkpoint == "medium": UpperCAmelCase : Tuple = 1_5_3_6 UpperCAmelCase : Dict = 4_8 UpperCAmelCase : Tuple = 2_4 elif checkpoint == "large": UpperCAmelCase : int = 2_0_4_8 UpperCAmelCase : Optional[int] = 4_8 UpperCAmelCase : Dict = 3_2 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) UpperCAmelCase : str = MusicgenDecoderConfig( hidden_size=lowercase_ , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase_ , num_attention_heads=lowercase_ , ) return config @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase=None , _lowercase=None , _lowercase="cpu" ) -> List[str]: UpperCAmelCase : str = MusicGen.get_pretrained(lowercase_ , device=lowercase_ ) UpperCAmelCase : Union[str, Any] = decoder_config_from_checkpoint(lowercase_ ) UpperCAmelCase : Optional[int] = fairseq_model.lm.state_dict() UpperCAmelCase : Optional[Any] = rename_state_dict( lowercase_ , hidden_size=decoder_config.hidden_size ) UpperCAmelCase : Tuple = TaEncoderModel.from_pretrained("""t5-base""" ) UpperCAmelCase : Union[str, Any] = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) UpperCAmelCase : str = MusicgenForCausalLM(lowercase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCAmelCase : str = decoder.load_state_dict(lowercase_ , strict=lowercase_ ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase_ ) if len(lowercase_ ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(lowercase_ ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model UpperCAmelCase : str = MusicgenForConditionalGeneration(text_encoder=lowercase_ , audio_encoder=lowercase_ , decoder=lowercase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase_ ) # check we can do a forward pass UpperCAmelCase : List[str] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) UpperCAmelCase : Dict = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): UpperCAmelCase : Tuple = model(input_ids=lowercase_ , decoder_input_ids=lowercase_ ).logits if logits.shape != (8, 1, 2_0_4_8): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor UpperCAmelCase : int = AutoTokenizer.from_pretrained("""t5-base""" ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) UpperCAmelCase : Optional[int] = MusicgenProcessor(feature_extractor=lowercase_ , tokenizer=lowercase_ ) # set the appropriate bos/pad token ids UpperCAmelCase : str = 2_0_4_8 UpperCAmelCase : str = 2_0_4_8 # set other default generation config params UpperCAmelCase : Optional[Any] = int(3_0 * audio_encoder.config.frame_rate ) UpperCAmelCase : List[str] = True UpperCAmelCase : int = 3.0 if pytorch_dump_folder is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(lowercase_ ) processor.push_to_hub(lowercase_ ) if __name__ == "__main__": a : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) a : Optional[int] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
707
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
0
'''simple docstring''' from collections import defaultdict def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Optional[int] = 1 UpperCAmelCase : Optional[Any] = True for v in tree[start]: if v not in visited: ret += dfs(__UpperCamelCase ) if ret % 2 == 0: cuts.append(__UpperCamelCase ) return ret def __lowerCamelCase ( ) -> Dict: dfs(1 ) if __name__ == "__main__": a , a : Optional[Any] = 1_0, 9 a : Dict = defaultdict(list) a : List[Any] = {} a : List[Any] = [] a : Union[str, Any] = 0 a : List[str] = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (1_0, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
708
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
0
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=2 , A=3 , A=16 , A=[1, 2, 1] , A=[2, 2, 4] , A=2 , A=2.0 , A=True , A=0.0 , A=0.0 , A=0.1 , A="gelu" , A=False , A=True , A=0.0_2 , A=1e-5 , A=True , A=None , A=True , A=10 , A=8 , A=["stage1", "stage2", "stage3"] , A=[1, 2, 3] , ) -> int: UpperCAmelCase : Dict = parent UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : str = image_size UpperCAmelCase : int = patch_size UpperCAmelCase : int = num_channels UpperCAmelCase : Tuple = embed_dim UpperCAmelCase : Union[str, Any] = depths UpperCAmelCase : str = num_heads UpperCAmelCase : Any = window_size UpperCAmelCase : Union[str, Any] = mlp_ratio UpperCAmelCase : List[Any] = qkv_bias UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : List[str] = attention_probs_dropout_prob UpperCAmelCase : Dict = drop_path_rate UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Optional[int] = use_absolute_embeddings UpperCAmelCase : Optional[int] = patch_norm UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[int] = initializer_range UpperCAmelCase : Tuple = is_training UpperCAmelCase : List[str] = scope UpperCAmelCase : str = use_labels UpperCAmelCase : List[Any] = type_sequence_label_size UpperCAmelCase : Union[str, Any] = encoder_stride UpperCAmelCase : Optional[int] = out_features UpperCAmelCase : List[str] = out_indices def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : str = None if self.use_labels: UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Any = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowercase( self , A , A , A ) -> Tuple: UpperCAmelCase : int = MaskFormerSwinModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase : List[Any] = model(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase : Any = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _lowercase( self , A , A , A ) -> Dict: UpperCAmelCase : Tuple = MaskFormerSwinBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase : Dict = model(_lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowerCAmelCase ): UpperCAmelCase : Union[str, Any] = ["""stem"""] UpperCAmelCase : Dict = MaskFormerSwinBackbone(config=_lowerCAmelCase ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = config_and_inputs UpperCAmelCase : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowercase = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Dict: UpperCAmelCase : Optional[Any] = MaskFormerSwinModelTester(self ) UpperCAmelCase : Dict = ConfigTester(self , config_class=_lowerCAmelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def _lowercase( self ) -> List[str]: pass def _lowercase( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[Any]: return def _lowercase( self ) -> List[str]: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCAmelCase ) @unittest.skip("""Swin does not use inputs_embeds""" ) def _lowercase( self ) -> List[str]: pass @unittest.skip("""Swin does not support feedforward chunking""" ) def _lowercase( self ) -> Any: pass def _lowercase( self ) -> List[str]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[str] = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _lowercase( self ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = model_class(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : str = [*signature.parameters.keys()] UpperCAmelCase : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def _lowercase( self ) -> List[str]: pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def _lowercase( self ) -> List[str]: pass def _lowercase( self , A , A , A , A ) -> Optional[int]: UpperCAmelCase : List[Any] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase : List[Any] = outputs.hidden_states UpperCAmelCase : Any = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # Swin has a different seq_length UpperCAmelCase : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase : Any = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : str = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def _lowercase( self ) -> Optional[Any]: pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _lowercase( self ) -> List[str]: pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _lowercase( self ) -> Tuple: pass def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(A ): UpperCAmelCase : str = 0 return t def check_equivalence(A , A , A , A={} ): with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(**_lowerCAmelCase , return_dict=_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = model(**_lowerCAmelCase , return_dict=_lowerCAmelCase , **_lowerCAmelCase ).to_tuple() def recursive_check(A , A ): if isinstance(_lowerCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCAmelCase , _lowerCAmelCase ): recursive_check(_lowerCAmelCase , _lowerCAmelCase ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowerCAmelCase , _lowerCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowerCAmelCase ) , set_nan_tensor_to_zero(_lowerCAmelCase ) , atol=1e-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' f''' {torch.isnan(_lowerCAmelCase ).any()} and `inf`: {torch.isinf(_lowerCAmelCase )}. Dict has''' f''' `nan`: {torch.isnan(_lowerCAmelCase ).any()} and `inf`: {torch.isinf(_lowerCAmelCase )}.''' ) , ) recursive_check(_lowerCAmelCase , _lowerCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase : Optional[Any] = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : List[Any] = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) check_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Any = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) UpperCAmelCase : Dict = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) check_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : str = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : str = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) check_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , {"""output_hidden_states""": True} ) UpperCAmelCase : Optional[int] = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) UpperCAmelCase : str = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) check_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , {"""output_hidden_states""": True} ) @require_torch class UpperCamelCase_ ( unittest.TestCase , _lowerCAmelCase ): lowercase = (MaskFormerSwinBackbone,) if is_torch_available() else () lowercase = MaskFormerSwinConfig def _lowercase( self ) -> Optional[int]: UpperCAmelCase : List[Any] = MaskFormerSwinModelTester(self ) def _lowercase( self ) -> List[str]: UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: UpperCAmelCase : int = backbone_class(_lowerCAmelCase ) backbone.to(_lowerCAmelCase ) backbone.eval() UpperCAmelCase : Union[str, Any] = backbone(**_lowerCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowerCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True UpperCAmelCase : Dict = backbone(**_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: UpperCAmelCase : str = backbone(**_lowerCAmelCase , output_attentions=_lowerCAmelCase ) self.assertIsNotNone(outputs.attentions )
709
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
0
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( _lowercase , _lowercase = None ) -> Dict: UpperCAmelCase : Tuple = word_bank or [] # create a table UpperCAmelCase : int = len(snake_case_ ) + 1 UpperCAmelCase : list[list[list[str]]] = [] for _ in range(snake_case_ ): table.append([] ) # seed value UpperCAmelCase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(snake_case_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(snake_case_ )] == word: UpperCAmelCase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(snake_case_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(snake_case_ )]: combination.reverse() return table[len(snake_case_ )] if __name__ == "__main__": print(all_construct("""jwajalapa""", ["""jwa""", """j""", """w""", """a""", """la""", """lapa"""])) print(all_construct("""rajamati""", ["""s""", """raj""", """amat""", """raja""", """ma""", """i""", """t"""])) print( all_construct( """hexagonosaurus""", ["""h""", """ex""", """hex""", """ag""", """ago""", """ru""", """auru""", """rus""", """go""", """no""", """o""", """s"""], ) )
710
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: return ("This is a test", "This is a test") def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """</s>""" UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(A ) , 1103 ) def _lowercase( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> str: return ("This is a test", "This is a test") def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : str = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
672
0
'''simple docstring''' def __lowerCamelCase ( _lowercase = 1_0_0_0 ) -> int: UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[int] = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
711
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Any = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : int = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ConvNextVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase : Any = model_class(A ) model.to(A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : List[str] = False UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
672
0
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a : List[str] = logging.get_logger(__name__) a : Optional[Any] = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } a : str = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } a : Tuple = { """vinai/phobert-base""": 2_5_6, """vinai/phobert-large""": 2_5_6, } def __lowerCamelCase ( _lowercase ) -> str: UpperCAmelCase : List[Any] = set() UpperCAmelCase : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase : Any = char UpperCAmelCase : List[Any] = set(lowerCamelCase_ ) return pairs class UpperCamelCase_ ( lowerCAmelCase__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A , A , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> Optional[int]: super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , **_lowerCamelCase , ) UpperCAmelCase : Any = vocab_file UpperCAmelCase : Optional[int] = merges_file UpperCAmelCase : Any = {} UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : str = 1 UpperCAmelCase : Tuple = 2 UpperCAmelCase : Dict = 3 self.add_from_file(_lowerCamelCase ) UpperCAmelCase : str = {v: k for k, v in self.encoder.items()} with open(_lowerCamelCase , encoding="""utf-8""" ) as merges_handle: UpperCAmelCase : Tuple = merges_handle.read().split("""\n""" )[:-1] UpperCAmelCase : Tuple = [tuple(merge.split()[:-1] ) for merge in merges] UpperCAmelCase : Dict = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) UpperCAmelCase : Any = {} def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [self.cls_token_id] UpperCAmelCase : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowercase( self ) -> List[str]: return len(self.encoder ) def _lowercase( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase( self , A ) -> List[str]: if token in self.cache: return self.cache[token] UpperCAmelCase : int = tuple(_lowerCamelCase ) UpperCAmelCase : Any = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) UpperCAmelCase : Optional[Any] = get_pairs(_lowerCamelCase ) if not pairs: return token while True: UpperCAmelCase : Dict = min(_lowerCamelCase , key=lambda A : self.bpe_ranks.get(_lowerCamelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase : Dict = bigram UpperCAmelCase : Dict = [] UpperCAmelCase : List[str] = 0 while i < len(_lowerCamelCase ): try: UpperCAmelCase : Tuple = word.index(_lowerCamelCase , _lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase : Optional[int] = j if word[i] == first and i < len(_lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase : Optional[int] = tuple(_lowerCamelCase ) UpperCAmelCase : Optional[int] = new_word if len(_lowerCamelCase ) == 1: break else: UpperCAmelCase : Optional[Any] = get_pairs(_lowerCamelCase ) UpperCAmelCase : int = """@@ """.join(_lowerCamelCase ) UpperCAmelCase : List[str] = word[:-4] UpperCAmelCase : Dict = word return word def _lowercase( self , A ) -> Union[str, Any]: UpperCAmelCase : Dict = [] UpperCAmelCase : str = re.findall(r"""\S+\n?""" , _lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(_lowerCamelCase ).split(""" """ ) ) ) return split_tokens def _lowercase( self , A ) -> Dict: return self.encoder.get(_lowerCamelCase , self.encoder.get(self.unk_token ) ) def _lowercase( self , A ) -> str: return self.decoder.get(_lowerCamelCase , self.unk_token ) def _lowercase( self , A ) -> int: UpperCAmelCase : str = """ """.join(_lowerCamelCase ).replace("""@@ """ , """""" ).strip() return out_string def _lowercase( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : List[str] = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : Dict = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.merges_file , _lowerCamelCase ) return out_vocab_file, out_merge_file def _lowercase( self , A ) -> Tuple: if isinstance(_lowerCamelCase , _lowerCamelCase ): try: with open(_lowerCamelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(_lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return UpperCAmelCase : Tuple = f.readlines() for lineTmp in lines: UpperCAmelCase : Tuple = lineTmp.strip() UpperCAmelCase : List[str] = line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected \'<token> <cnt>\'""" ) UpperCAmelCase : Dict = line[:idx] UpperCAmelCase : List[Any] = len(self.encoder )
712
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar a : List[str] = TypeVar("""T""") class UpperCamelCase_ ( Generic[T] ): def __init__( self , A , A ) -> None: UpperCAmelCase : Any | T = None UpperCAmelCase : int = len(A ) UpperCAmelCase : list[T] = [any_type for _ in range(self.N )] + arr UpperCAmelCase : Optional[Any] = fnc self.build() def _lowercase( self ) -> None: for p in range(self.N - 1 , 0 , -1 ): UpperCAmelCase : Optional[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def _lowercase( self , A , A ) -> None: p += self.N UpperCAmelCase : Optional[Any] = v while p > 1: UpperCAmelCase : List[str] = p // 2 UpperCAmelCase : List[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def _lowercase( self , A , A ) -> T | None: # noqa: E741 UpperCAmelCase : List[str] = l + self.N, r + self.N UpperCAmelCase : T | None = None while l <= r: if l % 2 == 1: UpperCAmelCase : List[str] = self.st[l] if res is None else self.fn(A , self.st[l] ) if r % 2 == 0: UpperCAmelCase : Union[str, Any] = self.st[r] if res is None else self.fn(A , self.st[r] ) UpperCAmelCase : List[str] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce a : Optional[Any] = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] a : Dict = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } a : Optional[int] = SegmentTree(test_array, min) a : Dict = SegmentTree(test_array, max) a : Dict = SegmentTree(test_array, lambda a, b: a + b) def __lowerCamelCase ( ) -> None: for i in range(len(__snake_case ) ): for j in range(__snake_case , len(__snake_case ) ): UpperCAmelCase : Optional[Any] = reduce(__snake_case , test_array[i : j + 1] ) UpperCAmelCase : str = reduce(__snake_case , test_array[i : j + 1] ) UpperCAmelCase : List[str] = reduce(lambda _lowercase , _lowercase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__snake_case , __snake_case ) assert max_range == max_segment_tree.query(__snake_case , __snake_case ) assert sum_range == sum_segment_tree.query(__snake_case , __snake_case ) test_all_segments() for index, value in test_updates.items(): a : Optional[Any] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
713
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
0
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Tuple: def update_area_of_max_square(_lowercase , _lowercase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 UpperCAmelCase : Any = update_area_of_max_square(a__ , col + 1 ) UpperCAmelCase : List[Any] = update_area_of_max_square(row + 1 , col + 1 ) UpperCAmelCase : Union[str, Any] = update_area_of_max_square(row + 1 , a__ ) if mat[row][col]: UpperCAmelCase : List[str] = 1 + min([right, diagonal, down] ) UpperCAmelCase : Optional[int] = max(largest_square_area[0] , a__ ) return sub_problem_sol else: return 0 UpperCAmelCase : Any = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Tuple: def update_area_of_max_square_using_dp_array( _lowercase , _lowercase , _lowercase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] UpperCAmelCase : str = update_area_of_max_square_using_dp_array(a__ , col + 1 , a__ ) UpperCAmelCase : Any = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , a__ ) UpperCAmelCase : Optional[int] = update_area_of_max_square_using_dp_array(row + 1 , a__ , a__ ) if mat[row][col]: UpperCAmelCase : Dict = 1 + min([right, diagonal, down] ) UpperCAmelCase : Any = max(largest_square_area[0] , a__ ) UpperCAmelCase : Optional[int] = sub_problem_sol return sub_problem_sol else: return 0 UpperCAmelCase : Any = [0] UpperCAmelCase : Any = [[-1] * cols for _ in range(a__ )] update_area_of_max_square_using_dp_array(0 , 0 , a__ ) return largest_square_area[0] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : List[str] = [[0] * (cols + 1) for _ in range(rows + 1 )] UpperCAmelCase : str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): UpperCAmelCase : Optional[int] = dp_array[row][col + 1] UpperCAmelCase : List[str] = dp_array[row + 1][col + 1] UpperCAmelCase : Any = dp_array[row + 1][col] if mat[row][col] == 1: UpperCAmelCase : Tuple = 1 + min(a__ , a__ , a__ ) UpperCAmelCase : Tuple = max(dp_array[row][col] , a__ ) else: UpperCAmelCase : Union[str, Any] = 0 return largest_square_area def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Tuple: UpperCAmelCase : Dict = [0] * (cols + 1) UpperCAmelCase : Optional[int] = [0] * (cols + 1) UpperCAmelCase : str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): UpperCAmelCase : Tuple = current_row[col + 1] UpperCAmelCase : Optional[Any] = next_row[col + 1] UpperCAmelCase : Any = next_row[col] if mat[row][col] == 1: UpperCAmelCase : Union[str, Any] = 1 + min(a__ , a__ , a__ ) UpperCAmelCase : Optional[int] = max(current_row[col] , a__ ) else: UpperCAmelCase : List[str] = 0 UpperCAmelCase : Optional[Any] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
714
'''simple docstring''' a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a : Optional[Any] = True a : List[Any] = False def __lowerCamelCase ( _lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : List[str] = chain(next_number(_lowercase ) ) UpperCAmelCase : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase : List[str] = number_chain number *= 1_0 return number_chain def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , _lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
672
0
from math import ceil, sqrt def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0 ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: UpperCAmelCase : Optional[int] = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: UpperCAmelCase : Dict = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'''{solution() = }''')
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a : Union[str, Any] = logging.get_logger(__name__) a : Optional[int] = {'''tokenizer_file''': '''tokenizer.json'''} a : Optional[int] = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class UpperCamelCase_ ( __UpperCAmelCase ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = ['''input_ids''', '''attention_mask'''] lowercase = None def __init__( self , A=None , A=None , A=None , A="<unk>" , A="<s>" , A="</s>" , A="<pad>" , A=False , A=False , **A , ) -> Optional[Any]: super().__init__( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop("""type""" ) ) UpperCAmelCase : Any = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**__SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = add_prefix_space def _lowercase( self , *A , **A ) -> str: UpperCAmelCase : Optional[Any] = kwargs.get("""is_split_into_words""" , __SCREAMING_SNAKE_CASE ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase( self , *A , **A ) -> int: UpperCAmelCase : Dict = kwargs.get("""is_split_into_words""" , __SCREAMING_SNAKE_CASE ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' """ pretokenized inputs.""" ) return super()._encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase( self , A , A = None ) -> int: UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def _lowercase( self , A ) -> str: UpperCAmelCase : str = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) + [self.eos_token_id] ) if len(__SCREAMING_SNAKE_CASE ) > self.model_max_length: UpperCAmelCase : Tuple = input_ids[-self.model_max_length :] return input_ids
716
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Any = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
672
0
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a : Dict = logging.get_logger(__name__) a : Tuple = {"""vocab_file""": """spiece.model"""} a : int = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), } } a : Tuple = { """google/bigbird-roberta-base""": 4_0_9_6, """google/bigbird-roberta-large""": 4_0_9_6, """google/bigbird-base-trivia-itc""": 4_0_9_6, } class UpperCamelCase_ ( UpperCamelCase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = [] def __init__( self , A , A="<unk>" , A="<s>" , A="</s>" , A="<pad>" , A="[SEP]" , A="[MASK]" , A="[CLS]" , A = None , **A , ) -> None: UpperCAmelCase : Tuple = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else bos_token UpperCAmelCase : List[str] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else eos_token UpperCAmelCase : Optional[int] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else unk_token UpperCAmelCase : List[str] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else pad_token UpperCAmelCase : Tuple = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else cls_token UpperCAmelCase : Tuple = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token UpperCAmelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , pad_token=__a , sep_token=__a , mask_token=__a , cls_token=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) UpperCAmelCase : Optional[int] = vocab_file UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__a ) @property def _lowercase( self ) -> List[str]: return self.sp_model.get_piece_size() def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: UpperCAmelCase : str = self.__dict__.copy() UpperCAmelCase : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: UpperCAmelCase : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase : int = {} UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase( self , A ) -> List[str]: return self.sp_model.encode(__a , out_type=__a ) def _lowercase( self , A ) -> List[str]: return self.sp_model.piece_to_id(__a ) def _lowercase( self , A ) -> List[Any]: UpperCAmelCase : Optional[int] = self.sp_model.IdToPiece(__a ) return token def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : str = [] UpperCAmelCase : Dict = '' UpperCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__a ) + token UpperCAmelCase : int = True UpperCAmelCase : str = [] else: current_sub_tokens.append(__a ) UpperCAmelCase : Any = False out_string += self.sp_model.decode(__a ) return out_string.strip() def _lowercase( self , A , A = False , A = None , A = True , **A , ) -> str: UpperCAmelCase : Optional[Any] = kwargs.pop("""use_source_tokenizer""" , __a ) UpperCAmelCase : List[Any] = self.convert_ids_to_tokens(__a , skip_special_tokens=__a ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase : Tuple = [] UpperCAmelCase : str = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__a ) ) UpperCAmelCase : Optional[int] = [] sub_texts.append(__a ) else: current_sub_text.append(__a ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__a ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: UpperCAmelCase : List[str] = re.sub(r""" (\[(MASK|SEP)\])""" , r"""\1""" , """ """.join(__a ) ) else: UpperCAmelCase : Optional[Any] = ''.join(__a ) UpperCAmelCase : Optional[int] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase : Union[str, Any] = self.clean_up_tokenization(__a ) return clean_text else: return text def _lowercase( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(__a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : Any = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , """wb""" ) as fi: UpperCAmelCase : int = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,) def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Any = [self.cls_token_id] UpperCAmelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def _lowercase( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Dict = [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
'''simple docstring''' import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowerCamelCase ( _lowercase , _lowercase=1_0 ) -> Optional[int]: UpperCAmelCase : Any = [] for _ in range(_lowercase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowerCamelCase ( _lowercase , _lowercase=1_0 ) -> Tuple: UpperCAmelCase : List[str] = [] for step in range(_lowercase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Union[str, Any] = os.path.join(_lowercase , """schedule.bin""" ) torch.save(scheduler.state_dict() , _lowercase ) UpperCAmelCase : Dict = torch.load(_lowercase ) scheduler.load_state_dict(_lowercase ) return lrs @require_torch class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A ) -> Optional[int]: self.assertEqual(len(__A ) , len(__A ) ) for a, b in zip(__A , __A ): self.assertAlmostEqual(__A , __A , delta=__A ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : int = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__A ) UpperCAmelCase : Dict = torch.tensor([0.4, 0.2, -0.5] ) UpperCAmelCase : Optional[int] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping UpperCAmelCase : List[Any] = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): UpperCAmelCase : Optional[Any] = criterion(__A , __A ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__A ) UpperCAmelCase : Optional[int] = torch.tensor([0.4, 0.2, -0.5] ) UpperCAmelCase : int = nn.MSELoss() # No warmup, constant schedule, no gradient clipping UpperCAmelCase : Union[str, Any] = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=__A , weight_decay=0.0 , relative_step=__A , scale_parameter=__A , warmup_init=__A , ) for _ in range(1000 ): UpperCAmelCase : str = criterion(__A , __A ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): lowercase = nn.Linear(50 , 50 ) if is_torch_available() else None lowercase = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None lowercase = 10 def _lowercase( self , A , A , A , A=None ) -> List[Any]: self.assertEqual(len(__A ) , len(__A ) ) for a, b in zip(__A , __A ): self.assertAlmostEqual(__A , __A , delta=__A , msg=__A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[Any] = {"""num_warmup_steps""": 2, """num_training_steps""": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) UpperCAmelCase : List[str] = { get_constant_schedule: ({}, [1_0.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"""num_warmup_steps""": 4}, [0.0, 2.5, 5.0, 7.5, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 8.7_5, 7.5, 6.2_5, 5.0, 3.7_5, 2.5, 1.2_5], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 9.6_1, 8.5_3, 6.9_1, 5.0, 3.0_8, 1.4_6, 0.3_8], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, """num_cycles""": 2}, [0.0, 5.0, 1_0.0, 8.5_3, 5.0, 1.4_6, 1_0.0, 8.5_3, 5.0, 1.4_6], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, """power""": 2.0, """lr_end""": 1e-7}, [0.0, 5.0, 1_0.0, 7.6_5_6, 5.6_2_5, 3.9_0_6, 2.5, 1.4_0_6, 0.6_2_5, 0.1_5_6], ), get_inverse_sqrt_schedule: ( {"""num_warmup_steps""": 2}, [0.0, 5.0, 1_0.0, 8.1_6_5, 7.0_7_1, 6.3_2_5, 5.7_7_4, 5.3_4_5, 5.0, 4.7_1_4], ), } for scheduler_func, data in scheds.items(): UpperCAmelCase , UpperCAmelCase : Tuple = data UpperCAmelCase : str = scheduler_func(self.optimizer , **__A ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) UpperCAmelCase : Dict = unwrap_schedule(__A , self.num_steps ) self.assertListAlmostEqual( __A , __A , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) UpperCAmelCase : Optional[Any] = scheduler_func(self.optimizer , **__A ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__A ) # wrap to test picklability of the schedule UpperCAmelCase : List[Any] = unwrap_and_save_reload_schedule(__A , self.num_steps ) self.assertListEqual(__A , __A , msg=f'''failed for {scheduler_func} in save and reload''' ) class UpperCamelCase_ : def __init__( self , A ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = fn def __call__( self , *A , **A ) -> Optional[int]: return self.fn(*__A , **__A ) @classmethod def _lowercase( self , A ) -> List[str]: UpperCAmelCase : Optional[Any] = list(map(self , scheduler.lr_lambdas ) )
718
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
0
'''simple docstring''' import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class UpperCamelCase_ ( unittest.TestCase ): lowercase = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _lowercase( self , A , A , A ) -> Optional[int]: UpperCAmelCase : str = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) UpperCAmelCase : str = VideoClassificationPipeline(model=_lowercase , image_processor=_lowercase , top_k=2 ) UpperCAmelCase : Any = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def _lowercase( self , A , A ) -> Tuple: for example in examples: UpperCAmelCase : Dict = video_classifier(_lowercase ) self.assertEqual( _lowercase , [ {"""score""": ANY(_lowercase ), """label""": ANY(_lowercase )}, {"""score""": ANY(_lowercase ), """label""": ANY(_lowercase )}, ] , ) @require_torch def _lowercase( self ) -> str: UpperCAmelCase : Optional[Any] = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" UpperCAmelCase : Tuple = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) UpperCAmelCase : Any = pipeline( """video-classification""" , model=_lowercase , feature_extractor=_lowercase , frame_sampling_rate=4 ) UpperCAmelCase : Dict = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) UpperCAmelCase : str = video_classifier(_lowercase , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [{"""score""": 0.5_1_9_9, """label""": """LABEL_0"""}, {"""score""": 0.4_8_0_1, """label""": """LABEL_1"""}] , ) UpperCAmelCase : List[Any] = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ [{"""score""": 0.5_1_9_9, """label""": """LABEL_0"""}, {"""score""": 0.4_8_0_1, """label""": """LABEL_1"""}], [{"""score""": 0.5_1_9_9, """label""": """LABEL_0"""}, {"""score""": 0.4_8_0_1, """label""": """LABEL_1"""}], ] , ) @require_tf def _lowercase( self ) -> Optional[Any]: pass
719
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A=None , A=None , **A ) -> str: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase : List[Any] = str(jax.devices()[0] ) UpperCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def _lowercase( self , A ) -> str: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _lowercase( self , A ) -> Tuple: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase : List[str] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase : str = {"""dtype""": jnp.intaa} else: UpperCAmelCase : int = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase : Any = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): UpperCAmelCase : List[str] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase( self , A ) -> Tuple: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): UpperCAmelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _lowercase( self , A ) -> Dict: return map_nested(self._recursive_tensorize , A , map_list=A ) def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A ) UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _lowercase( self , A ) -> "jax.Array": UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A ) UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) UpperCAmelCase : Any = self._consolidate(A ) return column def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A ) UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) for column_name in batch: UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
672
0
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow a : Dict = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) a : Optional[Any] = logging.getLogger() def __lowerCamelCase ( ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) UpperCAmelCase : Tuple = parser.parse_args() return args.f def __lowerCamelCase ( _lowercase , _lowercase="eval" ) -> Dict: UpperCAmelCase : List[Any] = os.path.join(lowercase_ , F'''{split}_results.json''' ) if os.path.exists(lowercase_ ): with open(lowercase_ , """r""" ) as f: return json.load(lowercase_ ) raise ValueError(F'''can\'t find {path}''' ) a : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self ) -> Any: UpperCAmelCase : Tuple = self.get_auto_remove_tmp_dir() UpperCAmelCase : str = f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(A__ , """argv""" , A__ ): run_flax_glue.main() UpperCAmelCase : Tuple = get_results(A__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) @slow def _lowercase( self ) -> str: UpperCAmelCase : List[str] = self.get_auto_remove_tmp_dir() UpperCAmelCase : Tuple = f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(A__ , """argv""" , A__ ): run_clm_flax.main() UpperCAmelCase : int = get_results(A__ ) self.assertLess(result["""eval_perplexity"""] , 100 ) @slow def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = self.get_auto_remove_tmp_dir() UpperCAmelCase : Union[str, Any] = f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(A__ , """argv""" , A__ ): run_summarization_flax.main() UpperCAmelCase : List[Any] = get_results(A__ , split="""test""" ) self.assertGreaterEqual(result["""test_rouge1"""] , 10 ) self.assertGreaterEqual(result["""test_rouge2"""] , 2 ) self.assertGreaterEqual(result["""test_rougeL"""] , 7 ) self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 ) @slow def _lowercase( self ) -> Dict: UpperCAmelCase : int = self.get_auto_remove_tmp_dir() UpperCAmelCase : int = f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(A__ , """argv""" , A__ ): run_mlm_flax.main() UpperCAmelCase : str = get_results(A__ ) self.assertLess(result["""eval_perplexity"""] , 42 ) @slow def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[str] = self.get_auto_remove_tmp_dir() UpperCAmelCase : Union[str, Any] = f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(A__ , """argv""" , A__ ): run_ta_mlm_flax.main() UpperCAmelCase : str = get_results(A__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.4_2 ) @slow def _lowercase( self ) -> Dict: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu UpperCAmelCase : Any = 7 if get_gpu_count() > 1 else 2 UpperCAmelCase : List[Any] = self.get_auto_remove_tmp_dir() UpperCAmelCase : int = f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(A__ , """argv""" , A__ ): run_flax_ner.main() UpperCAmelCase : Union[str, Any] = get_results(A__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) self.assertGreaterEqual(result["""eval_f1"""] , 0.3 ) @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = self.get_auto_remove_tmp_dir() UpperCAmelCase : Tuple = f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(A__ , """argv""" , A__ ): run_qa.main() UpperCAmelCase : Tuple = get_results(A__ ) self.assertGreaterEqual(result["""eval_f1"""] , 30 ) self.assertGreaterEqual(result["""eval_exact"""] , 30 )
720
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : int = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
672
0
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __lowerCamelCase ( _lowercase ) -> Optional[int]: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __lowerCamelCase ( ) -> Any: with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" UpperCAmelCase : Dict = [1, 2, 3] with pytest.raises(lowerCAmelCase__ ): with parallel_backend("""unsupported backend""" ): map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=2 ) with pytest.raises(lowerCAmelCase__ ): with parallel_backend("""unsupported backend""" ): map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Tuple = [1, 2] UpperCAmelCase : Optional[Any] = {"""a""": 1, """b""": 2} UpperCAmelCase : Union[str, Any] = {"""a""": [1, 2], """b""": [3, 4]} UpperCAmelCase : Optional[Any] = {"""a""": {"""1""": 1}, """b""": 2} UpperCAmelCase : int = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} UpperCAmelCase : Tuple = [2, 3] UpperCAmelCase : Union[str, Any] = {"""a""": 2, """b""": 3} UpperCAmelCase : Tuple = {"""a""": [2, 3], """b""": [4, 5]} UpperCAmelCase : Dict = {"""a""": {"""1""": 2}, """b""": 3} UpperCAmelCase : List[str] = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) == expected_map_nested_sa assert map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) == expected_map_nested_sa assert map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) == expected_map_nested_sa assert map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) == expected_map_nested_sa assert map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) == expected_map_nested_sa
721
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
672
0
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef a : List[str] = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Any: warnings.warn(_lowerCamelCase , _lowerCamelCase ) requires_backends(_lowerCamelCase , """sklearn""" ) return (preds == labels).mean() def __lowerCamelCase ( _lowercase , _lowercase ) -> Any: warnings.warn(_lowerCamelCase , _lowerCamelCase ) requires_backends(_lowerCamelCase , """sklearn""" ) UpperCAmelCase : Union[str, Any] = simple_accuracy(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase : Optional[int] = fa_score(y_true=_lowerCamelCase , y_pred=_lowerCamelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __lowerCamelCase ( _lowercase , _lowercase ) -> Tuple: warnings.warn(_lowerCamelCase , _lowerCamelCase ) requires_backends(_lowerCamelCase , """sklearn""" ) UpperCAmelCase : Any = pearsonr(_lowerCamelCase , _lowerCamelCase )[0] UpperCAmelCase : Any = spearmanr(_lowerCamelCase , _lowerCamelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: warnings.warn(_lowerCamelCase , _lowerCamelCase ) requires_backends(_lowerCamelCase , """sklearn""" ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ), F'''Predictions and labels have mismatched lengths {len(_lowerCamelCase )} and {len(_lowerCamelCase )}''' if task_name == "cola": return {"mcc": matthews_corrcoef(_lowerCamelCase , _lowerCamelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "mrpc": return acc_and_fa(_lowerCamelCase , _lowerCamelCase ) elif task_name == "sts-b": return pearson_and_spearman(_lowerCamelCase , _lowerCamelCase ) elif task_name == "qqp": return acc_and_fa(_lowerCamelCase , _lowerCamelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "rte": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "hans": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} else: raise KeyError(_lowerCamelCase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: warnings.warn(_lowerCamelCase , _lowerCamelCase ) requires_backends(_lowerCamelCase , """sklearn""" ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError(F'''Predictions and labels have mismatched lengths {len(_lowerCamelCase )} and {len(_lowerCamelCase )}''' ) if task_name == "xnli": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} else: raise KeyError(_lowerCamelCase )
700
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
672
0
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""1.0.0a"""): raise Exception("""requires fairseq >= 1.0.0a""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : Optional[int] = """Hello world! cécé herlolip""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = FairseqRobertaModel.from_pretrained(_lowercase ) roberta.eval() # disable dropout UpperCAmelCase : int = roberta.model.encoder.sentence_encoder UpperCAmelCase : str = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: UpperCAmelCase : Tuple = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" , _lowercase ) UpperCAmelCase : List[str] = XLMRobertaXLForSequenceClassification(_lowercase ) if classification_head else XLMRobertaXLForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : str = roberta_sent_encoder.embed_tokens.weight UpperCAmelCase : Any = roberta_sent_encoder.embed_positions.weight UpperCAmelCase : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. UpperCAmelCase : List[str] = roberta_sent_encoder.layer_norm.weight UpperCAmelCase : Any = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : str = model.roberta.encoder.layer[i] UpperCAmelCase : Tuple = roberta_sent_encoder.layers[i] UpperCAmelCase : Optional[Any] = layer.attention UpperCAmelCase : Optional[int] = roberta_layer.self_attn_layer_norm.weight UpperCAmelCase : Optional[int] = roberta_layer.self_attn_layer_norm.bias # self attention UpperCAmelCase : int = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) UpperCAmelCase : List[str] = roberta_layer.self_attn.q_proj.weight UpperCAmelCase : str = roberta_layer.self_attn.q_proj.bias UpperCAmelCase : Union[str, Any] = roberta_layer.self_attn.k_proj.weight UpperCAmelCase : Any = roberta_layer.self_attn.k_proj.bias UpperCAmelCase : str = roberta_layer.self_attn.v_proj.weight UpperCAmelCase : Union[str, Any] = roberta_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : List[Any] = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape UpperCAmelCase : Any = roberta_layer.self_attn.out_proj.weight UpperCAmelCase : Optional[Any] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm UpperCAmelCase : int = roberta_layer.final_layer_norm.weight UpperCAmelCase : List[Any] = roberta_layer.final_layer_norm.bias # intermediate UpperCAmelCase : List[Any] = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase : List[Any] = roberta_layer.fca.weight UpperCAmelCase : List[str] = roberta_layer.fca.bias # output UpperCAmelCase : Dict = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase : Dict = roberta_layer.fca.weight UpperCAmelCase : List[str] = roberta_layer.fca.bias # end of layer if classification_head: UpperCAmelCase : Union[str, Any] = roberta.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Optional[Any] = roberta.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : Any = roberta.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Optional[int] = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Union[str, Any] = roberta.model.encoder.lm_head.dense.weight UpperCAmelCase : Tuple = roberta.model.encoder.lm_head.dense.bias UpperCAmelCase : Union[str, Any] = roberta.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : Tuple = roberta.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : Optional[Any] = roberta.model.encoder.lm_head.weight UpperCAmelCase : str = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : List[str] = roberta.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : int = roberta.model.classification_heads["""mnli"""](roberta.extract_features(_lowercase ) ) else: UpperCAmelCase : Tuple = roberta.model(_lowercase )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--roberta_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : int = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
701
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Any = logging.get_logger(__name__) a : Union[str, Any] = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class UpperCamelCase_ ( _UpperCAmelCase ): lowercase = 'camembert' def __init__( self , A=30522 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.0_2 , A=1e-12 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=None , **A , ) -> List[Any]: super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) UpperCAmelCase : Tuple = vocab_size UpperCAmelCase : str = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : Any = hidden_act UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Optional[Any] = hidden_dropout_prob UpperCAmelCase : List[str] = attention_probs_dropout_prob UpperCAmelCase : Optional[Any] = max_position_embeddings UpperCAmelCase : List[str] = type_vocab_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : List[Any] = layer_norm_eps UpperCAmelCase : List[Any] = position_embedding_type UpperCAmelCase : Any = use_cache UpperCAmelCase : Optional[int] = classifier_dropout class UpperCamelCase_ ( _UpperCAmelCase ): @property def _lowercase( self ) -> Tuple: if self.task == "multiple-choice": UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
702
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin a : Any = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right a : Dict = 2_5_0_0_0_4 a : Dict = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = MBartaaTokenizer lowercase = MBartaaTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : Dict = MBartaaTokenizer(A , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = '<s>' UpperCAmelCase : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(A ) , 1054 ) def _lowercase( self ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[int] = MBartaaTokenizer(A , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=A ) UpperCAmelCase : Dict = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) UpperCAmelCase : Union[str, Any] = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def _lowercase( self ) -> Dict: UpperCAmelCase : str = {'input_ids': [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , ) def _lowercase( self ) -> List[Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase : Any = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(A , **A ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(A , **A ) UpperCAmelCase : List[str] = tempfile.mkdtemp() UpperCAmelCase : int = tokenizer_r.save_pretrained(A ) UpperCAmelCase : List[Any] = tokenizer_p.save_pretrained(A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) UpperCAmelCase : Tuple = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way UpperCAmelCase : Optional[int] = tokenizer_r.from_pretrained(A ) UpperCAmelCase : Tuple = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=True UpperCAmelCase : Optional[int] = tempfile.mkdtemp() UpperCAmelCase : Tuple = tokenizer_r.save_pretrained(A , legacy_format=A ) UpperCAmelCase : Tuple = tokenizer_p.save_pretrained(A ) # Checks it save with the same files self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way UpperCAmelCase : Dict = tokenizer_r.from_pretrained(A ) UpperCAmelCase : str = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=False UpperCAmelCase : Tuple = tempfile.mkdtemp() UpperCAmelCase : Any = tokenizer_r.save_pretrained(A , legacy_format=A ) UpperCAmelCase : Any = tokenizer_p.save_pretrained(A ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase : List[str] = tokenizer_r.from_pretrained(A ) UpperCAmelCase : Union[str, Any] = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( unittest.TestCase ): lowercase = 'facebook/mbart-large-50-one-to-many-mmt' lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowercase = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2] @classmethod def _lowercase( cls ) -> Tuple: UpperCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) UpperCAmelCase : Any = 1 return cls def _lowercase( self ) -> List[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 250038 ) def _lowercase( self ) -> Dict: UpperCAmelCase : Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A ) def _lowercase( self ) -> List[Any]: self.assertIn(A , self.tokenizer.all_special_ids ) UpperCAmelCase : Optional[int] = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] UpperCAmelCase : str = self.tokenizer.decode(A , skip_special_tokens=A ) UpperCAmelCase : int = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A ) self.assertEqual(A , A ) self.assertNotIn(self.tokenizer.eos_token , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , A ) UpperCAmelCase : Any = 10 UpperCAmelCase : Dict = self.tokenizer(A , max_length=A , truncation=A ).input_ids[0] self.assertEqual(ids[0] , A ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(A ) , A ) def _lowercase( self ) -> Tuple: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250053, 250001] ) def _lowercase( self ) -> Tuple: UpperCAmelCase : List[Any] = tempfile.mkdtemp() UpperCAmelCase : Optional[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A ) UpperCAmelCase : List[str] = MBartaaTokenizer.from_pretrained(A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A ) @require_torch def _lowercase( self ) -> str: UpperCAmelCase : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A , return_tensors="""pt""" ) UpperCAmelCase : int = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _lowercase( self ) -> Dict: UpperCAmelCase : List[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A , truncation=A , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) UpperCAmelCase : Optional[int] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(A , A ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCAmelCase : Any = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _lowercase( self ) -> int: UpperCAmelCase : Dict = self.tokenizer(self.src_text , padding=A , truncation=A , max_length=3 , return_tensors="""pt""" ) UpperCAmelCase : Any = self.tokenizer( text_target=self.tgt_text , padding=A , truncation=A , max_length=10 , return_tensors="""pt""" ) UpperCAmelCase : Tuple = targets['input_ids'] UpperCAmelCase : Optional[Any] = shift_tokens_right(A , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(A ) , { # en_XX, A, test, EOS """input_ids""": [[250004, 62, 3034, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 250001, } , )
703
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations UpperCAmelCase : List[Any] = tpu_short_seq_length
672
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[str] = logging.get_logger(__name__) a : str = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __A ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : List[Any] = max_position_embeddings UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : int = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : str = initializer_range UpperCAmelCase : str = type_vocab_size UpperCAmelCase : List[Any] = layer_norm_eps UpperCAmelCase : Tuple = use_tpu_fourier_optimizations UpperCAmelCase : Optional[Any] = tpu_short_seq_length
704
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
0
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase_ ( __lowercase , unittest.TestCase ): lowercase = PhobertTokenizer lowercase = False def _lowercase( self ) -> int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase : Optional[int] = ["""T@@""", """i""", """I""", """R@@""", """r""", """e@@"""] UpperCAmelCase : Dict = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase : List[Any] = ["""#version: 0.2""", """l à</w>"""] UpperCAmelCase : Dict = {"""unk_token""": """<unk>"""} UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_A ) ) def _lowercase( self , **A ) -> Dict: kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **_A ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : str = """Tôi là VinAI Research""" UpperCAmelCase : int = """T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>""" return input_text, output_text def _lowercase( self ) -> str: UpperCAmelCase : Dict = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase : Dict = """Tôi là VinAI Research""" UpperCAmelCase : List[str] = """T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h""".split() UpperCAmelCase : str = tokenizer.tokenize(_A ) print(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase : Union[str, Any] = tokens + [tokenizer.unk_token] UpperCAmelCase : List[str] = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A )
705
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a : Union[str, Any] = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
706
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
0
'''simple docstring''' from collections import namedtuple import requests from lxml import html # type: ignore a : Optional[Any] = namedtuple("""covid_data""", """cases deaths recovered""") def __lowerCamelCase ( _lowercase = "https://www.worldometers.info/coronavirus/" ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(lowerCAmelCase_ ).content ).xpath(lowerCAmelCase_ ) ) a : Tuple = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
707
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
0
'''simple docstring''' import string import numpy def __lowerCamelCase ( _lowercase , _lowercase ) -> Any: return b if a == 0 else greatest_common_divisor(b % a , _snake_case ) class UpperCamelCase_ : lowercase = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowercase = numpy.vectorize(lambda __magic_name__ : x % 36 ) lowercase = numpy.vectorize(__magic_name__ ) def __init__( self , A ) -> str: UpperCAmelCase : Optional[Any] = self.modulus(A ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key UpperCAmelCase : Any = encrypt_key.shape[0] def _lowercase( self , A ) -> Union[str, Any]: return self.key_string.index(A ) def _lowercase( self , A ) -> List[str]: return self.key_string[round(A )] def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Dict = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: UpperCAmelCase : int = det % len(self.key_string ) UpperCAmelCase : Any = len(self.key_string ) if greatest_common_divisor(A , len(self.key_string ) ) != 1: UpperCAmelCase : List[str] = ( f'''determinant modular {req_l} of encryption key({det}) ''' f'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(A ) def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Any = [char for char in text.upper() if char in self.key_string] UpperCAmelCase : Tuple = chars[-1] while len(A ) % self.break_key != 0: chars.append(A ) return "".join(A ) def _lowercase( self , A ) -> List[str]: UpperCAmelCase : Optional[int] = self.process_text(text.upper() ) UpperCAmelCase : str = """""" for i in range(0 , len(A ) - self.break_key + 1 , self.break_key ): UpperCAmelCase : Any = text[i : i + self.break_key] UpperCAmelCase : List[Any] = [self.replace_letters(A ) for char in batch] UpperCAmelCase : List[str] = numpy.array([vec] ).T UpperCAmelCase : Dict = self.modulus(self.encrypt_key.dot(A ) ).T.tolist()[ 0 ] UpperCAmelCase : Union[str, Any] = """""".join( self.replace_digits(A ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Any = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: UpperCAmelCase : Optional[int] = det % len(self.key_string ) UpperCAmelCase : Any = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: UpperCAmelCase : List[Any] = i break UpperCAmelCase : List[Any] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(A ) ) def _lowercase( self , A ) -> int: UpperCAmelCase : Union[str, Any] = self.make_decrypt_key() UpperCAmelCase : Optional[int] = self.process_text(text.upper() ) UpperCAmelCase : Optional[Any] = """""" for i in range(0 , len(A ) - self.break_key + 1 , self.break_key ): UpperCAmelCase : Optional[Any] = text[i : i + self.break_key] UpperCAmelCase : str = [self.replace_letters(A ) for char in batch] UpperCAmelCase : Any = numpy.array([vec] ).T UpperCAmelCase : Union[str, Any] = self.modulus(decrypt_key.dot(A ) ).T.tolist()[0] UpperCAmelCase : Any = """""".join( self.replace_digits(A ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def __lowerCamelCase ( ) -> int: UpperCAmelCase : Optional[Any] = int(input("""Enter the order of the encryption key: """ ) ) UpperCAmelCase : Dict = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(_snake_case ): UpperCAmelCase : Dict = [int(_snake_case ) for x in input().split()] hill_matrix.append(_snake_case ) UpperCAmelCase : Tuple = HillCipher(numpy.array(_snake_case ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) UpperCAmelCase : List[str] = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": UpperCAmelCase : Tuple = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(_snake_case ) ) elif option == "2": UpperCAmelCase : Optional[int] = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(_snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
708
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
0
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase , UpperCAmelCase : Tuple = image.size UpperCAmelCase , UpperCAmelCase : Optional[Any] = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 UpperCAmelCase : int = image.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) UpperCAmelCase : Tuple = np.array(_A ).astype(np.floataa ) / 2_5_5.0 UpperCAmelCase : Union[str, Any] = image[None].transpose(0 , 3 , 1 , 2 ) UpperCAmelCase : Dict = torch.from_numpy(_A ) return 2.0 * image - 1.0 class UpperCamelCase_ ( lowerCAmelCase__ ): def __init__( self , A , A , A , ) -> Union[str, Any]: super().__init__() self.register_modules(vqvae=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , A = None , A = 1 , A = 100 , A = 0.0 , A = None , A = "pil" , A = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): UpperCAmelCase : int = 1 elif isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): UpperCAmelCase : Tuple = image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_SCREAMING_SNAKE_CASE )}''' ) if isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): UpperCAmelCase : Optional[int] = preprocess(_SCREAMING_SNAKE_CASE ) UpperCAmelCase , UpperCAmelCase : Tuple = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image UpperCAmelCase : Union[str, Any] = (batch_size, self.unet.config.in_channels // 2, height, width) UpperCAmelCase : Optional[int] = next(self.unet.parameters() ).dtype UpperCAmelCase : Tuple = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=self.device , dtype=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = image.to(device=self.device , dtype=_SCREAMING_SNAKE_CASE ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=self.device ) UpperCAmelCase : Any = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase : Dict = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase : Optional[int] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase : Any = {} if accepts_eta: UpperCAmelCase : Optional[Any] = eta for t in self.progress_bar(_SCREAMING_SNAKE_CASE ): # concat latents and low resolution image in the channel dimension. UpperCAmelCase : Union[str, Any] = torch.cat([latents, image] , dim=1 ) UpperCAmelCase : List[str] = self.scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # predict the noise residual UpperCAmelCase : Any = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : Any = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample # decode the image latents with the VQVAE UpperCAmelCase : str = self.vqvae.decode(_SCREAMING_SNAKE_CASE ).sample UpperCAmelCase : Optional[int] = torch.clamp(_SCREAMING_SNAKE_CASE , -1.0 , 1.0 ) UpperCAmelCase : Tuple = image / 2 + 0.5 UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Optional[Any] = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
709
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
0
'''simple docstring''' import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = """hf-internal-testing/tiny-random-t5""" UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(UpperCamelCase__ ) UpperCAmelCase : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase__ ) UpperCAmelCase : Dict = tokenizer("""This is me""" , return_tensors="""pt""" ) UpperCAmelCase : Tuple = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) UpperCAmelCase : int = model.generate(**UpperCamelCase__ ) UpperCAmelCase : Optional[Any] = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ ) UpperCAmelCase : int = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase__ ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) UpperCAmelCase : int = model_reloaded.generate(**UpperCamelCase__ ) self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) def _lowercase( self ) -> int: UpperCAmelCase : Optional[int] = """hf-internal-testing/tiny-random-t5""" UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase__ ) UpperCAmelCase : int = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(UpperCamelCase__ ): model.save_pretrained(UpperCamelCase__ ) UpperCAmelCase : Any = model.reverse_bettertransformer() model.save_pretrained(UpperCamelCase__ )
710
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: return ("This is a test", "This is a test") def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """</s>""" UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(A ) , 1103 ) def _lowercase( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> str: return ("This is a test", "This is a test") def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : str = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
672
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : Tuple = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class UpperCamelCase_ ( snake_case__ ): lowercase = '''trocr''' lowercase = ['''past_key_values'''] lowercase = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , A=50265 , A=1024 , A=12 , A=16 , A=4096 , A="gelu" , A=512 , A=0.1 , A=0.0 , A=0.0 , A=2 , A=0.0_2 , A=0.0 , A=True , A=False , A=True , A=True , A=1 , A=0 , A=2 , **A , ) -> Dict: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = d_model UpperCAmelCase : str = decoder_layers UpperCAmelCase : Dict = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Tuple = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : Union[str, Any] = activation_dropout UpperCAmelCase : str = init_std UpperCAmelCase : List[Any] = decoder_layerdrop UpperCAmelCase : List[Any] = use_cache UpperCAmelCase : Any = scale_embedding UpperCAmelCase : Optional[int] = use_learned_position_embeddings UpperCAmelCase : Tuple = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
711
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Any = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : int = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ConvNextVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase : Any = model_class(A ) model.to(A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : List[str] = False UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
672
0
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCamelCase ( _lowercase ) -> str: UpperCAmelCase : Dict = filter(lambda _lowercase : p.requires_grad , model.parameters() ) UpperCAmelCase : Optional[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params a : Optional[Any] = logging.getLogger(__name__) def __lowerCamelCase ( _lowercase , _lowercase ) -> Union[str, Any]: if metric == "rouge2": UpperCAmelCase : Dict = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": UpperCAmelCase : str = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": UpperCAmelCase : List[str] = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' """ function.""" ) UpperCAmelCase : Dict = ModelCheckpoint( dirpath=__snake_case , filename=__snake_case , monitor=F'''val_{metric}''' , mode="""max""" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: return EarlyStopping( monitor=F'''val_{metric}''' , mode="""min""" if """loss""" in metric else """max""" , patience=__snake_case , verbose=__snake_case , ) class UpperCamelCase_ ( pl.Callback ): def _lowercase( self , A , A ) -> int: UpperCAmelCase : Tuple = {f'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def _lowercase( self , A , A , A , A=True ) -> None: logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) UpperCAmelCase : Union[str, Any] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results UpperCAmelCase : Dict = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCAmelCase : int = od / """test_results.txt""" UpperCAmelCase : Tuple = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCAmelCase : List[Any] = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' UpperCAmelCase : str = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , """a+""" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue UpperCAmelCase : Dict = metrics[key] if isinstance(__a , torch.Tensor ): UpperCAmelCase : str = val.item() UpperCAmelCase : Dict = f'''{key}: {val:.6f}\n''' writer.write(__a ) if not save_generations: return if "preds" in metrics: UpperCAmelCase : Optional[Any] = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(__a ) @rank_zero_only def _lowercase( self , A , A ) -> List[str]: try: UpperCAmelCase : List[Any] = pl_module.model.model.num_parameters() except AttributeError: UpperCAmelCase : Tuple = pl_module.model.num_parameters() UpperCAmelCase : Optional[Any] = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} ) @rank_zero_only def _lowercase( self , A , A ) -> int: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , """test""" ) @rank_zero_only def _lowercase( self , A , A ) -> Any: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
712
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
0
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a : Union[str, Any] = logging.getLogger(__name__) a : str = """Hello world! cécé herlolip""" a : Any = namedtuple( """BertAbsConfig""", [ """temp_dir""", """large""", """use_bert_emb""", """finetune_bert""", """encoder""", """share_emb""", """max_pos""", """enc_layers""", """enc_hidden_size""", """enc_heads""", """enc_ff_size""", """enc_dropout""", """dec_layers""", """dec_hidden_size""", """dec_heads""", """dec_ff_size""", """dec_dropout""", ], ) def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = BertAbsConfig( temp_dir=""".""" , finetune_bert=lowerCamelCase_ , large=lowerCamelCase_ , share_emb=lowerCamelCase_ , use_bert_emb=lowerCamelCase_ , encoder="""bert""" , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) UpperCAmelCase : int = torch.load(lowerCamelCase_ , lambda _lowercase , _lowercase : storage ) UpperCAmelCase : List[str] = AbsSummarizer(lowerCamelCase_ , torch.device("""cpu""" ) , lowerCamelCase_ ) original.eval() UpperCAmelCase : Optional[int] = BertAbsSummarizer(lowerCamelCase_ , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) UpperCAmelCase : int = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs UpperCAmelCase : Optional[Any] = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(lowerCamelCase_ )) ) UpperCAmelCase : List[str] = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) UpperCAmelCase : Optional[int] = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(lowerCamelCase_ )) ) UpperCAmelCase : Optional[Any] = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass UpperCAmelCase : Optional[int] = encoder_input_ids UpperCAmelCase : Optional[Any] = decoder_input_ids UpperCAmelCase : List[str] = None UpperCAmelCase : Tuple = None UpperCAmelCase : int = None UpperCAmelCase : List[Any] = None UpperCAmelCase : Optional[int] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical UpperCAmelCase : str = original(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )[0] UpperCAmelCase : Optional[Any] = original.generator(lowerCamelCase_ ) UpperCAmelCase : List[Any] = new_model( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )[0] UpperCAmelCase : str = new_model.generator(lowerCamelCase_ ) UpperCAmelCase : int = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(lowerCamelCase_ ) ) UpperCAmelCase : Optional[int] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(lowerCamelCase_ ) ) UpperCAmelCase : Any = torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--bertabs_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""", ) a : Any = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
713
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class UpperCamelCase_ : lowercase = BlenderbotConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Optional[int] = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Tuple = use_labels UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : Any = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : List[str] = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Tuple = eos_token_id UpperCAmelCase : Any = pad_token_id UpperCAmelCase : Dict = bos_token_id def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : List[str] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : int = prepare_blenderbot_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def _lowercase( self , A , A ) -> Dict: UpperCAmelCase : List[Any] = TFBlenderbotModel(config=UpperCamelCase_ ).get_decoder() UpperCAmelCase : List[Any] = inputs_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids[:1, :] UpperCAmelCase : Any = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : Dict = inputs_dict["""head_mask"""] UpperCAmelCase : str = 1 # first forward pass UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ ) UpperCAmelCase , UpperCAmelCase : List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Optional[int] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase : int = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )[0] UpperCAmelCase : Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase_ , UpperCamelCase_ , rtol=1e-3 ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> Optional[int]: if attention_mask is None: UpperCAmelCase : Optional[int] = tf.cast(tf.math.not_equal(A__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): lowercase = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () lowercase = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self ) -> Any: UpperCAmelCase : Dict = TFBlenderbotModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=UpperCamelCase_ ) def _lowercase( self ) -> List[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> Tuple: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase_ ) @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = ['My friends are cool but they eat too many carbs.'] lowercase = 'facebook/blenderbot-400M-distill' @cached_property def _lowercase( self ) -> Optional[int]: return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> str: UpperCAmelCase : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def _lowercase( self ) -> Any: UpperCAmelCase : Tuple = self.tokenizer(self.src_text , return_tensors="""tf""" ) UpperCAmelCase : Optional[Any] = self.model.generate( model_inputs.input_ids , ) UpperCAmelCase : Tuple = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCamelCase_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
714
'''simple docstring''' a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a : Optional[Any] = True a : List[Any] = False def __lowerCamelCase ( _lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : List[str] = chain(next_number(_lowercase ) ) UpperCAmelCase : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase : List[str] = number_chain number *= 1_0 return number_chain def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , _lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
672
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( _UpperCamelCase ): lowercase = (UnCLIPScheduler,) def _lowercase( self , **A ) -> int: UpperCAmelCase : Dict = { "num_train_timesteps": 1000, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**A ) return config def _lowercase( self ) -> Optional[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=A ) def _lowercase( self ) -> List[str]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=A ) def _lowercase( self ) -> Dict: for clip_sample in [True, False]: self.check_over_configs(clip_sample=A ) def _lowercase( self ) -> str: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=A ) def _lowercase( self ) -> Union[str, Any]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=A ) def _lowercase( self ) -> Optional[int]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=A , prev_timestep=A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase : List[Any] = self.get_scheduler_config(variance_type="""fixed_small_log""" ) UpperCAmelCase : Optional[Any] = scheduler_class(**A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_5_4_9_6_2_5 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_9_9_4_9_8_7 ) ) < 1e-5 def _lowercase( self ) -> List[str]: UpperCAmelCase : List[str] = self.scheduler_classes[0] UpperCAmelCase : str = self.get_scheduler_config(variance_type="""learned_range""" ) UpperCAmelCase : Dict = scheduler_class(**A ) UpperCAmelCase : Tuple = 0.5 assert scheduler._get_variance(1 , predicted_variance=A ) - -1_0.1_7_1_2_7_9_0 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=A ) - -5.7_9_9_8_0_5_2 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=A ) - -0.0_0_1_0_0_1_1 < 1e-5 def _lowercase( self ) -> Any: UpperCAmelCase : Optional[int] = self.scheduler_classes[0] UpperCAmelCase : Dict = self.get_scheduler_config() UpperCAmelCase : Dict = scheduler_class(**A ) UpperCAmelCase : List[str] = scheduler.timesteps UpperCAmelCase : Optional[Any] = self.dummy_model() UpperCAmelCase : int = self.dummy_sample_deter UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) for i, t in enumerate(A ): # 1. predict noise residual UpperCAmelCase : List[str] = model(A , A ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase : Any = scheduler.step(A , A , A , generator=A ).prev_sample UpperCAmelCase : Tuple = pred_prev_sample UpperCAmelCase : Optional[int] = torch.sum(torch.abs(A ) ) UpperCAmelCase : Union[str, Any] = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 2_5_2.2_6_8_2_4_9_5 ) < 1e-2 assert abs(result_mean.item() - 0.3_2_8_4_7_4_3 ) < 1e-3 def _lowercase( self ) -> Dict: UpperCAmelCase : Any = self.scheduler_classes[0] UpperCAmelCase : Tuple = self.get_scheduler_config() UpperCAmelCase : Dict = scheduler_class(**A ) scheduler.set_timesteps(25 ) UpperCAmelCase : int = scheduler.timesteps UpperCAmelCase : List[Any] = self.dummy_model() UpperCAmelCase : Optional[Any] = self.dummy_sample_deter UpperCAmelCase : str = torch.manual_seed(0 ) for i, t in enumerate(A ): # 1. predict noise residual UpperCAmelCase : List[str] = model(A , A ) if i + 1 == timesteps.shape[0]: UpperCAmelCase : Union[str, Any] = None else: UpperCAmelCase : Tuple = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 UpperCAmelCase : int = scheduler.step( A , A , A , prev_timestep=A , generator=A ).prev_sample UpperCAmelCase : Dict = pred_prev_sample UpperCAmelCase : List[Any] = torch.sum(torch.abs(A ) ) UpperCAmelCase : str = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 2_5_8.2_0_4_4_9_8_3 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_6_2_0_3_8 ) < 1e-3 def _lowercase( self ) -> List[Any]: pass def _lowercase( self ) -> Optional[Any]: pass
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: UpperCAmelCase : Any = BigBirdConfig.from_json_file(a__ ) print(F'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: UpperCAmelCase : Union[str, Any] = BigBirdForQuestionAnswering(a__ ) else: UpperCAmelCase : Any = BigBirdForPreTraining(a__ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(a__ , a__ , is_trivia_qa=a__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(a__ ) if __name__ == "__main__": a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) a : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
716
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Any = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
672
0
'''simple docstring''' def __lowerCamelCase ( ) -> List[str]: for n in range(1 , 1_0_0_0_0_0_0 ): yield n * (n + 1) // 2 def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase : Optional[int] = 1 UpperCAmelCase : List[str] = 2 while i * i <= n: UpperCAmelCase : Union[str, Any] = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def __lowerCamelCase ( ) -> Tuple: return next(i for i in triangle_number_generator() if count_divisors(snake_case__ ) > 5_0_0 ) if __name__ == "__main__": print(solution())
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.ndarray: UpperCAmelCase : Optional[int] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : Union[str, Any] = np.zeros((n + 1,) ) UpperCAmelCase : Any = ya UpperCAmelCase : Tuple = xa for k in range(_lowercase ): UpperCAmelCase : Tuple = y[k] + step_size * ode_func(_lowercase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
0
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a : int = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) a : List[str] = parser.parse_args() a : List[str] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a : Optional[Any] = CLIPImageProcessor() a : List[str] = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") a : Tuple = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
719
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A=None , A=None , **A ) -> str: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase : List[Any] = str(jax.devices()[0] ) UpperCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def _lowercase( self , A ) -> str: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _lowercase( self , A ) -> Tuple: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase : List[str] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase : str = {"""dtype""": jnp.intaa} else: UpperCAmelCase : int = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase : Any = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): UpperCAmelCase : List[str] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase( self , A ) -> Tuple: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): UpperCAmelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _lowercase( self , A ) -> Dict: return map_nested(self._recursive_tensorize , A , map_list=A ) def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A ) UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _lowercase( self , A ) -> "jax.Array": UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A ) UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) UpperCAmelCase : Any = self._consolidate(A ) return column def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A ) UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) for column_name in batch: UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
672
0
'''simple docstring''' import importlib.metadata import operator import re import sys from typing import Optional from packaging import version a : Tuple = { """<""": operator.lt, """<=""": operator.le, """==""": operator.eq, """!=""": operator.ne, """>=""": operator.ge, """>""": operator.gt, } def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: if got_ver is None or want_ver is None: raise ValueError( F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' F''' reinstalling {pkg}.''' ) if not ops[op](version.parse(__a ) , version.parse(__a ) ): raise ImportError( F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def __lowerCamelCase ( _lowercase , _lowercase = None ) -> List[str]: UpperCAmelCase : List[str] = F'''\n{hint}''' if hint is not None else """""" # non-versioned check if re.match(R"""^[\w_\-\d]+$""" , __a ): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = requirement, None, None else: UpperCAmelCase : Dict = re.findall(R"""^([^!=<>\s]+)([\s!=<>]{1,2}.+)""" , __a ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but""" F''' got {requirement}''' ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = match[0] UpperCAmelCase : str = want_full.split(""",""" ) # there could be multiple requirements UpperCAmelCase : Any = {} for w in want_range: UpperCAmelCase : Optional[Any] = re.findall(R"""^([\s!=<>]{1,2})(.+)""" , __a ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,""" F''' but got {requirement}''' ) UpperCAmelCase , UpperCAmelCase : List[Any] = match[0] UpperCAmelCase : List[str] = want_ver if op not in ops: raise ValueError(F'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": UpperCAmelCase : Any = """.""".join([str(__a ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(__a , __a , __a , __a , __a , __a ) return # check if any version is installed try: UpperCAmelCase : Union[str, Any] = importlib.metadata.version(__a ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(__a , __a , __a , __a , __a , __a ) def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Optional[int] = """Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main""" return require_version(__a , __a )
720
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : int = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
672
0
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A ) -> str: UpperCAmelCase : Tuple = jnp.ones((batch_size, length) ) / length return scores def _lowercase( self ) -> List[Any]: UpperCAmelCase : Dict = None UpperCAmelCase : int = 20 UpperCAmelCase : Tuple = self._get_uniform_logits(batch_size=2 , length=snake_case_ ) # tweak scores to not be uniform anymore UpperCAmelCase : Optional[Any] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch UpperCAmelCase : Tuple = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax UpperCAmelCase : Union[str, Any] = jax.nn.softmax(snake_case_ , axis=-1 ) UpperCAmelCase : Union[str, Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCAmelCase : Optional[int] = FlaxTemperatureLogitsWarper(temperature=1.3 ) UpperCAmelCase : Optional[Any] = jax.nn.softmax(temp_dist_warper_sharper(snake_case_ , scores.copy() , cur_len=snake_case_ ) , axis=-1 ) UpperCAmelCase : Dict = jax.nn.softmax(temp_dist_warper_smoother(snake_case_ , scores.copy() , cur_len=snake_case_ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : List[Any] = None UpperCAmelCase : Tuple = 10 UpperCAmelCase : str = 2 # create ramp distribution UpperCAmelCase : Any = np.broadcast_to(np.arange(snake_case_ )[None, :] , (batch_size, vocab_size) ).copy() UpperCAmelCase : Tuple = ramp_logits[1:, : vocab_size // 2] + vocab_size UpperCAmelCase : Union[str, Any] = FlaxTopKLogitsWarper(3 ) UpperCAmelCase : Dict = top_k_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case UpperCAmelCase : Any = 5 UpperCAmelCase : Optional[int] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) UpperCAmelCase : List[str] = np.broadcast_to(np.arange(snake_case_ )[None, :] , (batch_size, length) ).copy() UpperCAmelCase : str = top_k_warp_safety_check(snake_case_ , snake_case_ , cur_len=snake_case_ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = 10 UpperCAmelCase : str = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) UpperCAmelCase : List[str] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) UpperCAmelCase : Tuple = FlaxTopPLogitsWarper(0.8 ) UpperCAmelCase : Tuple = np.exp(top_p_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 UpperCAmelCase : Any = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) ) # check edge cases with negative and extreme logits UpperCAmelCase : Optional[int] = np.broadcast_to(np.arange(snake_case_ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme UpperCAmelCase : Dict = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept UpperCAmelCase : Any = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) UpperCAmelCase : int = top_p_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Any = 20 UpperCAmelCase : Dict = 4 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : Tuple = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=snake_case_ ) # check that min length is applied at length 5 UpperCAmelCase : Optional[int] = ids_tensor((batch_size, 20) , vocab_size=20 ) UpperCAmelCase : int = 5 UpperCAmelCase : int = self._get_uniform_logits(snake_case_ , snake_case_ ) UpperCAmelCase : Any = min_dist_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 UpperCAmelCase : Optional[int] = self._get_uniform_logits(snake_case_ , snake_case_ ) UpperCAmelCase : Union[str, Any] = 15 UpperCAmelCase : Optional[Any] = min_dist_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertFalse(jnp.isinf(snake_case_ ).any() ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = 20 UpperCAmelCase : Dict = 4 UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : str = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case_ ) # check that all scores are -inf except the bos_token_id score UpperCAmelCase : List[str] = ids_tensor((batch_size, 1) , vocab_size=20 ) UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Any = self._get_uniform_logits(snake_case_ , snake_case_ ) UpperCAmelCase : List[Any] = logits_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 UpperCAmelCase : Optional[Any] = 3 UpperCAmelCase : Dict = self._get_uniform_logits(snake_case_ , snake_case_ ) UpperCAmelCase : List[str] = logits_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertFalse(jnp.isinf(snake_case_ ).any() ) def _lowercase( self ) -> Dict: UpperCAmelCase : List[Any] = 20 UpperCAmelCase : List[str] = 4 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : Dict = 5 UpperCAmelCase : Optional[int] = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case_ , eos_token_id=snake_case_ ) # check that all scores are -inf except the eos_token_id when max_length is reached UpperCAmelCase : List[str] = ids_tensor((batch_size, 4) , vocab_size=20 ) UpperCAmelCase : Union[str, Any] = 4 UpperCAmelCase : Optional[Any] = self._get_uniform_logits(snake_case_ , snake_case_ ) UpperCAmelCase : Optional[Any] = logits_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached UpperCAmelCase : Union[str, Any] = 3 UpperCAmelCase : List[Any] = self._get_uniform_logits(snake_case_ , snake_case_ ) UpperCAmelCase : int = logits_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertFalse(jnp.isinf(snake_case_ ).any() ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = 4 UpperCAmelCase : Any = 10 UpperCAmelCase : List[Any] = 15 UpperCAmelCase : List[Any] = 2 UpperCAmelCase : Dict = 1 UpperCAmelCase : Optional[Any] = 15 # dummy input_ids and scores UpperCAmelCase : Any = ids_tensor((batch_size, sequence_length) , snake_case_ ) UpperCAmelCase : int = input_ids.copy() UpperCAmelCase : Optional[int] = self._get_uniform_logits(snake_case_ , snake_case_ ) UpperCAmelCase : Tuple = scores.copy() # instantiate all dist processors UpperCAmelCase : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCAmelCase : Dict = FlaxTopKLogitsWarper(3 ) UpperCAmelCase : Dict = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCAmelCase : Dict = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=snake_case_ ) UpperCAmelCase : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case_ ) UpperCAmelCase : int = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case_ , eos_token_id=snake_case_ ) UpperCAmelCase : Any = 10 # no processor list UpperCAmelCase : List[str] = temp_dist_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) UpperCAmelCase : Tuple = top_k_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) UpperCAmelCase : int = top_p_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) UpperCAmelCase : Optional[int] = min_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) UpperCAmelCase : Union[str, Any] = bos_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) UpperCAmelCase : List[str] = eos_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) # with processor list UpperCAmelCase : int = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCAmelCase : Any = processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) # scores should be equal self.assertTrue(jnp.allclose(snake_case_ , snake_case_ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def _lowercase( self ) -> List[str]: UpperCAmelCase : List[Any] = 4 UpperCAmelCase : Union[str, Any] = 10 UpperCAmelCase : Optional[int] = 15 UpperCAmelCase : List[Any] = 2 UpperCAmelCase : List[Any] = 1 UpperCAmelCase : Optional[Any] = 15 # dummy input_ids and scores UpperCAmelCase : Any = ids_tensor((batch_size, sequence_length) , snake_case_ ) UpperCAmelCase : Dict = input_ids.copy() UpperCAmelCase : Tuple = self._get_uniform_logits(snake_case_ , snake_case_ ) UpperCAmelCase : int = scores.copy() # instantiate all dist processors UpperCAmelCase : str = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCAmelCase : Optional[Any] = FlaxTopKLogitsWarper(3 ) UpperCAmelCase : Any = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCAmelCase : str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=snake_case_ ) UpperCAmelCase : str = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case_ ) UpperCAmelCase : Tuple = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case_ , eos_token_id=snake_case_ ) UpperCAmelCase : Dict = 10 # no processor list def run_no_processor_list(A , A , A ): UpperCAmelCase : Optional[int] = temp_dist_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) UpperCAmelCase : str = top_k_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) UpperCAmelCase : int = top_p_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) UpperCAmelCase : Tuple = min_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) UpperCAmelCase : Optional[Any] = bos_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) UpperCAmelCase : Optional[Any] = eos_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) return scores # with processor list def run_processor_list(A , A , A ): UpperCAmelCase : int = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCAmelCase : Optional[int] = processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) return scores UpperCAmelCase : Tuple = jax.jit(snake_case_ ) UpperCAmelCase : List[str] = jax.jit(snake_case_ ) UpperCAmelCase : int = jitted_run_no_processor_list(snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase : int = jitted_run_processor_list(snake_case_ , snake_case_ , snake_case_ ) # scores should be equal self.assertTrue(jnp.allclose(snake_case_ , snake_case_ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
721
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
672
0
'''simple docstring''' import numpy as np def __lowerCamelCase ( _lowercase ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def __lowerCamelCase ( _lowercase ) -> np.ndarray: return vector * sigmoid(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
672
0
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCamelCase_ ( __UpperCAmelCase ): def _lowercase( self ) -> str: UpperCAmelCase : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCamelCase , """width_multiplier""" ) ) class UpperCamelCase_ : def __init__( self , A , A=13 , A=64 , A=2 , A=3 , A="swish" , A=3 , A=32 , A=0.1 , A=0.0_2 , A=True , A=True , A=10 , A=None , A=0.2_5 , A=0.0 , A=0.0 , ) -> str: UpperCAmelCase : Tuple = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : Any = patch_size UpperCAmelCase : int = num_channels UpperCAmelCase : Optional[Any] = make_divisible(512 * width_multiplier , divisor=8 ) UpperCAmelCase : Tuple = hidden_act UpperCAmelCase : Dict = conv_kernel_size UpperCAmelCase : List[str] = output_stride UpperCAmelCase : List[Any] = classifier_dropout_prob UpperCAmelCase : Any = use_labels UpperCAmelCase : Optional[Any] = is_training UpperCAmelCase : Dict = num_labels UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Optional[Any] = scope UpperCAmelCase : Optional[Any] = width_multiplier UpperCAmelCase : Union[str, Any] = ffn_dropout UpperCAmelCase : int = attn_dropout def _lowercase( self ) -> int: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Tuple = None if self.use_labels: UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def _lowercase( self ) -> List[Any]: return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _lowercase( self , A , A , A , A ) -> Union[str, Any]: UpperCAmelCase : int = MobileViTVaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase : Tuple = model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowercase( self , A , A , A , A ) -> Optional[Any]: UpperCAmelCase : Any = self.num_labels UpperCAmelCase : List[Any] = MobileViTVaForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase : Optional[int] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A , A ) -> Dict: UpperCAmelCase : Optional[int] = self.num_labels UpperCAmelCase : Dict = MobileViTVaForSemanticSegmentation(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase : List[str] = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase : List[Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowercase( self ) -> str: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowercase = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Any: UpperCAmelCase : Tuple = MobileViTVaModelTester(self ) UpperCAmelCase : Any = MobileViTVaConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _lowercase( self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def _lowercase( self ) -> List[Any]: pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Optional[Any]: pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def _lowercase( self ) -> Optional[int]: pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def _lowercase( self ) -> List[str]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowercase( self ) -> Optional[Any]: pass def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Any = model_class(_lowerCamelCase ) UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Dict = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _lowercase( self ) -> List[Any]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[int] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): UpperCAmelCase : Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) UpperCAmelCase : Optional[Any] = outputs.hidden_states UpperCAmelCase : int = 5 self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase : Tuple = 2 for i in range(len(_lowerCamelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : Union[str, Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @slow def _lowercase( self ) -> str: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : List[Any] = MobileViTVaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def __lowerCamelCase ( ) -> Optional[Any]: UpperCAmelCase : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> int: return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def _lowercase( self ) -> Dict: UpperCAmelCase : Any = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( _lowerCamelCase ) UpperCAmelCase : Optional[int] = self.default_image_processor UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**_lowerCamelCase ) # verify the logits UpperCAmelCase : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) UpperCAmelCase : Optional[int] = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow def _lowercase( self ) -> Optional[int]: UpperCAmelCase : int = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) UpperCAmelCase : Tuple = model.to(_lowerCamelCase ) UpperCAmelCase : List[Any] = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) UpperCAmelCase : str = prepare_img() UpperCAmelCase : str = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCAmelCase : int = model(**_lowerCamelCase ) UpperCAmelCase : Optional[Any] = outputs.logits # verify the logits UpperCAmelCase : Dict = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _lowerCamelCase ) UpperCAmelCase : int = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=_lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow def _lowercase( self ) -> Dict: UpperCAmelCase : Optional[Any] = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) UpperCAmelCase : Optional[Any] = model.to(_lowerCamelCase ) UpperCAmelCase : Any = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCAmelCase : Tuple = model(**_lowerCamelCase ) UpperCAmelCase : Tuple = outputs.logits.detach().cpu() UpperCAmelCase : List[str] = image_processor.post_process_semantic_segmentation(outputs=_lowerCamelCase , target_sizes=[(50, 60)] ) UpperCAmelCase : int = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _lowerCamelCase ) UpperCAmelCase : str = image_processor.post_process_semantic_segmentation(outputs=_lowerCamelCase ) UpperCAmelCase : List[str] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _lowerCamelCase )
701
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
0
'''simple docstring''' from torch import nn class UpperCamelCase_ ( nn.Module ): def __init__( self , A , A ) -> Dict: super().__init__() UpperCAmelCase : Any = class_size UpperCAmelCase : Optional[int] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) UpperCAmelCase : List[str] = nn.Linear(__lowerCamelCase , __lowerCamelCase ) def _lowercase( self , A ) -> Any: UpperCAmelCase : Any = self.mlp(__lowerCamelCase ) return logits
702
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
0
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase_ : @staticmethod def _lowercase( *A , **A ) -> Optional[int]: pass @is_pipeline_test @require_vision @require_torch class UpperCamelCase_ ( unittest.TestCase ): lowercase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _lowercase( self , A , A , A ) -> Union[str, Any]: UpperCAmelCase : int = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) UpperCAmelCase : Tuple = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def _lowercase( self , A , A ) -> int: UpperCAmelCase : List[Any] = object_detector(examples[0] , threshold=0.0 ) UpperCAmelCase : Optional[Any] = len(_lowercase ) self.assertGreater(_lowercase , 0 ) self.assertEqual( _lowercase , [ { """score""": ANY(_lowercase ), """label""": ANY(_lowercase ), """box""": {"""xmin""": ANY(_lowercase ), """ymin""": ANY(_lowercase ), """xmax""": ANY(_lowercase ), """ymax""": ANY(_lowercase )}, } for i in range(_lowercase ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def _lowercase( self ) -> Optional[Any]: pass @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : Optional[int] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) UpperCAmelCase : Any = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"""score""": 0.7_2_3_5, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_2_1_8, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_1_8_4, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6_7_4_8, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_6_5_6, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_6_1_4, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_4_5_6, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.6_4_2, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6_4_1_9, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) UpperCAmelCase : int = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ [ {"""score""": 0.7_2_3_5, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_2_1_8, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_1_8_4, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6_7_4_8, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_6_5_6, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_6_1_4, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_4_5_6, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.6_4_2, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6_4_1_9, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = pipeline("""zero-shot-object-detection""" ) UpperCAmelCase : List[str] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"""score""": 0.2_8_6_8, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.2_7_7, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_5_3_7, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1_4_7_4, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1_2_0_8, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) UpperCAmelCase : List[Any] = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ [ {"""score""": 0.2_8_6_8, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.2_7_7, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_5_3_7, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1_4_7_4, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1_2_0_8, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2_8_6_8, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.2_7_7, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_5_3_7, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1_4_7_4, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1_2_0_8, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def _lowercase( self ) -> Union[str, Any]: pass @require_torch @slow def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = 0.2 UpperCAmelCase : Dict = pipeline("""zero-shot-object-detection""" ) UpperCAmelCase : Tuple = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=_lowercase , ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"""score""": 0.2_8_6_8, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.2_7_7, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_5_3_7, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" ) UpperCAmelCase : Any = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=_lowercase , ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"""score""": 0.2_8_6_8, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.2_7_7, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
703
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations UpperCAmelCase : List[Any] = tpu_short_seq_length
672
0
from math import pi, sqrt def __lowerCamelCase ( _lowercase ) -> Dict: if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(__SCREAMING_SNAKE_CASE ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(__SCREAMING_SNAKE_CASE ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __lowerCamelCase ( ) -> Union[str, Any]: assert gamma(0.5 ) == sqrt(__SCREAMING_SNAKE_CASE ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() a : int = 1.0 while num: a : Dict = float(input("""Gamma of: """)) print(F'''gamma({num}) = {gamma(num)}''') print("""\nEnter 0 to exit...""")
704
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
0
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class UpperCamelCase_ ( _UpperCAmelCase ): @slow @require_torch def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) UpperCAmelCase : str = BertTokenizer.from_pretrained("""bert-base-uncased""" ) UpperCAmelCase : Tuple = bertabert.config.encoder.vocab_size UpperCAmelCase : int = tokenizer.sep_token_id UpperCAmelCase : str = tokenizer.cls_token_id UpperCAmelCase : List[Any] = 128 UpperCAmelCase : Tuple = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) UpperCAmelCase : List[Any] = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) UpperCAmelCase : List[str] = train_dataset.select(range(32 ) ) UpperCAmelCase : Optional[int] = val_dataset.select(range(16 ) ) UpperCAmelCase : List[Any] = 4 def _map_to_encoder_decoder_inputs(A ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCAmelCase : Tuple = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=A_ , max_length=512 ) UpperCAmelCase : str = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=A_ , max_length=128 ) UpperCAmelCase : Any = inputs.input_ids UpperCAmelCase : List[str] = inputs.attention_mask UpperCAmelCase : Dict = outputs.input_ids UpperCAmelCase : Union[str, Any] = outputs.input_ids.copy() UpperCAmelCase : int = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] UpperCAmelCase : Dict = outputs.attention_mask assert all(len(A_ ) == 512 for x in inputs.input_ids ) assert all(len(A_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(A ): UpperCAmelCase : Optional[int] = pred.label_ids UpperCAmelCase : Tuple = pred.predictions # all unnecessary tokens are removed UpperCAmelCase : List[Any] = tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) UpperCAmelCase : Tuple = tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) UpperCAmelCase : Optional[Any] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A_ ) )] ) / len(A_ ) return {"accuracy": accuracy} # map train dataset UpperCAmelCase : Optional[Any] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=A_ , batch_size=A_ , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset UpperCAmelCase : Optional[Any] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=A_ , batch_size=A_ , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) UpperCAmelCase : str = self.get_auto_remove_tmp_dir() UpperCAmelCase : List[Any] = SeqaSeqTrainingArguments( output_dir=A_ , per_device_train_batch_size=A_ , per_device_eval_batch_size=A_ , predict_with_generate=A_ , evaluation_strategy="""steps""" , do_train=A_ , do_eval=A_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCAmelCase : List[str] = SeqaSeqTrainer( model=A_ , args=A_ , compute_metrics=_compute_metrics , train_dataset=A_ , eval_dataset=A_ , tokenizer=A_ , ) # start training trainer.train()
705
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
0
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated a : List[str] = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ a : List[Any] = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : str = numpy.dtype(numpy.uintaa ).newbyteorder(""">""" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_lowerCamelCase )[0] @deprecated(_lowerCamelCase , """Please use tf.data to implement this functionality.""" ) def __lowerCamelCase ( _lowercase ) -> Any: print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=_lowerCamelCase ) as bytestream: UpperCAmelCase : str = _readaa(_lowerCamelCase ) if magic != 2_0_5_1: raise ValueError( """Invalid magic number %d in MNIST image file: %s""" % (magic, f.name) ) UpperCAmelCase : List[str] = _readaa(_lowerCamelCase ) UpperCAmelCase : Dict = _readaa(_lowerCamelCase ) UpperCAmelCase : Optional[int] = _readaa(_lowerCamelCase ) UpperCAmelCase : Dict = bytestream.read(rows * cols * num_images ) UpperCAmelCase : Optional[int] = numpy.frombuffer(_lowerCamelCase , dtype=numpy.uinta ) UpperCAmelCase : Dict = data.reshape(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , 1 ) return data @deprecated(_lowerCamelCase , """Please use tf.one_hot on tensors.""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = labels_dense.shape[0] UpperCAmelCase : str = numpy.arange(_lowerCamelCase ) * num_classes UpperCAmelCase : str = numpy.zeros((num_labels, num_classes) ) UpperCAmelCase : Tuple = 1 return labels_one_hot @deprecated(_lowerCamelCase , """Please use tf.data to implement this functionality.""" ) def __lowerCamelCase ( _lowercase , _lowercase=False , _lowercase=1_0 ) -> Dict: print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=_lowerCamelCase ) as bytestream: UpperCAmelCase : int = _readaa(_lowerCamelCase ) if magic != 2_0_4_9: raise ValueError( """Invalid magic number %d in MNIST label file: %s""" % (magic, f.name) ) UpperCAmelCase : Any = _readaa(_lowerCamelCase ) UpperCAmelCase : List[Any] = bytestream.read(_lowerCamelCase ) UpperCAmelCase : Dict = numpy.frombuffer(_lowerCamelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_lowerCamelCase , _lowerCamelCase ) return labels class UpperCamelCase_ : @deprecated( A , """Please use alternatives such as official/mnist/_DataSet.py""" """ from tensorflow/models.""" , ) def __init__( self , A , A , A=False , A=False , A=dtypes.floataa , A=True , A=None , ) -> List[str]: UpperCAmelCase : Optional[int] = random_seed.get_seed(A ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) UpperCAmelCase : Optional[Any] = dtypes.as_dtype(A ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("""Invalid image dtype %r, expected uint8 or float32""" % dtype ) if fake_data: UpperCAmelCase : str = 10000 UpperCAmelCase : Optional[Any] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' UpperCAmelCase : Any = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 UpperCAmelCase : Union[str, Any] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. UpperCAmelCase : List[Any] = images.astype(numpy.floataa ) UpperCAmelCase : Optional[Any] = numpy.multiply(A , 1.0 / 2_5_5.0 ) UpperCAmelCase : Optional[Any] = images UpperCAmelCase : List[Any] = labels UpperCAmelCase : str = 0 UpperCAmelCase : Union[str, Any] = 0 @property def _lowercase( self ) -> Any: return self._images @property def _lowercase( self ) -> Dict: return self._labels @property def _lowercase( self ) -> str: return self._num_examples @property def _lowercase( self ) -> Dict: return self._epochs_completed def _lowercase( self , A , A=False , A=True ) -> Optional[int]: if fake_data: UpperCAmelCase : Any = [1] * 784 UpperCAmelCase : Union[str, Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(A )], [fake_label for _ in range(A )], ) UpperCAmelCase : str = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: UpperCAmelCase : Any = numpy.arange(self._num_examples ) numpy.random.shuffle(A ) UpperCAmelCase : int = self.images[perma] UpperCAmelCase : str = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch UpperCAmelCase : Optional[int] = self._num_examples - start UpperCAmelCase : Optional[int] = self._images[start : self._num_examples] UpperCAmelCase : int = self._labels[start : self._num_examples] # Shuffle the data if shuffle: UpperCAmelCase : Optional[int] = numpy.arange(self._num_examples ) numpy.random.shuffle(A ) UpperCAmelCase : Optional[Any] = self.images[perm] UpperCAmelCase : Tuple = self.labels[perm] # Start next epoch UpperCAmelCase : Tuple = 0 UpperCAmelCase : Union[str, Any] = batch_size - rest_num_examples UpperCAmelCase : List[str] = self._index_in_epoch UpperCAmelCase : Dict = self._images[start:end] UpperCAmelCase : str = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size UpperCAmelCase : Union[str, Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_lowerCamelCase , """Please write your own downloading logic.""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Tuple: if not gfile.Exists(_lowerCamelCase ): gfile.MakeDirs(_lowerCamelCase ) UpperCAmelCase : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if not gfile.Exists(_lowerCamelCase ): urllib.request.urlretrieve(_lowerCamelCase , _lowerCamelCase ) # noqa: S310 with gfile.GFile(_lowerCamelCase ) as f: UpperCAmelCase : Any = f.size() print("""Successfully downloaded""" , _lowerCamelCase , _lowerCamelCase , """bytes.""" ) return filepath @deprecated( _lowerCamelCase , """Please use alternatives such as:""" """ tensorflow_datasets.load('mnist')""" ) def __lowerCamelCase ( _lowercase , _lowercase=False , _lowercase=False , _lowercase=dtypes.floataa , _lowercase=True , _lowercase=5_0_0_0 , _lowercase=None , _lowercase=DEFAULT_SOURCE_URL , ) -> List[Any]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_lowerCamelCase , one_hot=_lowerCamelCase , dtype=_lowerCamelCase , seed=_lowerCamelCase ) UpperCAmelCase : Optional[int] = fake() UpperCAmelCase : Tuple = fake() UpperCAmelCase : List[str] = fake() return _Datasets(train=_lowerCamelCase , validation=_lowerCamelCase , test=_lowerCamelCase ) if not source_url: # empty string check UpperCAmelCase : str = DEFAULT_SOURCE_URL UpperCAmelCase : Optional[int] = "train-images-idx3-ubyte.gz" UpperCAmelCase : Dict = "train-labels-idx1-ubyte.gz" UpperCAmelCase : List[str] = "t10k-images-idx3-ubyte.gz" UpperCAmelCase : List[str] = "t10k-labels-idx1-ubyte.gz" UpperCAmelCase : Optional[int] = _maybe_download( _lowerCamelCase , _lowerCamelCase , source_url + train_images_file ) with gfile.Open(_lowerCamelCase , """rb""" ) as f: UpperCAmelCase : int = _extract_images(_lowerCamelCase ) UpperCAmelCase : Optional[Any] = _maybe_download( _lowerCamelCase , _lowerCamelCase , source_url + train_labels_file ) with gfile.Open(_lowerCamelCase , """rb""" ) as f: UpperCAmelCase : int = _extract_labels(_lowerCamelCase , one_hot=_lowerCamelCase ) UpperCAmelCase : int = _maybe_download( _lowerCamelCase , _lowerCamelCase , source_url + test_images_file ) with gfile.Open(_lowerCamelCase , """rb""" ) as f: UpperCAmelCase : Optional[int] = _extract_images(_lowerCamelCase ) UpperCAmelCase : str = _maybe_download( _lowerCamelCase , _lowerCamelCase , source_url + test_labels_file ) with gfile.Open(_lowerCamelCase , """rb""" ) as f: UpperCAmelCase : List[str] = _extract_labels(_lowerCamelCase , one_hot=_lowerCamelCase ) if not 0 <= validation_size <= len(_lowerCamelCase ): UpperCAmelCase : str = ( "Validation size should be between 0 and " F'''{len(_lowerCamelCase )}. Received: {validation_size}.''' ) raise ValueError(_lowerCamelCase ) UpperCAmelCase : Any = train_images[:validation_size] UpperCAmelCase : Optional[Any] = train_labels[:validation_size] UpperCAmelCase : Optional[int] = train_images[validation_size:] UpperCAmelCase : Tuple = train_labels[validation_size:] UpperCAmelCase : List[str] = {"dtype": dtype, "reshape": reshape, "seed": seed} UpperCAmelCase : Union[str, Any] = _DataSet(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) UpperCAmelCase : str = _DataSet(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) UpperCAmelCase : Optional[Any] = _DataSet(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) return _Datasets(train=_lowerCamelCase , validation=_lowerCamelCase , test=_lowerCamelCase )
706
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> int: UpperCAmelCase : int = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : List[str] = use_input_mask UpperCAmelCase : Any = use_token_type_ids UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Optional[Any] = max_position_embeddings UpperCAmelCase : Any = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : List[str] = num_labels UpperCAmelCase : List[Any] = num_choices UpperCAmelCase : Union[str, Any] = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = None if self.use_input_mask: UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict = None if self.use_token_type_ids: UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : str = None UpperCAmelCase : List[str] = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> List[Any]: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , use_stable_embedding=__UpperCamelCase , ) def _lowercase( self , A , A , A , A , A , A , A ) -> List[Any]: UpperCAmelCase : str = OpenLlamaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase : List[str] = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) UpperCAmelCase : Any = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> str: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = OpenLlamaModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase : Tuple = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , ) UpperCAmelCase : int = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , ) UpperCAmelCase : Optional[Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> Tuple: UpperCAmelCase : Optional[Any] = OpenLlamaForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase : Optional[int] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> Dict: UpperCAmelCase : List[Any] = True UpperCAmelCase : int = True UpperCAmelCase : Union[str, Any] = OpenLlamaForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # first forward pass UpperCAmelCase : Tuple = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase , ) UpperCAmelCase : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : int = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )["""hidden_states"""][0] UpperCAmelCase : Optional[int] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )["""hidden_states"""][0] # select random slice UpperCAmelCase : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def _lowercase( self ) -> Any: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[Any] = OpenLlamaModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def _lowercase( self ) -> List[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _lowercase( self ) -> List[str]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def _lowercase( self ) -> Dict: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[Any] = 3 UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : List[str] = input_ids.ne(1 ).to(__UpperCamelCase ) UpperCAmelCase : List[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : List[Any] = OpenLlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase : Dict = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> List[str]: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int = 3 UpperCAmelCase : Tuple = """single_label_classification""" UpperCAmelCase : List[str] = input_dict["""input_ids"""] UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCamelCase ) UpperCAmelCase : List[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase : Union[str, Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Any: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str = 3 UpperCAmelCase : List[str] = """multi_label_classification""" UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCamelCase ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : str = OpenLlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase : Any = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Tuple: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : Dict = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Tuple = OpenLlamaModel(__UpperCamelCase ) original_model.to(__UpperCamelCase ) original_model.eval() UpperCAmelCase : List[Any] = original_model(__UpperCamelCase ).last_hidden_state UpperCAmelCase : str = original_model(__UpperCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 10.0} UpperCAmelCase : Union[str, Any] = OpenLlamaModel(__UpperCamelCase ) scaled_model.to(__UpperCamelCase ) scaled_model.eval() UpperCAmelCase : Dict = scaled_model(__UpperCamelCase ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(__UpperCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-5 ) )
707
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
0
'''simple docstring''' class UpperCamelCase_ : def __init__( self ) -> Dict: UpperCAmelCase : Any = """""" UpperCAmelCase : List[str] = """""" UpperCAmelCase : List[Any] = [] def _lowercase( self , A , A ) -> Union[str, Any]: if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: UpperCAmelCase : int = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: UpperCAmelCase : Tuple = self.__min_dist_top_down_dp(A , n - 1 ) UpperCAmelCase : str = self.__min_dist_top_down_dp(m - 1 , A ) UpperCAmelCase : List[Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) UpperCAmelCase : Optional[int] = 1 + min(A , A , A ) return self.dp[m][n] def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[Any] = worda UpperCAmelCase : int = worda UpperCAmelCase : str = [[-1 for _ in range(len(A ) )] for _ in range(len(A ) )] return self.__min_dist_top_down_dp(len(A ) - 1 , len(A ) - 1 ) def _lowercase( self , A , A ) -> int: UpperCAmelCase : str = worda UpperCAmelCase : Any = worda UpperCAmelCase : str = len(A ) UpperCAmelCase : Tuple = len(A ) UpperCAmelCase : Union[str, Any] = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty UpperCAmelCase : List[Any] = j elif j == 0: # second string is empty UpperCAmelCase : List[Any] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal UpperCAmelCase : List[Any] = self.dp[i - 1][j - 1] else: UpperCAmelCase : int = self.dp[i][j - 1] UpperCAmelCase : List[Any] = self.dp[i - 1][j] UpperCAmelCase : Union[str, Any] = self.dp[i - 1][j - 1] UpperCAmelCase : List[Any] = 1 + min(A , A , A ) return self.dp[m][n] if __name__ == "__main__": a : Tuple = EditDistance() print("""****************** Testing Edit Distance DP Algorithm ******************""") print() a : Optional[Any] = input("""Enter the first string: """).strip() a : int = input("""Enter the second string: """).strip() print() print(F'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(F'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print("""*************** End of Testing Edit Distance DP Algorithm ***************""")
708
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
0
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a : Dict = logging.get_logger(__name__) a : Optional[int] = """▁""" a : str = {"""vocab_file""": """vocab.txt""", """sentencepiece_model_ckpt""": """sentencepiece.bpe.model"""} a : int = { """sentencepiece_model_file""": """sentencepiece.bpe.model""", """vocab_file""": """vocab.txt""", } a : Tuple = { """vocab_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", }, """sentencepiece_model_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", }, } a : Optional[int] = { """ernie-m-base""": 5_1_4, """ernie-m-large""": 5_1_4, } a : Union[str, Any] = { """ernie-m-base""": {"""do_lower_case""": False}, """ernie-m-large""": {"""do_lower_case""": False}, } class UpperCamelCase_ ( __A ): lowercase = ["input_ids"] lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = RESOURCE_FILES_NAMES def __init__( self , A , A=None , A=False , A="utf8" , A="[UNK]" , A="[SEP]" , A="[PAD]" , A="[CLS]" , A="[MASK]" , A = None , **A , ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , vocab_file=UpperCamelCase__ , encoding=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) UpperCAmelCase : str = do_lower_case UpperCAmelCase : Optional[Any] = sentencepiece_model_ckpt UpperCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCAmelCase : Optional[int] = self.load_vocab(filepath=UpperCamelCase__ ) else: UpperCAmelCase : Dict = {self.sp_model.id_to_piece(UpperCamelCase__ ): id for id in range(self.sp_model.get_piece_size() )} UpperCAmelCase : Tuple = {v: k for k, v in self.vocab.items()} def _lowercase( self , A ) -> Tuple: if text is None: return None UpperCAmelCase : Optional[Any] = self.tokenize(UpperCamelCase__ ) UpperCAmelCase : Dict = '', [] for i, ch in enumerate(UpperCamelCase__ ): if ch in self.SP_CHAR_MAPPING: UpperCAmelCase : Any = self.SP_CHAR_MAPPING.get(UpperCamelCase__ ) else: UpperCAmelCase : Tuple = unicodedata.normalize("""NFKC""" , UpperCamelCase__ ) if self.is_whitespace(UpperCamelCase__ ): continue normalized_text += ch char_mapping.extend([i] * len(UpperCamelCase__ ) ) UpperCAmelCase : Tuple = normalized_text, [], 0 if self.do_lower_case: UpperCAmelCase : int = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCAmelCase : Dict = token[1:] UpperCAmelCase : List[str] = text[offset:].index(UpperCamelCase__ ) + offset UpperCAmelCase : Tuple = start + len(UpperCamelCase__ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCAmelCase : List[Any] = end return token_mapping @property def _lowercase( self ) -> List[str]: return len(self.vocab ) def _lowercase( self ) -> int: return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.__dict__.copy() UpperCAmelCase : int = None return state def __setstate__( self , A ) -> List[str]: UpperCAmelCase : List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase : Tuple = {} UpperCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _lowercase( self , A ) -> Optional[int]: return "".join((self.SP_CHAR_MAPPING.get(UpperCamelCase__ , UpperCamelCase__ ) for c in text) ) def _lowercase( self , A , A=False , A=64 , A=0.1 ) -> Union[str, Any]: if self.sp_model_kwargs.get("""enable_sampling""" ) is True: UpperCAmelCase : int = True if self.sp_model_kwargs.get("""alpha""" ) is not None: UpperCAmelCase : Tuple = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: UpperCAmelCase : Dict = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: UpperCAmelCase : Optional[int] = self.sp_model.EncodeAsPieces(UpperCamelCase__ ) else: UpperCAmelCase : Dict = self.sp_model.SampleEncodeAsPieces(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase : Any = [] for pi, piece in enumerate(UpperCamelCase__ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(UpperCamelCase__ ) and pi != 0: new_pieces.append(UpperCamelCase__ ) continue else: continue UpperCAmelCase : Optional[Any] = 0 for i, chunk in enumerate(UpperCamelCase__ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(UpperCamelCase__ ) or self.is_punct(UpperCamelCase__ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(UpperCamelCase__ ) UpperCAmelCase : List[Any] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase : str = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase : List[Any] = i if len(UpperCamelCase__ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _lowercase( self , A ) -> List[Any]: UpperCAmelCase : Optional[int] = ''.join(UpperCamelCase__ ).replace(UpperCamelCase__ , """ """ ).strip() return out_string def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Dict = self.convert_ids_to_tokens(UpperCamelCase__ ) UpperCAmelCase : int = ''.join(UpperCamelCase__ ).replace(UpperCamelCase__ , """ """ ).strip() return out_string def _lowercase( self , A ) -> str: return self.vocab.get(UpperCamelCase__ , self.vocab.get(self.unk_token ) ) def _lowercase( self , A ) -> Union[str, Any]: return self.reverse_vocab.get(UpperCamelCase__ , self.unk_token ) def _lowercase( self , A , A=None ) -> Any: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : Optional[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _lowercase( self , A , A=None ) -> Optional[Any]: if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _lowercase( self , A , A=None , A=False ) -> Tuple: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1] def _lowercase( self , A , A = None ) -> int: # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(UpperCamelCase__ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(UpperCamelCase__ ) + 1) + [1] * (len(UpperCamelCase__ ) + 3) def _lowercase( self , A ) -> Optional[int]: if "\u4e00" <= char <= "\u9fff": return True return False def _lowercase( self , A ) -> List[str]: if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _lowercase( self , A ) -> List[str]: if char in ",;:.?!~,;:。?!《》【】": return True return False def _lowercase( self , A ) -> List[str]: if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(UpperCamelCase__ ) == 1: UpperCAmelCase : int = unicodedata.category(UpperCamelCase__ ) if cat == "Zs": return True return False def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = {} with io.open(UpperCamelCase__ , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(UpperCamelCase__ ): UpperCAmelCase : Union[str, Any] = line.rstrip("""\n""" ) UpperCAmelCase : Tuple = int(UpperCamelCase__ ) return token_to_idx def _lowercase( self , A , A = None ) -> List[str]: UpperCAmelCase : Union[str, Any] = 0 if os.path.isdir(UpperCamelCase__ ): UpperCAmelCase : int = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: UpperCAmelCase : List[Any] = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) UpperCAmelCase : str = token_index writer.write(token + """\n""" ) index += 1 UpperCAmelCase : Optional[Any] = os.path.join(UpperCamelCase__ , """sentencepiece.bpe.model""" ) with open(UpperCamelCase__ , """wb""" ) as fi: UpperCAmelCase : int = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (vocab_file,)
709
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
0
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def __lowerCamelCase ( _lowercase ) -> Dict: return EnvironmentCommand() class UpperCamelCase_ ( a__ ): @staticmethod def _lowercase( A ) -> int: UpperCAmelCase : Dict = parser.add_parser("""env""" ) download_parser.set_defaults(func=lowerCamelCase_ ) def _lowercase( self ) -> int: UpperCAmelCase : Tuple = huggingface_hub.__version__ UpperCAmelCase : Optional[Any] = """not installed""" UpperCAmelCase : Any = """NA""" if is_torch_available(): import torch UpperCAmelCase : List[Any] = torch.__version__ UpperCAmelCase : Any = torch.cuda.is_available() UpperCAmelCase : List[str] = """not installed""" if is_transformers_available(): import transformers UpperCAmelCase : List[str] = transformers.__version__ UpperCAmelCase : Optional[int] = """not installed""" if is_accelerate_available(): import accelerate UpperCAmelCase : Any = accelerate.__version__ UpperCAmelCase : str = """not installed""" if is_xformers_available(): import xformers UpperCAmelCase : str = xformers.__version__ UpperCAmelCase : Any = { """`diffusers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Huggingface_hub version""": hub_version, """Transformers version""": transformers_version, """Accelerate version""": accelerate_version, """xFormers version""": xformers_version, """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(lowerCamelCase_ ) ) return info @staticmethod def _lowercase( A ) -> List[Any]: return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
710
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: return ("This is a test", "This is a test") def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """</s>""" UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(A ) , 1103 ) def _lowercase( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> str: return ("This is a test", "This is a test") def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : str = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
672
0
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> Tuple: if not (isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) UpperCAmelCase : Optional[Any] = len(_lowercase ) UpperCAmelCase : Optional[Any] = len(_lowercase ) UpperCAmelCase : Optional[int] = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[Any] = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: UpperCAmelCase : Tuple = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: UpperCAmelCase : Optional[int] = i UpperCAmelCase : Union[str, Any] = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
711
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Any = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : int = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ConvNextVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase : Any = model_class(A ) model.to(A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : List[str] = False UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
672
0
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path a : str = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def __lowerCamelCase ( _lowercase=True ) -> Any: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__UpperCAmelCase ) ) class UpperCamelCase_ ( __UpperCAmelCase ): lowercase = None lowercase = None def _lowercase( self , A , A ) -> str: with TemporaryDirectory() as tmp_dir: UpperCAmelCase : str = dataset_module_factory(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) UpperCAmelCase : Dict = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase_ ) UpperCAmelCase : Union[str, Any] = builder_cls( cache_dir=lowerCAmelCase_ , config_name=lowerCAmelCase_ , hash=dataset_module.hash , ) UpperCAmelCase : Optional[Any] = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowerCAmelCase_ ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) UpperCAmelCase : Any = cached_path(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) self.assertTrue(os.path.exists(lowerCAmelCase_ ) ) @pytest.mark.integration def __lowerCamelCase ( _lowercase ) -> str: UpperCAmelCase : Tuple = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" UpperCAmelCase : List[str] = dataset_module_factory("""wikipedia""" , cache_dir=__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = import_main_class(dataset_module.module_path ) UpperCAmelCase : Optional[int] = builder_cls( cache_dir=__lowerCAmelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam UpperCAmelCase : int = None builder_instance.download_and_prepare() UpperCAmelCase : int = builder_instance.as_dataset() assert ds @pytest.mark.integration def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : int = dataset_module_factory("""wikipedia""" , cache_dir=__lowerCAmelCase ) UpperCAmelCase : Optional[Any] = import_main_class(dataset_module.module_path , dataset=__lowerCAmelCase ) UpperCAmelCase : Optional[int] = builder_cls( cache_dir=__lowerCAmelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) UpperCAmelCase : Any = builder_instance.as_streaming_dataset() assert ds assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert "train" in ds assert isinstance(ds["""train"""] , __lowerCAmelCase ) assert next(iter(ds["""train"""] ) )
712
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Tuple = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
713
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , ) -> List[str]: UpperCAmelCase : Tuple = {} if train_file is not None: UpperCAmelCase : List[Any] = [train_file] if eval_file is not None: UpperCAmelCase : Union[str, Any] = [eval_file] if test_file is not None: UpperCAmelCase : Optional[Any] = [test_file] UpperCAmelCase : Optional[Any] = datasets.load_dataset("""csv""" , data_files=UpperCAmelCase__ ) UpperCAmelCase : Any = list(ds[list(files.keys() )[0]].features.keys() ) UpperCAmelCase : List[Any] = features_name.pop(UpperCAmelCase__ ) UpperCAmelCase : Any = list(set(ds[list(files.keys() )[0]][label_name] ) ) UpperCAmelCase : Tuple = {label: i for i, label in enumerate(UpperCAmelCase__ )} UpperCAmelCase : List[Any] = tokenizer.model_input_names UpperCAmelCase : Union[str, Any] = {} if len(UpperCAmelCase__ ) == 1: for k in files.keys(): UpperCAmelCase : Tuple = ds[k].map( lambda _lowercase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding="""max_length""" ) , batched=UpperCAmelCase__ , ) elif len(UpperCAmelCase__ ) == 2: for k in files.keys(): UpperCAmelCase : Optional[int] = ds[k].map( lambda _lowercase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding="""max_length""" , ) , batched=UpperCAmelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: UpperCAmelCase : List[str] = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase : Tuple = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: UpperCAmelCase : str = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase : List[str] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: UpperCAmelCase : Dict = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase : Tuple = labelaid[ex[label_name]] yield (d, label) UpperCAmelCase : Any = ( tf.data.Dataset.from_generator( UpperCAmelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: UpperCAmelCase : Dict = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) UpperCAmelCase : Any = ( tf.data.Dataset.from_generator( UpperCAmelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: UpperCAmelCase : Optional[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) UpperCAmelCase : int = ( tf.data.Dataset.from_generator( UpperCAmelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: UpperCAmelCase : Optional[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid a : Tuple = logging.getLogger(__name__) @dataclass class UpperCamelCase_ : lowercase = field(metadata={'help': 'Which column contains the label'} ) lowercase = field(default=_a , metadata={'help': 'The path of the training file'} ) lowercase = field(default=_a , metadata={'help': 'The path of the development file'} ) lowercase = field(default=_a , metadata={'help': 'The path of the test file'} ) lowercase = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase = field( default=_a , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class UpperCamelCase_ : lowercase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowercase = field( default=_a , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowercase = field( default=_a , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowercase = field(default=_a , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowercase = field( default=_a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def __lowerCamelCase ( ) -> List[Any]: UpperCAmelCase : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( F'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' F'''16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCAmelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) UpperCAmelCase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCAmelCase__ ) , labelaid=UpperCAmelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): UpperCAmelCase : List[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(_lowercase ) -> Dict: UpperCAmelCase : Any = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer UpperCAmelCase : Optional[Any] = TFTrainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=UpperCAmelCase__ , eval_dataset=UpperCAmelCase__ , compute_metrics=UpperCAmelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase : int = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCAmelCase : Any = trainer.evaluate() UpperCAmelCase : Tuple = os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(UpperCAmelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) results.update(UpperCAmelCase__ ) return results if __name__ == "__main__": main()
714
'''simple docstring''' a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a : Optional[Any] = True a : List[Any] = False def __lowerCamelCase ( _lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : List[str] = chain(next_number(_lowercase ) ) UpperCAmelCase : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase : List[str] = number_chain number *= 1_0 return number_chain def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , _lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
672
0
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Tuple: # Initialise PyTorch model UpperCAmelCase : str = RemBertConfig.from_json_file(UpperCAmelCase__ ) print("""Building PyTorch model from configuration: {}""".format(str(UpperCAmelCase__ ) ) ) UpperCAmelCase : Tuple = RemBertModel(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model print("""Save PyTorch model to {}""".format(UpperCAmelCase__ ) ) torch.save(model.state_dict() , UpperCAmelCase__ ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType a : List[Any] = logging.get_logger(__name__) a : Optional[int] = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ ): lowercase = """layoutlmv3""" def __init__( self , A=50265 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.0_2 , A=1e-5 , A=1 , A=0 , A=2 , A=1024 , A=128 , A=128 , A=True , A=32 , A=128 , A=64 , A=256 , A=True , A=True , A=True , A=224 , A=3 , A=16 , A=None , **A , ) -> int: super().__init__( vocab_size=A , hidden_size=A , num_hidden_layers=A , num_attention_heads=A , intermediate_size=A , hidden_act=A , hidden_dropout_prob=A , attention_probs_dropout_prob=A , max_position_embeddings=A , type_vocab_size=A , initializer_range=A , layer_norm_eps=A , pad_token_id=A , bos_token_id=A , eos_token_id=A , **A , ) UpperCAmelCase : Optional[int] = max_ad_position_embeddings UpperCAmelCase : Optional[Any] = coordinate_size UpperCAmelCase : int = shape_size UpperCAmelCase : str = has_relative_attention_bias UpperCAmelCase : Optional[int] = rel_pos_bins UpperCAmelCase : List[str] = max_rel_pos UpperCAmelCase : Tuple = has_spatial_attention_bias UpperCAmelCase : Union[str, Any] = rel_ad_pos_bins UpperCAmelCase : Optional[Any] = max_rel_ad_pos UpperCAmelCase : Optional[int] = text_embed UpperCAmelCase : Union[str, Any] = visual_embed UpperCAmelCase : str = input_size UpperCAmelCase : Dict = num_channels UpperCAmelCase : List[str] = patch_size UpperCAmelCase : int = classifier_dropout class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.12' ) @property def _lowercase( self ) -> Any: if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def _lowercase( self ) -> int: return 1e-5 @property def _lowercase( self ) -> str: return 12 def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 3 , A = 40 , A = 40 , ) -> Union[str, Any]: setattr(processor.image_processor , """apply_ocr""" , A ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase : Any = compute_effective_axis_dimension( A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase : Optional[int] = processor.tokenizer.num_special_tokens_to_add(A ) UpperCAmelCase : Dict = compute_effective_axis_dimension( A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCAmelCase : List[str] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCAmelCase : Tuple = self._generate_dummy_images(A , A , A , A ) UpperCAmelCase : Optional[Any] = dict( processor( A , text=A , boxes=A , return_tensors=A , ) ) return inputs
716
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Any = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
672
0
'''simple docstring''' import argparse import json import subprocess def __lowerCamelCase ( _lowercase , _lowercase ) -> Tuple: UpperCAmelCase : int = [] UpperCAmelCase : Optional[Any] = ( F'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) UpperCAmelCase : Optional[Any] = subprocess.run(_lowercase , shell=_lowercase , stdout=subprocess.PIPE ) UpperCAmelCase : Dict = output.stdout.decode("""utf-8""" ) UpperCAmelCase : Dict = json.loads(_lowercase ) UpperCAmelCase : Any = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowercase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" , """w""" ) as fp: fp.write(json.dumps(_lowercase ) ) if len(_lowercase ) > 0: UpperCAmelCase : int = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(F'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def __lowerCamelCase ( _lowercase ) -> Any: return values.split(""",""" ) a : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) a : Union[str, Any] = parser.parse_args() get_runner_status(args.target_runners, args.token)
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 a = sys.version_info >= (3, 1_0) def __lowerCamelCase ( _lowercase=None , _lowercase=None ) -> Dict: return field(default_factory=lambda: default , metadata=_lowercase ) @dataclass class UpperCamelCase_ : lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 @dataclass class UpperCamelCase_ : lowercase = 42 lowercase = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class UpperCamelCase_ : lowercase = False lowercase = True lowercase = None class UpperCamelCase_ ( __lowerCAmelCase ): lowercase = "titi" lowercase = "toto" class UpperCamelCase_ ( __lowerCAmelCase ): lowercase = "titi" lowercase = "toto" lowercase = 42 @dataclass class UpperCamelCase_ : lowercase = "toto" def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = BasicEnum(self.foo ) @dataclass class UpperCamelCase_ : lowercase = "toto" def _lowercase( self ) -> Tuple: UpperCAmelCase : List[str] = MixedTypeEnum(self.foo ) @dataclass class UpperCamelCase_ : lowercase = None lowercase = field(default=__lowerCAmelCase , metadata={'help': 'help message'} ) lowercase = None lowercase = list_field(default=[] ) lowercase = list_field(default=[] ) @dataclass class UpperCamelCase_ : lowercase = list_field(default=[] ) lowercase = list_field(default=[1, 2, 3] ) lowercase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) lowercase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase_ : lowercase = field() lowercase = field() lowercase = field() def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = BasicEnum(self.required_enum ) @dataclass class UpperCamelCase_ : lowercase = 42 lowercase = field() lowercase = None lowercase = field(default='toto' , metadata={'help': 'help message'} ) lowercase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase_ : lowercase = False lowercase = True lowercase = None @dataclass class UpperCamelCase_ : lowercase = None lowercase = field(default=__lowerCAmelCase , metadata={'help': 'help message'} ) lowercase = None lowercase = list_field(default=[] ) lowercase = list_field(default=[] ) class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A ) -> Union[str, Any]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): UpperCAmelCase : List[str] = {k: v for k, v in vars(lowerCamelCase__ ).items() if k != '''container'''} UpperCAmelCase : int = {k: v for k, v in vars(lowerCamelCase__ ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , lowerCamelCase__ ) and yy.get("""choices""" , lowerCamelCase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](lowerCamelCase__ ) , yy["""type"""](lowerCamelCase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = HfArgumentParser(lowerCamelCase__ ) UpperCAmelCase : Any = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowerCamelCase__ , required=lowerCamelCase__ ) expected.add_argument("""--bar""" , type=lowerCamelCase__ , required=lowerCamelCase__ ) expected.add_argument("""--baz""" , type=lowerCamelCase__ , required=lowerCamelCase__ ) expected.add_argument("""--flag""" , type=lowerCamelCase__ , default=lowerCamelCase__ , const=lowerCamelCase__ , nargs="""?""" ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase : List[Any] = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] (UpperCAmelCase ) : Tuple = parser.parse_args_into_dataclasses(lowerCamelCase__ , look_for_args_file=lowerCamelCase__ ) self.assertFalse(example.flag ) def _lowercase( self ) -> Any: UpperCAmelCase : Optional[Any] = HfArgumentParser(lowerCamelCase__ ) UpperCAmelCase : Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=lowerCamelCase__ ) expected.add_argument("""--baz""" , default="""toto""" , type=lowerCamelCase__ , help="""help message""" ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowerCamelCase__ , default=lowerCamelCase__ , const=lowerCamelCase__ , nargs="""?""" ) expected.add_argument("""--baz""" , type=lowerCamelCase__ , default=lowerCamelCase__ , const=lowerCamelCase__ , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=lowerCamelCase__ , dest="""baz""" ) expected.add_argument("""--opt""" , type=lowerCamelCase__ , default=lowerCamelCase__ ) UpperCAmelCase : List[str] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowerCamelCase__ ) for dataclass_type in dataclass_types: UpperCAmelCase : List[str] = HfArgumentParser(lowerCamelCase__ ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase : Tuple = parser.parse_args([] ) self.assertEqual(lowerCamelCase__ , Namespace(foo=lowerCamelCase__ , baz=lowerCamelCase__ , opt=lowerCamelCase__ ) ) UpperCAmelCase : Any = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(lowerCamelCase__ , Namespace(foo=lowerCamelCase__ , baz=lowerCamelCase__ , opt=lowerCamelCase__ ) ) UpperCAmelCase : Tuple = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(lowerCamelCase__ , Namespace(foo=lowerCamelCase__ , baz=lowerCamelCase__ , opt=lowerCamelCase__ ) ) UpperCAmelCase : List[Any] = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(lowerCamelCase__ , Namespace(foo=lowerCamelCase__ , baz=lowerCamelCase__ , opt=lowerCamelCase__ ) ) UpperCAmelCase : int = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(lowerCamelCase__ , Namespace(foo=lowerCamelCase__ , baz=lowerCamelCase__ , opt=lowerCamelCase__ ) ) def _lowercase( self ) -> Tuple: UpperCAmelCase : int = HfArgumentParser(lowerCamelCase__ ) UpperCAmelCase : Optional[int] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase : Dict = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) UpperCAmelCase : Optional[int] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) UpperCAmelCase : str = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) UpperCAmelCase : int = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) UpperCAmelCase : int = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) UpperCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _lowercase( self ) -> Union[str, Any]: @dataclass class UpperCamelCase_ : lowercase = "toto" UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ ) UpperCAmelCase : Tuple = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase : Union[str, Any] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) UpperCAmelCase : Optional[Any] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) UpperCAmelCase : List[Any] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = HfArgumentParser(lowerCamelCase__ ) UpperCAmelCase : Any = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=lowerCamelCase__ ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=lowerCamelCase__ ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=lowerCamelCase__ ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=lowerCamelCase__ ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase : Optional[int] = parser.parse_args([] ) self.assertEqual( lowerCamelCase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) UpperCAmelCase : List[Any] = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(lowerCamelCase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Dict = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=lowerCamelCase__ , type=lowerCamelCase__ ) expected.add_argument("""--bar""" , default=lowerCamelCase__ , type=lowerCamelCase__ , help="""help message""" ) expected.add_argument("""--baz""" , default=lowerCamelCase__ , type=lowerCamelCase__ ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=lowerCamelCase__ ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=lowerCamelCase__ ) UpperCAmelCase : Any = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowerCamelCase__ ) for dataclass_type in dataclass_types: UpperCAmelCase : Tuple = HfArgumentParser(lowerCamelCase__ ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase : Optional[Any] = parser.parse_args([] ) self.assertEqual(lowerCamelCase__ , Namespace(foo=lowerCamelCase__ , bar=lowerCamelCase__ , baz=lowerCamelCase__ , ces=[] , des=[] ) ) UpperCAmelCase : List[str] = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(lowerCamelCase__ , Namespace(foo=12 , bar=3.1_4 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ ) UpperCAmelCase : int = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=lowerCamelCase__ , required=lowerCamelCase__ ) expected.add_argument("""--required_str""" , type=lowerCamelCase__ , required=lowerCamelCase__ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=lowerCamelCase__ , ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : List[str] = HfArgumentParser(lowerCamelCase__ ) UpperCAmelCase : List[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowerCamelCase__ , required=lowerCamelCase__ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=lowerCamelCase__ , ) expected.add_argument("""--opt""" , type=lowerCamelCase__ , default=lowerCamelCase__ ) expected.add_argument("""--baz""" , default="""toto""" , type=lowerCamelCase__ , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=lowerCamelCase__ ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = HfArgumentParser(lowerCamelCase__ ) UpperCAmelCase : int = { '''foo''': 12, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } UpperCAmelCase : List[Any] = parser.parse_dict(lowerCamelCase__ )[0] UpperCAmelCase : Union[str, Any] = BasicExample(**lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def _lowercase( self ) -> str: UpperCAmelCase : Dict = HfArgumentParser(lowerCamelCase__ ) UpperCAmelCase : Union[str, Any] = { '''foo''': 12, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(lowerCamelCase__ , parser.parse_dict , lowerCamelCase__ , allow_extra_keys=lowerCamelCase__ ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[Any] = HfArgumentParser(lowerCamelCase__ ) UpperCAmelCase : Any = { '''foo''': 12, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : int = os.path.join(lowerCamelCase__ , """temp_json""" ) os.mkdir(lowerCamelCase__ ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase : Dict = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] UpperCAmelCase : Optional[int] = BasicExample(**lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def _lowercase( self ) -> Any: UpperCAmelCase : Dict = HfArgumentParser(lowerCamelCase__ ) UpperCAmelCase : Optional[Any] = { '''foo''': 12, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : Optional[Any] = os.path.join(lowerCamelCase__ , """temp_yaml""" ) os.mkdir(lowerCamelCase__ ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase : Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] UpperCAmelCase : Union[str, Any] = BasicExample(**lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def _lowercase( self ) -> Any: UpperCAmelCase : Optional[Any] = HfArgumentParser(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ )
718
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
0
'''simple docstring''' import os import pytest from attr import dataclass a : Optional[Any] = 'us-east-1' # defaults region @dataclass class UpperCamelCase_ : lowercase = 42 lowercase = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' lowercase = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5_500, } lowercase = {**hyperparameters, 'max_steps': 1_000} @property def _lowercase( self ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _lowercase( self ) -> str: return f'''{self.framework}-transfromers-test''' @property def _lowercase( self ) -> str: return f'''./tests/sagemaker/scripts/{self.framework}''' @property def _lowercase( self ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: UpperCAmelCase : Any = SageMakerTestEnvironment(framework=request.cls.framework )
719
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A=None , A=None , **A ) -> str: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase : List[Any] = str(jax.devices()[0] ) UpperCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def _lowercase( self , A ) -> str: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _lowercase( self , A ) -> Tuple: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase : List[str] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase : str = {"""dtype""": jnp.intaa} else: UpperCAmelCase : int = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase : Any = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): UpperCAmelCase : List[str] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase( self , A ) -> Tuple: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): UpperCAmelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _lowercase( self , A ) -> Dict: return map_nested(self._recursive_tensorize , A , map_list=A ) def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A ) UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _lowercase( self , A ) -> "jax.Array": UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A ) UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) UpperCAmelCase : Any = self._consolidate(A ) return column def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A ) UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) for column_name in batch: UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
672
0
'''simple docstring''' import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=64 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Dict: UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Optional[int] = seq_length UpperCAmelCase : int = is_training UpperCAmelCase : List[str] = use_input_mask UpperCAmelCase : Any = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : str = embedding_size UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : Dict = attention_probs_dropout_prob UpperCAmelCase : Any = max_position_embeddings UpperCAmelCase : str = type_vocab_size UpperCAmelCase : Tuple = type_sequence_label_size UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = num_labels UpperCAmelCase : Union[str, Any] = num_choices UpperCAmelCase : Dict = scope def _lowercase( self ) -> Any: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Tuple = None if self.use_input_mask: UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : List[str] = None if self.use_token_type_ids: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : str = None UpperCAmelCase : Optional[Any] = None UpperCAmelCase : List[str] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Tuple: return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Any = MegatronBertModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[str] = model(A , attention_mask=A , token_type_ids=A ) UpperCAmelCase : Union[str, Any] = model(A , token_type_ids=A ) UpperCAmelCase : Tuple = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A ) -> Dict: UpperCAmelCase : Dict = MegatronBertForMaskedLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Optional[Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A ) -> int: UpperCAmelCase : List[Any] = MegatronBertForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Union[str, Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A ) -> Tuple: UpperCAmelCase : Dict = MegatronBertForNextSentencePrediction(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowercase( self , A , A , A , A , A , A , A ) -> Tuple: UpperCAmelCase : List[Any] = MegatronBertForPreTraining(config=A ) model.to(A ) model.eval() UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , token_type_ids=A , labels=A , next_sentence_label=A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowercase( self , A , A , A , A , A , A , A ) -> List[str]: UpperCAmelCase : List[str] = MegatronBertForQuestionAnswering(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase( self , A , A , A , A , A , A , A ) -> Tuple: UpperCAmelCase : Any = self.num_labels UpperCAmelCase : Dict = MegatronBertForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Optional[Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A , A , A , A , A ) -> Tuple: UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : Optional[Any] = MegatronBertForTokenClassification(config=A ) model.to(A ) model.eval() UpperCAmelCase : Union[str, Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Dict = self.num_choices UpperCAmelCase : str = MegatronBertForMultipleChoice(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : Any = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : int = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Any = config_and_inputs UpperCAmelCase : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( lowercase_ , lowercase_ , unittest.TestCase ): lowercase = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowercase = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowercase = True # test_resize_embeddings = False lowercase = False def _lowercase( self , A , A , A=False ) -> Dict: UpperCAmelCase : Dict = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class in get_values(A ): UpperCAmelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A ) UpperCAmelCase : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = MegatronBertModelTester(self ) UpperCAmelCase : Union[str, Any] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> List[str]: self.config_tester.run_common_tests() def _lowercase( self ) -> Any: UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*A ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*A ) def _lowercase( self ) -> Any: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*A ) def _lowercase( self ) -> Dict: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*A ) def _lowercase( self ) -> Any: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*A ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: return torch.tensor( UpperCamelCase__ , dtype=torch.long , device=UpperCamelCase__ , ) a : Any = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( unittest.TestCase ): @slow @unittest.skip("""Model is not available.""" ) def _lowercase( self ) -> Any: UpperCAmelCase : Dict = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: UpperCAmelCase : str = os.path.join(os.environ["""MYDIR"""] , A ) UpperCAmelCase : Any = MegatronBertModel.from_pretrained(A ) model.to(A ) model.half() UpperCAmelCase : Union[str, Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): UpperCAmelCase : Any = model(A )[0] UpperCAmelCase : List[str] = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , A ) UpperCAmelCase : int = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3 ): for jj in range(3 ): UpperCAmelCase : Optional[Any] = output[0, ii, jj] UpperCAmelCase : Union[str, Any] = expected[3 * ii + jj] UpperCAmelCase : Tuple = """ii={} jj={} a={} b={}""".format(A , A , A , A ) self.assertTrue(math.isclose(A , A , rel_tol=A , abs_tol=A ) , msg=A )
720
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : int = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
672
0
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a : Tuple = logging.get_logger(__name__) # TODO Update this a : Dict = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase_ ( __magic_name__ ): lowercase = """esm""" def __init__( self , A=None , A=None , A=None , A=768 , A=12 , A=12 , A=3072 , A=0.1 , A=0.1 , A=1026 , A=0.0_2 , A=1e-12 , A="absolute" , A=True , A=None , A=False , A=False , A=None , A=None , **A , ) -> int: super().__init__(pad_token_id=A , mask_token_id=A , **A ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Tuple = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : List[Any] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : List[str] = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : Any = use_cache UpperCAmelCase : Union[str, Any] = emb_layer_norm_before UpperCAmelCase : int = token_dropout UpperCAmelCase : Any = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) UpperCAmelCase : Optional[Any] = EsmFoldConfig() elif isinstance(A , A ): UpperCAmelCase : Union[str, Any] = EsmFoldConfig(**A ) UpperCAmelCase : Dict = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) UpperCAmelCase : List[str] = get_default_vocab_list() else: UpperCAmelCase : Optional[Any] = vocab_list else: UpperCAmelCase : Tuple = None UpperCAmelCase : List[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , A ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = super().to_dict() if isinstance(self.esmfold_config , A ): UpperCAmelCase : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase_ : lowercase = None lowercase = True lowercase = False lowercase = False lowercase = False lowercase = 0 lowercase = True lowercase = False lowercase = 128 lowercase = None def _lowercase( self ) -> List[Any]: if self.trunk is None: UpperCAmelCase : Union[str, Any] = TrunkConfig() elif isinstance(self.trunk , A ): UpperCAmelCase : Tuple = TrunkConfig(**self.trunk ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : str = asdict(self ) UpperCAmelCase : Any = self.trunk.to_dict() return output @dataclass class UpperCamelCase_ : lowercase = 48 lowercase = 1_024 lowercase = 128 lowercase = 32 lowercase = 32 lowercase = 32 lowercase = 0 lowercase = 0 lowercase = False lowercase = 4 lowercase = 128 lowercase = None def _lowercase( self ) -> Dict: if self.structure_module is None: UpperCAmelCase : List[Any] = StructureModuleConfig() elif isinstance(self.structure_module , A ): UpperCAmelCase : int = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) UpperCAmelCase : Optional[Any] = self.sequence_state_dim // self.sequence_head_width UpperCAmelCase : Tuple = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : List[Any] = asdict(self ) UpperCAmelCase : Tuple = self.structure_module.to_dict() return output @dataclass class UpperCamelCase_ : lowercase = 384 lowercase = 128 lowercase = 16 lowercase = 128 lowercase = 12 lowercase = 4 lowercase = 8 lowercase = 0.1 lowercase = 8 lowercase = 1 lowercase = 2 lowercase = 7 lowercase = 10 lowercase = 1e-8 lowercase = 1e5 def _lowercase( self ) -> Any: return asdict(self ) def __lowerCamelCase ( ) -> Tuple: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
721
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
672
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=None , A=True , ) -> Tuple: UpperCAmelCase : Union[str, Any] = size if size is not None else {"""shortest_edge""": 20} UpperCAmelCase : Tuple = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} UpperCAmelCase : Dict = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Optional[int] = image_size UpperCAmelCase : Any = min_resolution UpperCAmelCase : Optional[int] = max_resolution UpperCAmelCase : str = do_resize UpperCAmelCase : str = size UpperCAmelCase : int = do_center_crop UpperCAmelCase : int = crop_size UpperCAmelCase : List[str] = do_flip_channel_order def _lowercase( self ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = MobileViTImageProcessor if is_vision_available() else None def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = MobileViTImageProcessingTester(self ) @property def _lowercase( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , """do_resize""" ) ) self.assertTrue(hasattr(A , """size""" ) ) self.assertTrue(hasattr(A , """do_center_crop""" ) ) self.assertTrue(hasattr(A , """center_crop""" ) ) self.assertTrue(hasattr(A , """do_flip_channel_order""" ) ) def _lowercase( self ) -> int: UpperCAmelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _lowercase( self ) -> Optional[Any]: pass def _lowercase( self ) -> str: # Initialize image_processing UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input UpperCAmelCase : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCAmelCase : int = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowercase( self ) -> int: # Initialize image_processing UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input UpperCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCAmelCase : List[str] = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowercase( self ) -> List[Any]: # Initialize image_processing UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCAmelCase : List[str] = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
700
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
672
0
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def __lowerCamelCase ( _lowercase ) -> Tuple: # getting number of pixels in the image UpperCAmelCase : List[Any] = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_lowercase ): for j in range(_lowercase ): UpperCAmelCase : int = [2_5_5, 2_5_5, 2_5_5] - img[i][j] return img if __name__ == "__main__": # read original image a : Optional[int] = imread("""image_data/lena.jpg""", 1) # convert to its negative a : List[str] = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
701
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
0