code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : int = logging.get_logger(__name__) a : Optional[int] = { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'gpt_neox_japanese' def __init__( self , A=32000 , A=2560 , A=32 , A=32 , A=4 , A="gelu" , A=1.0_0 , A=10000 , A=2048 , A=0.0_2 , A=1e-5 , A=True , A=31996 , A=31999 , A=0.1 , A=0.0 , **A , ) -> List[Any]: super().__init__(bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : int = max_position_embeddings UpperCAmelCase : Dict = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Any = intermediate_multiple_size UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : List[str] = rotary_pct UpperCAmelCase : int = rotary_emb_base UpperCAmelCase : Optional[int] = initializer_range UpperCAmelCase : List[Any] = layer_norm_eps UpperCAmelCase : Any = use_cache UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Union[str, Any] = hidden_dropout
702
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a : str = """platform""" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> str: if attention_mask is None: UpperCAmelCase : Optional[int] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: UpperCAmelCase : Optional[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: UpperCAmelCase : Any = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=16 , A=2 , A=4 , A=4 , A="gelu" , A=0.1 , A=0.1 , A=32 , A=2 , A=1 , A=0 , A=0.0_2 , ) -> Optional[Any]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : int = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : int = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : Optional[Any] = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : str = max_position_embeddings UpperCAmelCase : Optional[int] = eos_token_id UpperCAmelCase : int = pad_token_id UpperCAmelCase : Optional[int] = bos_token_id UpperCAmelCase : int = initializer_range def _lowercase( self ) -> Tuple: UpperCAmelCase : List[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) UpperCAmelCase : Optional[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) UpperCAmelCase : List[Any] = shift_tokens_right(A , 1 , 2 ) UpperCAmelCase : Dict = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=A , ) UpperCAmelCase : int = prepare_blenderbot_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase( self , A , A , A ) -> List[str]: UpperCAmelCase : str = 20 UpperCAmelCase : List[str] = model_class_name(A ) UpperCAmelCase : List[str] = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase : int = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase : Dict = model.init_cache(decoder_input_ids.shape[0] , A , A ) UpperCAmelCase : List[str] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) UpperCAmelCase : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase : int = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) UpperCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) UpperCAmelCase : Tuple = model.decode( decoder_input_ids[:, -1:] , A , decoder_attention_mask=A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=A , ) UpperCAmelCase : Optional[Any] = model.decode(A , A ) UpperCAmelCase : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def _lowercase( self , A , A , A ) -> int: UpperCAmelCase : Optional[int] = 20 UpperCAmelCase : Any = model_class_name(A ) UpperCAmelCase : Tuple = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase : Tuple = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase : List[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase : List[Any] = model.init_cache(decoder_input_ids.shape[0] , A , A ) UpperCAmelCase : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase : str = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) UpperCAmelCase : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) UpperCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=A , decoder_position_ids=A , ) UpperCAmelCase : List[str] = model.decode(A , A , decoder_attention_mask=A ) UpperCAmelCase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class UpperCamelCase_ ( unittest.TestCase ): lowercase = 99 def _lowercase( self ) -> List[Any]: UpperCAmelCase : Dict = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) UpperCAmelCase : Tuple = input_ids.shape[0] UpperCAmelCase : Any = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : int = self._get_config_and_data() UpperCAmelCase : List[str] = FlaxBlenderbotForConditionalGeneration(A ) UpperCAmelCase : Optional[Any] = lm_model(input_ids=A ) UpperCAmelCase : List[Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , A ) def _lowercase( self ) -> str: UpperCAmelCase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) UpperCAmelCase : List[str] = FlaxBlenderbotForConditionalGeneration(A ) UpperCAmelCase : List[Any] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) UpperCAmelCase : Dict = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) UpperCAmelCase : Union[str, Any] = lm_model(input_ids=A , decoder_input_ids=A ) UpperCAmelCase : Optional[Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) UpperCAmelCase : Any = shift_tokens_right(A , 1 , 2 ) UpperCAmelCase : str = np.equal(A , 1 ).astype(np.floataa ).sum() UpperCAmelCase : Any = np.equal(A , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(A , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class UpperCamelCase_ ( __magic_name__ , unittest.TestCase , __magic_name__ ): lowercase = True lowercase = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _lowercase( self ) -> str: UpperCAmelCase : List[str] = FlaxBlenderbotModelTester(self ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(A , A , A ) def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(A , A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase : Any = self._prepare_for_class(A , A ) UpperCAmelCase : List[str] = model_class(A ) @jax.jit def encode_jitted(A , A=None , **A ): return model.encode(input_ids=A , attention_mask=A ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase : Optional[int] = encode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase : Union[str, Any] = encode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase : Dict = model_class(A ) UpperCAmelCase : Optional[int] = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) UpperCAmelCase : List[Any] = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(A , A , A ): return model.decode( decoder_input_ids=A , decoder_attention_mask=A , encoder_outputs=A , ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase : str = decode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase : Optional[Any] = decode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase( self ) -> Optional[Any]: for model_class_name in self.all_model_classes: UpperCAmelCase : List[str] = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids UpperCAmelCase : Union[str, Any] = np.ones((1, 1) ) * model.config.eos_token_id UpperCAmelCase : Tuple = model(A ) self.assertIsNotNone(A ) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" ) @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} UpperCAmelCase : Tuple = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} UpperCAmelCase : int = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=A ) UpperCAmelCase : Any = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) UpperCAmelCase : Union[str, Any] = ["""Sam"""] UpperCAmelCase : Any = tokenizer(A , return_tensors="""jax""" ) UpperCAmelCase : Optional[Any] = model.generate(**A , **A ) UpperCAmelCase : Tuple = """Sam is a great name. It means \"sun\" in Gaelic.""" UpperCAmelCase : List[Any] = tokenizer.batch_decode(A , **A ) assert generated_txt[0].strip() == tgt_text
703
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations UpperCAmelCase : List[Any] = tpu_short_seq_length
672
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: # Initialise PyTorch model UpperCAmelCase : Dict = FunnelConfig.from_json_file(_lowercase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase : Tuple = FunnelBaseModel(_lowercase ) if base_model else FunnelModel(_lowercase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(_lowercase , _lowercase , _lowercase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not.""" ) a : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
704
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: a : List[str] = None a : Dict = logging.get_logger(__name__) a : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Any = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/tokenizer.json""", }, } a : int = { """camembert-base""": 5_1_2, } a : Dict = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = CamembertTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=["<s>NOTUSED", "</s>NOTUSED"] , **A , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Optional[int] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , sep_token=A , cls_token=A , unk_token=A , pad_token=A , mask_token=A , additional_special_tokens=A , **A , ) UpperCAmelCase : Optional[Any] = vocab_file UpperCAmelCase : List[str] = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Dict = [self.sep_token_id] UpperCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : Union[str, Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
705
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
0
def __lowerCamelCase ( _lowercase ) -> int: return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def __lowerCamelCase ( _lowercase ) -> bool: UpperCAmelCase : int = 0 UpperCAmelCase : Union[str, Any] = number while duplicate > 0: UpperCAmelCase : List[str] = divmod(_lowercase , 1_0 ) fact_sum += factorial(_lowercase ) return fact_sum == number if __name__ == "__main__": print("""Program to check whether a number is a Krisnamurthy Number or not.""") a : Optional[int] = int(input("""Enter number: """).strip()) print( F'''{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.''' )
706
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
0
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
707
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
0
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a : Optional[Any] = logging.get_logger(__name__) a : Any = { """huggingface/time-series-transformer-tourism-monthly""": ( """https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json""" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'time_series_transformer' lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , A = None , A = None , A = "student_t" , A = "nll" , A = 1 , A = [1, 2, 3, 4, 5, 6, 7] , A = "mean" , A = 0 , A = 0 , A = 0 , A = 0 , A = None , A = None , A = 32 , A = 32 , A = 2 , A = 2 , A = 2 , A = 2 , A = True , A = "gelu" , A = 64 , A = 0.1 , A = 0.1 , A = 0.1 , A = 0.1 , A = 0.1 , A = 100 , A = 0.0_2 , A=True , **A , ) -> int: # time series specific configuration UpperCAmelCase : List[Any] = prediction_length UpperCAmelCase : List[str] = context_length or prediction_length UpperCAmelCase : Any = distribution_output UpperCAmelCase : Union[str, Any] = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Any = num_time_features UpperCAmelCase : str = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Union[str, Any] = num_dynamic_real_features UpperCAmelCase : Union[str, Any] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(A ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) UpperCAmelCase : Union[str, Any] = cardinality else: UpperCAmelCase : str = [0] if embedding_dimension and num_static_categorical_features > 0: if len(A ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) UpperCAmelCase : List[str] = embedding_dimension else: UpperCAmelCase : Optional[Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : int = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : str = input_size * len(A ) + self._number_of_features UpperCAmelCase : List[str] = d_model UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_attention_heads UpperCAmelCase : int = encoder_ffn_dim UpperCAmelCase : Any = decoder_ffn_dim UpperCAmelCase : Dict = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : Optional[Any] = dropout UpperCAmelCase : Dict = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Union[str, Any] = encoder_layerdrop UpperCAmelCase : Optional[Any] = decoder_layerdrop UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : List[str] = init_std UpperCAmelCase : Optional[int] = use_cache super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
708
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
0
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint a : int = { """169M""": 1_2, """430M""": 2_4, """1B5""": 2_4, """3B""": 3_2, """7B""": 3_2, """14B""": 4_0, } a : List[str] = { """169M""": 7_6_8, """430M""": 1_0_2_4, """1B5""": 2_0_4_8, """3B""": 2_5_6_0, """7B""": 4_0_9_6, """14B""": 5_1_2_0, } def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = list(state_dict.keys() ) for name in state_dict_keys: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) # emb -> embedding if name.startswith("""emb.""" ): UpperCAmelCase : Any = name.replace("""emb.""" , """embeddings.""" ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("""blocks.0.ln0""" ): UpperCAmelCase : Dict = name.replace("""blocks.0.ln0""" , """blocks.0.pre_ln""" ) # att -> attention UpperCAmelCase : Optional[Any] = re.sub(R"""blocks\.(\d+)\.att""" , R"""blocks.\1.attention""" , _lowercase ) # ffn -> feed_forward UpperCAmelCase : List[Any] = re.sub(R"""blocks\.(\d+)\.ffn""" , R"""blocks.\1.feed_forward""" , _lowercase ) # time_mix_k -> time_mix_key and reshape if name.endswith(""".time_mix_k""" ): UpperCAmelCase : List[str] = name.replace(""".time_mix_k""" , """.time_mix_key""" ) # time_mix_v -> time_mix_value and reshape if name.endswith(""".time_mix_v""" ): UpperCAmelCase : Any = name.replace(""".time_mix_v""" , """.time_mix_value""" ) # time_mix_r -> time_mix_key and reshape if name.endswith(""".time_mix_r""" ): UpperCAmelCase : Optional[Any] = name.replace(""".time_mix_r""" , """.time_mix_receptance""" ) if name != "head.weight": UpperCAmelCase : Tuple = """rwkv.""" + name UpperCAmelCase : Union[str, Any] = weight return state_dict def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=False , _lowercase=None ) -> Dict: # 1. If possible, build the tokenizer. if tokenizer_file is None: print("""No `--tokenizer_file` provided, we will use the default tokenizer.""" ) UpperCAmelCase : Dict = 5_0_2_7_7 UpperCAmelCase : str = AutoTokenizer.from_pretrained("""EleutherAI/gpt-neox-20b""" ) else: UpperCAmelCase : List[Any] = PreTrainedTokenizerFast(tokenizer_file=_lowercase ) UpperCAmelCase : int = len(_lowercase ) tokenizer.save_pretrained(_lowercase ) # 2. Build the config UpperCAmelCase : Dict = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: UpperCAmelCase : Any = candidate break if size is None: raise ValueError("""Could not infer the size, please provide it with the `--size` argument.""" ) if size not in possible_sizes: raise ValueError(F'''`size` should be one of {possible_sizes}, got {size}.''' ) UpperCAmelCase : Any = RwkvConfig( vocab_size=_lowercase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(_lowercase ) # 3. Download model file then convert state_dict UpperCAmelCase : Optional[int] = hf_hub_download(_lowercase , _lowercase ) UpperCAmelCase : int = torch.load(_lowercase , map_location="""cpu""" ) UpperCAmelCase : List[str] = convert_state_dict(_lowercase ) # 4. Split in shards and save UpperCAmelCase : Union[str, Any] = shard_checkpoint(_lowercase ) for shard_file, shard in shards.items(): torch.save(_lowercase , os.path.join(_lowercase , _lowercase ) ) if index is not None: UpperCAmelCase : Optional[Any] = os.path.join(_lowercase , _lowercase ) # Save the index as well with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: UpperCAmelCase : Any = json.dumps(_lowercase , indent=2 , sort_keys=_lowercase ) + """\n""" f.write(_lowercase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( """Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model.""" ) UpperCAmelCase : Optional[int] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: UpperCAmelCase : Union[str, Any] = torch.load(os.path.join(_lowercase , _lowercase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_lowercase , _lowercase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("""Please provide a `model_name` to push the model to the Hub.""" ) UpperCAmelCase : Any = AutoModelForCausalLM.from_pretrained(_lowercase ) model.push_to_hub(_lowercase , max_shard_size="""2GB""" ) tokenizer.push_to_hub(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) a : Any = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
709
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
0
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> float: return base * power(_lowercase , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") a : str = int(input("""Enter the base: """).strip()) a : str = int(input("""Enter the exponent: """).strip()) a : Dict = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents a : List[str] = 1 / result print(F'''{base} to the power of {exponent} is {result}''')
710
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: return ("This is a test", "This is a test") def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """</s>""" UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(A ) , 1103 ) def _lowercase( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> str: return ("This is a test", "This is a test") def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : str = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
672
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class UpperCamelCase_ ( __magic_name__ ): lowercase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
711
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Any = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : int = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ConvNextVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase : Any = model_class(A ) model.to(A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : List[str] = False UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
672
0
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging a : int = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'encodec' def __init__( self , A=[1.5, 3.0, 6.0, 12.0, 24.0] , A=24000 , A=1 , A=False , A=None , A=None , A=128 , A=32 , A=1 , A=[8, 5, 4, 2] , A="weight_norm" , A=7 , A=7 , A=3 , A=2 , A=True , A="reflect" , A=2 , A=2 , A=1.0 , A=1024 , A=None , A=True , **A , ) -> Optional[Any]: UpperCAmelCase : int = target_bandwidths UpperCAmelCase : str = sampling_rate UpperCAmelCase : Union[str, Any] = audio_channels UpperCAmelCase : Optional[int] = normalize UpperCAmelCase : Optional[Any] = chunk_length_s UpperCAmelCase : Any = overlap UpperCAmelCase : int = hidden_size UpperCAmelCase : int = num_filters UpperCAmelCase : Optional[int] = num_residual_layers UpperCAmelCase : Optional[Any] = upsampling_ratios UpperCAmelCase : Optional[int] = norm_type UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : str = last_kernel_size UpperCAmelCase : Optional[Any] = residual_kernel_size UpperCAmelCase : Optional[int] = dilation_growth_rate UpperCAmelCase : List[str] = use_causal_conv UpperCAmelCase : Dict = pad_mode UpperCAmelCase : Optional[Any] = compress UpperCAmelCase : int = num_lstm_layers UpperCAmelCase : Any = trim_right_ratio UpperCAmelCase : Optional[Any] = codebook_size UpperCAmelCase : Any = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase : List[str] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**A ) @property def _lowercase( self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def _lowercase( self ) -> int: UpperCAmelCase : List[str] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def _lowercase( self ) -> int: return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
712
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
713
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( UpperCAmelCase ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 10.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
714
'''simple docstring''' a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a : Optional[Any] = True a : List[Any] = False def __lowerCamelCase ( _lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : List[str] = chain(next_number(_lowercase ) ) UpperCAmelCase : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase : List[str] = number_chain number *= 1_0 return number_chain def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , _lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
672
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer a : Union[str, Any] = logging.get_logger(__name__) a : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a : Optional[int] = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } a : Union[str, Any] = { """squeezebert/squeezebert-uncased""": 5_1_2, """squeezebert/squeezebert-mnli""": 5_1_2, """squeezebert/squeezebert-mnli-headless""": 5_1_2, } a : Tuple = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = SqueezeBertTokenizer def __init__( self , A=None , A=None , A=True , A="[UNK]" , A="[SEP]" , A="[PAD]" , A="[CLS]" , A="[MASK]" , A=True , A=None , **A , ) -> Union[str, Any]: super().__init__( A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , ) UpperCAmelCase : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , A ) != do_lower_case or normalizer_state.get("""strip_accents""" , A ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , A ) != tokenize_chinese_chars ): UpperCAmelCase : Tuple = getattr(A , normalizer_state.pop("""type""" ) ) UpperCAmelCase : Optional[int] = do_lower_case UpperCAmelCase : Any = strip_accents UpperCAmelCase : List[Any] = tokenize_chinese_chars UpperCAmelCase : Dict = normalizer_class(**A ) UpperCAmelCase : int = do_lower_case def _lowercase( self , A , A=None ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[Any] = [self.sep_token_id] UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase( self , A , A = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(A , name=A ) return tuple(A )
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
'''simple docstring''' import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A=None , A=None , **A ) -> str: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase : List[Any] = str(jax.devices()[0] ) UpperCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def _lowercase( self , A ) -> str: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _lowercase( self , A ) -> Tuple: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase : List[str] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase : str = {"""dtype""": jnp.intaa} else: UpperCAmelCase : int = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase : Any = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): UpperCAmelCase : List[str] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase( self , A ) -> Tuple: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): UpperCAmelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _lowercase( self , A ) -> Dict: return map_nested(self._recursive_tensorize , A , map_list=A ) def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A ) UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _lowercase( self , A ) -> "jax.Array": UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A ) UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) UpperCAmelCase : Any = self._consolidate(A ) return column def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A ) UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) for column_name in batch: UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
716
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Any = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
672
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> str: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. UpperCAmelCase : Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase : List[Any] = DisjunctiveConstraint(A ) self.assertTrue(isinstance(dc.token_ids , A ) ) with self.assertRaises(A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _lowercase( self ) -> Dict: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). UpperCAmelCase : List[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(A ): DisjunctiveConstraint(A ) # fails here def _lowercase( self ) -> Tuple: UpperCAmelCase : List[Any] = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase : List[Any] = DisjunctiveConstraint(A ) UpperCAmelCase : List[Any] = dc.update(1 ) UpperCAmelCase : Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase : Optional[Any] = dc.update(2 ) UpperCAmelCase : List[str] = stepped is True and completed is False and reset is False self.assertTrue(A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase : Any = dc.update(3 ) UpperCAmelCase : str = stepped is True and completed is True and reset is False self.assertTrue(A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : str = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase : str = DisjunctiveConstraint(A ) UpperCAmelCase : Any = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase : Optional[int] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase : Any = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase : Tuple = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase : Dict = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase : Tuple = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = VideoToVideoSDPipeline lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'} ) - {'image', 'width', 'height'} lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'} ) - {'image'} lowercase = PipelineTesterMixin.required_optional_params - {'latents'} lowercase = False # No `output_type`. lowercase = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def _lowercase( self ) -> int: torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCAmelCase : Any = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=A , set_alpha_to_one=A , ) torch.manual_seed(0 ) UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) UpperCAmelCase : str = CLIPTextModel(A ) UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase : Union[str, Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def _lowercase( self , A , A=0 ) -> Optional[Any]: # 3 frames UpperCAmelCase : int = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(A ) ).to(A ) if str(A ).startswith("""mps""" ): UpperCAmelCase : str = torch.manual_seed(A ) else: UpperCAmelCase : Optional[Any] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def _lowercase( self ) -> str: UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Optional[Any] = self.get_dummy_components() UpperCAmelCase : Any = VideoToVideoSDPipeline(**A ) UpperCAmelCase : Tuple = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Any = self.get_dummy_inputs(A ) UpperCAmelCase : List[Any] = """np""" UpperCAmelCase : str = sd_pipe(**A ).frames UpperCAmelCase : Optional[Any] = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) UpperCAmelCase : List[Any] = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _lowercase( self ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A , expected_max_diff=5e-3 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def _lowercase( self ) -> List[str]: pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def _lowercase( self ) -> Any: pass def _lowercase( self ) -> int: return super().test_progress_bar() @slow @skip_mps class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[int] = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames UpperCAmelCase : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase : List[str] = torch.randn((1, 10, 3, 1024, 576) , generator=A ) UpperCAmelCase : Union[str, Any] = video.to("""cuda""" ) UpperCAmelCase : int = """Spiderman is surfing""" UpperCAmelCase : Optional[int] = pipe(A , video=A , generator=A , num_inference_steps=3 , output_type="""pt""" ).frames UpperCAmelCase : List[str] = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
718
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase_ ( unittest.TestCase ): @property def _lowercase( self ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _lowercase( self ) -> Dict: UpperCAmelCase : Tuple = self.dummy_uncond_unet UpperCAmelCase : Dict = ScoreSdeVeScheduler() UpperCAmelCase : int = ScoreSdeVePipeline(unet=A , scheduler=A ) sde_ve.to(A ) sde_ve.set_progress_bar_config(disable=A ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Any = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=A ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Dict = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=A , return_dict=A )[ 0 ] UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> int: UpperCAmelCase : List[str] = """google/ncsnpp-church-256""" UpperCAmelCase : Dict = UNetaDModel.from_pretrained(A ) UpperCAmelCase : List[str] = ScoreSdeVeScheduler.from_pretrained(A ) UpperCAmelCase : Any = ScoreSdeVePipeline(unet=A , scheduler=A ) sde_ve.to(A ) sde_ve.set_progress_bar_config(disable=A ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = sde_ve(num_inference_steps=10 , output_type="""numpy""" , generator=A ).images UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : List[Any] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
719
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A=None , A=None , **A ) -> str: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase : List[Any] = str(jax.devices()[0] ) UpperCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def _lowercase( self , A ) -> str: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _lowercase( self , A ) -> Tuple: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase : List[str] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase : str = {"""dtype""": jnp.intaa} else: UpperCAmelCase : int = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase : Any = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): UpperCAmelCase : List[str] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase( self , A ) -> Tuple: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): UpperCAmelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _lowercase( self , A ) -> Dict: return map_nested(self._recursive_tensorize , A , map_list=A ) def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A ) UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _lowercase( self , A ) -> "jax.Array": UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A ) UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) UpperCAmelCase : Any = self._consolidate(A ) return column def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A ) UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) for column_name in batch: UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
672
0
'''simple docstring''' import os import platform import sys a : List[str] = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
720
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : int = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
672
0
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) a : Dict = None a : str = { """7B""": 1_1_0_0_8, """13B""": 1_3_8_2_4, """30B""": 1_7_9_2_0, """65B""": 2_2_0_1_6, """70B""": 2_8_6_7_2, } a : Tuple = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def __lowerCamelCase ( _lowercase , _lowercase=1 , _lowercase=2_5_6 ) -> int: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def __lowerCamelCase ( _lowercase ) -> List[Any]: with open(_lowercase , """r""" ) as f: return json.load(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Dict: with open(_lowercase , """w""" ) as f: json.dump(_lowercase , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=True ) -> Dict: os.makedirs(_lowercase , exist_ok=_lowercase ) UpperCAmelCase : int = os.path.join(_lowercase , """tmp""" ) os.makedirs(_lowercase , exist_ok=_lowercase ) UpperCAmelCase : Optional[int] = read_json(os.path.join(_lowercase , """params.json""" ) ) UpperCAmelCase : Dict = NUM_SHARDS[model_size] UpperCAmelCase : int = params["""n_layers"""] UpperCAmelCase : str = params["""n_heads"""] UpperCAmelCase : Optional[Any] = n_heads // num_shards UpperCAmelCase : List[str] = params["""dim"""] UpperCAmelCase : str = dim // n_heads UpperCAmelCase : Optional[int] = 1_0_0_0_0.0 UpperCAmelCase : str = 1.0 / (base ** (torch.arange(0 , _lowercase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: UpperCAmelCase : List[Any] = params["""n_kv_heads"""] # for GQA / MQA UpperCAmelCase : str = n_heads_per_shard // num_key_value_heads UpperCAmelCase : int = dim // num_key_value_heads else: # compatibility with other checkpoints UpperCAmelCase : Optional[int] = n_heads UpperCAmelCase : Dict = n_heads_per_shard UpperCAmelCase : Union[str, Any] = dim # permute for sliced rotary def permute(_lowercase , _lowercase=n_heads , _lowercase=dim , _lowercase=dim ): return w.view(_lowercase , dima // n_heads // 2 , 2 , _lowercase ).transpose(1 , 2 ).reshape(_lowercase , _lowercase ) print(F'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) UpperCAmelCase : Tuple = torch.load(os.path.join(_lowercase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded UpperCAmelCase : Optional[Any] = [ torch.load(os.path.join(_lowercase , F'''consolidated.{i:02d}.pth''' ) , map_location="""cpu""" ) for i in range(_lowercase ) ] UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : Any = {"""weight_map""": {}} for layer_i in range(_lowercase ): UpperCAmelCase : Dict = F'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded UpperCAmelCase : List[Any] = { F'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wq.weight'''] ), F'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wk.weight'''] ), F'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[F'''layers.{layer_i}.attention.wv.weight'''], F'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[F'''layers.{layer_i}.attention.wo.weight'''], F'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w1.weight'''], F'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w2.weight'''], F'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w3.weight'''], F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[F'''layers.{layer_i}.attention_norm.weight'''], F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[F'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. UpperCAmelCase : List[str] = { F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.attention_norm.weight''' ].clone(), F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } UpperCAmelCase : int = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wq.weight'''].view(_lowercase , _lowercase , _lowercase ) for i in range(_lowercase ) ] , dim=0 , ).reshape(_lowercase , _lowercase ) ) UpperCAmelCase : Optional[Any] = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wk.weight'''].view( _lowercase , _lowercase , _lowercase ) for i in range(_lowercase ) ] , dim=0 , ).reshape(_lowercase , _lowercase ) , _lowercase , _lowercase , _lowercase , ) UpperCAmelCase : List[str] = torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wv.weight'''].view( _lowercase , _lowercase , _lowercase ) for i in range(_lowercase ) ] , dim=0 , ).reshape(_lowercase , _lowercase ) UpperCAmelCase : Tuple = torch.cat( [loaded[i][F'''layers.{layer_i}.attention.wo.weight'''] for i in range(_lowercase )] , dim=1 ) UpperCAmelCase : Optional[int] = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(_lowercase )] , dim=0 ) UpperCAmelCase : Dict = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(_lowercase )] , dim=1 ) UpperCAmelCase : Optional[int] = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(_lowercase )] , dim=0 ) UpperCAmelCase : Optional[int] = inv_freq for k, v in state_dict.items(): UpperCAmelCase : List[str] = filename param_count += v.numel() torch.save(_lowercase , os.path.join(_lowercase , _lowercase ) ) UpperCAmelCase : Any = F'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded UpperCAmelCase : Any = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: UpperCAmelCase : Any = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(_lowercase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(_lowercase )] , dim=0 ), } for k, v in state_dict.items(): UpperCAmelCase : Any = filename param_count += v.numel() torch.save(_lowercase , os.path.join(_lowercase , _lowercase ) ) # Write configs UpperCAmelCase : str = {"""total_size""": param_count * 2} write_json(_lowercase , os.path.join(_lowercase , """pytorch_model.bin.index.json""" ) ) UpperCAmelCase : List[str] = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 UpperCAmelCase : Optional[int] = params["""multiple_of"""] if """multiple_of""" in params else 2_5_6 UpperCAmelCase : Any = LlamaConfig( hidden_size=_lowercase , intermediate_size=compute_intermediate_size(_lowercase , _lowercase , _lowercase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=_lowercase , ) config.save_pretrained(_lowercase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) UpperCAmelCase : Tuple = LlamaForCausalLM.from_pretrained(_lowercase , torch_dtype=torch.floataa , low_cpu_mem_usage=_lowercase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(_lowercase , safe_serialization=_lowercase ) shutil.rmtree(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: # Initialize the tokenizer based on the `spm` model UpperCAmelCase : Union[str, Any] = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) UpperCAmelCase : List[str] = tokenizer_class(_lowercase ) tokenizer.save_pretrained(_lowercase ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=_lowercase , help="""Whether or not to save using `safetensors`.""" ) UpperCAmelCase : Tuple = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) UpperCAmelCase : Optional[int] = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , _lowercase ) if __name__ == "__main__": main()
721
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
672
0
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
672
0
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=4 , ) -> Dict: UpperCAmelCase : Any = parent UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : List[str] = seq_length UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : str = use_attention_mask UpperCAmelCase : Dict = use_token_type_ids UpperCAmelCase : Optional[Any] = use_labels UpperCAmelCase : Dict = vocab_size UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Dict = hidden_act UpperCAmelCase : Union[str, Any] = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : Dict = type_vocab_size UpperCAmelCase : List[str] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : Optional[int] = num_choices def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_attention_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowercase( self ) -> int: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = True lowercase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase( self ) -> int: UpperCAmelCase : Dict = FlaxRoFormerModelTester(self ) @slow def _lowercase( self ) -> int: for model_class_name in self.all_model_classes: UpperCAmelCase : str = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=A ) UpperCAmelCase : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : int = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) UpperCAmelCase : List[str] = jnp.array([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase : List[Any] = model(A )[0] UpperCAmelCase : Dict = 50000 UpperCAmelCase : Any = (1, 6, vocab_size) self.assertEqual(output.shape , A ) UpperCAmelCase : int = jnp.array( [[[-0.1_2_0_5, -1.0_2_6_5, 0.2_9_2_2], [-1.5_1_3_4, 0.1_9_7_4, 0.1_5_1_9], [-5.0_1_3_5, -3.9_0_0_3, -0.8_4_0_4]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , A , atol=1e-4 ) )
701
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
0
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class UpperCamelCase_ : def __init__( self ) -> str: UpperCAmelCase : int = {} def _lowercase( self , A ) -> None: UpperCAmelCase : Any = {} def _lowercase( self , A , A , A ) -> None: if nodea not in self.connections: self.add_node(A ) if nodea not in self.connections: self.add_node(A ) UpperCAmelCase : List[str] = probability def _lowercase( self ) -> list[str]: return list(self.connections ) def _lowercase( self , A ) -> str: UpperCAmelCase : List[str] = 0 UpperCAmelCase : Dict = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> dict[str, int]: UpperCAmelCase : Optional[Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : Optional[Any] = Counter(graph.get_nodes() ) UpperCAmelCase : List[Any] = start for _ in range(_lowercase ): UpperCAmelCase : Tuple = graph.transition(_lowercase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
0
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase_ : def __init__( self , A , A=13 , A=64 , A=2 , A=3 , A=True , A=True , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=10 , A=0.0_2 , A=[1, 16, 4, 4] , A=None , ) -> Any: UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : Optional[Any] = num_channels UpperCAmelCase : int = is_training UpperCAmelCase : Any = use_labels UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : List[str] = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Dict = type_sequence_label_size UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Optional[int] = scope UpperCAmelCase : List[Any] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size UpperCAmelCase : Optional[Any] = (self.image_size // 32) ** 2 UpperCAmelCase : List[Any] = num_patches + 1 def _lowercase( self ) -> Dict: UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Dict = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> int: UpperCAmelCase : List[str] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=A , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : str = ViTHybridModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[str] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A ) -> int: UpperCAmelCase : str = self.type_sequence_label_size UpperCAmelCase : int = ViTHybridForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase : str = config_and_inputs UpperCAmelCase : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = ViTHybridModelTester(self ) UpperCAmelCase : Dict = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def _lowercase( self ) -> Any: pass def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Any = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Tuple = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : str = [*signature.parameters.keys()] UpperCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> Any: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int = _config_zero_init(A ) for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(config=A ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": UpperCAmelCase : str = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def _lowercase( self ) -> str: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : List[str] = ViTHybridModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Tuple: UpperCAmelCase : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> Optional[int]: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowercase( self ) -> List[str]: UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( A ) UpperCAmelCase : int = self.default_image_processor UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : Tuple = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : str = model(**A ) # verify the logits UpperCAmelCase : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : int = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) ) @slow @require_accelerate def _lowercase( self ) -> List[str]: UpperCAmelCase : Any = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) UpperCAmelCase : Optional[int] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : List[str] = image_processor(images=A , return_tensors="""pt""" ) UpperCAmelCase : Any = model(**A ) UpperCAmelCase : List[Any] = outputs.logits # model predicts one of the 1000 ImageNet classes UpperCAmelCase : Tuple = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
703
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations UpperCAmelCase : List[Any] = tpu_short_seq_length
672
0
from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.ndarray: UpperCAmelCase : List[str] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : Optional[Any] = np.zeros((n + 1,) ) UpperCAmelCase : Any = ya UpperCAmelCase : Any = xa for k in range(_lowercase ): UpperCAmelCase : List[Any] = y[k] + step_size * ode_func(_lowercase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
704
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
0
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a : int = logging.get_logger(__name__) a : str = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } a : Dict = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } a : Tuple = { """vinai/phobert-base""": 2_5_6, """vinai/phobert-large""": 2_5_6, } def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = set() UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase : Union[str, Any] = char UpperCAmelCase : str = set(_lowercase ) return pairs class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A , A , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[str]: super().__init__( bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : str = vocab_file UpperCAmelCase : Any = merges_file UpperCAmelCase : Optional[int] = {} UpperCAmelCase : Dict = 0 UpperCAmelCase : List[Any] = 1 UpperCAmelCase : int = 2 UpperCAmelCase : Tuple = 3 self.add_from_file(A ) UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(A , encoding="""utf-8""" ) as merges_handle: UpperCAmelCase : str = merges_handle.read().split("""\n""" )[:-1] UpperCAmelCase : List[Any] = [tuple(merge.split()[:-1] ) for merge in merges] UpperCAmelCase : Any = dict(zip(A , range(len(A ) ) ) ) UpperCAmelCase : Union[str, Any] = {} def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[Any] = [self.cls_token_id] UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Tuple = [self.sep_token_id] UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowercase( self ) -> Tuple: return len(self.encoder ) def _lowercase( self ) -> Tuple: return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase( self , A ) -> Any: if token in self.cache: return self.cache[token] UpperCAmelCase : Optional[int] = tuple(A ) UpperCAmelCase : List[str] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) UpperCAmelCase : Union[str, Any] = get_pairs(A ) if not pairs: return token while True: UpperCAmelCase : Dict = min(A , key=lambda A : self.bpe_ranks.get(A , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase : int = bigram UpperCAmelCase : List[Any] = [] UpperCAmelCase : Union[str, Any] = 0 while i < len(A ): try: UpperCAmelCase : Any = word.index(A , A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase : Optional[int] = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase : Optional[Any] = tuple(A ) UpperCAmelCase : List[Any] = new_word if len(A ) == 1: break else: UpperCAmelCase : Optional[int] = get_pairs(A ) UpperCAmelCase : List[str] = """@@ """.join(A ) UpperCAmelCase : List[str] = word[:-4] UpperCAmelCase : int = word return word def _lowercase( self , A ) -> List[Any]: UpperCAmelCase : Dict = [] UpperCAmelCase : Optional[Any] = re.findall(r"""\S+\n?""" , A ) for token in words: split_tokens.extend(list(self.bpe(A ).split(""" """ ) ) ) return split_tokens def _lowercase( self , A ) -> Dict: return self.encoder.get(A , self.encoder.get(self.unk_token ) ) def _lowercase( self , A ) -> Dict: return self.decoder.get(A , self.unk_token ) def _lowercase( self , A ) -> Optional[Any]: UpperCAmelCase : List[Any] = """ """.join(A ).replace("""@@ """ , """""" ).strip() return out_string def _lowercase( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : List[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) if os.path.abspath(self.merges_file ) != os.path.abspath(A ): copyfile(self.merges_file , A ) return out_vocab_file, out_merge_file def _lowercase( self , A ) -> List[str]: if isinstance(A , A ): try: with open(A , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return UpperCAmelCase : int = f.readlines() for lineTmp in lines: UpperCAmelCase : int = lineTmp.strip() UpperCAmelCase : Optional[Any] = line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) UpperCAmelCase : int = line[:idx] UpperCAmelCase : Union[str, Any] = len(self.encoder )
705
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a : Tuple = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCamelCase_ ( __magic_name__ ): lowercase = ['pixel_values'] def __init__( self , A = True , A = None , A = PILImageResampling.BICUBIC , A = True , A = None , A = True , A = 1 / 255 , A = True , A = None , A = None , A = True , **A , ) -> None: super().__init__(**A ) UpperCAmelCase : str = size if size is not None else {"""shortest_edge""": 224} UpperCAmelCase : Optional[Any] = get_size_dict(A , default_to_square=A ) UpperCAmelCase : List[str] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase : List[str] = get_size_dict(A , default_to_square=A , param_name="""crop_size""" ) UpperCAmelCase : Optional[int] = do_resize UpperCAmelCase : Dict = size UpperCAmelCase : Dict = resample UpperCAmelCase : Optional[int] = do_center_crop UpperCAmelCase : Tuple = crop_size UpperCAmelCase : List[Any] = do_rescale UpperCAmelCase : Dict = rescale_factor UpperCAmelCase : Optional[Any] = do_normalize UpperCAmelCase : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase : Union[str, Any] = do_convert_rgb def _lowercase( self , A , A , A = PILImageResampling.BICUBIC , A = None , **A , ) -> np.ndarray: UpperCAmelCase : Dict = get_size_dict(A , default_to_square=A ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCAmelCase : Tuple = get_resize_output_image_size(A , size=size["""shortest_edge"""] , default_to_square=A ) return resize(A , size=A , resample=A , data_format=A , **A ) def _lowercase( self , A , A , A = None , **A , ) -> np.ndarray: UpperCAmelCase : Union[str, Any] = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def _lowercase( self , A , A , A = None , **A , ) -> Optional[int]: return rescale(A , scale=A , data_format=A , **A ) def _lowercase( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def _lowercase( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : Tuple = size if size is not None else self.size UpperCAmelCase : List[str] = get_size_dict(A , param_name="""size""" , default_to_square=A ) UpperCAmelCase : int = resample if resample is not None else self.resample UpperCAmelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase : Dict = crop_size if crop_size is not None else self.crop_size UpperCAmelCase : Optional[int] = get_size_dict(A , param_name="""crop_size""" , default_to_square=A ) UpperCAmelCase : Any = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : int = image_mean if image_mean is not None else self.image_mean UpperCAmelCase : List[str] = image_std if image_std is not None else self.image_std UpperCAmelCase : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase : Optional[Any] = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase : Union[str, Any] = [convert_to_rgb(A ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase : Any = [to_numpy_array(A ) for image in images] if do_resize: UpperCAmelCase : Any = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: UpperCAmelCase : Tuple = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: UpperCAmelCase : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: UpperCAmelCase : int = [self.normalize(image=A , mean=A , std=A ) for image in images] UpperCAmelCase : int = [to_channel_dimension_format(A , A ) for image in images] UpperCAmelCase : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
706
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
0
'''simple docstring''' import os import sys import unittest a : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path a : Optional[int] = os.path.join(git_repo_path, """src""", """transformers""") a : Optional[int] = """ {0} = None """ a : Optional[int] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ a : List[str] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Any: UpperCAmelCase : List[str] = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" ) self.assertIsNone(A ) UpperCAmelCase : str = find_backend(""" if not is_tokenizers_available():""" ) self.assertEqual(A , """tokenizers""" ) UpperCAmelCase : Union[str, Any] = find_backend(""" if not is_tensorflow_text_available():""" ) self.assertEqual(A , """tensorflow_text""" ) UpperCAmelCase : List[Any] = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" ) self.assertEqual(A , """sentencepiece_and_tokenizers""" ) UpperCAmelCase : Optional[int] = find_backend( """ if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" ) self.assertEqual(A , """sentencepiece_and_tensorflow_text""" ) UpperCAmelCase : List[str] = find_backend( """ if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" ) self.assertEqual(A , """sentencepiece_and_tokenizers_and_vision""" ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Any = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , A ) self.assertIn("""tensorflow_text""" , A ) self.assertIn("""sentencepiece_and_tokenizers""" , A ) # Likewise, we can't assert on the exact content of a key self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertModel""" , objects["""tf"""] ) self.assertIn("""FlaxBertModel""" , objects["""flax"""] ) self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertTokenizer""" , objects["""tensorflow_text"""] ) self.assertIn("""convert_slow_tokenizer""" , objects["""sentencepiece_and_tokenizers"""] ) def _lowercase( self ) -> Any: UpperCAmelCase : Any = create_dummy_object("""CONSTANT""" , """'torch'""" ) self.assertEqual(A , """\nCONSTANT = None\n""" ) UpperCAmelCase : str = create_dummy_object("""function""" , """'torch'""" ) self.assertEqual( A , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) UpperCAmelCase : str = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') """ UpperCAmelCase : str = create_dummy_object("""FakeClass""" , """'torch'""" ) self.assertEqual(A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[int] = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) """ UpperCAmelCase : Union[str, Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] , A )
707
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
0
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets a : str = """\ @inproceedings{snover-etal-2006-study, title = \"A Study of Translation Edit Rate with Targeted Human Annotation\", author = \"Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John\", booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\", month = aug # \" 8-12\", year = \"2006\", address = \"Cambridge, Massachusetts, USA\", publisher = \"Association for Machine Translation in the Americas\", url = \"https://aclanthology.org/2006.amta-papers.25\", pages = \"223--231\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ a : Optional[int] = """\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. """ a : Optional[Any] = """ Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: 'score' (float): TER score (num_edits / sum_ref_lengths * 100) 'num_edits' (int): The cumulative number of edits 'ref_length' (float): The cumulative average reference length Examples: Example 1: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0} Example 2: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0} Example 3: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5} Example 4: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0} Example 5: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Any: if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def _lowercase( self , A , A , A = False , A = False , A = False , A = False , ) -> Tuple: UpperCAmelCase : Optional[int] = len(references[0] ) if any(len(A ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) UpperCAmelCase : Union[str, Any] = [[refs[i] for refs in references] for i in range(A )] UpperCAmelCase : Optional[int] = TER( normalized=A , no_punct=A , asian_support=A , case_sensitive=A , ) UpperCAmelCase : List[str] = sb_ter.corpus_score(A , A ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
708
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
0
'''simple docstring''' a : Union[str, Any] = 6_5_5_2_1 def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 1 UpperCAmelCase : Any = 0 for plain_chr in plain_text: UpperCAmelCase : Optional[int] = (a + ord(_lowercase )) % MOD_ADLER UpperCAmelCase : Optional[int] = (b + a) % MOD_ADLER return (b << 1_6) | a
709
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
0
'''simple docstring''' from math import sqrt def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0 ) -> int: UpperCAmelCase : int = 0 UpperCAmelCase : int = 0 UpperCAmelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowercase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F'''{solution() = }''')
710
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: return ("This is a test", "This is a test") def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """</s>""" UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(A ) , 1103 ) def _lowercase( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> str: return ("This is a test", "This is a test") def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : str = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
672
0
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig a : Tuple = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'masked_bert' def __init__( self , A=30522 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.0_2 , A=1e-12 , A=0 , A="topK" , A="constant" , A=0.0 , **A , ) -> Optional[int]: super().__init__(pad_token_id=A , **A ) UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : str = hidden_act UpperCAmelCase : List[Any] = intermediate_size UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Optional[Any] = max_position_embeddings UpperCAmelCase : Optional[int] = type_vocab_size UpperCAmelCase : str = initializer_range UpperCAmelCase : Dict = layer_norm_eps UpperCAmelCase : List[Any] = pruning_method UpperCAmelCase : Any = mask_init UpperCAmelCase : Dict = mask_scale
711
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Any = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : int = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ConvNextVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase : Any = model_class(A ) model.to(A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : List[str] = False UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
672
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase_ ( __magic_name__ ): @staticmethod @abstractmethod def _lowercase( A ) -> List[Any]: raise NotImplementedError() @abstractmethod def _lowercase( self ) -> Union[str, Any]: raise NotImplementedError()
712
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
713
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
0
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand a : int = ( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) a : Tuple = ( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) a : List[str] = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) a : List[str] = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) a : List[str] = ( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 1_4]), ("""2H 5D 3C AS 5S""", False, [1_4, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [1_4, 1_3, 1_2, 1_1, 1_0]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) a : Union[str, Any] = ( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) a : str = ( ("""JH AH TH KH QH""", 2_3), ("""JH 9H TH KH QH""", 2_2), ("""JC KH JS JD JH""", 2_1), ("""KH KC 3S 3H 3D""", 2_0), ("""8C 9C 5C 3C TC""", 1_9), ("""JS QS 9H TS KH""", 1_8), ("""7C 7S KH 2H 7H""", 1_7), ("""3C KH 5D 5S KH""", 1_6), ("""QH 8H KD JH 8S""", 1_5), ("""2D 6D 9D TH 7D""", 1_4), ) def __lowerCamelCase ( ) -> Tuple: UpperCAmelCase : Dict = randrange(len(_lowercase ) ), randrange(len(_lowercase ) ) UpperCAmelCase : Dict = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] UpperCAmelCase : List[Any] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowerCamelCase ( _lowercase = 1_0_0 ) -> Optional[int]: return (generate_random_hand() for _ in range(_lowercase )) @pytest.mark.parametrize("""hand, expected""" , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Dict: assert PokerHand(_lowercase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Union[str, Any]: assert PokerHand(_lowercase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : Optional[Any] = PokerHand(_lowercase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Union[str, Any]: assert PokerHand(_lowercase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> int: assert PokerHand(_lowercase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: assert PokerHand(_lowercase ).compare_with(PokerHand(_lowercase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: assert PokerHand(_lowercase ).compare_with(PokerHand(_lowercase ) ) == expected def __lowerCamelCase ( ) -> Tuple: UpperCAmelCase : Tuple = [PokerHand(_lowercase ) for hand in SORTED_HANDS] UpperCAmelCase : int = poker_hands.copy() shuffle(_lowercase ) UpperCAmelCase : int = chain(sorted(_lowercase ) ) for index, hand in enumerate(_lowercase ): assert hand == poker_hands[index] def __lowerCamelCase ( ) -> int: # Test that five high straights are compared correctly. UpperCAmelCase : Union[str, Any] = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=_lowercase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowerCamelCase ( ) -> Any: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. UpperCAmelCase : Any = PokerHand("""2C 4S AS 3D 5C""" ) UpperCAmelCase : List[Any] = True UpperCAmelCase : List[str] = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowerCamelCase ( ) -> Tuple: # Problem number 54 from Project Euler # Testing from poker_hands.txt file UpperCAmelCase : Dict = 0 UpperCAmelCase : List[str] = os.path.abspath(os.path.dirname(_lowercase ) ) UpperCAmelCase : Union[str, Any] = os.path.join(_lowercase , """poker_hands.txt""" ) with open(_lowercase ) as file_hand: for line in file_hand: UpperCAmelCase : Tuple = line[:1_4].strip() UpperCAmelCase : Tuple = line[1_5:].strip() UpperCAmelCase : Optional[Any] = PokerHand(_lowercase ), PokerHand(_lowercase ) UpperCAmelCase : Optional[Any] = player.compare_with(_lowercase ) if output == "Win": answer += 1 assert answer == 3_7_6
714
'''simple docstring''' a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a : Optional[Any] = True a : List[Any] = False def __lowerCamelCase ( _lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : List[str] = chain(next_number(_lowercase ) ) UpperCAmelCase : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase : List[str] = number_chain number *= 1_0 return number_chain def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , _lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
672
0
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow a : List[Any] = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A = None , A = None , A = None , A = True , ) -> Tuple: UpperCAmelCase : Dict = [file for file in os.listdir(A ) if os.path.isfile(os.path.join(A , A ) )] if identifier is not None: UpperCAmelCase : Any = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(A , A ): for n_ in n_identifier: UpperCAmelCase : Optional[int] = [file for file in files if n_ not in file] else: UpperCAmelCase : int = [file for file in files if n_identifier not in file] UpperCAmelCase : Dict = ignore_files or [] ignore_files.append("""__init__.py""" ) UpperCAmelCase : List[Any] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , A ) if only_modules: UpperCAmelCase : Optional[int] = file.split(""".""" )[0] try: UpperCAmelCase : Any = getattr(A , A ) UpperCAmelCase : str = doctest.DocTestSuite(A ) UpperCAmelCase : List[Any] = unittest.TextTestRunner().run(A ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: UpperCAmelCase : Any = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def _lowercase( self ) -> str: UpperCAmelCase : Optional[int] = Path("""src/transformers""" ) UpperCAmelCase : Tuple = """modeling""" UpperCAmelCase : Dict = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(A , identifier=A , ignore_files=A ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = Path("""src/transformers""" ) UpperCAmelCase : Dict = """tokenization""" self.analyze_directory(A , identifier=A ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Any = Path("""src/transformers""" ) UpperCAmelCase : Optional[Any] = """configuration""" self.analyze_directory(A , identifier=A ) def _lowercase( self ) -> str: UpperCAmelCase : List[str] = Path("""src/transformers""" ) UpperCAmelCase : Optional[Any] = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(A , n_identifier=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : List[str] = Path("""docs/source""" ) UpperCAmelCase : Union[str, Any] = ["""favicon.ico"""] self.analyze_directory(A , ignore_files=A , only_modules=A )
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Any = logging.get_logger(__name__) a : Dict = { """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'deta' lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=None , A=900 , A=2048 , A=6 , A=2048 , A=8 , A=6 , A=1024 , A=8 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=True , A=False , A="sine" , A=5 , A=4 , A=4 , A=True , A=300 , A=True , A=True , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , A=0.2_5 , **A , ) -> List[Any]: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(A , A ): UpperCAmelCase : Dict = backbone_config.pop("""model_type""" ) UpperCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : int = config_class.from_dict(A ) UpperCAmelCase : Optional[Any] = backbone_config UpperCAmelCase : Union[str, Any] = num_queries UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : List[Any] = d_model UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_layers UpperCAmelCase : int = encoder_attention_heads UpperCAmelCase : Dict = decoder_ffn_dim UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Optional[int] = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Optional[int] = activation_dropout UpperCAmelCase : List[Any] = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : Optional[int] = init_xavier_std UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Any = auxiliary_loss UpperCAmelCase : Optional[int] = position_embedding_type # deformable attributes UpperCAmelCase : Dict = num_feature_levels UpperCAmelCase : List[Any] = encoder_n_points UpperCAmelCase : Optional[Any] = decoder_n_points UpperCAmelCase : Union[str, Any] = two_stage UpperCAmelCase : str = two_stage_num_proposals UpperCAmelCase : Optional[Any] = with_box_refine UpperCAmelCase : int = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher UpperCAmelCase : int = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : int = giou_cost # Loss coefficients UpperCAmelCase : Optional[int] = mask_loss_coefficient UpperCAmelCase : Tuple = dice_loss_coefficient UpperCAmelCase : Tuple = bbox_loss_coefficient UpperCAmelCase : str = giou_loss_coefficient UpperCAmelCase : List[Any] = eos_coefficient UpperCAmelCase : Dict = focal_alpha super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : List[str] = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
716
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Any = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
672
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : Any = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class UpperCamelCase_ : lowercase = 42 lowercase = 42 class UpperCamelCase_ : def __init__( self , A ) -> Any: UpperCAmelCase : list[list[Edge]] = [[] for _ in range(A )] UpperCAmelCase : Dict = size def __getitem__( self , A ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _lowercase( self ) -> Optional[int]: return self._size def _lowercase( self , A , A , A ) -> List[str]: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(A , A ) ) def _lowercase( self , A , A ) -> int | None: UpperCAmelCase : List[str] = deque([start_vertex] ) UpperCAmelCase : list[int | None] = [None] * self.size UpperCAmelCase : Optional[int] = 0 while queue: UpperCAmelCase : Optional[Any] = queue.popleft() UpperCAmelCase : int = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: UpperCAmelCase : List[Any] = current_distance + edge.weight UpperCAmelCase : Dict = distances[edge.destination_vertex] if ( isinstance(A , A ) and new_distance >= dest_vertex_distance ): continue UpperCAmelCase : Union[str, Any] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
0
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : int = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
719
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A=None , A=None , **A ) -> str: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase : List[Any] = str(jax.devices()[0] ) UpperCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def _lowercase( self , A ) -> str: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _lowercase( self , A ) -> Tuple: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase : List[str] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase : str = {"""dtype""": jnp.intaa} else: UpperCAmelCase : int = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase : Any = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): UpperCAmelCase : List[str] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase( self , A ) -> Tuple: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): UpperCAmelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _lowercase( self , A ) -> Dict: return map_nested(self._recursive_tensorize , A , map_list=A ) def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A ) UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _lowercase( self , A ) -> "jax.Array": UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A ) UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) UpperCAmelCase : Any = self._consolidate(A ) return column def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A ) UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) for column_name in batch: UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
672
0
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
720
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : int = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
672
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Optional[int] = { """configuration_graphormer""": ["""GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GraphormerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ """GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """GraphormerForGraphClassification""", """GraphormerModel""", """GraphormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys a : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
721
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
672
0
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
700
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
672
0
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
701
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
0
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
702
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
0
import numpy # List of input, output pairs a : Optional[int] = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) a : List[str] = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) a : int = [2, 4, 1, 5] a : Optional[Any] = len(train_data) a : List[Any] = 0.0_0_9 def __lowerCamelCase ( _lowercase , _lowercase="train" ) -> Dict: return calculate_hypothesis_value(_lowercase , _lowercase ) - output( _lowercase , _lowercase ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 for i in range(len(_lowercase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def __lowerCamelCase ( _lowercase , _lowercase ) -> Dict: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def __lowerCamelCase ( _lowercase , _lowercase=m ) -> Any: UpperCAmelCase : Dict = 0 for i in range(_lowercase ): if index == -1: summation_value += _error(_lowercase ) else: summation_value += _error(_lowercase ) * train_data[i][0][index] return summation_value def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : Tuple = summation_of_cost_derivative(_lowercase , _lowercase ) / m return cost_derivative_value def __lowerCamelCase ( ) -> List[Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase : int = 0.00_0002 UpperCAmelCase : str = 0 UpperCAmelCase : Tuple = 0 while True: j += 1 UpperCAmelCase : Tuple = [0, 0, 0, 0] for i in range(0 , len(_lowercase ) ): UpperCAmelCase : Dict = get_cost_derivative(i - 1 ) UpperCAmelCase : List[str] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _lowercase , _lowercase , atol=_lowercase , rtol=_lowercase , ): break UpperCAmelCase : List[Any] = temp_parameter_vector print(("""Number of iterations:""", j) ) def __lowerCamelCase ( ) -> List[str]: for i in range(len(_lowercase ) ): print(("""Actual output value:""", output(_lowercase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(_lowercase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
703
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations UpperCAmelCase : List[Any] = tpu_short_seq_length
672
0
import pprint import requests a : Optional[Any] = """https://zenquotes.io/api""" def __lowerCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __lowerCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a : str = random_quotes() pprint.pprint(response)
704
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
705
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
0
from __future__ import annotations a : str = list[tuple[int, int]] a : str = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a : Optional[int] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class UpperCamelCase_ : def __init__( self , A , A , A , A , A , A , ) -> str: UpperCAmelCase : List[str] = pos_x UpperCAmelCase : List[str] = pos_y UpperCAmelCase : Optional[int] = (pos_y, pos_x) UpperCAmelCase : int = goal_x UpperCAmelCase : int = goal_y UpperCAmelCase : Union[str, Any] = g_cost UpperCAmelCase : Dict = parent UpperCAmelCase : Tuple = self.calculate_heuristic() def _lowercase( self ) -> float: UpperCAmelCase : int = abs(self.pos_x - self.goal_x ) UpperCAmelCase : List[Any] = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , A ) -> bool: return self.f_cost < other.f_cost class UpperCamelCase_ : def __init__( self , A , A ) -> int: UpperCAmelCase : Any = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , A ) UpperCAmelCase : Optional[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , A ) UpperCAmelCase : Union[str, Any] = [self.start] UpperCAmelCase : list[Node] = [] UpperCAmelCase : Any = False def _lowercase( self ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase : str = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: UpperCAmelCase : List[Any] = True return self.retrace_path(A ) self.closed_nodes.append(A ) UpperCAmelCase : Any = self.get_successors(A ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A ) else: # retrieve the best current path UpperCAmelCase : Tuple = self.open_nodes.pop(self.open_nodes.index(A ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A ) else: self.open_nodes.append(A ) if not self.reached: return [self.start.pos] return None def _lowercase( self , A ) -> list[Node]: UpperCAmelCase : int = [] for action in delta: UpperCAmelCase : Optional[int] = parent.pos_x + action[1] UpperCAmelCase : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A , A , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , A , ) ) return successors def _lowercase( self , A ) -> Path: UpperCAmelCase : str = node UpperCAmelCase : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase : Union[str, Any] = current_node.parent path.reverse() return path if __name__ == "__main__": a : str = (0, 0) a : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") a : Optional[Any] = GreedyBestFirst(init, goal) a : Optional[Any] = greedy_bf.search() if path: for pos_x, pos_y in path: a : Any = 2 for elem in grid: print(elem)
706
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
0
'''simple docstring''' import qiskit def __lowerCamelCase ( _lowercase , _lowercase ) -> qiskit.result.counts.Counts: UpperCAmelCase : Any = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register UpperCAmelCase : int = qiskit.QuantumCircuit(_lowercase , _lowercase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator UpperCAmelCase : Union[str, Any] = qiskit.execute(_lowercase , _lowercase , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_lowercase ) if __name__ == "__main__": print(F'''Total count for various states are: {single_qubit_measure(1, 1)}''')
707
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a : int = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase , _lowercase ) -> Any: UpperCAmelCase : Optional[int] = b.T UpperCAmelCase : Tuple = np.sum(np.square(_lowercase ) , axis=1 ) UpperCAmelCase : Union[str, Any] = np.sum(np.square(_lowercase ) , axis=0 ) UpperCAmelCase : int = np.matmul(_lowercase , _lowercase ) UpperCAmelCase : List[Any] = aa[:, None] - 2 * ab + ba[None, :] return d def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Dict = x.reshape(-1 , 3 ) UpperCAmelCase : Union[str, Any] = squared_euclidean_distance(_lowercase , _lowercase ) return np.argmin(_lowercase , axis=1 ) class UpperCamelCase_ ( __magic_name__ ): lowercase = ['pixel_values'] def __init__( self , A = None , A = True , A = None , A = PILImageResampling.BILINEAR , A = True , A = True , **A , ) -> None: super().__init__(**A ) UpperCAmelCase : Optional[Any] = size if size is not None else {"""height""": 256, """width""": 256} UpperCAmelCase : int = get_size_dict(A ) UpperCAmelCase : Union[str, Any] = np.array(A ) if clusters is not None else None UpperCAmelCase : Optional[Any] = do_resize UpperCAmelCase : str = size UpperCAmelCase : Dict = resample UpperCAmelCase : Union[str, Any] = do_normalize UpperCAmelCase : Any = do_color_quantize def _lowercase( self , A , A , A = PILImageResampling.BILINEAR , A = None , **A , ) -> np.ndarray: UpperCAmelCase : int = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def _lowercase( self , A , A = None , ) -> np.ndarray: UpperCAmelCase : Union[str, Any] = rescale(image=A , scale=1 / 127.5 , data_format=A ) UpperCAmelCase : Optional[Any] = image - 1 return image def _lowercase( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: UpperCAmelCase : int = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : Dict = size if size is not None else self.size UpperCAmelCase : Optional[int] = get_size_dict(A ) UpperCAmelCase : Dict = resample if resample is not None else self.resample UpperCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : List[Any] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize UpperCAmelCase : str = clusters if clusters is not None else self.clusters UpperCAmelCase : str = np.array(A ) UpperCAmelCase : Dict = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_color_quantize and clusters is None: raise ValueError("""Clusters must be specified if do_color_quantize is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase : Optional[int] = [to_numpy_array(A ) for image in images] if do_resize: UpperCAmelCase : Tuple = [self.resize(image=A , size=A , resample=A ) for image in images] if do_normalize: UpperCAmelCase : Any = [self.normalize(image=A ) for image in images] if do_color_quantize: UpperCAmelCase : Optional[int] = [to_channel_dimension_format(A , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) UpperCAmelCase : int = np.array(A ) UpperCAmelCase : Any = color_quantize(A , A ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) UpperCAmelCase : List[str] = images.shape[0] UpperCAmelCase : Optional[int] = images.reshape(A , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. UpperCAmelCase : int = list(A ) else: UpperCAmelCase : Any = [to_channel_dimension_format(A , A ) for image in images] UpperCAmelCase : Union[str, Any] = {"""input_ids""": images} return BatchFeature(data=A , tensor_type=A )
708
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor a : int = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , A , ) super().__init__(*A , **A )
709
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a : Optional[Any] = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
710
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: return ("This is a test", "This is a test") def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """</s>""" UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(A ) , 1103 ) def _lowercase( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> str: return ("This is a test", "This is a test") def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : str = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
672
0
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a : List[str] = 1_6 a : List[Any] = 3_2 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = 1_6 ) -> Any: UpperCAmelCase : Dict = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCAmelCase : Optional[Any] = DatasetDict( { """train""": dataset["""train"""].select(_lowercase ), """validation""": dataset["""train"""].select(_lowercase ), """test""": dataset["""validation"""], } ) def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase : str = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowercase , max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase : Any = datasets.map( _lowercase , batched=_lowercase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase : int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase : Any = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase : List[str] = 1_6 elif accelerator.mixed_precision != "no": UpperCAmelCase : Any = 8 else: UpperCAmelCase : Tuple = None return tokenizer.pad( _lowercase , padding="""longest""" , max_length=_lowercase , pad_to_multiple_of=_lowercase , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCAmelCase : int = DataLoader( tokenized_datasets["""train"""] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) UpperCAmelCase : Tuple = DataLoader( tokenized_datasets["""validation"""] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) UpperCAmelCase : Tuple = DataLoader( tokenized_datasets["""test"""] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) return train_dataloader, eval_dataloader, test_dataloader def __lowerCamelCase ( _lowercase , _lowercase ) -> List[Any]: # New Code # UpperCAmelCase : List[Any] = [] # Download the dataset UpperCAmelCase : List[Any] = load_dataset("""glue""" , """mrpc""" ) # Create our splits UpperCAmelCase : Dict = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator UpperCAmelCase : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase : List[str] = config["""lr"""] UpperCAmelCase : str = int(config["""num_epochs"""] ) UpperCAmelCase : str = int(config["""seed"""] ) UpperCAmelCase : Tuple = int(config["""batch_size"""] ) UpperCAmelCase : Union[str, Any] = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation UpperCAmelCase : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase : str = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase : Optional[int] = MAX_GPU_BATCH_SIZE set_seed(_lowercase ) # New Code # # Create our folds: UpperCAmelCase : Optional[int] = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_lowercase ): UpperCAmelCase : Tuple = get_fold_dataloaders( _lowercase , _lowercase , _lowercase , _lowercase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase : Optional[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase : Any = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase : Union[str, Any] = AdamW(params=model.parameters() , lr=_lowercase ) # Instantiate scheduler UpperCAmelCase : Any = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=1_0_0 , num_training_steps=(len(_lowercase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase : Any = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Now we train the model for epoch in range(_lowercase ): model.train() for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase : Optional[Any] = model(**_lowercase ) UpperCAmelCase : Any = outputs.loss UpperCAmelCase : Any = loss / gradient_accumulation_steps accelerator.backward(_lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**_lowercase ) UpperCAmelCase : Any = outputs.logits.argmax(dim=-1 ) UpperCAmelCase : Optional[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_lowercase , references=_lowercase , ) UpperCAmelCase : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowercase ) # New Code # # We also run predictions on the test set at the very end UpperCAmelCase : Optional[Any] = [] for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**_lowercase ) UpperCAmelCase : List[str] = outputs.logits UpperCAmelCase : Dict = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_lowercase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: UpperCAmelCase : Dict = torch.cat(_lowercase , dim=0 ) UpperCAmelCase : int = torch.stack(_lowercase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) UpperCAmelCase : List[Any] = metric.compute(predictions=_lowercase , references=_lowercase ) accelerator.print("""Average test metrics from all folds:""" , _lowercase ) def __lowerCamelCase ( ) -> Optional[Any]: UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_lowercase , default=_lowercase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=_lowercase , default=3 , help="""The number of splits to perform across the dataset""" ) UpperCAmelCase : Optional[int] = parser.parse_args() UpperCAmelCase : Optional[int] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
711
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Any = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : int = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ConvNextVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase : Any = model_class(A ) model.to(A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : List[str] = False UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
672
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin a : int = random.Random() if is_torch_available(): import torch def __lowerCamelCase ( _lowercase , _lowercase=1.0 , _lowercase=None , _lowercase=None ) -> int: if rng is None: UpperCAmelCase : Optional[Any] = global_rng UpperCAmelCase : Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A=7 , A=400 , A=2000 , A=1 , A=0.0 , A=16000 , A=True , A=True , ) -> Optional[int]: UpperCAmelCase : Optional[Any] = parent UpperCAmelCase : int = batch_size UpperCAmelCase : Any = min_seq_length UpperCAmelCase : Any = max_seq_length UpperCAmelCase : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase : Union[str, Any] = feature_size UpperCAmelCase : Union[str, Any] = padding_value UpperCAmelCase : Union[str, Any] = sampling_rate UpperCAmelCase : Optional[Any] = return_attention_mask UpperCAmelCase : List[Any] = do_normalize def _lowercase( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowercase( self , A=False , A=False ) -> Any: def _flatten(A ): return list(itertools.chain(*A ) ) if equal_length: UpperCAmelCase : Optional[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase : List[Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase : str = [np.asarray(A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = ASTFeatureExtractor def _lowercase( self ) -> Dict: UpperCAmelCase : Any = ASTFeatureExtractionTester(self ) def _lowercase( self ) -> Any: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : int = [np.asarray(A ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase : Union[str, Any] = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values UpperCAmelCase : int = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test batched UpperCAmelCase : Any = feat_extract(A , padding=A , return_tensors="""np""" ).input_values UpperCAmelCase : Union[str, Any] = feat_extract(A , padding=A , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase : Tuple = np.asarray(A ) UpperCAmelCase : Tuple = feat_extract(A , return_tensors="""np""" ).input_values UpperCAmelCase : Dict = feat_extract(A , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) @require_torch def _lowercase( self ) -> List[Any]: import torch UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : str = np.random.rand(100 ).astype(np.floataa ) UpperCAmelCase : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase : List[str] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase : str = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _lowercase( self , A ) -> List[Any]: from datasets import load_dataset UpperCAmelCase : Optional[int] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech UpperCAmelCase : Tuple = ds.sort("""id""" ).select(range(A ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] @require_torch def _lowercase( self ) -> Tuple: # fmt: off UpperCAmelCase : Dict = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on UpperCAmelCase : List[str] = self._load_datasamples(1 ) UpperCAmelCase : Union[str, Any] = ASTFeatureExtractor() UpperCAmelCase : Optional[int] = feature_extractor(A , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , A , atol=1e-4 ) )
712
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase , _lowercase=False ) -> List[str]: UpperCAmelCase : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCAmelCase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase : Optional[int] = """""" else: UpperCAmelCase : Any = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Optional[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Any = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size] UpperCAmelCase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : List[Any] = in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase : Optional[int] = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : str = dct.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Optional[int] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=True ) -> Dict: UpperCAmelCase : int = ViTConfig() # patch_size if model_name[-1] == "8": UpperCAmelCase : List[str] = 8 # set labels if required if not base_model: UpperCAmelCase : Optional[int] = 1_0_0_0 UpperCAmelCase : List[Any] = """huggingface/label-files""" UpperCAmelCase : int = """imagenet-1k-id2label.json""" UpperCAmelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : str = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : str = idalabel UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: UpperCAmelCase : Optional[int] = 3_8_4 UpperCAmelCase : List[str] = 1_5_3_6 UpperCAmelCase : int = 1_2 UpperCAmelCase : Union[str, Any] = 6 # load original model from torch hub UpperCAmelCase : Union[str, Any] = torch.hub.load("""facebookresearch/dino:main""" , _lowercase ) original_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase : Dict = original_model.state_dict() if base_model: remove_classification_head_(_lowercase ) UpperCAmelCase : Optional[int] = create_rename_keys(_lowercase , base_model=_lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) read_in_q_k_v(_lowercase , _lowercase , _lowercase ) # load HuggingFace model if base_model: UpperCAmelCase : Optional[int] = ViTModel(_lowercase , add_pooling_layer=_lowercase ).eval() else: UpperCAmelCase : Tuple = ViTForImageClassification(_lowercase ).eval() model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by ViTImageProcessor UpperCAmelCase : Tuple = ViTImageProcessor() UpperCAmelCase : Union[str, Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = encoding["""pixel_values"""] UpperCAmelCase : Dict = model(_lowercase ) if base_model: UpperCAmelCase : Any = original_model(_lowercase ) assert torch.allclose(_lowercase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: UpperCAmelCase : List[Any] = original_model(_lowercase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowercase , outputs.logits , atol=1e-3 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) a : Optional[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
713
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
0
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer a : str = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'AutoTokenizer' lowercase = ['tokenizer'] lowercase = { 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self , A , A=None ) -> Tuple: super().__init__(A ) UpperCAmelCase : int = speaker_embeddings @classmethod def _lowercase( cls , A , A="speaker_embeddings_path.json" , **A ) -> int: if speaker_embeddings_dict_path is not None: UpperCAmelCase : List[str] = get_file_from_repo( A , A , subfolder=kwargs.pop("""subfolder""" , A ) , cache_dir=kwargs.pop("""cache_dir""" , A ) , force_download=kwargs.pop("""force_download""" , A ) , proxies=kwargs.pop("""proxies""" , A ) , resume_download=kwargs.pop("""resume_download""" , A ) , local_files_only=kwargs.pop("""local_files_only""" , A ) , use_auth_token=kwargs.pop("""use_auth_token""" , A ) , revision=kwargs.pop("""revision""" , A ) , ) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(A , A )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) UpperCAmelCase : int = None else: with open(A ) as speaker_embeddings_json: UpperCAmelCase : Dict = json.load(A ) else: UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(A , **A ) return cls(tokenizer=A , speaker_embeddings=A ) def _lowercase( self , A , A="speaker_embeddings_path.json" , A="speaker_embeddings" , A = False , **A , ) -> Union[str, Any]: if self.speaker_embeddings is not None: os.makedirs(os.path.join(A , A , """v2""" ) , exist_ok=A ) UpperCAmelCase : Optional[Any] = {} UpperCAmelCase : List[str] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": UpperCAmelCase : Union[str, Any] = self._load_voice_preset(A ) UpperCAmelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] , A , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=A , ) UpperCAmelCase : Tuple = os.path.join(A , f'''{prompt_key}_{key}.npy''' ) UpperCAmelCase : List[str] = tmp_dict with open(os.path.join(A , A ) , """w""" ) as fp: json.dump(A , A ) super().save_pretrained(A , A , **A ) def _lowercase( self , A = None , **A ) -> Optional[int]: UpperCAmelCase : List[str] = self.speaker_embeddings[voice_preset] UpperCAmelCase : str = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) UpperCAmelCase : Optional[Any] = get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , A ) , cache_dir=kwargs.pop("""cache_dir""" , A ) , force_download=kwargs.pop("""force_download""" , A ) , proxies=kwargs.pop("""proxies""" , A ) , resume_download=kwargs.pop("""resume_download""" , A ) , local_files_only=kwargs.pop("""local_files_only""" , A ) , use_auth_token=kwargs.pop("""use_auth_token""" , A ) , revision=kwargs.pop("""revision""" , A ) , ) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) UpperCAmelCase : str = np.load(A ) return voice_preset_dict def _lowercase( self , A = None ) -> Optional[Any]: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , A=None , A=None , A="pt" , A=256 , A=False , A=True , A=False , **A , ) -> str: if voice_preset is not None and not isinstance(A , A ): if ( isinstance(A , A ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): UpperCAmelCase : Union[str, Any] = self._load_voice_preset(A ) else: if isinstance(A , A ) and not voice_preset.endswith(""".npz""" ): UpperCAmelCase : Optional[Any] = voice_preset + """.npz""" UpperCAmelCase : Union[str, Any] = np.load(A ) if voice_preset is not None: self._validate_voice_preset_dict(A , **A ) UpperCAmelCase : List[Any] = BatchFeature(data=A , tensor_type=A ) UpperCAmelCase : Any = self.tokenizer( A , return_tensors=A , padding="""max_length""" , max_length=A , return_attention_mask=A , return_token_type_ids=A , add_special_tokens=A , **A , ) if voice_preset is not None: UpperCAmelCase : Optional[Any] = voice_preset return encoded_text
714
'''simple docstring''' a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a : Optional[Any] = True a : List[Any] = False def __lowerCamelCase ( _lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : List[str] = chain(next_number(_lowercase ) ) UpperCAmelCase : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase : List[str] = number_chain number *= 1_0 return number_chain def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , _lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
672
0
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) a : List[Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } a : Optional[Any] = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: for attribute in key.split(""".""" ): UpperCAmelCase : Optional[Any] = getattr(_lowercase , _lowercase ) if weight_type is not None: UpperCAmelCase : Any = getattr(_lowercase , _lowercase ).shape else: UpperCAmelCase : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase : Dict = value elif weight_type == "weight_g": UpperCAmelCase : Tuple = value elif weight_type == "weight_v": UpperCAmelCase : Dict = value elif weight_type == "bias": UpperCAmelCase : int = value else: UpperCAmelCase : Tuple = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : int = [] UpperCAmelCase : Any = fairseq_model.state_dict() UpperCAmelCase : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : Optional[int] = False if "conv_layers" in name: load_conv_layer( _lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase : str = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCAmelCase : Dict = True if "*" in mapped_key: UpperCAmelCase : Optional[Any] = name.split(_lowercase )[0].split(""".""" )[-2] UpperCAmelCase : Union[str, Any] = mapped_key.replace("""*""" , _lowercase ) if "weight_g" in name: UpperCAmelCase : Any = """weight_g""" elif "weight_v" in name: UpperCAmelCase : Tuple = """weight_v""" elif "bias" in name and "relative_attention_bias" not in name: UpperCAmelCase : Optional[Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : Union[str, Any] = """weight""" else: UpperCAmelCase : Optional[Any] = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) continue if not is_used: unused_weights.append(_lowercase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : Dict = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase : Any = name.split(""".""" ) UpperCAmelCase : Optional[int] = int(items[0] ) UpperCAmelCase : Dict = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase : Dict = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) UpperCAmelCase : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase : Optional[int] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowercase ) @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Dict: # load the pre-trained checkpoints UpperCAmelCase : Optional[Any] = torch.load(_lowercase ) UpperCAmelCase : List[str] = WavLMConfigOrig(checkpoint["""cfg"""] ) UpperCAmelCase : Union[str, Any] = WavLMOrig(_lowercase ) model.load_state_dict(checkpoint["""model"""] ) model.eval() if config_path is not None: UpperCAmelCase : Union[str, Any] = WavLMConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : List[Any] = WavLMConfig() UpperCAmelCase : Optional[Any] = WavLMModel(_lowercase ) recursively_load_weights(_lowercase , _lowercase ) hf_wavlm.save_pretrained(_lowercase ) if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") a : Union[str, Any] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
'''simple docstring''' import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = DownBlockaD # noqa F405 lowercase = 'down' def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = [-0.0_2_3_2, -0.9_8_6_9, 0.8_0_5_4, -0.0_6_3_7, -0.1_6_8_8, -1.4_2_6_4, 0.4_4_7_0, -1.3_3_9_4, 0.0_9_0_4] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = ResnetDownsampleBlockaD # noqa F405 lowercase = 'down' def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = [0.0_7_1_0, 0.2_4_1_0, -0.7_3_2_0, -1.0_7_5_7, -1.1_3_4_3, 0.3_5_4_0, -0.0_1_3_3, -0.2_5_7_6, 0.0_9_4_8] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = AttnDownBlockaD # noqa F405 lowercase = 'down' def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[int] = [0.0_6_3_6, 0.8_9_6_4, -0.6_2_3_4, -1.0_1_3_1, 0.0_8_4_4, 0.4_9_3_5, 0.3_4_3_7, 0.0_9_1_1, -0.2_9_5_7] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = CrossAttnDownBlockaD # noqa F405 lowercase = 'down' def _lowercase( self ) -> List[Any]: UpperCAmelCase : Dict = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : Optional[int] = 32 return init_dict, inputs_dict def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = [0.2_2_3_8, -0.7_3_9_6, -0.2_2_5_5, -0.3_8_2_9, 0.1_9_2_5, 1.1_6_6_5, 0.0_6_0_3, -0.7_2_9_5, 0.1_9_8_3] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = SimpleCrossAttnDownBlockaD # noqa F405 lowercase = 'down' @property def _lowercase( self ) -> List[Any]: return super().get_dummy_input(include_encoder_hidden_states=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : int = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def _lowercase( self ) -> str: UpperCAmelCase : str = [0.7_9_2_1, -0.0_9_9_2, -0.1_9_6_2, -0.7_6_9_5, -0.4_2_4_2, 0.7_8_0_4, 0.4_7_3_7, 0.2_7_6_5, 0.3_3_3_8] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = SkipDownBlockaD # noqa F405 lowercase = 'down' @property def _lowercase( self ) -> int: return super().get_dummy_input(include_skip_sample=A ) def _lowercase( self ) -> int: UpperCAmelCase : List[str] = [-0.0_8_4_5, -0.2_0_8_7, -0.2_4_6_5, 0.0_9_7_1, 0.1_9_0_0, -0.0_4_8_4, 0.2_6_6_4, 0.4_1_7_9, 0.5_0_6_9] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = AttnSkipDownBlockaD # noqa F405 lowercase = 'down' @property def _lowercase( self ) -> Any: return super().get_dummy_input(include_skip_sample=A ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : int = [0.5_5_3_9, 0.1_6_0_9, 0.4_9_2_4, 0.0_5_3_7, -0.1_9_9_5, 0.4_0_5_0, 0.0_9_7_9, -0.2_7_2_1, -0.0_6_4_2] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = DownEncoderBlockaD # noqa F405 lowercase = 'down' @property def _lowercase( self ) -> Union[str, Any]: return super().get_dummy_input(include_temb=A ) def _lowercase( self ) -> Any: UpperCAmelCase : Tuple = { """in_channels""": 32, """out_channels""": 32, } UpperCAmelCase : Tuple = self.dummy_input return init_dict, inputs_dict def _lowercase( self ) -> Dict: UpperCAmelCase : List[Any] = [1.1_1_0_2, 0.5_3_0_2, 0.4_8_7_2, -0.0_0_2_3, -0.8_0_4_2, 0.0_4_8_3, -0.3_4_8_9, -0.5_6_3_2, 0.7_6_2_6] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = AttnDownEncoderBlockaD # noqa F405 lowercase = 'down' @property def _lowercase( self ) -> Optional[Any]: return super().get_dummy_input(include_temb=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Any = { """in_channels""": 32, """out_channels""": 32, } UpperCAmelCase : Any = self.dummy_input return init_dict, inputs_dict def _lowercase( self ) -> List[str]: UpperCAmelCase : List[str] = [0.8_9_6_6, -0.1_4_8_6, 0.8_5_6_8, 0.8_1_4_1, -0.9_0_4_6, -0.1_3_4_2, -0.0_9_7_2, -0.7_4_1_7, 0.1_5_3_8] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = UNetMidBlockaD # noqa F405 lowercase = 'mid' def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = { """in_channels""": 32, """temb_channels""": 128, } UpperCAmelCase : Dict = self.dummy_input return init_dict, inputs_dict def _lowercase( self ) -> Any: UpperCAmelCase : Tuple = [-0.1_0_6_2, 1.7_2_4_8, 0.3_4_9_4, 1.4_5_6_9, -0.0_9_1_0, -1.2_4_2_1, -0.9_9_8_4, 0.6_7_3_6, 1.0_0_2_8] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = UNetMidBlockaDCrossAttn # noqa F405 lowercase = 'mid' def _lowercase( self ) -> List[str]: UpperCAmelCase : List[str] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : Any = 32 return init_dict, inputs_dict def _lowercase( self ) -> str: UpperCAmelCase : int = [0.0_1_8_7, 2.4_2_2_0, 0.4_4_8_4, 1.1_2_0_3, -0.6_1_2_1, -1.5_1_2_2, -0.8_2_7_0, 0.7_8_5_1, 1.8_3_3_5] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = UNetMidBlockaDSimpleCrossAttn # noqa F405 lowercase = 'mid' @property def _lowercase( self ) -> Any: return super().get_dummy_input(include_encoder_hidden_states=A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : Optional[int] = 32 return init_dict, inputs_dict def _lowercase( self ) -> Dict: UpperCAmelCase : List[str] = [0.7_1_4_3, 1.9_9_7_4, 0.5_4_4_8, 1.3_9_7_7, 0.1_2_8_2, -1.1_2_3_7, -1.4_2_3_8, 0.5_5_3_0, 0.8_8_8_0] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = UpBlockaD # noqa F405 lowercase = 'up' @property def _lowercase( self ) -> str: return super().get_dummy_input(include_res_hidden_states_tuple=A ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = [-0.2_0_4_1, -0.4_1_6_5, -0.3_0_2_2, 0.0_0_4_1, -0.6_6_2_8, -0.7_0_5_3, 0.1_9_2_8, -0.0_3_2_5, 0.0_5_2_3] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = ResnetUpsampleBlockaD # noqa F405 lowercase = 'up' @property def _lowercase( self ) -> Optional[int]: return super().get_dummy_input(include_res_hidden_states_tuple=A ) def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = [0.2_2_8_7, 0.3_5_4_9, -0.1_3_4_6, 0.4_7_9_7, -0.1_7_1_5, -0.9_6_4_9, 0.7_3_0_5, -0.5_8_6_4, -0.6_2_4_4] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = CrossAttnUpBlockaD # noqa F405 lowercase = 'up' @property def _lowercase( self ) -> List[str]: return super().get_dummy_input(include_res_hidden_states_tuple=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Any = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : str = 32 return init_dict, inputs_dict def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = [-0.1_4_0_3, -0.3_5_1_5, -0.0_4_2_0, -0.1_4_2_5, 0.3_1_6_7, 0.5_0_9_4, -0.2_1_8_1, 0.5_9_3_1, 0.5_5_8_2] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = SimpleCrossAttnUpBlockaD # noqa F405 lowercase = 'up' @property def _lowercase( self ) -> List[str]: return super().get_dummy_input(include_res_hidden_states_tuple=A , include_encoder_hidden_states=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[int] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : Tuple = 32 return init_dict, inputs_dict def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = [0.2_6_4_5, 0.1_4_8_0, 0.0_9_0_9, 0.8_0_4_4, -0.9_7_5_8, -0.9_0_8_3, 0.0_9_9_4, -1.1_4_5_3, -0.7_4_0_2] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = AttnUpBlockaD # noqa F405 lowercase = 'up' @property def _lowercase( self ) -> List[str]: return super().get_dummy_input(include_res_hidden_states_tuple=A ) @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def _lowercase( self ) -> Any: UpperCAmelCase : Union[str, Any] = [0.0_9_7_9, 0.1_3_2_6, 0.0_0_2_1, 0.0_6_5_9, 0.2_2_4_9, 0.0_0_5_9, 0.1_1_3_2, 0.5_9_5_2, 0.1_0_3_3] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = SkipUpBlockaD # noqa F405 lowercase = 'up' @property def _lowercase( self ) -> int: return super().get_dummy_input(include_res_hidden_states_tuple=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : int = [-0.0_8_9_3, -0.1_2_3_4, -0.1_5_0_6, -0.0_3_3_2, 0.0_1_2_3, -0.0_2_1_1, 0.0_5_6_6, 0.0_1_4_3, 0.0_3_6_2] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = AttnSkipUpBlockaD # noqa F405 lowercase = 'up' @property def _lowercase( self ) -> Dict: return super().get_dummy_input(include_res_hidden_states_tuple=A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[Any] = [0.0_3_6_1, 0.0_6_1_7, 0.2_7_8_7, -0.0_3_5_0, 0.0_3_4_2, 0.3_4_2_1, -0.0_8_4_3, 0.0_9_1_3, 0.3_0_1_5] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = UpDecoderBlockaD # noqa F405 lowercase = 'up' @property def _lowercase( self ) -> Union[str, Any]: return super().get_dummy_input(include_temb=A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Union[str, Any] = {"""in_channels""": 32, """out_channels""": 32} UpperCAmelCase : Tuple = self.dummy_input return init_dict, inputs_dict def _lowercase( self ) -> Tuple: UpperCAmelCase : Union[str, Any] = [0.4_4_0_4, 0.1_9_9_8, -0.9_8_8_6, -0.3_3_2_0, -0.3_1_2_8, -0.7_0_3_4, -0.6_9_5_5, -0.2_3_3_8, -0.3_1_3_7] super().test_output(A ) class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = AttnUpDecoderBlockaD # noqa F405 lowercase = 'up' @property def _lowercase( self ) -> Dict: return super().get_dummy_input(include_temb=A ) def _lowercase( self ) -> str: UpperCAmelCase : str = {"""in_channels""": 32, """out_channels""": 32} UpperCAmelCase : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def _lowercase( self ) -> int: UpperCAmelCase : str = [0.6_7_3_8, 0.4_4_9_1, 0.1_0_5_5, 1.0_7_1_0, 0.7_3_1_6, 0.3_3_3_9, 0.3_3_5_2, 0.1_0_2_3, 0.3_5_6_8] super().test_output(A )
716
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Any = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
672
0
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> int: if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=A , ) assert hasattr(self , """env""" ) def _lowercase( self , A ) -> str: UpperCAmelCase : Any = f'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}''' # distributed data settings UpperCAmelCase : Tuple = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=A , instance_count=A , instance_type=self.instance_type , debugger_hook_config=A , hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=A , py_version="""py36""" , ) def _lowercase( self , A ) -> Any: TrainingJobAnalytics(A ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def _lowercase( self , A ) -> str: # create estimator UpperCAmelCase : Union[str, Any] = self.create_estimator(A ) # run training estimator.fit() # result dataframe UpperCAmelCase : str = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) UpperCAmelCase : Any = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase : List[Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , A )
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
718
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
0
'''simple docstring''' import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=64 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , A=2 , A=2 , A=2 , A=2 , A=4 , A=1 , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : List[Any] = seq_length UpperCAmelCase : int = is_training UpperCAmelCase : Dict = use_input_mask UpperCAmelCase : Tuple = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : Dict = hidden_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : int = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[int] = type_vocab_size UpperCAmelCase : Union[str, Any] = type_sequence_label_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = num_labels UpperCAmelCase : Union[str, Any] = num_choices UpperCAmelCase : Dict = scope UpperCAmelCase : Optional[Any] = q_groups UpperCAmelCase : Dict = k_groups UpperCAmelCase : Any = v_groups UpperCAmelCase : Union[str, Any] = post_attention_groups UpperCAmelCase : List[str] = intermediate_groups UpperCAmelCase : Dict = output_groups def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : str = None UpperCAmelCase : List[Any] = None UpperCAmelCase : Optional[int] = None if self.use_labels: UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> int: return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def _lowercase( self , A , A , A , A , A , A ) -> Tuple: UpperCAmelCase : Any = SqueezeBertModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[str] = model(A , A ) UpperCAmelCase : Any = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A ) -> Dict: UpperCAmelCase : List[Any] = SqueezeBertForMaskedLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = SqueezeBertForQuestionAnswering(config=A ) model.to(A ) model.eval() UpperCAmelCase : Optional[int] = model( A , attention_mask=A , start_positions=A , end_positions=A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase( self , A , A , A , A , A , A ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.num_labels UpperCAmelCase : int = SqueezeBertForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Optional[int] = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A , A , A , A ) -> Union[str, Any]: UpperCAmelCase : str = self.num_labels UpperCAmelCase : Dict = SqueezeBertForTokenClassification(config=A ) model.to(A ) model.eval() UpperCAmelCase : Optional[Any] = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase( self , A , A , A , A , A , A ) -> List[str]: UpperCAmelCase : Union[str, Any] = self.num_choices UpperCAmelCase : Any = SqueezeBertForMultipleChoice(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[Any] = model( A , attention_mask=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Any = self.prepare_config_and_inputs() (UpperCAmelCase) : Optional[int] = config_and_inputs UpperCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowercase = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = True lowercase = False def _lowercase( self ) -> List[Any]: UpperCAmelCase : Tuple = SqueezeBertModelTester(self ) UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=A , dim=37 ) def _lowercase( self ) -> Any: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*A ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*A ) def _lowercase( self ) -> Any: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*A ) @slow def _lowercase( self ) -> Optional[int]: for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : List[Any] = SqueezeBertModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_sentencepiece @require_tokenizers @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[int] = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" ) UpperCAmelCase : Any = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) UpperCAmelCase : Dict = model(A )[0] UpperCAmelCase : Dict = torch.Size((1, 3) ) self.assertEqual(output.shape , A ) UpperCAmelCase : Union[str, Any] = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] ) self.assertTrue(torch.allclose(A , A , atol=1e-4 ) )
719
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A=None , A=None , **A ) -> str: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase : List[Any] = str(jax.devices()[0] ) UpperCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def _lowercase( self , A ) -> str: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _lowercase( self , A ) -> Tuple: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase : List[str] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase : str = {"""dtype""": jnp.intaa} else: UpperCAmelCase : int = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase : Any = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): UpperCAmelCase : List[str] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase( self , A ) -> Tuple: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): UpperCAmelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _lowercase( self , A ) -> Dict: return map_nested(self._recursive_tensorize , A , map_list=A ) def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A ) UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _lowercase( self , A ) -> "jax.Array": UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A ) UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) UpperCAmelCase : Any = self._consolidate(A ) return column def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A ) UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) for column_name in batch: UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
672
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> str: UpperCAmelCase : Optional[Any] = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" ) UpperCAmelCase : str = { """input_ids""": tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]] , dtype=tf.intaa ), # "My dog is cute" """attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } UpperCAmelCase : Union[str, Any] = model(A )["""last_hidden_state"""] UpperCAmelCase : int = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , A ) # compare the actual values for a slice. UpperCAmelCase : Optional[int] = tf.convert_to_tensor( [ [ [0.0_6_8_1_7_6_2, 0.1_0_8_9_4_4_5_1, 0.0_6_7_7_2_5_0_4], [-0.0_6_4_2_3_6_6_8, 0.0_2_3_6_6_6_1_5, 0.0_4_3_2_9_3_4_4], [-0.0_6_0_5_7_2_9_5, 0.0_9_9_7_4_1_3_5, -0.0_0_0_7_0_5_8_4], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
720
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : int = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
672
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
721
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
672
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def __lowerCamelCase ( _lowercase ) -> list[list[float]]: UpperCAmelCase : Dict = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_lowercase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase : Dict = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase : int = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase : Any = matrix[1][1], matrix[0][0] UpperCAmelCase : Any = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_lowercase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_lowercase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase : Tuple = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix UpperCAmelCase : Optional[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase : List[str] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase : int = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase : Optional[int] = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase : List[Any] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase : Dict = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase : List[str] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase : List[Any] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase : List[Any] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase : Union[str, Any] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase : int = array(_lowercase ) for i in range(3 ): for j in range(3 ): UpperCAmelCase : Union[str, Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase : Dict = array(_lowercase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_lowercase ) # Calculate the inverse of the matrix return [[float(d(_lowercase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
700
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
672
0
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets a : List[str] = datasets.logging.get_logger(__name__) a : List[Any] = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ a : Union[str, Any] = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ a : List[Any] = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=False , _lowercase=False , _lowercase=True , _lowercase=False , _lowercase="dummy_doc" ) -> Optional[Any]: UpperCAmelCase : Any = {doc: key_lines} UpperCAmelCase : str = {doc: sys_lines} UpperCAmelCase : Any = {} UpperCAmelCase : Dict = 0 UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Any = 0 UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[str] = reader.get_doc_mentions(_lowercase , key_doc_lines[doc] , _lowercase ) key_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase : Tuple = reader.set_annotated_parse_trees(_lowercase , key_doc_lines[doc] , _lowercase , _lowercase ) UpperCAmelCase : str = reader.get_doc_mentions(_lowercase , sys_doc_lines[doc] , _lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase : Optional[int] = reader.set_annotated_parse_trees(_lowercase , key_doc_lines[doc] , _lowercase , _lowercase ) if remove_nested: UpperCAmelCase : Dict = reader.remove_nested_coref_mentions(_lowercase , _lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters UpperCAmelCase : Optional[int] = reader.remove_nested_coref_mentions(_lowercase , _lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters UpperCAmelCase : Dict = reader.get_mention_assignments(_lowercase , _lowercase ) UpperCAmelCase : List[str] = reader.get_mention_assignments(_lowercase , _lowercase ) UpperCAmelCase : Any = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( """Number of resulting singleton clusters in the key """ F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' """files, respectively""" ) return doc_coref_infos def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : str = get_coref_infos(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Optional[int] = {} UpperCAmelCase : List[Any] = 0 UpperCAmelCase : Optional[int] = 0 for name, metric in metrics: UpperCAmelCase : int = evaluator.evaluate_documents(_lowercase , _lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(1_0 ) , F'''Recall: {recall * 1_0_0:.2f}''' , F''' Precision: {precision * 1_0_0:.2f}''' , F''' F1: {fa * 1_0_0:.2f}''' , ) if conll_subparts_num == 3: UpperCAmelCase : Dict = (conll / 3) * 1_0_0 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({"""conll_score""": conll} ) return output_scores def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : List[Any] = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: UpperCAmelCase : Tuple = line.split()[5] if not parse_col == "-": UpperCAmelCase : Tuple = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def _lowercase( self , A , A , A=True , A=False , A=False , A=False ) -> Tuple: UpperCAmelCase : Union[str, Any] = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: UpperCAmelCase : int = util.check_gold_parse_annotation(A ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" UpperCAmelCase : Union[str, Any] = evaluate( key_lines=A , sys_lines=A , metrics=A , NP_only=A , remove_nested=A , keep_singletons=A , min_span=A , ) return score
701
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
0
'''simple docstring''' from __future__ import annotations import requests a : Optional[int] = set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def __lowerCamelCase ( _lowercase , _lowercase = 1 , _lowercase = "new" , _lowercase = None ) -> dict: UpperCAmelCase : List[Any] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(_lowercase ) - valid_terms ) ): UpperCAmelCase : Optional[int] = F'''Invalid search term: {invalid_search_terms}''' raise ValueError(_lowercase ) UpperCAmelCase : Optional[int] = requests.get( F'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={"""User-agent""": """A random string"""} , ) if response.status_code == 4_2_9: raise requests.HTTPError UpperCAmelCase : Tuple = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(_lowercase )} UpperCAmelCase : Optional[int] = {} for id_ in range(_lowercase ): UpperCAmelCase : int = { item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
702
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
0
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def __lowerCamelCase ( _lowercase , _lowercase=1 ) -> Optional[int]: if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def __lowerCamelCase ( _lowercase , _lowercase=0 ) -> Tuple: UpperCAmelCase : Tuple = [] for old_item in old_list: UpperCAmelCase : List[Any] = old_item.replace("""in_layers.0""" , """norm1""" ) UpperCAmelCase : Dict = new_item.replace("""in_layers.2""" , """conv1""" ) UpperCAmelCase : Any = new_item.replace("""out_layers.0""" , """norm2""" ) UpperCAmelCase : int = new_item.replace("""out_layers.3""" , """conv2""" ) UpperCAmelCase : Optional[Any] = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) UpperCAmelCase : Dict = new_item.replace("""skip_connection""" , """conv_shortcut""" ) UpperCAmelCase : str = shave_segments(_lowercase , n_shave_prefix_segments=_lowercase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def __lowerCamelCase ( _lowercase , _lowercase=0 ) -> str: UpperCAmelCase : Dict = [] for old_item in old_list: UpperCAmelCase : Dict = old_item UpperCAmelCase : str = new_item.replace("""norm.weight""" , """group_norm.weight""" ) UpperCAmelCase : Optional[Any] = new_item.replace("""norm.bias""" , """group_norm.bias""" ) UpperCAmelCase : Optional[Any] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) UpperCAmelCase : Union[str, Any] = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) UpperCAmelCase : Union[str, Any] = shave_segments(_lowercase , n_shave_prefix_segments=_lowercase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None ) -> Dict: assert isinstance(_lowercase , _lowercase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase : Optional[Any] = old_checkpoint[path] UpperCAmelCase : str = old_tensor.shape[0] // 3 UpperCAmelCase : Optional[int] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase : str = old_tensor.shape[0] // config["""num_head_channels"""] // 3 UpperCAmelCase : int = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase : int = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase : Optional[Any] = query.reshape(_lowercase ) UpperCAmelCase : Optional[Any] = key.reshape(_lowercase ) UpperCAmelCase : Any = value.reshape(_lowercase ) for path in paths: UpperCAmelCase : Any = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase : Any = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) UpperCAmelCase : Optional[Any] = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) UpperCAmelCase : int = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase : List[Any] = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase : Union[str, Any] = old_checkpoint[path["""old"""]][:, :, 0] else: UpperCAmelCase : str = old_checkpoint[path["""old"""]] def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = {} UpperCAmelCase : List[Any] = checkpoint["""time_embed.0.weight"""] UpperCAmelCase : Optional[Any] = checkpoint["""time_embed.0.bias"""] UpperCAmelCase : List[str] = checkpoint["""time_embed.2.weight"""] UpperCAmelCase : int = checkpoint["""time_embed.2.bias"""] UpperCAmelCase : Any = checkpoint["""input_blocks.0.0.weight"""] UpperCAmelCase : str = checkpoint["""input_blocks.0.0.bias"""] UpperCAmelCase : Optional[Any] = checkpoint["""out.0.weight"""] UpperCAmelCase : List[Any] = checkpoint["""out.0.bias"""] UpperCAmelCase : Optional[Any] = checkpoint["""out.2.weight"""] UpperCAmelCase : List[str] = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only UpperCAmelCase : Any = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) UpperCAmelCase : Any = { layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key] for layer_id in range(_lowercase ) } # Retrieves the keys for the middle blocks only UpperCAmelCase : str = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) UpperCAmelCase : Any = { layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key] for layer_id in range(_lowercase ) } # Retrieves the keys for the output blocks only UpperCAmelCase : List[Any] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) UpperCAmelCase : List[str] = { layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key] for layer_id in range(_lowercase ) } for i in range(1 , _lowercase ): UpperCAmelCase : str = (i - 1) // (config["""num_res_blocks"""] + 1) UpperCAmelCase : Union[str, Any] = (i - 1) % (config["""num_res_blocks"""] + 1) UpperCAmelCase : Optional[int] = [key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key] UpperCAmelCase : Optional[int] = [key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key] if F'''input_blocks.{i}.0.op.weight''' in checkpoint: UpperCAmelCase : Optional[Any] = checkpoint[ F'''input_blocks.{i}.0.op.weight''' ] UpperCAmelCase : Dict = checkpoint[ F'''input_blocks.{i}.0.op.bias''' ] continue UpperCAmelCase : int = renew_resnet_paths(_lowercase ) UpperCAmelCase : List[Any] = {"""old""": F'''input_blocks.{i}.0''', """new""": F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} UpperCAmelCase : List[Any] = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( _lowercase , _lowercase , _lowercase , additional_replacements=[meta_path, resnet_op] , config=_lowercase ) if len(_lowercase ): UpperCAmelCase : Any = renew_attention_paths(_lowercase ) UpperCAmelCase : Optional[Any] = { """old""": F'''input_blocks.{i}.1''', """new""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } UpperCAmelCase : Any = { F'''input_blocks.{i}.1.qkv.bias''': { """key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', """query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', """value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''input_blocks.{i}.1.qkv.weight''': { """key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', """query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', """value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( _lowercase , _lowercase , _lowercase , additional_replacements=[meta_path] , attention_paths_to_split=_lowercase , config=_lowercase , ) UpperCAmelCase : Optional[Any] = middle_blocks[0] UpperCAmelCase : Tuple = middle_blocks[1] UpperCAmelCase : Any = middle_blocks[2] UpperCAmelCase : int = renew_resnet_paths(_lowercase ) assign_to_checkpoint(_lowercase , _lowercase , _lowercase , config=_lowercase ) UpperCAmelCase : Dict = renew_resnet_paths(_lowercase ) assign_to_checkpoint(_lowercase , _lowercase , _lowercase , config=_lowercase ) UpperCAmelCase : int = renew_attention_paths(_lowercase ) UpperCAmelCase : Union[str, Any] = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( _lowercase , _lowercase , _lowercase , attention_paths_to_split=_lowercase , config=_lowercase ) for i in range(_lowercase ): UpperCAmelCase : int = i // (config["""num_res_blocks"""] + 1) UpperCAmelCase : List[str] = i % (config["""num_res_blocks"""] + 1) UpperCAmelCase : Optional[Any] = [shave_segments(_lowercase , 2 ) for name in output_blocks[i]] UpperCAmelCase : List[str] = {} for layer in output_block_layers: UpperCAmelCase : Any = layer.split(""".""" )[0], shave_segments(_lowercase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(_lowercase ) else: UpperCAmelCase : Tuple = [layer_name] if len(_lowercase ) > 1: UpperCAmelCase : List[Any] = [key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key] UpperCAmelCase : Union[str, Any] = [key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key] UpperCAmelCase : int = renew_resnet_paths(_lowercase ) UpperCAmelCase : Dict = renew_resnet_paths(_lowercase ) UpperCAmelCase : List[str] = {"""old""": F'''output_blocks.{i}.0''', """new""": F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(_lowercase , _lowercase , _lowercase , additional_replacements=[meta_path] , config=_lowercase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase : int = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) UpperCAmelCase : Dict = checkpoint[ F'''output_blocks.{i}.{index}.conv.weight''' ] UpperCAmelCase : List[str] = checkpoint[ F'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(_lowercase ) == 2: UpperCAmelCase : Any = [] if len(_lowercase ): UpperCAmelCase : Dict = renew_attention_paths(_lowercase ) UpperCAmelCase : List[str] = { """old""": F'''output_blocks.{i}.1''', """new""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } UpperCAmelCase : str = { F'''output_blocks.{i}.1.qkv.bias''': { """key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', """query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', """value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''output_blocks.{i}.1.qkv.weight''': { """key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', """query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', """value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( _lowercase , _lowercase , _lowercase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=_lowercase , ) else: UpperCAmelCase : List[str] = renew_resnet_paths(_lowercase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase : Tuple = """.""".join(["""output_blocks""", str(_lowercase ), path["""old"""]] ) UpperCAmelCase : List[str] = """.""".join(["""up_blocks""", str(_lowercase ), """resnets""", str(_lowercase ), path["""new"""]] ) UpperCAmelCase : List[Any] = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": a : Any = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") a : Union[str, Any] = parser.parse_args() a : Tuple = torch.load(args.checkpoint_path) with open(args.config_file) as f: a : Tuple = json.loads(f.read()) a : str = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] a : Optional[Any] = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: a : Optional[int] = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) a : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) a : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
703
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations UpperCAmelCase : List[Any] = tpu_short_seq_length
672
0
import re def __lowerCamelCase ( _lowercase ) -> list: return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""" , str_ )] def __lowerCamelCase ( _lowercase ) -> str: UpperCAmelCase : Optional[int] = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: try: UpperCAmelCase : Tuple = split_input(_lowercase ) if upper: UpperCAmelCase : int = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: UpperCAmelCase : List[str] = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def __lowerCamelCase ( _lowercase ) -> str: return to_simple_case(_lowercase ) def __lowerCamelCase ( _lowercase ) -> str: try: UpperCAmelCase : Union[str, Any] = to_simple_case(_lowercase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return to_complex_case(_lowercase , _lowercase , """_""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return to_complex_case(_lowercase , _lowercase , """-""" ) if __name__ == "__main__": __import__("""doctest""").testmod()
704
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
0
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=[] ) -> int: UpperCAmelCase : Union[str, Any] = size[0] - overlap_pixels * 2 UpperCAmelCase : Optional[Any] = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels UpperCAmelCase : Any = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_5_5 UpperCAmelCase : Dict = np.pad(_lowercase , mode="""linear_ramp""" , pad_width=_lowercase , end_values=0 ) if "l" in remove_borders: UpperCAmelCase : Dict = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: UpperCAmelCase : int = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: UpperCAmelCase : Optional[Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: UpperCAmelCase : Any = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[Any]: return max(_lowercase , min(_lowercase , _lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = list(_lowercase ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap UpperCAmelCase : str = clamp_rect(_lowercase , [0, 0] , [image_size[0], image_size[1]] ) return rect def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: UpperCAmelCase : str = Image.new("""RGB""" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(_lowercase , (original_slice, 0) ) return result def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) UpperCAmelCase : Dict = tile.crop(_lowercase ) return tile def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : Dict = n % d return n - divisor class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A , A , A , A = 350 , ) -> List[Any]: super().__init__( vae=A , text_encoder=A , tokenizer=A , unet=A , low_res_scheduler=A , scheduler=A , max_noise_level=A , ) def _lowercase( self , A , A , A , A , A , A , A , **A ) -> Tuple: torch.manual_seed(0 ) UpperCAmelCase : List[Any] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) UpperCAmelCase : Optional[int] = add_overlap_rect(A , A , image.size ) UpperCAmelCase : Any = image.crop(A ) UpperCAmelCase : int = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] UpperCAmelCase : int = translated_slice_x - (original_image_slice / 2) UpperCAmelCase : List[Any] = max(0 , A ) UpperCAmelCase : str = squeeze_tile(A , A , A , A ) UpperCAmelCase : Optional[int] = to_input.size UpperCAmelCase : Optional[int] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) UpperCAmelCase : Dict = super(A , self ).__call__(image=A , **A ).images[0] UpperCAmelCase : Optional[Any] = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) UpperCAmelCase : str = unsqueeze_tile(A , A ) UpperCAmelCase : List[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) UpperCAmelCase : List[Any] = [] if x == 0: remove_borders.append("""l""" ) elif crop_rect[2] == image.size[0]: remove_borders.append("""r""" ) if y == 0: remove_borders.append("""t""" ) elif crop_rect[3] == image.size[1]: remove_borders.append("""b""" ) UpperCAmelCase : Optional[int] = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=A ) , mode="""L""" , ) final_image.paste( A , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , A ) @torch.no_grad() def __call__( self , A , A , A = 75 , A = 9.0 , A = 50 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = None , A = 1 , A = 128 , A = 32 , A = 32 , ) -> List[str]: UpperCAmelCase : List[Any] = Image.new("""RGB""" , (image.size[0] * 4, image.size[1] * 4) ) UpperCAmelCase : Any = math.ceil(image.size[0] / tile_size ) UpperCAmelCase : Any = math.ceil(image.size[1] / tile_size ) UpperCAmelCase : Tuple = tcx * tcy UpperCAmelCase : Optional[int] = 0 for y in range(A ): for x in range(A ): self._process_tile( A , A , A , A , A , A , A , prompt=A , num_inference_steps=A , guidance_scale=A , noise_level=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , ) current_count += 1 if callback is not None: callback({"""progress""": current_count / total_tile_count, """image""": final_image} ) return final_image def __lowerCamelCase ( ) -> int: # Run a demo UpperCAmelCase : int = """stabilityai/stable-diffusion-x4-upscaler""" UpperCAmelCase : str = StableDiffusionTiledUpscalePipeline.from_pretrained(_lowercase , revision="""fp16""" , torch_dtype=torch.floataa ) UpperCAmelCase : Dict = pipe.to("""cuda""" ) UpperCAmelCase : Dict = Image.open("""../../docs/source/imgs/diffusers_library.jpg""" ) def callback(_lowercase ): print(F'''progress: {obj['progress']:.4f}''' ) obj["image"].save("""diffusers_library_progress.jpg""" ) UpperCAmelCase : int = pipe(image=_lowercase , prompt="""Black font, white background, vector""" , noise_level=4_0 , callback=_lowercase ) final_image.save("""diffusers_library.jpg""" ) if __name__ == "__main__": main()
705
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
0
from itertools import product def __lowerCamelCase ( _lowercase , _lowercase ) -> list[int]: UpperCAmelCase : Any = sides_number UpperCAmelCase : List[Any] = max_face_number * dice_number UpperCAmelCase : int = [0] * (max_total + 1) UpperCAmelCase : str = 1 UpperCAmelCase : Any = range(_lowercase , max_face_number + 1 ) for dice_numbers in product(_lowercase , repeat=_lowercase ): UpperCAmelCase : Union[str, Any] = sum(_lowercase ) totals_frequencies[total] += 1 return totals_frequencies def __lowerCamelCase ( ) -> float: UpperCAmelCase : str = total_frequency_distribution( sides_number=4 , dice_number=9 ) UpperCAmelCase : Optional[int] = total_frequency_distribution( sides_number=6 , dice_number=6 ) UpperCAmelCase : List[Any] = 0 UpperCAmelCase : List[Any] = 9 UpperCAmelCase : Dict = 4 * 9 UpperCAmelCase : Dict = 6 for peter_total in range(_lowercase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) UpperCAmelCase : str = (4**9) * (6**6) UpperCAmelCase : Optional[Any] = peter_wins_count / total_games_number UpperCAmelCase : Tuple = round(_lowercase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
706
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a : Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class UpperCamelCase_ : lowercase = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'The column name of the images in the files.'} ) lowercase = field(default=__magic_name__ , metadata={'help': 'A folder containing the training data.'} ) lowercase = field(default=__magic_name__ , metadata={'help': 'A folder containing the validation data.'} ) lowercase = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[Any] = {} if self.train_dir is not None: UpperCAmelCase : List[Any] = self.train_dir if self.validation_dir is not None: UpperCAmelCase : Tuple = self.validation_dir UpperCAmelCase : Tuple = data_files if data_files else None @dataclass class UpperCamelCase_ : lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) lowercase = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowercase = field(default=__magic_name__ , metadata={'help': 'Name or path of preprocessor config.'} ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowercase = field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class UpperCamelCase_ ( __magic_name__ ): lowercase = field( default=1e-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def __lowerCamelCase ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase : List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , _lowercase , _lowercase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase : Dict = training_args.get_process_log_level() logger.setLevel(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCAmelCase : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCAmelCase : Tuple = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _lowercase ) and data_args.train_val_split > 0.0: UpperCAmelCase : Optional[int] = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCAmelCase : Union[str, Any] = split["""train"""] UpperCAmelCase : List[Any] = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase : Optional[int] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCAmelCase : Dict = ViTMAEConfig.from_pretrained(model_args.config_name , **_lowercase ) elif model_args.model_name_or_path: UpperCAmelCase : List[str] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_lowercase ) else: UpperCAmelCase : Tuple = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCAmelCase : List[str] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_lowercase ) elif model_args.model_name_or_path: UpperCAmelCase : Union[str, Any] = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_lowercase ) else: UpperCAmelCase : Optional[Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCAmelCase : int = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCAmelCase : Dict = ViTMAEForPreTraining(_lowercase ) if training_args.do_train: UpperCAmelCase : List[Any] = ds["""train"""].column_names else: UpperCAmelCase : Optional[int] = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCAmelCase : Tuple = data_args.image_column_name elif "image" in column_names: UpperCAmelCase : int = """image""" elif "img" in column_names: UpperCAmelCase : Tuple = """img""" else: UpperCAmelCase : Union[str, Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCAmelCase : Union[str, Any] = image_processor.size["""shortest_edge"""] else: UpperCAmelCase : Tuple = (image_processor.size["""height"""], image_processor.size["""width"""]) UpperCAmelCase : Tuple = Compose( [ Lambda(lambda _lowercase : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(_lowercase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_lowercase ): UpperCAmelCase : Any = [transforms(_lowercase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCAmelCase : int = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_lowercase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCAmelCase : str = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_lowercase ) # Compute absolute learning rate UpperCAmelCase : Dict = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCAmelCase : Tuple = training_args.base_learning_rate * total_train_batch_size / 2_5_6 # Initialize our trainer UpperCAmelCase : Union[str, Any] = Trainer( model=_lowercase , args=_lowercase , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: UpperCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase : int = last_checkpoint UpperCAmelCase : Tuple = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("""eval""" , _lowercase ) trainer.save_metrics("""eval""" , _lowercase ) # Write model card and (optionally) push to hub UpperCAmelCase : Dict = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def __lowerCamelCase ( _lowercase ) -> int: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
707
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
0
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : Any = {"""vocab_file""": """vocab.txt"""} a : List[Any] = { """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } a : List[str] = { """facebook/esm2_t6_8M_UR50D""": 1_0_2_4, """facebook/esm2_t12_35M_UR50D""": 1_0_2_4, } def __lowerCamelCase ( _lowercase ) -> Optional[Any]: with open(_lowercase , """r""" ) as f: UpperCAmelCase : Optional[Any] = f.read().splitlines() return [l.strip() for l in lines] class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self , A , A="<unk>" , A="<cls>" , A="<pad>" , A="<mask>" , A="<eos>" , **A , ) -> Any: super().__init__(**A ) UpperCAmelCase : int = load_vocab_file(A ) UpperCAmelCase : Tuple = dict(enumerate(self.all_tokens ) ) UpperCAmelCase : List[str] = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCAmelCase : List[str] = unk_token UpperCAmelCase : List[Any] = cls_token UpperCAmelCase : str = pad_token UpperCAmelCase : int = mask_token UpperCAmelCase : Tuple = eos_token UpperCAmelCase : List[str] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _lowercase( self , A ) -> str: return self._id_to_token.get(A , self.unk_token ) def _lowercase( self , A ) -> int: return self._token_to_id.get(A , self._token_to_id.get(self.unk_token ) ) def _lowercase( self , A , **A ) -> Any: return text.split() def _lowercase( self , A=False ) -> Optional[int]: return len(self._id_to_token ) def _lowercase( self ) -> Any: return {token: i for i, token in enumerate(self.all_tokens )} def _lowercase( self , A ) -> int: return self._token_to_id.get(A , self._token_to_id.get(self.unk_token ) ) def _lowercase( self , A ) -> str: return self._id_to_token.get(A , self.unk_token ) def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[Any] = [self.cls_token_id] UpperCAmelCase : str = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("""Cannot tokenize multiple sequences when EOS token is not set!""" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _lowercase( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCAmelCase : Optional[int] = [1] + ([0] * len(A )) + [1] if token_ids_a is not None: mask += [0] * len(A ) + [1] return mask def _lowercase( self , A , A ) -> Optional[int]: UpperCAmelCase : Dict = os.path.join(A , (filename_prefix + """-""" if filename_prefix else """""") + """vocab.txt""" ) with open(A , """w""" ) as f: f.write("""\n""".join(self.all_tokens ) ) return (vocab_file,) @property def _lowercase( self ) -> int: return self.get_vocab_size(with_added_tokens=A ) def _lowercase( self , A , A = False ) -> int: return super()._add_tokens(A , special_tokens=A )
708
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
0
'''simple docstring''' import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy a : Union[str, Any] = logging.get_logger(__name__) a : str = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } a : List[Any] = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } a : Union[str, Any] = { """jukebox""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_LYRIC_TOKENS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=512 , A=5 , A="<|endoftext|>" , **A , ) -> Any: UpperCAmelCase : Any = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) UpperCAmelCase : Any = version UpperCAmelCase : Any = max_n_lyric_tokens UpperCAmelCase : Optional[Any] = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase : Tuple = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase : Tuple = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase : List[Any] = json.load(A ) UpperCAmelCase : Any = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: UpperCAmelCase : str = oov.replace(r"""\-'""" , r"""\-+'""" ) UpperCAmelCase : Union[str, Any] = regex.compile(A ) UpperCAmelCase : Dict = {v: k for k, v in self.artists_encoder.items()} UpperCAmelCase : Any = {v: k for k, v in self.genres_encoder.items()} UpperCAmelCase : Optional[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def _lowercase( self ) -> Any: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def _lowercase( self ) -> Union[str, Any]: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : str = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): UpperCAmelCase : str = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] UpperCAmelCase : Optional[Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) UpperCAmelCase : List[str] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def _lowercase( self , A ) -> Dict: return list(A ) def _lowercase( self , A , A , A , **A ) -> Optional[int]: UpperCAmelCase : Any = self.prepare_for_tokenization(A , A , A ) UpperCAmelCase : Optional[int] = self._tokenize(A ) return artist, genre, lyrics def _lowercase( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": UpperCAmelCase : List[Any] = artists[idx].lower() UpperCAmelCase : Dict = [genres[idx].lower()] else: UpperCAmelCase : Any = self._normalize(artists[idx] ) + """.v2""" UpperCAmelCase : Union[str, Any] = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": UpperCAmelCase : Union[str, Any] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) UpperCAmelCase : Any = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" UpperCAmelCase : Dict = {vocab[index]: index + 1 for index in range(len(A ) )} UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : Any = len(A ) + 1 UpperCAmelCase : Optional[int] = self.vocab UpperCAmelCase : str = {v: k for k, v in self.vocab.items()} UpperCAmelCase : Any = """""" else: UpperCAmelCase : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) UpperCAmelCase : Optional[int] = self._run_strip_accents(A ) UpperCAmelCase : List[str] = lyrics.replace("""\\""" , """\n""" ) UpperCAmelCase : Optional[int] = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def _lowercase( self , A ) -> str: UpperCAmelCase : Dict = unicodedata.normalize("""NFD""" , A ) UpperCAmelCase : Any = [] for char in text: UpperCAmelCase : Dict = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def _lowercase( self , A ) -> str: UpperCAmelCase : Union[str, Any] = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) UpperCAmelCase : List[str] = frozenset(A ) UpperCAmelCase : Dict = re.compile(r"""_+""" ) UpperCAmelCase : List[str] = """""".join([c if c in accepted else """_""" for c in text.lower()] ) UpperCAmelCase : Any = pattern.sub("""_""" , A ).strip("""_""" ) return text def _lowercase( self , A ) -> str: return " ".join(A ) def _lowercase( self , A , A = None , A = False ) -> Dict: # Convert to TensorType if not isinstance(A , A ): UpperCAmelCase : Any = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf UpperCAmelCase : Optional[int] = tf.constant UpperCAmelCase : Dict = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch UpperCAmelCase : Optional[Any] = torch.tensor UpperCAmelCase : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 UpperCAmelCase : Any = jnp.array UpperCAmelCase : Optional[Any] = _is_jax else: UpperCAmelCase : List[str] = np.asarray UpperCAmelCase : List[str] = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: UpperCAmelCase : List[Any] = [inputs] if not is_tensor(A ): UpperCAmelCase : Dict = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: UpperCAmelCase : Tuple = [0, 0, 0] UpperCAmelCase : Optional[int] = [artist] * len(self.version ) UpperCAmelCase : List[str] = [genres] * len(self.version ) UpperCAmelCase : Optional[int] = self.tokenize(A , A , A ) UpperCAmelCase : Dict = self._convert_token_to_id(A , A , A ) UpperCAmelCase : int = [-INFINITY] * len(full_tokens[-1] ) UpperCAmelCase : List[str] = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def _lowercase( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : List[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) UpperCAmelCase : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) UpperCAmelCase : Union[str, Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def _lowercase( self , A , A , A ) -> Tuple: UpperCAmelCase : Union[str, Any] = self.artists_decoder.get(A ) UpperCAmelCase : Any = [self.genres_decoder.get(A ) for genre in genres_index] UpperCAmelCase : Dict = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
709
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
0
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __lowerCamelCase ( _lowercase , _lowercase ) -> float: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(_lowercase , _lowercase ) ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[list[float] | float]]: if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( """Wrong input data's dimensions... """ F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(_lowercase ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( """Wrong input data's shape... """ F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(_lowercase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: UpperCAmelCase : Any = ( """Input data have different datatype... """ F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(_lowercase ) UpperCAmelCase : Any = [] for value in value_array: UpperCAmelCase : int = euclidean(_lowercase , dataset[0] ) UpperCAmelCase : Any = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : List[Any] = euclidean(_lowercase , _lowercase ) if dist > temp_dist: UpperCAmelCase : str = temp_dist UpperCAmelCase : Any = dataset_value.tolist() answer.append([vector, dist] ) return answer def __lowerCamelCase ( _lowercase , _lowercase ) -> float: return np.dot(_lowercase , _lowercase ) / (norm(_lowercase ) * norm(_lowercase )) if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: return ("This is a test", "This is a test") def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """</s>""" UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(A ) , 1103 ) def _lowercase( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> str: return ("This is a test", "This is a test") def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : str = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
672
0
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
711
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Any = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : int = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ConvNextVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase : Any = model_class(A ) model.to(A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : List[str] = False UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
672
0
'''simple docstring''' from typing import List import numpy as np def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Optional[Any] = {key: len(_lowercase ) for key, value in gen_kwargs.items() if isinstance(_lowercase , _lowercase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( """Sharding is ambiguous for this dataset: """ + """we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n""" + """\n""".join(F'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() ) + """\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, """ + """and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.""" ) ) UpperCAmelCase : Dict = max(lists_lengths.values() , default=0 ) return max(1 , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> List[range]: UpperCAmelCase : Dict = [] for group_idx in range(_lowercase ): UpperCAmelCase : Tuple = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break UpperCAmelCase : int = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 UpperCAmelCase : List[str] = range(_lowercase , start + num_shards_to_add ) shards_indices_per_group.append(_lowercase ) return shards_indices_per_group def __lowerCamelCase ( _lowercase , _lowercase ) -> List[dict]: UpperCAmelCase : List[Any] = _number_of_shards_in_gen_kwargs(_lowercase ) if num_shards == 1: return [dict(_lowercase )] else: UpperCAmelCase : int = _distribute_shards(num_shards=_lowercase , max_num_jobs=_lowercase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(_lowercase , _lowercase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(_lowercase ) ) ] def __lowerCamelCase ( _lowercase ) -> dict: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , _lowercase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __lowerCamelCase ( _lowercase , _lowercase ) -> dict: UpperCAmelCase : str = {len(_lowercase ) for value in gen_kwargs.values() if isinstance(_lowercase , _lowercase )} UpperCAmelCase : int = {} for size in list_sizes: UpperCAmelCase : int = list(range(_lowercase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes UpperCAmelCase : List[Any] = dict(_lowercase ) for key, value in shuffled_kwargs.items(): if isinstance(_lowercase , _lowercase ): UpperCAmelCase : Dict = [value[i] for i in indices_per_size[len(_lowercase )]] return shuffled_kwargs
712
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin a : str = random.Random() def __lowerCamelCase ( _lowercase , _lowercase=1.0 , _lowercase=None , _lowercase=None ) -> Optional[Any]: if rng is None: UpperCAmelCase : List[str] = global_rng UpperCAmelCase : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A=7 , A=400 , A=2000 , A=1 , A=0.0 , A=16000 , A=True , A=True , ) -> Optional[int]: UpperCAmelCase : Dict = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : str = min_seq_length UpperCAmelCase : Optional[int] = max_seq_length UpperCAmelCase : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase : List[Any] = feature_size UpperCAmelCase : List[str] = padding_value UpperCAmelCase : Any = sampling_rate UpperCAmelCase : List[Any] = return_attention_mask UpperCAmelCase : Union[str, Any] = do_normalize def _lowercase( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowercase( self , A=False , A=False ) -> Optional[Any]: def _flatten(A ): return list(itertools.chain(*A ) ) if equal_length: UpperCAmelCase : List[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase : Optional[int] = [np.asarray(A ) for x in speech_inputs] return speech_inputs class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = WavaVecaFeatureExtractor def _lowercase( self ) -> List[str]: UpperCAmelCase : str = WavaVecaFeatureExtractionTester(self ) def _lowercase( self , A ) -> int: self.assertTrue(np.all(np.mean(A , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(A , axis=0 ) - 1 ) < 1e-3 ) ) def _lowercase( self ) -> Optional[Any]: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : Any = [np.asarray(A ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase : Tuple = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values UpperCAmelCase : str = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test batched UpperCAmelCase : Optional[int] = feat_extract(A , return_tensors="""np""" ).input_values UpperCAmelCase : List[Any] = feat_extract(A , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase : Optional[int] = np.asarray(A ) UpperCAmelCase : int = feat_extract(A , return_tensors="""np""" ).input_values UpperCAmelCase : List[str] = feat_extract(A , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : Any = ["""longest""", """max_length""", """do_not_pad"""] UpperCAmelCase : List[Any] = [None, 1600, None] for max_length, padding in zip(A , A ): UpperCAmelCase : Dict = feat_extract(A , padding=A , max_length=A , return_tensors="""np""" ) UpperCAmelCase : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : str = range(800 , 1400 , 200 ) UpperCAmelCase : Optional[int] = [floats_list((1, x) )[0] for x in lengths] UpperCAmelCase : Optional[int] = ["""longest""", """max_length""", """do_not_pad"""] UpperCAmelCase : Dict = [None, 1600, None] for max_length, padding in zip(A , A ): UpperCAmelCase : List[Any] = feat_extract(A , max_length=A , padding=A ) UpperCAmelCase : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : Dict = feat_extract( A , truncation=A , max_length=1000 , padding="""max_length""" , return_tensors="""np""" ) UpperCAmelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : Union[str, Any] = feat_extract( A , truncation=A , max_length=1000 , padding="""longest""" , return_tensors="""np""" ) UpperCAmelCase : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) UpperCAmelCase : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : List[str] = feat_extract( A , truncation=A , max_length=2000 , padding="""longest""" , return_tensors="""np""" ) UpperCAmelCase : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def _lowercase( self ) -> Tuple: import torch UpperCAmelCase : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : Tuple = np.random.rand(100 ).astype(np.floataa ) UpperCAmelCase : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase : Union[str, Any] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase : Tuple = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def _lowercase( self ) -> Dict: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: UpperCAmelCase : Optional[Any] = WavaVecaConfig.from_pretrained(A ) UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(A ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == """layer""" )
713
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
0
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCamelCase_ : lowercase = None lowercase = False lowercase = False lowercase = False lowercase = None lowercase = None lowercase = False lowercase = False lowercase = False lowercase = True lowercase = None lowercase = 1 lowercase = None lowercase = False lowercase = None lowercase = None def _lowercase( self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(A ) for k, v in self.__dict__.items()} )
714
'''simple docstring''' a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a : Optional[Any] = True a : List[Any] = False def __lowerCamelCase ( _lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : List[str] = chain(next_number(_lowercase ) ) UpperCAmelCase : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase : List[str] = number_chain number *= 1_0 return number_chain def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , _lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
672
0
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a : Union[str, Any] = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCamelCase_ : lowercase = PegasusConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=5 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> str: UpperCAmelCase : Optional[Any] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Any = seq_length UpperCAmelCase : Tuple = is_training UpperCAmelCase : Tuple = use_labels UpperCAmelCase : Tuple = vocab_size UpperCAmelCase : str = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : str = intermediate_size UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : List[Any] = max_position_embeddings UpperCAmelCase : Any = eos_token_id UpperCAmelCase : Any = pad_token_id UpperCAmelCase : Optional[int] = bos_token_id def _lowercase( self ) -> int: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) UpperCAmelCase : Tuple = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = np.concatenate([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[str] = prepare_pegasus_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : Dict = 20 UpperCAmelCase : Optional[Any] = model_class_name(A ) UpperCAmelCase : int = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase : int = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase : int = model.init_cache(decoder_input_ids.shape[0] , A , A ) UpperCAmelCase : int = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) UpperCAmelCase : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase : List[str] = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) UpperCAmelCase : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) UpperCAmelCase : Optional[Any] = model.decode( decoder_input_ids[:, -1:] , A , decoder_attention_mask=A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=A , ) UpperCAmelCase : List[Any] = model.decode(A , A ) UpperCAmelCase : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : str = 20 UpperCAmelCase : Optional[int] = model_class_name(A ) UpperCAmelCase : Optional[int] = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase : str = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase : Dict = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase : int = model.init_cache(decoder_input_ids.shape[0] , A , A ) UpperCAmelCase : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) UpperCAmelCase : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) UpperCAmelCase : List[str] = model.decode( decoder_input_ids[:, -1:] , A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=A , decoder_position_ids=A , ) UpperCAmelCase : Any = model.decode(A , A , decoder_attention_mask=A ) UpperCAmelCase : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , ) -> int: if attention_mask is None: UpperCAmelCase : int = np.not_equal(_lowercase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: UpperCAmelCase : List[Any] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase = True lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> int: UpperCAmelCase : List[Any] = FlaxPegasusModelTester(self ) UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> List[str]: self.config_tester.run_common_tests() def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(A , A , A ) def _lowercase( self ) -> str: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(A , A , A ) def _lowercase( self ) -> Any: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase : List[Any] = self._prepare_for_class(A , A ) UpperCAmelCase : int = model_class(A ) @jax.jit def encode_jitted(A , A=None , **A ): return model.encode(input_ids=A , attention_mask=A ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase : Optional[int] = encode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase : Any = encode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) def _lowercase( self ) -> List[str]: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase : Union[str, Any] = model_class(A ) UpperCAmelCase : Tuple = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) UpperCAmelCase : Tuple = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(A , A , A ): return model.decode( decoder_input_ids=A , decoder_attention_mask=A , encoder_outputs=A , ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase : Tuple = decode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase : Optional[int] = decode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase( self ) -> Optional[Any]: for model_class_name in self.all_model_classes: UpperCAmelCase : Any = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=A ) UpperCAmelCase : str = np.ones((1, 1) ) UpperCAmelCase : int = model(A ) self.assertIsNotNone(A ) @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : int = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) UpperCAmelCase : int = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) UpperCAmelCase : Any = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] UpperCAmelCase : Optional[Any] = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] UpperCAmelCase : List[Any] = tokenizer(A , return_tensors="""np""" , truncation=A , max_length=512 , padding=A ) UpperCAmelCase : List[Any] = model.generate(**A , num_beams=2 ).sequences UpperCAmelCase : List[Any] = tokenizer.batch_decode(A , skip_special_tokens=A ) assert tgt_text == decoded
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
'''simple docstring''' a : Dict = { 0: """0""", 1: """1""", 2: """2""", 3: """3""", 4: """4""", 5: """5""", 6: """6""", 7: """7""", 8: """8""", 9: """9""", 1_0: """a""", 1_1: """b""", 1_2: """c""", 1_3: """d""", 1_4: """e""", 1_5: """f""", } def __lowerCamelCase ( _lowercase ) -> str: assert type(_lowercase ) in (int, float) and decimal == int(_lowercase ) UpperCAmelCase : List[Any] = int(_lowercase ) UpperCAmelCase : Optional[Any] = """""" UpperCAmelCase : List[str] = False if decimal < 0: UpperCAmelCase : int = True decimal *= -1 while decimal > 0: UpperCAmelCase : Dict = divmod(_lowercase , 1_6 ) UpperCAmelCase : int = values[remainder] + hexadecimal UpperCAmelCase : Optional[Any] = """0x""" + hexadecimal if negative: UpperCAmelCase : Dict = """-""" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
716
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Any = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
672
0
'''simple docstring''' from collections import defaultdict def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Dict = first_str.lower().strip() UpperCAmelCase : Union[str, Any] = second_str.lower().strip() # Remove whitespace UpperCAmelCase : Optional[int] = first_str.replace(""" """ , """""" ) UpperCAmelCase : Tuple = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(_lowercase ) != len(_lowercase ): return False # Default values for count should be 0 UpperCAmelCase : defaultdict[str, int] = defaultdict(_lowercase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_lowercase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() a : List[Any] = input("""Enter the first string """).strip() a : Union[str, Any] = input("""Enter the second string """).strip() a : Any = check_anagrams(input_a, input_b) print(F'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser a = logging.getLogger(__name__) torch.set_grad_enabled(False) a = """cuda""" if torch.cuda.is_available() else """cpu""" def __lowerCamelCase ( _lowercase , _lowercase=1_0_0 , _lowercase=" " ) -> List[str]: UpperCAmelCase : Optional[int] = text.split(_lowercase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_lowercase ) , _lowercase )] def __lowerCamelCase ( _lowercase ) -> dict: UpperCAmelCase : Optional[int] = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(_lowercase ): titles.append(title if title is not None else """""" ) texts.append(_lowercase ) return {"title": titles, "text": texts} def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> dict: UpperCAmelCase : Any = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=_lowercase , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] UpperCAmelCase : Any = ctx_encoder(input_ids.to(device=_lowercase ) , return_dict=_lowercase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , ) -> str: ###################################### logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way UpperCAmelCase : Any = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words UpperCAmelCase : Any = dataset.map(_lowercase , batched=_lowercase , num_proc=processing_args.num_proc ) # And compute the embeddings UpperCAmelCase : int = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_lowercase ) UpperCAmelCase : List[Any] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) UpperCAmelCase : List[Any] = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space UpperCAmelCase : List[str] = dataset.map( partial(_lowercase , ctx_encoder=_lowercase , ctx_tokenizer=_lowercase ) , batched=_lowercase , batch_size=processing_args.batch_size , features=_lowercase , ) # And finally save your dataset UpperCAmelCase : Union[str, Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(_lowercase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search UpperCAmelCase : Union[str, Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=_lowercase ) # And save the index UpperCAmelCase : Any = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(_lowercase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class UpperCamelCase_ : lowercase = field( default=str(Path(__magic_name__ ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ) , metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''} , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'} , ) lowercase = field( default='facebook/rag-sequence-nq' , metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''} , ) lowercase = field( default='facebook/dpr-ctx_encoder-multiset-base' , metadata={ 'help': ( 'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or' ' \'facebook/dpr-ctx_encoder-multiset-base\'' ) } , ) lowercase = field( default=str(Path(__magic_name__ ).parent / 'test_run' / 'dummy-kb' ) , metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'} , ) @dataclass class UpperCamelCase_ : lowercase = field( default=__magic_name__ , metadata={ 'help': 'The number of processes to use to split the documents into passages. Default is single process.' } , ) lowercase = field( default=16 , metadata={ 'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.' } , ) @dataclass class UpperCamelCase_ : lowercase = field( default=768 , metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'} , ) lowercase = field( default=128 , metadata={ 'help': ( 'The number of bi-directional links created for every new element during the HNSW index construction.' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) a = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) a = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: a = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
718
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
0
'''simple docstring''' def __lowerCamelCase ( _lowercase = 1_0_0_0 ) -> int: return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
719
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A=None , A=None , **A ) -> str: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase : List[Any] = str(jax.devices()[0] ) UpperCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def _lowercase( self , A ) -> str: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _lowercase( self , A ) -> Tuple: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase : List[str] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase : str = {"""dtype""": jnp.intaa} else: UpperCAmelCase : int = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase : Any = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): UpperCAmelCase : List[str] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase( self , A ) -> Tuple: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): UpperCAmelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _lowercase( self , A ) -> Dict: return map_nested(self._recursive_tensorize , A , map_list=A ) def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A ) UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _lowercase( self , A ) -> "jax.Array": UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A ) UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) UpperCAmelCase : Any = self._consolidate(A ) return column def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A ) UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) for column_name in batch: UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
672
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : List[Any] = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
720
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : int = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
672
0
'''simple docstring''' from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
721
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
672
0
'''simple docstring''' import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): # TODO: is there an appropriate internal test set? lowercase = 'ssube/stable-diffusion-x4-upscaler-onnx' def _lowercase( self , A=0 ) -> Dict: UpperCAmelCase : Union[str, Any] = floats_tensor((1, 3, 128, 128) , rng=random.Random(A ) ) UpperCAmelCase : Optional[Any] = torch.manual_seed(A ) UpperCAmelCase : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase( self ) -> str: UpperCAmelCase : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : int = self.get_dummy_inputs() UpperCAmelCase : List[str] = pipe(**A ).images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Dict = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCAmelCase : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Any = self.get_dummy_inputs() UpperCAmelCase : List[Any] = pipe(**A ).images UpperCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Any = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[Any] = self.get_dummy_inputs() UpperCAmelCase : int = pipe(**A ).images UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase( self ) -> Optional[int]: UpperCAmelCase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCAmelCase : Optional[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Any = self.get_dummy_inputs() UpperCAmelCase : Tuple = pipe(**A ).images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Optional[Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCAmelCase : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : str = self.get_dummy_inputs() UpperCAmelCase : int = pipe(**A ).images UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : int = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): @property def _lowercase( self ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase( self ) -> str: UpperCAmelCase : Union[str, Any] = ort.SessionOptions() UpperCAmelCase : Any = False return options def _lowercase( self ) -> str: UpperCAmelCase : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) UpperCAmelCase : Optional[int] = init_image.resize((128, 128) ) # using the PNDM scheduler by default UpperCAmelCase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = """A fantasy landscape, trending on artstation""" UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe( prompt=A , image=A , guidance_scale=7.5 , num_inference_steps=10 , generator=A , output_type="""np""" , ) UpperCAmelCase : int = output.images UpperCAmelCase : Any = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : Optional[Any] = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowercase( self ) -> Dict: UpperCAmelCase : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) UpperCAmelCase : Optional[Any] = init_image.resize((128, 128) ) UpperCAmelCase : Any = LMSDiscreteScheduler.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , subfolder="""scheduler""" ) UpperCAmelCase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , scheduler=A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[Any] = """A fantasy landscape, trending on artstation""" UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( prompt=A , image=A , guidance_scale=7.5 , num_inference_steps=20 , generator=A , output_type="""np""" , ) UpperCAmelCase : Optional[int] = output.images UpperCAmelCase : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : int = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
700
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
672
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable a : int = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = ["""DPTFeatureExtractor"""] a : Optional[Any] = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
701
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a : int = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[List[ImageInput]]: if isinstance(_lowercase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_lowercase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_lowercase ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class UpperCamelCase_ ( __magic_name__ ): lowercase = ['pixel_values'] def __init__( self , A = True , A = None , A = PILImageResampling.BILINEAR , A = True , A = None , A = True , A = 1 / 255 , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) UpperCAmelCase : Dict = size if size is not None else {"""shortest_edge""": 224} UpperCAmelCase : List[Any] = get_size_dict(A , default_to_square=A ) UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase : Any = get_size_dict(A , param_name="""crop_size""" ) UpperCAmelCase : str = do_resize UpperCAmelCase : str = size UpperCAmelCase : Optional[Any] = do_center_crop UpperCAmelCase : Union[str, Any] = crop_size UpperCAmelCase : Dict = resample UpperCAmelCase : str = do_rescale UpperCAmelCase : Tuple = rescale_factor UpperCAmelCase : Optional[int] = do_normalize UpperCAmelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase( self , A , A , A = PILImageResampling.BILINEAR , A = None , **A , ) -> np.ndarray: UpperCAmelCase : List[str] = get_size_dict(A , default_to_square=A ) if "shortest_edge" in size: UpperCAmelCase : List[str] = get_resize_output_image_size(A , size["""shortest_edge"""] , default_to_square=A ) elif "height" in size and "width" in size: UpperCAmelCase : List[str] = (size["""height"""], size["""width"""]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(A , size=A , resample=A , data_format=A , **A ) def _lowercase( self , A , A , A = None , **A , ) -> np.ndarray: UpperCAmelCase : List[str] = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def _lowercase( self , A , A , A = None , **A , ) -> List[str]: return rescale(A , scale=A , data_format=A , **A ) def _lowercase( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def _lowercase( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase : List[str] = to_numpy_array(A ) if do_resize: UpperCAmelCase : str = self.resize(image=A , size=A , resample=A ) if do_center_crop: UpperCAmelCase : Tuple = self.center_crop(A , size=A ) if do_rescale: UpperCAmelCase : Optional[Any] = self.rescale(image=A , scale=A ) if do_normalize: UpperCAmelCase : List[Any] = self.normalize(image=A , mean=A , std=A ) UpperCAmelCase : int = to_channel_dimension_format(A , A ) return image def _lowercase( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: UpperCAmelCase : Any = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : int = resample if resample is not None else self.resample UpperCAmelCase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase : Tuple = image_std if image_std is not None else self.image_std UpperCAmelCase : Optional[int] = size if size is not None else self.size UpperCAmelCase : Union[str, Any] = get_size_dict(A , default_to_square=A ) UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase : Dict = get_size_dict(A , param_name="""crop_size""" ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) UpperCAmelCase : List[Any] = make_batched(A ) UpperCAmelCase : Dict = [ [ self._preprocess_image( image=A , do_resize=A , size=A , resample=A , do_center_crop=A , crop_size=A , do_rescale=A , rescale_factor=A , do_normalize=A , image_mean=A , image_std=A , data_format=A , ) for img in video ] for video in videos ] UpperCAmelCase : int = {"""pixel_values""": videos} return BatchFeature(data=A , tensor_type=A )
702
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
0
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self ) -> Dict: UpperCAmelCase : int = tempfile.mkdtemp() UpperCAmelCase : Union[str, Any] = 8 # DPR tok UpperCAmelCase : Optional[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(A , exist_ok=A ) UpperCAmelCase : str = os.path.join(A , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok UpperCAmelCase : Any = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] UpperCAmelCase : Optional[Any] = dict(zip(A , range(len(A ) ) ) ) UpperCAmelCase : Optional[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] UpperCAmelCase : Optional[Any] = {"""unk_token""": """<unk>"""} UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(A , exist_ok=A ) UpperCAmelCase : Tuple = os.path.join(A , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : Optional[Any] = os.path.join(A , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A ) ) def _lowercase( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def _lowercase( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def _lowercase( self ) -> Dict: shutil.rmtree(self.tmpdirname ) @require_tokenizers def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , """rag_tokenizer""" ) UpperCAmelCase : List[Any] = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) UpperCAmelCase : List[Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(A ) rag_tokenizer.save_pretrained(A ) UpperCAmelCase : Optional[int] = RagTokenizer.from_pretrained(A , config=A ) self.assertIsInstance(new_rag_tokenizer.question_encoder , A ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , A ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def _lowercase( self ) -> str: UpperCAmelCase : Optional[Any] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) UpperCAmelCase : str = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] UpperCAmelCase : List[str] = tokenizer(A ) self.assertIsNotNone(A ) @slow def _lowercase( self ) -> List[str]: UpperCAmelCase : Union[str, Any] = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) UpperCAmelCase : List[str] = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] UpperCAmelCase : int = tokenizer(A ) self.assertIsNotNone(A )
703
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations UpperCAmelCase : List[Any] = tpu_short_seq_length
672
0
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa a : str = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'summarization' lowercase = ['loss'] lowercase = ROUGE_KEYS lowercase = 'rouge2' def __init__( self , A , **A ) -> int: if hparams.sortish_sampler and hparams.gpus > 1: UpperCAmelCase : List[Any] = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(A , num_labels=A , mode=self.mode , **A ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) UpperCAmelCase : Dict = Path(self.output_dir ) / """metrics.json""" UpperCAmelCase : Dict = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) UpperCAmelCase : int = 0 UpperCAmelCase : str = defaultdict(A ) UpperCAmelCase : List[str] = self.config.model_type UpperCAmelCase : Any = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size UpperCAmelCase : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } UpperCAmelCase : List[str] = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } UpperCAmelCase : Union[str, Any] = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} UpperCAmelCase : Union[str, Any] = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], f'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) UpperCAmelCase : Optional[Any] = get_git_info()["""repo_sha"""] UpperCAmelCase : Union[str, Any] = hparams.num_workers UpperCAmelCase : List[str] = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , A ): UpperCAmelCase : Optional[int] = self.tokenizer.lang_code_to_id[hparams.tgt_lang] UpperCAmelCase : Dict = self.decoder_start_token_id UpperCAmelCase : Any = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) UpperCAmelCase : List[str] = False UpperCAmelCase : Union[str, Any] = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: UpperCAmelCase : int = self.hparams.eval_max_gen_length else: UpperCAmelCase : Dict = self.model.config.max_length UpperCAmelCase : List[Any] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _lowercase( self , A ) -> Dict[str, List[str]]: UpperCAmelCase : Dict = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(A , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) UpperCAmelCase : Tuple = True return readable_batch def _lowercase( self , A , **A ) -> int: return self.model(A , **A ) def _lowercase( self , A ) -> Optional[Any]: UpperCAmelCase : Tuple = self.tokenizer.batch_decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A ) return lmap(str.strip , A ) def _lowercase( self , A ) -> Tuple: UpperCAmelCase : Optional[int] = self.tokenizer.pad_token_id UpperCAmelCase : Optional[int] = batch["""input_ids"""], batch["""attention_mask"""] UpperCAmelCase : Union[str, Any] = batch["""labels"""] if isinstance(self.model , A ): UpperCAmelCase : Any = self.model._shift_right(A ) else: UpperCAmelCase : int = shift_tokens_right(A , A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero UpperCAmelCase : List[str] = decoder_input_ids self.save_readable_batch(A ) UpperCAmelCase : Optional[Any] = self(A , attention_mask=A , decoder_input_ids=A , use_cache=A ) UpperCAmelCase : Any = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id UpperCAmelCase : Optional[int] = nn.CrossEntropyLoss(ignore_index=A ) assert lm_logits.shape[-1] == self.vocab_size UpperCAmelCase : int = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: UpperCAmelCase : str = nn.functional.log_softmax(A , dim=-1 ) UpperCAmelCase : Tuple = label_smoothed_nll_loss( A , A , self.hparams.label_smoothing , ignore_index=A ) return (loss,) @property def _lowercase( self ) -> int: return self.tokenizer.pad_token_id def _lowercase( self , A , A ) -> Dict: UpperCAmelCase : List[Any] = self._step(A ) UpperCAmelCase : Any = dict(zip(self.loss_names , A ) ) # tokens per batch UpperCAmelCase : List[str] = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() UpperCAmelCase : Any = batch["""input_ids"""].shape[0] UpperCAmelCase : Optional[int] = batch["""input_ids"""].eq(self.pad ).sum() UpperCAmelCase : str = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _lowercase( self , A , A ) -> Dict: return self._generative_step(A ) def _lowercase( self , A , A="val" ) -> Dict: self.step_count += 1 UpperCAmelCase : List[Any] = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} UpperCAmelCase : Union[str, Any] = losses["""loss"""] UpperCAmelCase : str = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } UpperCAmelCase : Dict = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) UpperCAmelCase : torch.FloatTensor = torch.tensor(A ).type_as(A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(A ) UpperCAmelCase : str = {f'''{prefix}_avg_{k}''': x for k, x in losses.items()} UpperCAmelCase : Union[str, Any] = self.step_count self.metrics[prefix].append(A ) # callback writes this to self.metrics_save_path UpperCAmelCase : List[Any] = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'''{prefix}_loss''': loss, f'''{prefix}_{self.val_metric}''': metric_tensor, } def _lowercase( self , A , A ) -> Dict: return calculate_rouge(A , A ) def _lowercase( self , A ) -> dict: UpperCAmelCase : Union[str, Any] = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') UpperCAmelCase : Tuple = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) UpperCAmelCase : str = (time.time() - ta) / batch["""input_ids"""].shape[0] UpperCAmelCase : List[str] = self.ids_to_clean_text(A ) UpperCAmelCase : List[str] = self.ids_to_clean_text(batch["""labels"""] ) UpperCAmelCase : Optional[Any] = self._step(A ) UpperCAmelCase : Any = dict(zip(self.loss_names , A ) ) UpperCAmelCase : Dict = self.calc_generative_metrics(A , A ) UpperCAmelCase : Any = np.mean(lmap(A , A ) ) base_metrics.update(gen_time=A , gen_len=A , preds=A , target=A , **A ) return base_metrics def _lowercase( self , A , A ) -> Dict: return self._generative_step(A ) def _lowercase( self , A ) -> List[str]: return self.validation_epoch_end(A , prefix="""test""" ) def _lowercase( self , A ) -> SeqaSeqDataset: UpperCAmelCase : str = self.n_obs[type_path] UpperCAmelCase : str = self.target_lens[type_path] UpperCAmelCase : str = self.dataset_class( self.tokenizer , type_path=A , n_obs=A , max_target_length=A , **self.dataset_kwargs , ) return dataset def _lowercase( self , A , A , A = False ) -> DataLoader: UpperCAmelCase : Tuple = self.get_dataset(A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": UpperCAmelCase : List[Any] = dataset.make_sortish_sampler(A , distributed=self.hparams.gpus > 1 ) return DataLoader( A , batch_size=A , collate_fn=dataset.collate_fn , shuffle=A , num_workers=self.num_workers , sampler=A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": UpperCAmelCase : List[str] = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( A , batch_sampler=A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( A , batch_size=A , collate_fn=dataset.collate_fn , shuffle=A , num_workers=self.num_workers , sampler=A , ) def _lowercase( self ) -> DataLoader: UpperCAmelCase : Optional[Any] = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=A ) return dataloader def _lowercase( self ) -> DataLoader: return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def _lowercase( self ) -> DataLoader: return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def _lowercase( A , A ) -> Optional[Any]: BaseTransformer.add_model_specific_args(A , A ) add_generic_args(A , A ) parser.add_argument( """--max_source_length""" , default=1024 , type=A , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=A , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=142 , type=A , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=142 , type=A , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=A ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=A ) parser.add_argument("""--max_tokens_per_batch""" , type=A , default=A ) parser.add_argument("""--logger_name""" , type=A , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=A , default=-1 , required=A , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=A , default=500 , required=A , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=A , default=-1 , required=A , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=A , default="""summarization""" , required=A , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=A , default=0.0 , required=A ) parser.add_argument("""--src_lang""" , type=A , default="""""" , required=A ) parser.add_argument("""--tgt_lang""" , type=A , default="""""" , required=A ) parser.add_argument("""--eval_beams""" , type=A , default=A , required=A ) parser.add_argument( """--val_metric""" , type=A , default=A , required=A , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=A , default=A , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=A , default=1 , required=A , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=A , default=-1 , required=A , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class UpperCamelCase_ ( __magic_name__ ): lowercase = 'translation' lowercase = ['loss'] lowercase = ['bleu'] lowercase = 'bleu' def __init__( self , A , **A ) -> List[str]: super().__init__(A , **A ) UpperCAmelCase : Dict = hparams.src_lang UpperCAmelCase : Dict = hparams.tgt_lang def _lowercase( self , A , A ) -> dict: return calculate_bleu(A , A ) def __lowerCamelCase ( _lowercase , _lowercase=None ) -> SummarizationModule: Path(args.output_dir ).mkdir(exist_ok=_lowercase ) check_output_dir(_lowercase , expected_items=3 ) if model is None: if "summarization" in args.task: UpperCAmelCase : SummarizationModule = SummarizationModule(_lowercase ) else: UpperCAmelCase : SummarizationModule = TranslationModule(_lowercase ) UpperCAmelCase : Tuple = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): UpperCAmelCase : Optional[int] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase : Any = os.environ.get("""WANDB_PROJECT""" , _lowercase ) UpperCAmelCase : Tuple = WandbLogger(name=model.output_dir.name , project=_lowercase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase : List[str] = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: UpperCAmelCase : str = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: UpperCAmelCase : Any = False UpperCAmelCase : int = args.val_metric == """loss""" UpperCAmelCase : pl.Trainer = generic_train( _lowercase , _lowercase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _lowercase ) , early_stopping_callback=_lowercase , logger=_lowercase , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model UpperCAmelCase : Tuple = """""" UpperCAmelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=_lowercase ) ) if checkpoints: UpperCAmelCase : List[Any] = checkpoints[-1] UpperCAmelCase : Optional[Any] = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() a : List[str] = pl.Trainer.add_argparse_args(parser) a : str = SummarizationModule.add_model_specific_args(parser, os.getcwd()) a : int = parser.parse_args() main(args)
704
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
0
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> int: UpperCAmelCase : Dict = 10 def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Any = [1, 2, 3, 4] UpperCAmelCase : str = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(A , self.block_size , 0 ) , A ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(A , self.block_size , 0 ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase : List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(A , self.block_size , 0 ) , A ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Any = """It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.""" UpperCAmelCase : Optional[Any] = process_story(A ) self.assertEqual(A , [] ) def _lowercase( self ) -> str: UpperCAmelCase : List[str] = """""" UpperCAmelCase : Union[str, Any] = process_story(A ) self.assertEqual(A , [] ) self.assertEqual(A , [] ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) UpperCAmelCase : Any = process_story(A ) UpperCAmelCase : Dict = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(A , A ) UpperCAmelCase : Tuple = ["""It was the best of times."""] self.assertEqual(A , A ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[Any] = torch.tensor([1, 2, 3, 4] ) UpperCAmelCase : Tuple = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(A , 0 ).numpy() , expected.numpy() ) def _lowercase( self ) -> Dict: UpperCAmelCase : Optional[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) UpperCAmelCase : Union[str, Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(A , 23 ).numpy() , expected.numpy() ) def _lowercase( self ) -> Dict: UpperCAmelCase : Union[str, Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) UpperCAmelCase : List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(A , 1 ).numpy() , expected.numpy() ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Any = 101 UpperCAmelCase : Any = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) UpperCAmelCase : Optional[int] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) UpperCAmelCase : Dict = compute_token_type_ids(A , A ) np.testing.assert_array_equal(A , A )
705
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) a : Dict = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'realm' def __init__( self , A=30522 , A=768 , A=128 , A=12 , A=12 , A=8 , A=3072 , A="gelu_new" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.0_2 , A=1e-12 , A=256 , A=10 , A=1e-3 , A=5 , A=320 , A=13353718 , A=5000 , A=1 , A=0 , A=2 , **A , ) -> Tuple: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) # Common config UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Any = hidden_size UpperCAmelCase : str = retriever_proj_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : Any = num_candidates UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : Dict = hidden_act UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Tuple = type_vocab_size UpperCAmelCase : Any = layer_norm_eps # Reader config UpperCAmelCase : Union[str, Any] = span_hidden_size UpperCAmelCase : List[Any] = max_span_width UpperCAmelCase : str = reader_layer_norm_eps UpperCAmelCase : Tuple = reader_beam_size UpperCAmelCase : Any = reader_seq_len # Retrieval config UpperCAmelCase : Tuple = num_block_records UpperCAmelCase : Dict = searcher_beam_size
706
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
0
'''simple docstring''' def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : List[Any] = (n * (n + 1) // 2) ** 2 UpperCAmelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'''{solution() = }''')
707
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = StableDiffusionSAGPipeline lowercase = TEXT_TO_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_BATCH_PARAMS lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase = False def _lowercase( self ) -> Any: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) UpperCAmelCase : str = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=A , set_alpha_to_one=A , ) torch.manual_seed(0 ) UpperCAmelCase : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase : Optional[int] = CLIPTextModel(A ) UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase : List[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _lowercase( self , A , A=0 ) -> Tuple: if str(A ).startswith("""mps""" ): UpperCAmelCase : List[str] = torch.manual_seed(A ) else: UpperCAmelCase : Optional[Any] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : Tuple = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def _lowercase( self ) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) UpperCAmelCase : Tuple = sag_pipe.to(A ) sag_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : int = """.""" UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Dict = sag_pipe( [prompt] , generator=A , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) UpperCAmelCase : int = output.images UpperCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : int = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _lowercase( self ) -> Any: UpperCAmelCase : Dict = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) UpperCAmelCase : Tuple = sag_pipe.to(A ) sag_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Tuple = """.""" UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : str = sag_pipe( [prompt] , generator=A , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) UpperCAmelCase : Optional[int] = output.images UpperCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Dict = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) UpperCAmelCase : List[str] = sag_pipe.to(A ) sag_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[Any] = """.""" UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : Any = sag_pipe( [prompt] , width=768 , height=512 , generator=A , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) UpperCAmelCase : Optional[Any] = output.images assert image.shape == (1, 512, 768, 3)
708
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
0
'''simple docstring''' from math import ceil, sqrt def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0 ) -> int: UpperCAmelCase : Any = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: UpperCAmelCase : Optional[Any] = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: UpperCAmelCase : Any = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'''{solution() = }''')
709
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
0
'''simple docstring''' import string def __lowerCamelCase ( _lowercase ) -> str: UpperCAmelCase : Any = """""" for i in sequence: UpperCAmelCase : str = ord(_lowercase ) if 6_5 <= extract <= 9_0: output += chr(1_5_5 - extract ) elif 9_7 <= extract <= 1_2_2: output += chr(2_1_9 - extract ) else: output += i return output def __lowerCamelCase ( _lowercase ) -> str: UpperCAmelCase : Union[str, Any] = string.ascii_letters UpperCAmelCase : Union[str, Any] = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(_lowercase )] if c in letters else c for c in sequence ) def __lowerCamelCase ( ) -> None: from timeit import timeit print("""Running performance benchmarks...""" ) UpperCAmelCase : Any = """from string import printable ; from __main__ import atbash, atbash_slow""" print(F'''> atbash_slow(): {timeit('atbash_slow(printable)' , setup=_lowercase )} seconds''' ) print(F'''> atbash(): {timeit('atbash(printable)' , setup=_lowercase )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
710
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: return ("This is a test", "This is a test") def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """</s>""" UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(A ) , 1103 ) def _lowercase( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> str: return ("This is a test", "This is a test") def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : str = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
672
0
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
711
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Any = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : int = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ConvNextVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase : Any = model_class(A ) model.to(A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : List[str] = False UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
672
0
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> List[Any]: UpperCAmelCase : Dict = 1_0 UpperCAmelCase : Union[str, Any] = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) UpperCAmelCase : List[Any] = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(_lowercase ) ), } , features=_lowercase , ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=_lowercase ) return filename # FILE_CONTENT + files a : int = """\ Text data. Second line of data.""" @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt""" UpperCAmelCase : int = FILE_CONTENT with open(_lowercase , """w""" ) as f: f.write(_lowercase ) return filename @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> List[str]: import bza UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" UpperCAmelCase : Union[str, Any] = bytes(_lowercase , """utf-8""" ) with bza.open(_lowercase , """wb""" ) as f: f.write(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> int: import gzip UpperCAmelCase : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) UpperCAmelCase : Optional[int] = bytes(_lowercase , """utf-8""" ) with gzip.open(_lowercase , """wb""" ) as f: f.write(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" UpperCAmelCase : Optional[Any] = bytes(_lowercase , """utf-8""" ) with lza.frame.open(_lowercase , """wb""" ) as f: f.write(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCAmelCase : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(_lowercase , """w""" ) as archive: archive.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: import tarfile UpperCAmelCase : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(_lowercase , """w""" ) as f: f.add(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> List[str]: import lzma UpperCAmelCase : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" UpperCAmelCase : int = bytes(_lowercase , """utf-8""" ) with lzma.open(_lowercase , """wb""" ) as f: f.write(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: import zipfile UpperCAmelCase : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> List[str]: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCAmelCase : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" UpperCAmelCase : Union[str, Any] = bytes(_lowercase , """utf-8""" ) with zstd.open(_lowercase , """wb""" ) as f: f.write(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: UpperCAmelCase : Any = tmp_path_factory.mktemp("""data""" ) / """file.xml""" UpperCAmelCase : Any = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(_lowercase , """w""" ) as f: f.write(_lowercase ) return filename a : Any = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] a : Dict = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] a : Optional[int] = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } a : int = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] a : Optional[Any] = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> Any: return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: UpperCAmelCase : List[Any] = datasets.Dataset.from_dict(_lowercase ) UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Tuple: UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(_lowercase ) ) as con: UpperCAmelCase : str = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(_lowercase , """w""" , newline="""""" ) as f: UpperCAmelCase : Optional[Any] = csv.DictWriter(_lowercase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(_lowercase , """w""" , newline="""""" ) as f: UpperCAmelCase : Tuple = csv.DictWriter(_lowercase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: import bza UpperCAmelCase : int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(_lowercase , """rb""" ) as f: UpperCAmelCase : List[str] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(_lowercase , """wb""" ) as f: f.write(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(_lowercase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(_lowercase ) ) ) f.write(_lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) UpperCAmelCase : Union[str, Any] = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(_lowercase , """wb""" ) as f: UpperCAmelCase : int = pq.ParquetWriter(_lowercase , schema=_lowercase ) UpperCAmelCase : int = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_lowercase ) )] for k in DATA[0]} , schema=_lowercase ) writer.write_table(_lowercase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Dict: UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) UpperCAmelCase : Dict = {"""data""": DATA} with open(_lowercase , """w""" ) as f: json.dump(_lowercase , _lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Dict: UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) UpperCAmelCase : Tuple = {"""data""": DATA_DICT_OF_LISTS} with open(_lowercase , """w""" ) as f: json.dump(_lowercase , _lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Tuple: UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(_lowercase , """w""" ) as f: for item in DATA: f.write(json.dumps(_lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(_lowercase , """w""" ) as f: for item in DATA: f.write(json.dumps(_lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(_lowercase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(_lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(_lowercase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(_lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Any: import gzip UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(_lowercase , """rb""" ) as orig_file: with gzip.open(_lowercase , """wb""" ) as zipped_file: zipped_file.writelines(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: import gzip UpperCAmelCase : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(_lowercase , """rb""" ) as orig_file: with gzip.open(_lowercase , """wb""" ) as zipped_file: zipped_file.writelines(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.join("""nested""" , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(_lowercase ) ) ) f.write(_lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(_lowercase , """w""" ) as f: f.add(_lowercase , arcname=os.path.basename(_lowercase ) ) f.add(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(_lowercase , """w""" ) as f: f.add(_lowercase , arcname=os.path.join("""nested""" , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : List[str] = ["""0""", """1""", """2""", """3"""] UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(_lowercase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : List[str] = ["""0""", """1""", """2""", """3"""] UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(_lowercase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Optional[int] = ["""0""", """1""", """2""", """3"""] UpperCAmelCase : int = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(_lowercase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : str = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(_lowercase ) ) ) f.write(_lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(_lowercase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> List[str]: return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> Any: return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) f.write(_lowercase , arcname=os.path.basename(_lowercase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
712
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
0
'''simple docstring''' a : Optional[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ a : Optional[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] a : List[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
713
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
0