code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : int ) -> list[str]: '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(_UpperCamelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
673
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
673
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="facebook/bart-large-mnli" __UpperCamelCase =( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) __UpperCamelCase ="text_classifier" __UpperCamelCase =AutoTokenizer __UpperCamelCase =AutoModelForSequenceClassification __UpperCamelCase =["text", ["text"]] __UpperCamelCase =["text"] def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): SCREAMING_SNAKE_CASE = int(snake_case__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[str] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(snake_case__ ) , [F"""This example is {label}""" for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
673
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =AudioLDMPipeline __UpperCamelCase =TEXT_TO_AUDIO_PARAMS __UpperCamelCase =TEXT_TO_AUDIO_BATCH_PARAMS __UpperCamelCase =frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(3_2, 6_4) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=snake_case__ , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) SCREAMING_SNAKE_CASE = ClapTextModelWithProjection(snake_case__ ) SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=7_7 ) SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=snake_case__ , ) SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def UpperCamelCase ( self : Optional[int] , snake_case__ : int , snake_case__ : int=0 ): """simple docstring""" if str(snake_case__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(snake_case__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) SCREAMING_SNAKE_CASE = prompt_embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE = negative_prompt SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = [] for p in [prompt, negative_prompt]: SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = text_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) embeds.append(snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 'egg cracking' SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ , negative_prompt=snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config.sampling_rate SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.016 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.016 SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.032 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.032 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = ['hey'] SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape assert audio_shape == (1, 2_5_6) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config config.model_in_dim *= 2 SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ).to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def UpperCamelCase ( self : Tuple ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=snake_case__ ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase ( self : Dict ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case__ ) @slow class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : int , snake_case__ : int , snake_case__ : Tuple="cpu" , snake_case__ : List[str]=torch.floataa , snake_case__ : Optional[Any]=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = np.random.RandomState(snake_case__ ).standard_normal((1, 8, 1_2_8, 1_6) ) SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 2_5 SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[7_7_2_3_0:7_7_2_4_0] SCREAMING_SNAKE_CASE = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[2_7_7_8_0:2_7_7_9_0] SCREAMING_SNAKE_CASE = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
673
1
import os def __lowerCAmelCase ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = os.path.dirname(os.path.realpath(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'triangle.txt' ) with open(_UpperCamelCase ) as f: SCREAMING_SNAKE_CASE = f.readlines() SCREAMING_SNAKE_CASE = [] for line in triangle: SCREAMING_SNAKE_CASE = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(_UpperCamelCase ) ) a.append(_UpperCamelCase ) for i in range(1 , len(_UpperCamelCase ) ): for j in range(len(a[i] ) ): SCREAMING_SNAKE_CASE = a[i - 1][j] if j != len(a[i - 1] ) else 0 SCREAMING_SNAKE_CASE = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(_UpperCamelCase , _UpperCamelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
673
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase : def __init__( self : Dict , snake_case__ : str , snake_case__ : str=1_3 , snake_case__ : Tuple=7 , snake_case__ : Tuple=True , snake_case__ : Tuple=True , snake_case__ : List[str]=False , snake_case__ : Any=True , snake_case__ : Union[str, Any]=9_9 , snake_case__ : Dict=3_2 , snake_case__ : Optional[Any]=5 , snake_case__ : Optional[Any]=4 , snake_case__ : Union[str, Any]=3_7 , snake_case__ : Tuple="gelu" , snake_case__ : Dict=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : int=4 , snake_case__ : List[str]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Dict ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , use_stable_embedding=snake_case__ , ) def UpperCamelCase ( self : int , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : str , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : str , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , ) SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Tuple , ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : int , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Union[str, Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , use_cache=snake_case__ , ) SCREAMING_SNAKE_CASE = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCamelCase =(OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCamelCase =( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'single_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'multi_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase ( self : str , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = ids_tensor([1, 1_0] , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) )
673
1
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration a_ : Optional[int] = pytest.mark.integration a_ : Optional[int] = {"comet"} a_ : List[str] = importlib.util.find_spec("fairseq") is not None a_ : Tuple = {"code_eval"} a_ : List[Any] = os.name == "nt" a_ : Dict = {"bertscore", "frugalscore", "perplexity"} a_ : Union[str, Any] = importlib.util.find_spec("transformers") is not None def __lowerCAmelCase ( _UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' @wraps(_UpperCamelCase ) def wrapper(self : List[str] , _UpperCamelCase : int ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('"test requires Fairseq"' ) else: test_case(self , _UpperCamelCase ) return wrapper def __lowerCAmelCase ( _UpperCamelCase : List[str] ) -> List[str]: '''simple docstring''' @wraps(_UpperCamelCase ) def wrapper(self : str , _UpperCamelCase : List[str] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('"test requires transformers"' ) else: test_case(self , _UpperCamelCase ) return wrapper def __lowerCAmelCase ( _UpperCamelCase : int ) -> str: '''simple docstring''' @wraps(_UpperCamelCase ) def wrapper(self : Union[str, Any] , _UpperCamelCase : Any ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('"test not supported on Windows"' ) else: test_case(self , _UpperCamelCase ) return wrapper def __lowerCAmelCase ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @local class UpperCamelCase ( parameterized.TestCase ): __UpperCamelCase ={} __UpperCamelCase =None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' ) def UpperCamelCase ( self : Optional[int] , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = '[...]' SCREAMING_SNAKE_CASE = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , snake_case__ ) ).module_path ) SCREAMING_SNAKE_CASE = datasets.load.import_main_class(metric_module.__name__ , dataset=snake_case__ ) # check parameters SCREAMING_SNAKE_CASE = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(snake_case__ , metric_module.__name__ ): with self.use_local_metrics(): try: SCREAMING_SNAKE_CASE = doctest.testmod(snake_case__ , verbose=snake_case__ , raise_on_error=snake_case__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def UpperCamelCase ( self : str , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = '[...]' SCREAMING_SNAKE_CASE = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , snake_case__ ) ).module_path ) # run doctest with self.use_local_metrics(): SCREAMING_SNAKE_CASE = doctest.testmod(snake_case__ , verbose=snake_case__ , raise_on_error=snake_case__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def UpperCamelCase ( self : int , snake_case__ : Optional[Any] , snake_case__ : str ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](snake_case__ ): yield else: yield @contextmanager def UpperCamelCase ( self : Any ): """simple docstring""" def load_local_metric(snake_case__ : Tuple , *snake_case__ : int , **snake_case__ : List[str] ): return load_metric(os.path.join('metrics' , snake_case__ ) , *snake_case__ , **snake_case__ ) with patch('datasets.load_metric' ) as mock_load_metric: SCREAMING_SNAKE_CASE = load_local_metric yield @classmethod def UpperCamelCase ( cls : Any , snake_case__ : Any ): """simple docstring""" def wrapper(snake_case__ : Any ): SCREAMING_SNAKE_CASE = contextmanager(snake_case__ ) SCREAMING_SNAKE_CASE = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def __lowerCAmelCase ( _UpperCamelCase : Any ) -> Dict: '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def UpperCamelCase ( self : str , snake_case__ : Optional[Any] ): """simple docstring""" assert len(input_dict['input_ids'] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: SCREAMING_SNAKE_CASE = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] ) -> str: '''simple docstring''' import torch def bert_cos_score_idf(_UpperCamelCase : List[Any] , _UpperCamelCase : Any , *_UpperCamelCase : Dict , **_UpperCamelCase : str ): return torch.tensor([[1.0, 1.0, 1.0]] * len(_UpperCamelCase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: SCREAMING_SNAKE_CASE = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def __lowerCAmelCase ( _UpperCamelCase : Dict ) -> List[Any]: '''simple docstring''' def load_from_checkpoint(_UpperCamelCase : Any ): class UpperCamelCase : def UpperCamelCase ( self : str , snake_case__ : Any , *snake_case__ : List[Any] , **snake_case__ : Dict ): """simple docstring""" assert len(snake_case__ ) == 2 SCREAMING_SNAKE_CASE = [0.19, 0.92] return scores, sum(snake_case__ ) / len(snake_case__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: SCREAMING_SNAKE_CASE = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: SCREAMING_SNAKE_CASE = load_from_checkpoint yield def __lowerCAmelCase ( ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = load_metric(os.path.join('metrics' , 'seqeval' ) ) SCREAMING_SNAKE_CASE = 'ERROR' SCREAMING_SNAKE_CASE = f"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(_UpperCamelCase , match=re.escape(_UpperCamelCase ) ): metric.compute(predictions=[] , references=[] , scheme=_UpperCamelCase )
673
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="openai/whisper-base" __UpperCamelCase =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCamelCase ="transcriber" __UpperCamelCase =WhisperProcessor __UpperCamelCase =WhisperForConditionalGeneration __UpperCamelCase =["audio"] __UpperCamelCase =["text"] def UpperCamelCase ( self : Dict , snake_case__ : Tuple ): """simple docstring""" return self.pre_processor(snake_case__ , return_tensors='pt' ).input_features def UpperCamelCase ( self : Optional[int] , snake_case__ : Tuple ): """simple docstring""" return self.model.generate(inputs=snake_case__ ) def UpperCamelCase ( self : str , snake_case__ : Union[str, Any] ): """simple docstring""" return self.pre_processor.batch_decode(snake_case__ , skip_special_tokens=snake_case__ )[0]
673
1
def __lowerCAmelCase ( _UpperCamelCase : int ) -> str: '''simple docstring''' if isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" SCREAMING_SNAKE_CASE = False if num < 0: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = -num SCREAMING_SNAKE_CASE = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_UpperCamelCase ) for e in binary ) return "0b" + "".join(str(_UpperCamelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
673
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version a_ : List[str] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize a_ : Dict = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" a_ : str = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" a_ : int = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def UpperCamelCase ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def UpperCamelCase ( self : Dict , snake_case__ : int ): """simple docstring""" import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : List[Any]=0.9 , snake_case__ : Optional[Any]=3 , snake_case__ : Any=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5' ): SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score( word_tokenize(snake_case__ ) , word_tokenize(snake_case__ ) , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] else: SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score(snake_case__ , snake_case__ , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] return {"meteor": np.mean(snake_case__ )}
673
1
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a_ : List[str] = ["bart.large", "bart.large.mnli", "bart.large.cnn", "bart_xsum/model.pt"] a_ : Tuple = {"bart.large": BartModel, "bart.large.mnli": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("0.9.0"): raise Exception("requires fairseq >= 0.9.0") logging.set_verbosity_info() a_ : Optional[int] = logging.get_logger(__name__) a_ : List[Any] = " Hello world! cécé herlolip" a_ : List[str] = [ ("model.classification_heads.mnli.dense.weight", "classification_head.dense.weight"), ("model.classification_heads.mnli.dense.bias", "classification_head.dense.bias"), ("model.classification_heads.mnli.out_proj.weight", "classification_head.out_proj.weight"), ("model.classification_heads.mnli.out_proj.bias", "classification_head.out_proj.bias"), ] def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = dct.pop(_UpperCamelCase ) SCREAMING_SNAKE_CASE = val def __lowerCAmelCase ( _UpperCamelCase : Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase , map_location='cpu' ) SCREAMING_SNAKE_CASE = torch.hub.load('pytorch/fairseq' , 'bart.large.cnn' ).eval() hub_interface.model.load_state_dict(sd['model'] ) return hub_interface def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape SCREAMING_SNAKE_CASE = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Tuple=None ) -> Tuple: '''simple docstring''' if not os.path.exists(_UpperCamelCase ): SCREAMING_SNAKE_CASE = torch.hub.load('pytorch/fairseq' , _UpperCamelCase ).eval() else: SCREAMING_SNAKE_CASE = load_xsum_checkpoint(_UpperCamelCase ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: SCREAMING_SNAKE_CASE = checkpoint_path.replace('.' , '-' ) SCREAMING_SNAKE_CASE = BartConfig.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = bart.encode(_UpperCamelCase ).unsqueeze(0 ) SCREAMING_SNAKE_CASE = BartTokenizer.from_pretrained(_UpperCamelCase ).encode(_UpperCamelCase , return_tensors='pt' ).unsqueeze(0 ) if not torch.eq(_UpperCamelCase , _UpperCamelCase ).all(): raise ValueError( f"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": SCREAMING_SNAKE_CASE = bart.state_dict() remove_ignore_keys_(_UpperCamelCase ) SCREAMING_SNAKE_CASE = state_dict['model.decoder.embed_tokens.weight'] for src, dest in mnli_rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = BartForSequenceClassification(_UpperCamelCase ).eval() model.load_state_dict(_UpperCamelCase ) SCREAMING_SNAKE_CASE = bart.predict('mnli' , _UpperCamelCase , return_logits=_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase )[0] # logits else: # no classification heads to worry about SCREAMING_SNAKE_CASE = bart.model.state_dict() remove_ignore_keys_(_UpperCamelCase ) SCREAMING_SNAKE_CASE = state_dict['decoder.embed_tokens.weight'] SCREAMING_SNAKE_CASE = bart.extract_features(_UpperCamelCase ) if hf_checkpoint_name == "facebook/bart-large": SCREAMING_SNAKE_CASE = BartModel(_UpperCamelCase ).eval() model.load_state_dict(_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase ).model[0] else: SCREAMING_SNAKE_CASE = BartForConditionalGeneration(_UpperCamelCase ).eval() # an existing summarization ckpt model.model.load_state_dict(_UpperCamelCase ) if hasattr(_UpperCamelCase , 'lm_head' ): SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared ) SCREAMING_SNAKE_CASE = model.model(_UpperCamelCase )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('Some values in `fairseq_output` are different from `new_model_outputs`' ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default=None, type=str, help="Which huggingface architecture to use: bart-large-xsum" ) a_ : Optional[Any] = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
673
import numpy as np def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
673
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class UpperCamelCase : def __init__( self : List[Any] , snake_case__ : Dict , snake_case__ : List[Any]=1_3 , snake_case__ : Optional[int]=7 , snake_case__ : Dict=True , snake_case__ : List[str]=True , snake_case__ : Union[str, Any]=True , snake_case__ : Optional[Any]=True , snake_case__ : Union[str, Any]=9_9 , snake_case__ : int=6_4 , snake_case__ : Optional[int]=3_2 , snake_case__ : Union[str, Any]=5 , snake_case__ : str=4 , snake_case__ : Dict=3_7 , snake_case__ : List[str]="gelu" , snake_case__ : int=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Dict=5_1_2 , snake_case__ : Optional[int]=1_6 , snake_case__ : List[Any]=2 , snake_case__ : int=0.02 , snake_case__ : Any=3 , snake_case__ : int=4 , snake_case__ : str=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : List[str] ): """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def UpperCamelCase ( self : int , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = MegatronBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : int ): """simple docstring""" SCREAMING_SNAKE_CASE = MegatronBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = MegatronBertForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Any , snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = MegatronBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCamelCase ( self : List[str] , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : int , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = MegatronBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCamelCase ( self : Any , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = MegatronBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : int , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = MegatronBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : Any , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = MegatronBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : Dict , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = MegatronBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase =( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =True # test_resize_embeddings = False __UpperCamelCase =False def UpperCamelCase ( self : int , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : str=False ): """simple docstring""" SCREAMING_SNAKE_CASE = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): SCREAMING_SNAKE_CASE = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = MegatronBertModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*snake_case__ ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*snake_case__ ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*snake_case__ ) def __lowerCAmelCase ( _UpperCamelCase : str ) -> Dict: '''simple docstring''' return torch.tensor( _UpperCamelCase , dtype=torch.long , device=_UpperCamelCase , ) a_ : Tuple = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase ( unittest.TestCase ): @slow @unittest.skip('Model is not available.' ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: SCREAMING_SNAKE_CASE = os.path.join(os.environ['MYDIR'] , snake_case__ ) SCREAMING_SNAKE_CASE = MegatronBertModel.from_pretrained(snake_case__ ) model.to(snake_case__ ) model.half() SCREAMING_SNAKE_CASE = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(snake_case__ )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 9, 1_0_2_4) ) self.assertEqual(output.shape , snake_case__ ) SCREAMING_SNAKE_CASE = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3 ): for jj in range(3 ): SCREAMING_SNAKE_CASE = output[0, ii, jj] SCREAMING_SNAKE_CASE = expected[3 * ii + jj] SCREAMING_SNAKE_CASE = 'ii={} jj={} a={} b={}'.format(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) self.assertTrue(math.isclose(snake_case__ , snake_case__ , rel_tol=snake_case__ , abs_tol=snake_case__ ) , msg=snake_case__ )
673
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ : Any = logging.get_logger(__name__) a_ : Dict = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="van" def __init__( self : Optional[Any] , snake_case__ : Tuple=2_2_4 , snake_case__ : Dict=3 , snake_case__ : Union[str, Any]=[7, 3, 3, 3] , snake_case__ : str=[4, 2, 2, 2] , snake_case__ : Optional[Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , snake_case__ : Optional[Any]=[3, 3, 1_2, 3] , snake_case__ : Tuple=[8, 8, 4, 4] , snake_case__ : Any="gelu" , snake_case__ : Dict=0.02 , snake_case__ : List[str]=1E-6 , snake_case__ : int=1E-2 , snake_case__ : Any=0.0 , snake_case__ : Tuple=0.0 , **snake_case__ : Any , ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_sizes SCREAMING_SNAKE_CASE = strides SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = mlp_ratios SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = dropout_rate
673
1
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = OmegaConf.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase , map_location='cpu' )['model'] SCREAMING_SNAKE_CASE = list(state_dict.keys() ) # extract state_dict for VQVAE SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = 'first_stage_model.' for key in keys: if key.startswith(_UpperCamelCase ): SCREAMING_SNAKE_CASE = state_dict[key] # extract state_dict for UNetLDM SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = 'model.diffusion_model.' for key in keys: if key.startswith(_UpperCamelCase ): SCREAMING_SNAKE_CASE = state_dict[key] SCREAMING_SNAKE_CASE = config.model.params.first_stage_config.params SCREAMING_SNAKE_CASE = config.model.params.unet_config.params SCREAMING_SNAKE_CASE = VQModel(**_UpperCamelCase ).eval() vqvae.load_state_dict(_UpperCamelCase ) SCREAMING_SNAKE_CASE = UNetLDMModel(**_UpperCamelCase ).eval() unet.load_state_dict(_UpperCamelCase ) SCREAMING_SNAKE_CASE = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=_UpperCamelCase , ) SCREAMING_SNAKE_CASE = LDMPipeline(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) pipeline.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", type=str, required=True) parser.add_argument("--config_path", type=str, required=True) parser.add_argument("--output_path", type=str, required=True) a_ : str = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
673
def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : int ) -> list[str]: '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(_UpperCamelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
673
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =42 class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self : List[str] , snake_case__ : int = 3_2 , snake_case__ : int = 6_4 , snake_case__ : int = 2_0 , snake_case__ : int = 7_6_8 , snake_case__ : Union[str, Any]=7_7 , snake_case__ : str=4 , snake_case__ : float = 0.0 , snake_case__ : str = "silu" , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = "linear" , snake_case__ : Optional[str] = "prd" , snake_case__ : Optional[int] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[int] = None , ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = attention_head_dim SCREAMING_SNAKE_CASE = num_attention_heads * attention_head_dim SCREAMING_SNAKE_CASE = additional_embeddings SCREAMING_SNAKE_CASE = time_embed_dim or inner_dim SCREAMING_SNAKE_CASE = embedding_proj_dim or embedding_dim SCREAMING_SNAKE_CASE = clip_embed_dim or embedding_dim SCREAMING_SNAKE_CASE = Timesteps(snake_case__ , snake_case__ , 0 ) SCREAMING_SNAKE_CASE = TimestepEmbedding(snake_case__ , snake_case__ , out_dim=snake_case__ , act_fn=snake_case__ ) SCREAMING_SNAKE_CASE = nn.Linear(snake_case__ , snake_case__ ) if embedding_proj_norm_type is None: SCREAMING_SNAKE_CASE = None elif embedding_proj_norm_type == "layer": SCREAMING_SNAKE_CASE = nn.LayerNorm(snake_case__ ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) SCREAMING_SNAKE_CASE = nn.Linear(snake_case__ , snake_case__ ) if encoder_hid_proj_type is None: SCREAMING_SNAKE_CASE = None elif encoder_hid_proj_type == "linear": SCREAMING_SNAKE_CASE = nn.Linear(snake_case__ , snake_case__ ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , snake_case__ ) ) if added_emb_type == "prd": SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(1 , 1 , snake_case__ ) ) elif added_emb_type is None: SCREAMING_SNAKE_CASE = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) SCREAMING_SNAKE_CASE = nn.ModuleList( [ BasicTransformerBlock( snake_case__ , snake_case__ , snake_case__ , dropout=snake_case__ , activation_fn='gelu' , attention_bias=snake_case__ , ) for d in range(snake_case__ ) ] ) if norm_in_type == "layer": SCREAMING_SNAKE_CASE = nn.LayerNorm(snake_case__ ) elif norm_in_type is None: SCREAMING_SNAKE_CASE = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) SCREAMING_SNAKE_CASE = nn.LayerNorm(snake_case__ ) SCREAMING_SNAKE_CASE = nn.Linear(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10_000.0 ) causal_attention_mask.triu_(1 ) SCREAMING_SNAKE_CASE = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , snake_case__ , persistent=snake_case__ ) SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(1 , snake_case__ ) ) SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(1 , snake_case__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = {} def fn_recursive_add_processors(snake_case__ : str , snake_case__ : torch.nn.Module , snake_case__ : Dict[str, AttentionProcessor] ): if hasattr(snake_case__ , 'set_processor' ): SCREAMING_SNAKE_CASE = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , snake_case__ , snake_case__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(snake_case__ , snake_case__ , snake_case__ ) return processors def UpperCamelCase ( self : Dict , snake_case__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): """simple docstring""" SCREAMING_SNAKE_CASE = len(self.attn_processors.keys() ) if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(snake_case__ )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(snake_case__ : str , snake_case__ : torch.nn.Module , snake_case__ : List[str] ): if hasattr(snake_case__ , 'set_processor' ): if not isinstance(snake_case__ , snake_case__ ): module.set_processor(snake_case__ ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , snake_case__ , snake_case__ ) for name, module in self.named_children(): fn_recursive_attn_processor(snake_case__ , snake_case__ , snake_case__ ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" self.set_attn_processor(AttnProcessor() ) def UpperCamelCase ( self : Any , snake_case__ : str , snake_case__ : Union[torch.Tensor, float, int] , snake_case__ : torch.FloatTensor , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[torch.BoolTensor] = None , snake_case__ : bool = True , ): """simple docstring""" SCREAMING_SNAKE_CASE = hidden_states.shape[0] SCREAMING_SNAKE_CASE = timestep if not torch.is_tensor(snake_case__ ): SCREAMING_SNAKE_CASE = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(snake_case__ ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE = timesteps * torch.ones(snake_case__ , dtype=timesteps.dtype , device=timesteps.device ) SCREAMING_SNAKE_CASE = self.time_proj(snake_case__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. SCREAMING_SNAKE_CASE = timesteps_projected.to(dtype=self.dtype ) SCREAMING_SNAKE_CASE = self.time_embedding(snake_case__ ) if self.embedding_proj_norm is not None: SCREAMING_SNAKE_CASE = self.embedding_proj_norm(snake_case__ ) SCREAMING_SNAKE_CASE = self.embedding_proj(snake_case__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: SCREAMING_SNAKE_CASE = self.encoder_hidden_states_proj(snake_case__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) SCREAMING_SNAKE_CASE = self.proj_in(snake_case__ ) SCREAMING_SNAKE_CASE = self.positional_embedding.to(hidden_states.dtype ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 if encoder_hidden_states is not None: additional_embeds.append(snake_case__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: SCREAMING_SNAKE_CASE = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: SCREAMING_SNAKE_CASE = hidden_states[:, None, :] SCREAMING_SNAKE_CASE = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: SCREAMING_SNAKE_CASE = self.prd_embedding.to(hidden_states.dtype ).expand(snake_case__ , -1 , -1 ) additional_embeds.append(snake_case__ ) SCREAMING_SNAKE_CASE = torch.cat( snake_case__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens SCREAMING_SNAKE_CASE = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: SCREAMING_SNAKE_CASE = F.pad( snake_case__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) SCREAMING_SNAKE_CASE = hidden_states + positional_embeddings if attention_mask is not None: SCREAMING_SNAKE_CASE = (1 - attention_mask.to(hidden_states.dtype )) * -10_000.0 SCREAMING_SNAKE_CASE = F.pad(snake_case__ , (0, self.additional_embeddings) , value=0.0 ) SCREAMING_SNAKE_CASE = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) SCREAMING_SNAKE_CASE = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: SCREAMING_SNAKE_CASE = self.norm_in(snake_case__ ) for block in self.transformer_blocks: SCREAMING_SNAKE_CASE = block(snake_case__ , attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE = self.norm_out(snake_case__ ) if self.prd_embedding is not None: SCREAMING_SNAKE_CASE = hidden_states[:, -1] else: SCREAMING_SNAKE_CASE = hidden_states[:, additional_embeddings_len:] SCREAMING_SNAKE_CASE = self.proj_to_clip_embeddings(snake_case__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : int ): """simple docstring""" SCREAMING_SNAKE_CASE = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
673
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING a_ : Dict = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : Any , **snake_case__ : Optional[int] ): """simple docstring""" super().__init__(**snake_case__ ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , 'vision' ) self.check_model_type(snake_case__ ) def __call__( self : List[Any] , snake_case__ : Union[str, "Image.Image", List[Dict[str, Any]]] , snake_case__ : Union[str, List[str]] = None , **snake_case__ : Union[str, Any] , ): """simple docstring""" if "text_queries" in kwargs: SCREAMING_SNAKE_CASE = kwargs.pop('text_queries' ) if isinstance(snake_case__ , (str, Image.Image) ): SCREAMING_SNAKE_CASE = {'image': image, 'candidate_labels': candidate_labels} else: SCREAMING_SNAKE_CASE = image SCREAMING_SNAKE_CASE = super().__call__(snake_case__ , **snake_case__ ) return results def UpperCamelCase ( self : Union[str, Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = {} if "threshold" in kwargs: SCREAMING_SNAKE_CASE = kwargs['threshold'] if "top_k" in kwargs: SCREAMING_SNAKE_CASE = kwargs['top_k'] return {}, {}, postprocess_params def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = load_image(inputs['image'] ) SCREAMING_SNAKE_CASE = inputs['candidate_labels'] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = candidate_labels.split(',' ) SCREAMING_SNAKE_CASE = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE = self.tokenizer(snake_case__ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE = self.image_processor(snake_case__ , return_tensors=self.framework ) yield { "is_last": i == len(snake_case__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def UpperCamelCase ( self : Any , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = model_inputs.pop('target_size' ) SCREAMING_SNAKE_CASE = model_inputs.pop('candidate_label' ) SCREAMING_SNAKE_CASE = model_inputs.pop('is_last' ) SCREAMING_SNAKE_CASE = self.model(**snake_case__ ) SCREAMING_SNAKE_CASE = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : str=0.1 , snake_case__ : Union[str, Any]=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: SCREAMING_SNAKE_CASE = model_output['candidate_label'] SCREAMING_SNAKE_CASE = BaseModelOutput(snake_case__ ) SCREAMING_SNAKE_CASE = self.image_processor.post_process_object_detection( outputs=snake_case__ , threshold=snake_case__ , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): SCREAMING_SNAKE_CASE = outputs['scores'][index].item() SCREAMING_SNAKE_CASE = self._get_bounding_box(outputs['boxes'][index][0] ) SCREAMING_SNAKE_CASE = {'score': score, 'label': label, 'box': box} results.append(snake_case__ ) SCREAMING_SNAKE_CASE = sorted(snake_case__ , key=lambda snake_case__ : x["score"] , reverse=snake_case__ ) if top_k: SCREAMING_SNAKE_CASE = results[:top_k] return results def UpperCamelCase ( self : List[Any] , snake_case__ : "torch.Tensor" ): """simple docstring""" if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = box.int().tolist() SCREAMING_SNAKE_CASE = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
673
1
def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> list: '''simple docstring''' SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = [] for i in range(len(_UpperCamelCase ) - pat_len + 1 ): SCREAMING_SNAKE_CASE = True for j in range(_UpperCamelCase ): if s[i + j] != pattern[j]: SCREAMING_SNAKE_CASE = False break if match_found: position.append(_UpperCamelCase ) return position if __name__ == "__main__": assert naive_pattern_search("ABCDEFG", "DE") == [3] print(naive_pattern_search("ABAAABCDBBABCDDEBCABC", "ABC"))
673
def __lowerCAmelCase ( _UpperCamelCase : int = 10_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 2**power SCREAMING_SNAKE_CASE = str(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 for i in list_num: sum_of_num += int(_UpperCamelCase ) return sum_of_num if __name__ == "__main__": a_ : List[str] = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) a_ : int = solution(power) print("Sum of the digits is: ", result)
673
1
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =BertJapaneseTokenizer __UpperCamelCase =False __UpperCamelCase =True def UpperCamelCase ( self : int ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCamelCase ( self : List[str] , snake_case__ : int ): """simple docstring""" SCREAMING_SNAKE_CASE = 'こんにちは、世界。 \nこんばんは、世界。' SCREAMING_SNAKE_CASE = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def UpperCamelCase ( self : Optional[Any] , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_input_output_texts(snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer.decode(snake_case__ , clean_up_tokenization_spaces=snake_case__ ) return text, ids def UpperCamelCase ( self : str ): """simple docstring""" pass # TODO add if relevant def UpperCamelCase ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def UpperCamelCase ( self : Dict ): """simple docstring""" pass # TODO add if relevant def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(snake_case__ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(snake_case__ ) SCREAMING_SNAKE_CASE = 'こんにちは、世界。\nこんばんは、世界。' SCREAMING_SNAKE_CASE = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(snake_case__ , 'wb' ) as handle: pickle.dump(snake_case__ , snake_case__ ) with open(snake_case__ , 'rb' ) as handle: SCREAMING_SNAKE_CASE = pickle.load(snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer_new.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def UpperCamelCase ( self : List[str] ): """simple docstring""" try: SCREAMING_SNAKE_CASE = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" try: SCREAMING_SNAKE_CASE = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = MecabTokenizer(do_lower_case=snake_case__ , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" try: SCREAMING_SNAKE_CASE = MecabTokenizer( do_lower_case=snake_case__ , normalize_text=snake_case__ , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = MecabTokenizer(normalize_text=snake_case__ , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(snake_case__ ) SCREAMING_SNAKE_CASE = 'こんにちは、世界。\nこんばんは、世界。' SCREAMING_SNAKE_CASE = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(snake_case__ , 'wb' ) as handle: pickle.dump(snake_case__ , snake_case__ ) with open(snake_case__ , 'rb' ) as handle: SCREAMING_SNAKE_CASE = pickle.load(snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer_new.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) @require_sudachi def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = SudachiTokenizer(do_lower_case=snake_case__ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = SudachiTokenizer(normalize_text=snake_case__ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = SudachiTokenizer(trim_whitespace=snake_case__ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(snake_case__ ) SCREAMING_SNAKE_CASE = 'こんにちは、世界。\nこんばんは、世界。' SCREAMING_SNAKE_CASE = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(snake_case__ , 'wb' ) as handle: pickle.dump(snake_case__ , snake_case__ ) with open(snake_case__ , 'rb' ) as handle: SCREAMING_SNAKE_CASE = pickle.load(snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer_new.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) @require_jumanpp def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = JumanppTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = JumanppTokenizer(normalize_text=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = JumanppTokenizer(trim_whitespace=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] SCREAMING_SNAKE_CASE = {} for i, token in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE = i SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=snake_case__ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) SCREAMING_SNAKE_CASE = tokenizer.subword_tokenizer SCREAMING_SNAKE_CASE = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(snake_case__ , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) SCREAMING_SNAKE_CASE = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(snake_case__ , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) SCREAMING_SNAKE_CASE = tokenizer.encode('ありがとう。' , add_special_tokens=snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer.encode('どういたしまして。' , add_special_tokens=snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =BertJapaneseTokenizer __UpperCamelCase =False def UpperCamelCase ( self : Any ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCamelCase ( self : str , **snake_case__ : Union[str, Any] ): """simple docstring""" return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **snake_case__ ) def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'こんにちは、世界。 \nこんばんは、世界。' SCREAMING_SNAKE_CASE = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def UpperCamelCase ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def UpperCamelCase ( self : Dict ): """simple docstring""" pass # TODO add if relevant def UpperCamelCase ( self : Dict ): """simple docstring""" pass # TODO add if relevant def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( snake_case__ , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2] ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] SCREAMING_SNAKE_CASE = {} for i, token in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE = i SCREAMING_SNAKE_CASE = CharacterTokenizer(vocab=snake_case__ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) SCREAMING_SNAKE_CASE = tokenizer.encode('ありがとう。' , add_special_tokens=snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer.encode('どういたしまして。' , add_special_tokens=snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cl-tohoku/bert-base-japanese' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(snake_case__ ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) SCREAMING_SNAKE_CASE = 'bert-base-cased' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(snake_case__ ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
673
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="facebook/bart-large-mnli" __UpperCamelCase =( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) __UpperCamelCase ="text_classifier" __UpperCamelCase =AutoTokenizer __UpperCamelCase =AutoModelForSequenceClassification __UpperCamelCase =["text", ["text"]] __UpperCamelCase =["text"] def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): SCREAMING_SNAKE_CASE = int(snake_case__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[str] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(snake_case__ ) , [F"""This example is {label}""" for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
673
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Dict = logging.get_logger(__name__) a_ : Tuple = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="open-llama" def __init__( self : Dict , snake_case__ : List[str]=1_0_0_0_0_0 , snake_case__ : Dict=4_0_9_6 , snake_case__ : Dict=1_1_0_0_8 , snake_case__ : Optional[int]=3_2 , snake_case__ : Union[str, Any]=3_2 , snake_case__ : Any="silu" , snake_case__ : Optional[int]=2_0_4_8 , snake_case__ : Tuple=0.02 , snake_case__ : List[str]=1E-6 , snake_case__ : Dict=True , snake_case__ : List[str]=0 , snake_case__ : Optional[int]=1 , snake_case__ : int=2 , snake_case__ : Any=False , snake_case__ : Dict=True , snake_case__ : Dict=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Union[str, Any]=True , snake_case__ : Dict=True , snake_case__ : Dict=None , **snake_case__ : Optional[int] , ): """simple docstring""" SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = rms_norm_eps SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_dropout_prob SCREAMING_SNAKE_CASE = use_stable_embedding SCREAMING_SNAKE_CASE = shared_input_output_embedding SCREAMING_SNAKE_CASE = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F"""got {self.rope_scaling}""" ) SCREAMING_SNAKE_CASE = self.rope_scaling.get('type' , snake_case__ ) SCREAMING_SNAKE_CASE = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
673
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a_ : str = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a_ : int = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.1_5}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names a_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a_ : List[Any] = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a_ : Any = "allenai" def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = dict((re.sub(R'@@$' , '' , _UpperCamelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , _UpperCamelCase ), v) for k, v in d.items() ) SCREAMING_SNAKE_CASE = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] SCREAMING_SNAKE_CASE = d[k] # restore return da def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : List[str] ) -> Dict: '''simple docstring''' assert os.path.exists(_UpperCamelCase ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel SCREAMING_SNAKE_CASE = cls.hub_models() SCREAMING_SNAKE_CASE = {'bpe': 'fastbpe', 'tokenizer': 'moses'} SCREAMING_SNAKE_CASE = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"""using checkpoint {checkpoint_file}""" ) SCREAMING_SNAKE_CASE = hub_utils.from_pretrained( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , archive_map=_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = vars(chkpt['args']['model'] ) SCREAMING_SNAKE_CASE = args['source_lang'] SCREAMING_SNAKE_CASE = args['target_lang'] SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) # dicts SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{src_lang}.txt""" ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{tgt_lang}.txt""" ) SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(src_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-src.json' ) print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab SCREAMING_SNAKE_CASE = True for k in src_vocab.keys(): if not k.islower(): SCREAMING_SNAKE_CASE = False break SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(tgt_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-tgt.json' ) print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # merges_file (bpecodes) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.exists(_UpperCamelCase ): break with open(_UpperCamelCase , encoding='utf-8' ) as fin: SCREAMING_SNAKE_CASE = fin.read() SCREAMING_SNAKE_CASE = re.sub(R' \d+$' , '' , _UpperCamelCase , 0 , re.M ) # remove frequency number print(f"""Generating {merges_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_UpperCamelCase ) # model config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args['bpe']}""" assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args['tokenizer']}""" SCREAMING_SNAKE_CASE = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with SCREAMING_SNAKE_CASE = 5 SCREAMING_SNAKE_CASE = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: SCREAMING_SNAKE_CASE = best_score_hparams[model_dir]['length_penalty'] else: SCREAMING_SNAKE_CASE = 1.0 print(f"""Generating {fsmt_model_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # tokenizer config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = { 'langs': [src_lang, tgt_lang], 'model_max_length': 10_24, 'do_lower_case': do_lower_case, } print(f"""Generating {fsmt_tokenizer_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # model SCREAMING_SNAKE_CASE = chkpt['models'][0] SCREAMING_SNAKE_CASE = model.state_dict() # rename keys to start with 'model.' SCREAMING_SNAKE_CASE = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys SCREAMING_SNAKE_CASE = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTConfig.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTForConditionalGeneration(_UpperCamelCase ) # check that it loads ok model_new.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) # save SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(_UpperCamelCase , _UpperCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f"""cd {data_root}""" ) print(f"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a_ : int = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
673
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : Optional[Any] = { "configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"], "processing_mgp_str": ["MgpstrProcessor"], "tokenization_mgp_str": ["MgpstrTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = [ "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST", "MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys a_ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
673
import random def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : float , _UpperCamelCase : bool = False ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE = {i: [] for i in range(_UpperCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_UpperCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_UpperCamelCase ): for j in range(i + 1 , _UpperCamelCase ): if random.random() < probability: graph[i].append(_UpperCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_UpperCamelCase ) return graph def __lowerCAmelCase ( _UpperCamelCase : int ) -> dict: '''simple docstring''' return { i: [j for j in range(_UpperCamelCase ) if i != j] for i in range(_UpperCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
673
1
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a_ : Any = { "n_samples": 64, "horizon": 32, "num_inference_steps": 20, "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network "scale_grad_by_std": True, "scale": 0.1, "eta": 0.0, "t_grad_cutoff": 2, "device": "cpu", } if __name__ == "__main__": a_ : str = "hopper-medium-v2" a_ : Tuple = gym.make(env_name) a_ : str = ValueGuidedRLPipeline.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", env=env, ) env.seed(0) a_ : int = env.reset() a_ : Dict = 0 a_ : Dict = 0 a_ : int = 1000 a_ : Union[str, Any] = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a_ : int = pipeline(obs, planning_horizon=32) # execute action in environment a_ , a_ , a_ , a_ : List[str] = env.step(denorm_actions) a_ : Optional[int] = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" F""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) a_ : Dict = next_observation except KeyboardInterrupt: pass print(F"""Total reward: {total_reward}""")
673
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : def __init__( self : List[str] , snake_case__ : Dict , snake_case__ : Optional[Any]=1_3 , snake_case__ : Union[str, Any]=7 , snake_case__ : List[str]=True , snake_case__ : Any=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=9_9 , snake_case__ : str=3_2 , snake_case__ : Dict=5 , snake_case__ : str=4 , snake_case__ : int=3_7 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Any=0.1 , snake_case__ : Dict=0.1 , snake_case__ : Optional[Any]=5_1_2 , snake_case__ : List[Any]=1_6 , snake_case__ : str=2 , snake_case__ : int=0.02 , snake_case__ : List[str]=3 , snake_case__ : Dict=4 , snake_case__ : str=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def UpperCamelCase ( self : List[str] , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : List[Any] , snake_case__ : str , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : int , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : int , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = NystromformerForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase =( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def UpperCamelCase ( self : List[str] ): """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(snake_case__ )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.4_532, -0.0_936, 0.5_137], [-0.2_676, 0.0_628, 0.6_186], [-0.3_629, -0.1_726, 0.4_716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1E-4 ) ) @slow def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = 'the [MASK] of Belgium is Brussels' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = tokenizer(snake_case__ , return_tensors='pt' ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(encoding.input_ids ).logits SCREAMING_SNAKE_CASE = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case__ ) , 'capital' )
673
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : Dict = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys a_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
673
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
673
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCamelCase : def __init__( self : List[str] , snake_case__ : Optional[Any] , snake_case__ : Any=1_3 , snake_case__ : Tuple=7 , snake_case__ : Tuple=True , snake_case__ : int=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=True , snake_case__ : Optional[Any]=9_9 , snake_case__ : List[str]=3_2 , snake_case__ : int=2 , snake_case__ : Optional[int]=4 , snake_case__ : Any=3_7 , snake_case__ : Any="gelu" , snake_case__ : List[Any]=0.1 , snake_case__ : Any=0.1 , snake_case__ : Dict=5_1_2 , snake_case__ : Tuple=1_6 , snake_case__ : int=2 , snake_case__ : int=0.02 , snake_case__ : Optional[Any]=3 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[Any]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = 1_3 SCREAMING_SNAKE_CASE = 7 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = 9_9 SCREAMING_SNAKE_CASE = 3_2 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = 3_7 SCREAMING_SNAKE_CASE = 'gelu' SCREAMING_SNAKE_CASE = 0.1 SCREAMING_SNAKE_CASE = 0.1 SCREAMING_SNAKE_CASE = 5_1_2 SCREAMING_SNAKE_CASE = 1_6 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 0.02 SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = TFRoFormerModel(config=snake_case__ ) SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE = [input_ids, input_mask] SCREAMING_SNAKE_CASE = model(snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Any , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = TFRoFormerForCausalLM(config=snake_case__ ) SCREAMING_SNAKE_CASE = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } SCREAMING_SNAKE_CASE = model(snake_case__ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def UpperCamelCase ( self : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFRoFormerForMaskedLM(config=snake_case__ ) SCREAMING_SNAKE_CASE = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = TFRoFormerForSequenceClassification(config=snake_case__ ) SCREAMING_SNAKE_CASE = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : str , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = TFRoFormerForMultipleChoice(config=snake_case__ ) SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self : int , snake_case__ : str , snake_case__ : Any , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = TFRoFormerForTokenClassification(config=snake_case__ ) SCREAMING_SNAKE_CASE = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : Any , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFRoFormerForQuestionAnswering(config=snake_case__ ) SCREAMING_SNAKE_CASE = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) __UpperCamelCase =( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Dict ): """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = TFRoFormerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(snake_case__ ) @require_tf class UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE = model(snake_case__ )[0] # TODO Replace vocab size SCREAMING_SNAKE_CASE = 5_0_0_0_0 SCREAMING_SNAKE_CASE = [1, 6, vocab_size] self.assertEqual(output.shape , snake_case__ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. SCREAMING_SNAKE_CASE = tf.constant( [ [ [-0.12_053_341, -1.0_264_901, 0.29_221_946], [-1.5_133_783, 0.197_433, 0.15_190_607], [-5.0_135_403, -3.900_256, -0.84_038_764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case__ , atol=1E-4 ) @require_tf class UpperCamelCase ( unittest.TestCase ): __UpperCamelCase =1e-4 def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = tf.constant([[4, 1_0]] ) SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) SCREAMING_SNAKE_CASE = emba(input_ids.shape ) SCREAMING_SNAKE_CASE = tf.constant( [[0.0_000, 0.0_000, 0.0_000, 1.0_000, 1.0_000, 1.0_000], [0.8_415, 0.0_464, 0.0_022, 0.5_403, 0.9_989, 1.0_000]] ) tf.debugging.assert_near(snake_case__ , snake_case__ , atol=self.tolerance ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = tf.constant( [ [0.0_000, 0.0_000, 0.0_000, 0.0_000, 0.0_000], [0.8_415, 0.8_219, 0.8_020, 0.7_819, 0.7_617], [0.9_093, 0.9_364, 0.9_581, 0.9_749, 0.9_870], ] ) SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2 ) emba([2, 1_6, 5_1_2] ) SCREAMING_SNAKE_CASE = emba.weight[:3, :5] tf.debugging.assert_near(snake_case__ , snake_case__ , atol=self.tolerance ) @require_tf class UpperCamelCase ( unittest.TestCase ): __UpperCamelCase =1e-4 def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 SCREAMING_SNAKE_CASE = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4 ) SCREAMING_SNAKE_CASE = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = TFRoFormerSelfAttention.apply_rotary_position_embeddings( snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = tf.constant( [ [0.0_000, 0.0_100, 0.0_200, 0.0_300, 0.0_400, 0.0_500, 0.0_600, 0.0_700], [-0.2_012, 0.8_897, 0.0_263, 0.9_401, 0.2_074, 0.9_463, 0.3_481, 0.9_343], [-1.7_057, 0.6_271, -1.2_145, 1.3_897, -0.6_303, 1.7_647, -0.1_173, 1.8_985], [-2.1_731, -1.6_397, -2.7_358, 0.2_854, -2.1_840, 1.7_183, -1.3_018, 2.4_871], [0.2_717, -3.6_173, -2.9_206, -2.1_988, -3.6_638, 0.3_858, -2.9_155, 2.2_980], [3.9_859, -2.1_580, -0.7_984, -4.4_904, -4.1_181, -2.0_252, -4.4_782, 1.1_253], ] ) SCREAMING_SNAKE_CASE = tf.constant( [ [0.0_000, -0.0_100, -0.0_200, -0.0_300, -0.0_400, -0.0_500, -0.0_600, -0.0_700], [0.2_012, -0.8_897, -0.0_263, -0.9_401, -0.2_074, -0.9_463, -0.3_481, -0.9_343], [1.7_057, -0.6_271, 1.2_145, -1.3_897, 0.6_303, -1.7_647, 0.1_173, -1.8_985], [2.1_731, 1.6_397, 2.7_358, -0.2_854, 2.1_840, -1.7_183, 1.3_018, -2.4_871], [-0.2_717, 3.6_173, 2.9_206, 2.1_988, 3.6_638, -0.3_858, 2.9_155, -2.2_980], [-3.9_859, 2.1_580, 0.7_984, 4.4_904, 4.1_181, 2.0_252, 4.4_782, -1.1_253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , snake_case__ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , snake_case__ , atol=self.tolerance )
673
import heapq import sys import numpy as np a_ : Optional[int] = tuple[int, int] class UpperCamelCase : def __init__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() def UpperCamelCase ( self : List[Any] ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf' ) def UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.elements ) == 0 def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(snake_case__ ) else: # update # print("update", item) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" if item in self.set: self.set.remove(snake_case__ ) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def UpperCamelCase ( self : str ): """simple docstring""" return self.elements[0][1] def UpperCamelCase ( self : Tuple ): """simple docstring""" ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) self.set.remove(snake_case__ ) return (priority, item) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) return np.linalg.norm(a - b ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Dict: '''simple docstring''' return consistent_heuristic(_UpperCamelCase , _UpperCamelCase ) // t def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[int]: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : int , _UpperCamelCase : TPos , _UpperCamelCase : dict[TPos, float] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = g_function[start] + Wa * heuristics[i](_UpperCamelCase , _UpperCamelCase ) return ans def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = np.chararray((n, n) ) for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = '*' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE = '#' SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = x # print(x) SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[x] SCREAMING_SNAKE_CASE = '-' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: print(_UpperCamelCase , end=' ' ) SCREAMING_SNAKE_CASE = back_pointer[x] print(_UpperCamelCase ) sys.exit() def __lowerCAmelCase ( _UpperCamelCase : TPos ) -> Any: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , ) -> List[Any]: '''simple docstring''' for itera in range(_UpperCamelCase ): open_list[itera].remove_element(_UpperCamelCase ) # print("s", s) # print("j", j) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = s SCREAMING_SNAKE_CASE = (x - 1, y) SCREAMING_SNAKE_CASE = (x + 1, y) SCREAMING_SNAKE_CASE = (x, y + 1) SCREAMING_SNAKE_CASE = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = float('inf' ) if valid(_UpperCamelCase ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE = g_function[s] + 1 SCREAMING_SNAKE_CASE = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCamelCase , key(_UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , _UpperCamelCase ): if key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) <= Wa * key( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ): open_list[j].put( _UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a_ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a_ : List[str] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a_ : Union[str, Any] = make_common_ground() a_ : Tuple = blocks_blk # hyper parameters a_ : Any = 1 a_ : List[str] = 1 a_ : Union[str, Any] = 20 a_ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a_ : int = (0, 0) a_ : Optional[int] = (n - 1, n - 1) a_ : Union[str, Any] = 1 def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos , _UpperCamelCase : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {start: 0, goal: float('inf' )} SCREAMING_SNAKE_CASE = {start: -1, goal: -1} SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() for i in range(_UpperCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , _UpperCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = open_list[i].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_inad.append(_UpperCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE = open_list[0].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_anchor.append(_UpperCamelCase ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_UpperCamelCase ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
673
1
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a_ : Dict = logging.get_logger(__name__) class UpperCamelCase ( enum.Enum ): __UpperCamelCase =0 __UpperCamelCase =1 @add_end_docstrings(SCREAMING_SNAKE_CASE ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="generated" def __init__( self : int , *snake_case__ : List[str] , **snake_case__ : Optional[Any] ): """simple docstring""" super().__init__(*snake_case__ , **snake_case__ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]=None , snake_case__ : Any=None , snake_case__ : List[Any]=None , snake_case__ : Union[str, Any]=None , snake_case__ : Optional[Any]=None , **snake_case__ : Any , ): """simple docstring""" SCREAMING_SNAKE_CASE = {} if truncation is not None: SCREAMING_SNAKE_CASE = truncation SCREAMING_SNAKE_CASE = generate_kwargs SCREAMING_SNAKE_CASE = {} if return_tensors is not None and return_type is None: SCREAMING_SNAKE_CASE = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: SCREAMING_SNAKE_CASE = return_type if clean_up_tokenization_spaces is not None: SCREAMING_SNAKE_CASE = clean_up_tokenization_spaces if stop_sequence is not None: SCREAMING_SNAKE_CASE = self.tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) if len(snake_case__ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) SCREAMING_SNAKE_CASE = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCamelCase ( self : List[Any] , snake_case__ : int , snake_case__ : int , snake_case__ : int ): """simple docstring""" return True def UpperCamelCase ( self : Union[str, Any] , *snake_case__ : Tuple , snake_case__ : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] , snake_case__ ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) SCREAMING_SNAKE_CASE = ([prefix + arg for arg in args[0]],) SCREAMING_SNAKE_CASE = True elif isinstance(args[0] , snake_case__ ): SCREAMING_SNAKE_CASE = (prefix + args[0],) SCREAMING_SNAKE_CASE = False else: raise ValueError( F""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) SCREAMING_SNAKE_CASE = self.tokenizer(*snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : List[str] , *snake_case__ : Any , **snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = super().__call__(*snake_case__ , **snake_case__ ) if ( isinstance(args[0] , snake_case__ ) and all(isinstance(snake_case__ , snake_case__ ) for el in args[0] ) and all(len(snake_case__ ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCamelCase ( self : List[str] , snake_case__ : Tuple , snake_case__ : Optional[Any]=TruncationStrategy.DO_NOT_TRUNCATE , **snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self._parse_and_tokenize(snake_case__ , truncation=snake_case__ , **snake_case__ ) return inputs def UpperCamelCase ( self : str , snake_case__ : List[Any] , **snake_case__ : Optional[Any] ): """simple docstring""" if self.framework == "pt": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model_inputs['input_ids'].shape elif self.framework == "tf": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = tf.shape(model_inputs['input_ids'] ).numpy() SCREAMING_SNAKE_CASE = generate_kwargs.get('min_length' , self.model.config.min_length ) SCREAMING_SNAKE_CASE = generate_kwargs.get('max_length' , self.model.config.max_length ) self.check_inputs(snake_case__ , generate_kwargs['min_length'] , generate_kwargs['max_length'] ) SCREAMING_SNAKE_CASE = self.model.generate(**snake_case__ , **snake_case__ ) SCREAMING_SNAKE_CASE = output_ids.shape[0] if self.framework == "pt": SCREAMING_SNAKE_CASE = output_ids.reshape(snake_case__ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": SCREAMING_SNAKE_CASE = tf.reshape(snake_case__ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCamelCase ( self : Optional[int] , snake_case__ : int , snake_case__ : Tuple=ReturnType.TEXT , snake_case__ : Union[str, Any]=False ): """simple docstring""" SCREAMING_SNAKE_CASE = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: SCREAMING_SNAKE_CASE = {F"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: SCREAMING_SNAKE_CASE = { F"""{self.return_name}_text""": self.tokenizer.decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ , ) } records.append(snake_case__ ) return records @add_end_docstrings(SCREAMING_SNAKE_CASE ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="summary" def __call__( self : Union[str, Any] , *snake_case__ : int , **snake_case__ : Optional[int] ): """simple docstring""" return super().__call__(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : int , snake_case__ : int , snake_case__ : int ): """simple docstring""" if max_length < min_length: logger.warning(F"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( F"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ 'a summarization task, where outputs shorter than the input are typically wanted, you might ' F"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="translation" def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : int ): """simple docstring""" if input_length > 0.9 * max_length: logger.warning( F"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def UpperCamelCase ( self : List[Any] , *snake_case__ : List[Any] , snake_case__ : List[Any]=TruncationStrategy.DO_NOT_TRUNCATE , snake_case__ : List[str]=None , snake_case__ : Any=None ): """simple docstring""" if getattr(self.tokenizer , '_build_translation_inputs' , snake_case__ ): return self.tokenizer._build_translation_inputs( *snake_case__ , return_tensors=self.framework , truncation=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ ) else: return super()._parse_and_tokenize(*snake_case__ , truncation=snake_case__ ) def UpperCamelCase ( self : str , snake_case__ : List[Any]=None , snake_case__ : Optional[int]=None , **snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = super()._sanitize_parameters(**snake_case__ ) if src_lang is not None: SCREAMING_SNAKE_CASE = src_lang if tgt_lang is not None: SCREAMING_SNAKE_CASE = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. SCREAMING_SNAKE_CASE = kwargs.get('task' , self.task ) SCREAMING_SNAKE_CASE = task.split('_' ) if task and len(snake_case__ ) == 4: # translation, XX, to YY SCREAMING_SNAKE_CASE = items[1] SCREAMING_SNAKE_CASE = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Any , *snake_case__ : str , **snake_case__ : List[str] ): """simple docstring""" return super().__call__(*snake_case__ , **snake_case__ )
673
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a_ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : str = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Any=8 ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=5_12 , _UpperCamelCase : Union[str, Any]=5_12 ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) SCREAMING_SNAKE_CASE = np.array(pil_image.convert('RGB' ) ) SCREAMING_SNAKE_CASE = arr.astype(np.floataa ) / 1_27.5 - 1 SCREAMING_SNAKE_CASE = np.transpose(_UpperCamelCase , [2, 0, 1] ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : int , snake_case__ : UNetaDConditionModel , snake_case__ : DDPMScheduler , snake_case__ : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , ) SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase ( self : Any , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = min(int(num_inference_steps * strength ) , snake_case__ ) SCREAMING_SNAKE_CASE = max(num_inference_steps - init_timestep , 0 ) SCREAMING_SNAKE_CASE = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase ( self : List[str] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : str=None ): """simple docstring""" if not isinstance(snake_case__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case__ )}""" ) SCREAMING_SNAKE_CASE = image.to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = batch_size * num_images_per_prompt if image.shape[1] == 4: SCREAMING_SNAKE_CASE = image else: if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case__ ) ] SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) else: SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ ).latent_dist.sample(snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.config.scaling_factor * init_latents SCREAMING_SNAKE_CASE = torch.cat([init_latents] , dim=0 ) SCREAMING_SNAKE_CASE = init_latents.shape SCREAMING_SNAKE_CASE = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) # get latents SCREAMING_SNAKE_CASE = self.scheduler.add_noise(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = init_latents return latents def UpperCamelCase ( self : int , snake_case__ : List[str]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) SCREAMING_SNAKE_CASE = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[int]=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=snake_case__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase ( self : Dict ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case__ ) def __call__( self : str , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : int = 5_1_2 , snake_case__ : int = 5_1_2 , snake_case__ : int = 1_0_0 , snake_case__ : float = 4.0 , snake_case__ : float = 0.3 , snake_case__ : int = 1 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , ): """simple docstring""" SCREAMING_SNAKE_CASE = self._execution_device SCREAMING_SNAKE_CASE = guidance_scale > 1.0 if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = image_embeds.shape[0] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [image] if not all(isinstance(snake_case__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(snake_case__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) SCREAMING_SNAKE_CASE = torch.cat([prepare_image(snake_case__ , snake_case__ , snake_case__ ) for i in image] , dim=0 ) SCREAMING_SNAKE_CASE = image.to(dtype=image_embeds.dtype , device=snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ )['latents'] SCREAMING_SNAKE_CASE = latents.repeat_interleave(snake_case__ , dim=0 ) self.scheduler.set_timesteps(snake_case__ , device=snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_timesteps(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = timesteps[:1].repeat(batch_size * num_images_per_prompt ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = downscale_height_and_width(snake_case__ , snake_case__ , self.movq_scale_factor ) SCREAMING_SNAKE_CASE = self.prepare_latents( snake_case__ , snake_case__ , snake_case__ , snake_case__ , image_embeds.dtype , snake_case__ , snake_case__ ) for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE = {'image_embeds': image_embeds} SCREAMING_SNAKE_CASE = self.unet( sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , )[0] # post-processing SCREAMING_SNAKE_CASE = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
673
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] SCREAMING_SNAKE_CASE = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) SCREAMING_SNAKE_CASE = { 'do_resize': True, 'size': 2_0, 'do_center_crop': True, 'crop_size': 1_8, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], } SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , snake_case__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(snake_case__ , snake_case__ ) def UpperCamelCase ( self : Tuple , **snake_case__ : int ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCamelCase ( self : int , **snake_case__ : Union[str, Any] ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , **snake_case__ : Optional[int] ): """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case__ ) SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , snake_case__ ) self.assertIsInstance(processor_fast.tokenizer , snake_case__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , snake_case__ ) self.assertIsInstance(processor_fast.image_processor , snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = image_processor(snake_case__ , return_tensors='np' ) SCREAMING_SNAKE_CASE = processor(images=snake_case__ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) SCREAMING_SNAKE_CASE = 'lower newer' SCREAMING_SNAKE_CASE = processor(text=snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer(snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) SCREAMING_SNAKE_CASE = 'lower newer' SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) SCREAMING_SNAKE_CASE = 'lower newer' SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
673
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() a_ : List[Any] = logging.get_logger("transformers.models.speecht5") def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Dict: '''simple docstring''' hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Any=None , _UpperCamelCase : List[str]=None , ) -> Tuple: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig.from_pretrained(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE = SpeechTaHifiGan(_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = np.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() model.save_pretrained(_UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) a_ : Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
673
1
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def __lowerCAmelCase ( _UpperCamelCase : Any ) -> Tuple: '''simple docstring''' return x + 2 class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'x = 3' SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = evaluate(snake_case__ , {} , state=snake_case__ ) assert result == 3 self.assertDictEqual(snake_case__ , {'x': 3} ) SCREAMING_SNAKE_CASE = 'x = y' SCREAMING_SNAKE_CASE = {'y': 5} SCREAMING_SNAKE_CASE = evaluate(snake_case__ , {} , state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(snake_case__ , {'x': 5, 'y': 5} ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'y = add_two(x)' SCREAMING_SNAKE_CASE = {'x': 3} SCREAMING_SNAKE_CASE = evaluate(snake_case__ , {'add_two': add_two} , state=snake_case__ ) assert result == 5 self.assertDictEqual(snake_case__ , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: SCREAMING_SNAKE_CASE = evaluate(snake_case__ , {} , state=snake_case__ ) assert result is None assert "tried to execute add_two" in out.out def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'x = 3' SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = evaluate(snake_case__ , {} , state=snake_case__ ) assert result == 3 self.assertDictEqual(snake_case__ , {'x': 3} ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'test_dict = {\'x\': x, \'y\': add_two(x)}' SCREAMING_SNAKE_CASE = {'x': 3} SCREAMING_SNAKE_CASE = evaluate(snake_case__ , {'add_two': add_two} , state=snake_case__ ) self.assertDictEqual(snake_case__ , {'x': 3, 'y': 5} ) self.assertDictEqual(snake_case__ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'x = 3\ny = 5' SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = evaluate(snake_case__ , {} , state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(snake_case__ , {'x': 3, 'y': 5} ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'text = f\'This is x: {x}.\'' SCREAMING_SNAKE_CASE = {'x': 3} SCREAMING_SNAKE_CASE = evaluate(snake_case__ , {} , state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(snake_case__ , {'x': 3, 'text': 'This is x: 3.'} ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = 'if x <= 3:\n y = 2\nelse:\n y = 5' SCREAMING_SNAKE_CASE = {'x': 3} SCREAMING_SNAKE_CASE = evaluate(snake_case__ , {} , state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(snake_case__ , {'x': 3, 'y': 2} ) SCREAMING_SNAKE_CASE = {'x': 8} SCREAMING_SNAKE_CASE = evaluate(snake_case__ , {} , state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(snake_case__ , {'x': 8, 'y': 5} ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = 'test_list = [x, add_two(x)]' SCREAMING_SNAKE_CASE = {'x': 3} SCREAMING_SNAKE_CASE = evaluate(snake_case__ , {'add_two': add_two} , state=snake_case__ ) self.assertListEqual(snake_case__ , [3, 5] ) self.assertDictEqual(snake_case__ , {'x': 3, 'test_list': [3, 5]} ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'y = x' SCREAMING_SNAKE_CASE = {'x': 3} SCREAMING_SNAKE_CASE = evaluate(snake_case__ , {} , state=snake_case__ ) assert result == 3 self.assertDictEqual(snake_case__ , {'x': 3, 'y': 3} ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'test_list = [x, add_two(x)]\ntest_list[1]' SCREAMING_SNAKE_CASE = {'x': 3} SCREAMING_SNAKE_CASE = evaluate(snake_case__ , {'add_two': add_two} , state=snake_case__ ) assert result == 5 self.assertDictEqual(snake_case__ , {'x': 3, 'test_list': [3, 5]} ) SCREAMING_SNAKE_CASE = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' SCREAMING_SNAKE_CASE = {'x': 3} SCREAMING_SNAKE_CASE = evaluate(snake_case__ , {'add_two': add_two} , state=snake_case__ ) assert result == 5 self.assertDictEqual(snake_case__ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = 'x = 0\nfor i in range(3):\n x = i' SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = evaluate(snake_case__ , {'range': range} , state=snake_case__ ) assert result == 2 self.assertDictEqual(snake_case__ , {'x': 2, 'i': 2} )
673
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a_ : Optional[int] = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } a_ : List[Any] = { "allenai/led-base-16384": 1_6384, } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =LEDTokenizer __UpperCamelCase =["input_ids", "attention_mask"] def __init__( self : Tuple , snake_case__ : List[Any]=None , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : Dict="replace" , snake_case__ : Tuple="<s>" , snake_case__ : Optional[Any]="</s>" , snake_case__ : int="</s>" , snake_case__ : Dict="<s>" , snake_case__ : Union[str, Any]="<unk>" , snake_case__ : Optional[int]="<pad>" , snake_case__ : List[str]="<mask>" , snake_case__ : List[Any]=False , snake_case__ : int=True , **snake_case__ : Dict , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(snake_case__ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**snake_case__ ) SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE = 'post_processor' SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state['cls'] ) SCREAMING_SNAKE_CASE = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(snake_case__ , state.pop('type' ) ) SCREAMING_SNAKE_CASE = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase ( self : List[Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value SCREAMING_SNAKE_CASE = value def UpperCamelCase ( self : Dict , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[str] , *snake_case__ : List[Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Tuple=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self : Optional[Any] , snake_case__ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case__ : Optional[int] = None , snake_case__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , ): """simple docstring""" SCREAMING_SNAKE_CASE = super()._pad( encoded_inputs=snake_case__ , max_length=snake_case__ , padding_strategy=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE = len(encoded_inputs['global_attention_mask'] ) != len(snake_case__ ) if needs_to_be_padded: SCREAMING_SNAKE_CASE = len(snake_case__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
673
1
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a_ : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def UpperCamelCase ( self : Dict , snake_case__ : Tuple ): """simple docstring""" if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [label.strip() for label in labels.split(',' ) if label.strip()] return labels def __call__( self : List[Any] , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : Dict ): """simple docstring""" if len(snake_case__ ) == 0 or len(snake_case__ ) == 0: raise ValueError('You must include at least one label and at least one sequence.' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. ' 'Make sure the passed template includes formatting syntax such as {{}} where the label should go.' ).format(snake_case__ ) ) if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [sequences] SCREAMING_SNAKE_CASE = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(snake_case__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(SCREAMING_SNAKE_CASE ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : List[str] , snake_case__ : List[Any]=ZeroShotClassificationArgumentHandler() , *snake_case__ : Optional[int] , **snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = args_parser super().__init__(*snake_case__ , **snake_case__ ) if self.entailment_id == -1: logger.warning( 'Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ' '-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.' ) @property def UpperCamelCase ( self : str ): """simple docstring""" for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('entail' ): return ind return -1 def UpperCamelCase ( self : int , snake_case__ : Union[str, Any] , snake_case__ : int=True , snake_case__ : Tuple=True , snake_case__ : str=TruncationStrategy.ONLY_FIRST , **snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( 'Tokenizer was not supporting padding necessary for zero-shot, attempting to use ' ' `pad_token=eos_token`' ) SCREAMING_SNAKE_CASE = self.tokenizer.eos_token try: SCREAMING_SNAKE_CASE = self.tokenizer( snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , padding=snake_case__ , truncation=snake_case__ , ) except Exception as e: if "too short" in str(snake_case__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. SCREAMING_SNAKE_CASE = self.tokenizer( snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , padding=snake_case__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def UpperCamelCase ( self : Tuple , **snake_case__ : Any ): """simple docstring""" if kwargs.get('multi_class' , snake_case__ ) is not None: SCREAMING_SNAKE_CASE = kwargs['multi_class'] logger.warning( 'The `multi_class` argument has been deprecated and renamed to `multi_label`. ' '`multi_class` will be removed in a future version of Transformers.' ) SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: SCREAMING_SNAKE_CASE = self._args_parser._parse_labels(kwargs['candidate_labels'] ) if "hypothesis_template" in kwargs: SCREAMING_SNAKE_CASE = kwargs['hypothesis_template'] SCREAMING_SNAKE_CASE = {} if "multi_label" in kwargs: SCREAMING_SNAKE_CASE = kwargs['multi_label'] return preprocess_params, {}, postprocess_params def __call__( self : Tuple , snake_case__ : Union[str, List[str]] , *snake_case__ : int , **snake_case__ : int , ): """simple docstring""" if len(snake_case__ ) == 0: pass elif len(snake_case__ ) == 1 and "candidate_labels" not in kwargs: SCREAMING_SNAKE_CASE = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Tuple , snake_case__ : Any , snake_case__ : Union[str, Any]=None , snake_case__ : str="This example is {}." ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._args_parser(snake_case__ , snake_case__ , snake_case__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(snake_case__ , snake_case__ ) ): SCREAMING_SNAKE_CASE = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(snake_case__ ) - 1, **model_input, } def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE = inputs['candidate_label'] SCREAMING_SNAKE_CASE = inputs['sequence'] SCREAMING_SNAKE_CASE = {k: inputs[k] for k in self.tokenizer.model_input_names} SCREAMING_SNAKE_CASE = self.model(**snake_case__ ) SCREAMING_SNAKE_CASE = { 'candidate_label': candidate_label, 'sequence': sequence, 'is_last': inputs['is_last'], **outputs, } return model_outputs def UpperCamelCase ( self : Optional[int] , snake_case__ : Tuple , snake_case__ : Tuple=False ): """simple docstring""" SCREAMING_SNAKE_CASE = [outputs['candidate_label'] for outputs in model_outputs] SCREAMING_SNAKE_CASE = [outputs['sequence'] for outputs in model_outputs] SCREAMING_SNAKE_CASE = np.concatenate([output['logits'].numpy() for output in model_outputs] ) SCREAMING_SNAKE_CASE = logits.shape[0] SCREAMING_SNAKE_CASE = len(snake_case__ ) SCREAMING_SNAKE_CASE = N // n SCREAMING_SNAKE_CASE = logits.reshape((num_sequences, n, -1) ) if multi_label or len(snake_case__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently SCREAMING_SNAKE_CASE = self.entailment_id SCREAMING_SNAKE_CASE = -1 if entailment_id == 0 else 0 SCREAMING_SNAKE_CASE = reshaped_outputs[..., [contradiction_id, entailment_id]] SCREAMING_SNAKE_CASE = np.exp(snake_case__ ) / np.exp(snake_case__ ).sum(-1 , keepdims=snake_case__ ) SCREAMING_SNAKE_CASE = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels SCREAMING_SNAKE_CASE = reshaped_outputs[..., self.entailment_id] SCREAMING_SNAKE_CASE = np.exp(snake_case__ ) / np.exp(snake_case__ ).sum(-1 , keepdims=snake_case__ ) SCREAMING_SNAKE_CASE = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
673
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __lowerCAmelCase ( *_UpperCamelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(_UpperCamelCase , 'r' ) as fh: fcntl.flock(_UpperCamelCase , fcntl.LOCK_EX ) try: print(*_UpperCamelCase ) finally: fcntl.flock(_UpperCamelCase , fcntl.LOCK_UN ) a_ : int = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) a_ : str = torch.device("cuda", local_rank) a_ : Optional[int] = socket.gethostname() a_ : Union[str, Any] = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank a_ : Dict = dist.get_rank() a_ : Any = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
673
1
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow a_ : Dict = False class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : int , snake_case__ : List[Any]=3_2 ): """simple docstring""" set_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDModel(sample_size=snake_case__ , in_channels=3 , out_channels=3 ) SCREAMING_SNAKE_CASE = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable SCREAMING_SNAKE_CASE = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=snake_case__ , ) SCREAMING_SNAKE_CASE = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=snake_case__ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) SCREAMING_SNAKE_CASE = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(snake_case__ ) for _ in range(4 )] SCREAMING_SNAKE_CASE = [torch.randn((4, 3, 3_2, 3_2) ).to(snake_case__ ) for _ in range(4 )] SCREAMING_SNAKE_CASE = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(snake_case__ ) for _ in range(4 )] # train with a DDPM scheduler SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_model_optimizer(resolution=3_2 ) model.train().to(snake_case__ ) for i in range(4 ): optimizer.zero_grad() SCREAMING_SNAKE_CASE = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) SCREAMING_SNAKE_CASE = model(snake_case__ , timesteps[i] ).sample SCREAMING_SNAKE_CASE = torch.nn.functional.mse_loss(snake_case__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_model_optimizer(resolution=3_2 ) model.train().to(snake_case__ ) for i in range(4 ): optimizer.zero_grad() SCREAMING_SNAKE_CASE = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) SCREAMING_SNAKE_CASE = model(snake_case__ , timesteps[i] ).sample SCREAMING_SNAKE_CASE = torch.nn.functional.mse_loss(snake_case__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) )
673
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a_ : Optional[Any] = logging.get_logger(__name__) a_ : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } a_ : Union[str, Any] = {"allegro/herbert-base-cased": 514} a_ : List[Any] = {} class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_INIT_CONFIGURATION __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =HerbertTokenizer def __init__( self : Tuple , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : Optional[int]=None , snake_case__ : str="<s>" , snake_case__ : Tuple="<unk>" , snake_case__ : List[str]="<pad>" , snake_case__ : Tuple="<mask>" , snake_case__ : Dict="</s>" , **snake_case__ : List[str] , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sep_token=snake_case__ , **snake_case__ , ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
673
1
def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> int: '''simple docstring''' while a != 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = b % a, a return b def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> int: '''simple docstring''' if gcd(_UpperCamelCase , _UpperCamelCase ) != 1: SCREAMING_SNAKE_CASE = f"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(_UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1, 0, a SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0, 1, m while va != 0: SCREAMING_SNAKE_CASE = ua // va SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
673
def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 while n > 0: res += n % 10 n //= 10 return res def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return sum(int(_UpperCamelCase ) for c in str(abs(_UpperCamelCase ) ) ) def __lowerCAmelCase ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_UpperCamelCase : Callable , _UpperCamelCase : int ) -> None: SCREAMING_SNAKE_CASE = f"""{func.__name__}({value})""" SCREAMING_SNAKE_CASE = timeit(f"""__main__.{call}""" , setup='import __main__' ) print(f"""{call:56} = {func(_UpperCamelCase )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_UpperCamelCase , _UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
673
1
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class UpperCamelCase ( unittest.TestCase ): __UpperCamelCase =MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCamelCase =TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def UpperCamelCase ( self : str , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = TextaTextGenerationPipeline(model=snake_case__ , tokenizer=snake_case__ ) return generator, ["Something to write", "Something else"] def UpperCamelCase ( self : Dict , snake_case__ : int , snake_case__ : int ): """simple docstring""" SCREAMING_SNAKE_CASE = generator('Something there' ) self.assertEqual(snake_case__ , [{'generated_text': ANY(snake_case__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) SCREAMING_SNAKE_CASE = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=snake_case__ ) self.assertEqual( snake_case__ , [ [{'generated_text': ANY(snake_case__ )}, {'generated_text': ANY(snake_case__ )}], [{'generated_text': ANY(snake_case__ )}, {'generated_text': ANY(snake_case__ )}], ] , ) SCREAMING_SNAKE_CASE = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case__ ) self.assertEqual( snake_case__ , [ [{'generated_text': ANY(snake_case__ )}, {'generated_text': ANY(snake_case__ )}], [{'generated_text': ANY(snake_case__ )}, {'generated_text': ANY(snake_case__ )}], ] , ) with self.assertRaises(snake_case__ ): generator(4 ) @require_torch def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=snake_case__ ) self.assertEqual(snake_case__ , [{'generated_text': ''}] ) SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = generator( 'Something there' , num_return_sequences=snake_case__ , num_beams=snake_case__ , ) SCREAMING_SNAKE_CASE = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = generator('This is a test' , do_sample=snake_case__ , num_return_sequences=2 , return_tensors=snake_case__ ) self.assertEqual( snake_case__ , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) SCREAMING_SNAKE_CASE = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE = '<pad>' SCREAMING_SNAKE_CASE = generator( ['This is a test', 'This is a second test'] , do_sample=snake_case__ , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case__ , ) self.assertEqual( snake_case__ , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=snake_case__ ) self.assertEqual(snake_case__ , [{'generated_text': ''}] )
673
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
673
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input a_ : Optional[Any] = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def __lowerCAmelCase ( ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: SCREAMING_SNAKE_CASE = get_sagemaker_input() else: SCREAMING_SNAKE_CASE = get_cluster_input() return config def __lowerCAmelCase ( _UpperCamelCase : Any=None ) -> Dict: '''simple docstring''' if subparsers is not None: SCREAMING_SNAKE_CASE = subparsers.add_parser('config' , description=_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = argparse.ArgumentParser('Accelerate config command' , description=_UpperCamelCase ) parser.add_argument( '--config_file' , default=_UpperCamelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_UpperCamelCase ) return parser def __lowerCAmelCase ( _UpperCamelCase : str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = get_user_input() if args.config_file is not None: SCREAMING_SNAKE_CASE = args.config_file else: if not os.path.isdir(_UpperCamelCase ): os.makedirs(_UpperCamelCase ) SCREAMING_SNAKE_CASE = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(_UpperCamelCase ) else: config.to_yaml_file(_UpperCamelCase ) print(f"""accelerate configuration saved at {config_file}""" ) def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = config_command_parser() SCREAMING_SNAKE_CASE = parser.parse_args() config_command(_UpperCamelCase ) if __name__ == "__main__": main()
673
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =AudioLDMPipeline __UpperCamelCase =TEXT_TO_AUDIO_PARAMS __UpperCamelCase =TEXT_TO_AUDIO_BATCH_PARAMS __UpperCamelCase =frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(3_2, 6_4) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=snake_case__ , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) SCREAMING_SNAKE_CASE = ClapTextModelWithProjection(snake_case__ ) SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=7_7 ) SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=snake_case__ , ) SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def UpperCamelCase ( self : Optional[int] , snake_case__ : int , snake_case__ : int=0 ): """simple docstring""" if str(snake_case__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(snake_case__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) SCREAMING_SNAKE_CASE = prompt_embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE = negative_prompt SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = [] for p in [prompt, negative_prompt]: SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = text_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) embeds.append(snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 'egg cracking' SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ , negative_prompt=snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config.sampling_rate SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.016 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.016 SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.032 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.032 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = ['hey'] SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape assert audio_shape == (1, 2_5_6) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config config.model_in_dim *= 2 SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ).to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def UpperCamelCase ( self : Tuple ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=snake_case__ ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase ( self : Dict ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case__ ) @slow class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : int , snake_case__ : int , snake_case__ : Tuple="cpu" , snake_case__ : List[str]=torch.floataa , snake_case__ : Optional[Any]=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = np.random.RandomState(snake_case__ ).standard_normal((1, 8, 1_2_8, 1_6) ) SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 2_5 SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[7_7_2_3_0:7_7_2_4_0] SCREAMING_SNAKE_CASE = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[2_7_7_8_0:2_7_7_9_0] SCREAMING_SNAKE_CASE = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
673
1
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : def __init__( self : Optional[int] , snake_case__ : int , snake_case__ : Union[str, Any]=1_3 , snake_case__ : Tuple=3_0 , snake_case__ : Dict=2 , snake_case__ : Tuple=3 , snake_case__ : Any=True , snake_case__ : Union[str, Any]=True , snake_case__ : str=3_2 , snake_case__ : List[str]=2 , snake_case__ : Any=4 , snake_case__ : Union[str, Any]=3_7 , snake_case__ : Optional[Any]="gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : str=0.1 , snake_case__ : Tuple=1_0 , snake_case__ : Tuple=0.02 , snake_case__ : List[str]=3 , snake_case__ : Tuple=0.6 , snake_case__ : List[str]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = mask_ratio SCREAMING_SNAKE_CASE = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self : Any ): """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCamelCase ( self : Any , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFViTMAEModel(config=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : str , snake_case__ : Any , snake_case__ : int , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFViTMAEForPreTraining(snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , training=snake_case__ ) # expected sequence length = num_patches SCREAMING_SNAKE_CASE = (self.image_size // self.patch_size) ** 2 SCREAMING_SNAKE_CASE = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = TFViTMAEForPreTraining(snake_case__ ) SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = model(snake_case__ , training=snake_case__ ) SCREAMING_SNAKE_CASE = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = config_and_inputs SCREAMING_SNAKE_CASE = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =(TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __UpperCamelCase ={"feature-extraction": TFViTMAEModel} if is_tf_available() else {} __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = TFViTMAEModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" pass def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Layer ) ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(snake_case__ ) SCREAMING_SNAKE_CASE = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case__ ) def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" np.random.seed(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(snake_case__ ) SCREAMING_SNAKE_CASE = self._prepare_for_class(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , noise=snake_case__ ) SCREAMING_SNAKE_CASE = copy.deepcopy(self._prepare_for_class(snake_case__ , snake_case__ ) ) SCREAMING_SNAKE_CASE = model(**snake_case__ , noise=snake_case__ ) SCREAMING_SNAKE_CASE = outputs_dict[0].numpy() SCREAMING_SNAKE_CASE = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def UpperCamelCase ( self : Dict ): """simple docstring""" np.random.seed(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(snake_case__ : Tuple ): SCREAMING_SNAKE_CASE = {} for k, v in inputs_dict.items(): if tf.is_tensor(snake_case__ ): SCREAMING_SNAKE_CASE = v.numpy() else: SCREAMING_SNAKE_CASE = np.array(snake_case__ ) return inputs_np_dict for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(snake_case__ ) SCREAMING_SNAKE_CASE = self._prepare_for_class(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = prepare_numpy_arrays(snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , noise=snake_case__ ) SCREAMING_SNAKE_CASE = model(**snake_case__ , noise=snake_case__ ) self.assert_outputs_same(snake_case__ , snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : List[Any] ): """simple docstring""" np.random.seed(2 ) SCREAMING_SNAKE_CASE = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) SCREAMING_SNAKE_CASE = tf.constant(snake_case__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument SCREAMING_SNAKE_CASE = tf_noise super().check_pt_tf_models(snake_case__ , snake_case__ , snake_case__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" np.random.seed(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(snake_case__ ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(snake_case__ , snake_case__ ),) if isinstance(snake_case__ , snake_case__ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(snake_case__ , '_keras_serializable' , snake_case__ ) } SCREAMING_SNAKE_CASE = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) SCREAMING_SNAKE_CASE = tf.convert_to_tensor(snake_case__ ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: SCREAMING_SNAKE_CASE = main_layer_class(snake_case__ ) SCREAMING_SNAKE_CASE = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } SCREAMING_SNAKE_CASE = tf.keras.Model(snake_case__ , outputs=main_layer(snake_case__ ) ) SCREAMING_SNAKE_CASE = model(snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = os.path.join(snake_case__ , 'keras_model.h5' ) model.save(snake_case__ ) SCREAMING_SNAKE_CASE = tf.keras.models.load_model( snake_case__ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(snake_case__ , tf.keras.Model ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.assert_outputs_same(snake_case__ , snake_case__ ) @slow def UpperCamelCase ( self : Any ): """simple docstring""" np.random.seed(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(snake_case__ ) SCREAMING_SNAKE_CASE = self._prepare_for_class(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , noise=snake_case__ ) if model_class.__name__ == "TFViTMAEModel": SCREAMING_SNAKE_CASE = outputs.last_hidden_state.numpy() SCREAMING_SNAKE_CASE = 0 else: SCREAMING_SNAKE_CASE = outputs.logits.numpy() SCREAMING_SNAKE_CASE = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case__ , saved_model=snake_case__ ) SCREAMING_SNAKE_CASE = model_class.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , noise=snake_case__ ) if model_class.__name__ == "TFViTMAEModel": SCREAMING_SNAKE_CASE = after_outputs['last_hidden_state'].numpy() SCREAMING_SNAKE_CASE = 0 else: SCREAMING_SNAKE_CASE = after_outputs['logits'].numpy() SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case__ , 1E-5 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" np.random.seed(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(snake_case__ ) SCREAMING_SNAKE_CASE = self._prepare_for_class(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , noise=snake_case__ ) SCREAMING_SNAKE_CASE = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(snake_case__ ) SCREAMING_SNAKE_CASE = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config SCREAMING_SNAKE_CASE = model_class.from_config(model.config ) SCREAMING_SNAKE_CASE = new_model(snake_case__ ) # Build model new_model.set_weights(model.get_weights() ) SCREAMING_SNAKE_CASE = new_model(snake_case__ , noise=snake_case__ ) self.assert_outputs_same(snake_case__ , snake_case__ ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def UpperCamelCase ( self : List[str] ): """simple docstring""" pass @slow def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(snake_case__ ) def __lowerCAmelCase ( ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def UpperCamelCase ( self : str ): """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def UpperCamelCase ( self : Tuple ): """simple docstring""" np.random.seed(2 ) SCREAMING_SNAKE_CASE = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=snake_case__ , return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) SCREAMING_SNAKE_CASE = ViTMAEConfig() SCREAMING_SNAKE_CASE = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE = np.random.uniform(size=(1, num_patches) ) # forward pass SCREAMING_SNAKE_CASE = model(**snake_case__ , noise=snake_case__ ) # verify the logits SCREAMING_SNAKE_CASE = tf.convert_to_tensor([1, 1_9_6, 7_6_8] ) self.assertEqual(outputs.logits.shape , snake_case__ ) SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , snake_case__ , atol=1E-4 )
673
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase : def __init__( self : Dict , snake_case__ : str , snake_case__ : str=1_3 , snake_case__ : Tuple=7 , snake_case__ : Tuple=True , snake_case__ : Tuple=True , snake_case__ : List[str]=False , snake_case__ : Any=True , snake_case__ : Union[str, Any]=9_9 , snake_case__ : Dict=3_2 , snake_case__ : Optional[Any]=5 , snake_case__ : Optional[Any]=4 , snake_case__ : Union[str, Any]=3_7 , snake_case__ : Tuple="gelu" , snake_case__ : Dict=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : int=4 , snake_case__ : List[str]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Dict ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , use_stable_embedding=snake_case__ , ) def UpperCamelCase ( self : int , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : str , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : str , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , ) SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Tuple , ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : int , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Union[str, Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , use_cache=snake_case__ , ) SCREAMING_SNAKE_CASE = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCamelCase =(OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCamelCase =( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'single_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'multi_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase ( self : str , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = ids_tensor([1, 1_0] , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) )
673
1
def __lowerCAmelCase ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] SCREAMING_SNAKE_CASE = 6 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 19_01 SCREAMING_SNAKE_CASE = 0 while year < 20_01: day += 7 if (year % 4 == 0 and year % 1_00 != 0) or (year % 4_00 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 SCREAMING_SNAKE_CASE = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 SCREAMING_SNAKE_CASE = day - 29 else: if day > days_per_month[month - 1]: month += 1 SCREAMING_SNAKE_CASE = day - days_per_month[month - 2] if month > 12: year += 1 SCREAMING_SNAKE_CASE = 1 if year < 20_01 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
673
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="openai/whisper-base" __UpperCamelCase =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCamelCase ="transcriber" __UpperCamelCase =WhisperProcessor __UpperCamelCase =WhisperForConditionalGeneration __UpperCamelCase =["audio"] __UpperCamelCase =["text"] def UpperCamelCase ( self : Dict , snake_case__ : Tuple ): """simple docstring""" return self.pre_processor(snake_case__ , return_tensors='pt' ).input_features def UpperCamelCase ( self : Optional[int] , snake_case__ : Tuple ): """simple docstring""" return self.model.generate(inputs=snake_case__ ) def UpperCamelCase ( self : str , snake_case__ : Union[str, Any] ): """simple docstring""" return self.pre_processor.batch_decode(snake_case__ , skip_special_tokens=snake_case__ )[0]
673
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase ( SCREAMING_SNAKE_CASE ): @staticmethod @abstractmethod def UpperCamelCase ( snake_case__ : ArgumentParser ): """simple docstring""" raise NotImplementedError() @abstractmethod def UpperCamelCase ( self : List[str] ): """simple docstring""" raise NotImplementedError()
673
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version a_ : List[str] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize a_ : Dict = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" a_ : str = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" a_ : int = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def UpperCamelCase ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def UpperCamelCase ( self : Dict , snake_case__ : int ): """simple docstring""" import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : List[Any]=0.9 , snake_case__ : Optional[Any]=3 , snake_case__ : Any=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5' ): SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score( word_tokenize(snake_case__ ) , word_tokenize(snake_case__ ) , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] else: SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score(snake_case__ , snake_case__ , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] return {"meteor": np.mean(snake_case__ )}
673
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : int = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] a_ : Dict = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys a_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
673
import numpy as np def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
673
1
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class UpperCamelCase : __UpperCamelCase =42 # setable values __UpperCamelCase =42 __UpperCamelCase =42 __UpperCamelCase =None @classmethod def UpperCamelCase ( cls : Any , snake_case__ : CommonSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ): """simple docstring""" return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =42 class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase =[e.name for e in FlaxKarrasDiffusionSchedulers] __UpperCamelCase =42 @property def UpperCamelCase ( self : Tuple ): """simple docstring""" return True @register_to_config def __init__( self : List[Any] , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.0_001 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[jnp.ndarray] = None , snake_case__ : str = "fixed_small" , snake_case__ : bool = True , snake_case__ : str = "epsilon" , snake_case__ : jnp.dtype = jnp.floataa , ): """simple docstring""" SCREAMING_SNAKE_CASE = dtype def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[CommonSchedulerState] = None ): """simple docstring""" if common is None: SCREAMING_SNAKE_CASE = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE = jnp.array(1.0 , dtype=self.dtype ) SCREAMING_SNAKE_CASE = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def UpperCamelCase ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : Optional[int] = None ): """simple docstring""" return sample def UpperCamelCase ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Tuple = () ): """simple docstring""" SCREAMING_SNAKE_CASE = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def UpperCamelCase ( self : str , snake_case__ : DDPMSchedulerState , snake_case__ : List[Any] , snake_case__ : Dict=None , snake_case__ : int=None ): """simple docstring""" SCREAMING_SNAKE_CASE = state.common.alphas_cumprod[t] SCREAMING_SNAKE_CASE = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample SCREAMING_SNAKE_CASE = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: SCREAMING_SNAKE_CASE = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": SCREAMING_SNAKE_CASE = jnp.clip(snake_case__ , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": SCREAMING_SNAKE_CASE = jnp.log(jnp.clip(snake_case__ , a_min=1E-20 ) ) elif variance_type == "fixed_large": SCREAMING_SNAKE_CASE = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log SCREAMING_SNAKE_CASE = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": SCREAMING_SNAKE_CASE = variance SCREAMING_SNAKE_CASE = state.common.betas[t] SCREAMING_SNAKE_CASE = (predicted_variance + 1) / 2 SCREAMING_SNAKE_CASE = frac * max_log + (1 - frac) * min_log return variance def UpperCamelCase ( self : List[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : jnp.ndarray , snake_case__ : Optional[jax.random.KeyArray] = None , snake_case__ : bool = True , ): """simple docstring""" SCREAMING_SNAKE_CASE = timestep if key is None: SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: SCREAMING_SNAKE_CASE = None # 1. compute alphas, betas SCREAMING_SNAKE_CASE = state.common.alphas_cumprod[t] SCREAMING_SNAKE_CASE = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) SCREAMING_SNAKE_CASE = 1 - alpha_prod_t SCREAMING_SNAKE_CASE = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": SCREAMING_SNAKE_CASE = model_output elif self.config.prediction_type == "v_prediction": SCREAMING_SNAKE_CASE = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ ' for the FlaxDDPMScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: SCREAMING_SNAKE_CASE = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf SCREAMING_SNAKE_CASE = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t SCREAMING_SNAKE_CASE = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf SCREAMING_SNAKE_CASE = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): SCREAMING_SNAKE_CASE = jax.random.split(snake_case__ , num=1 ) SCREAMING_SNAKE_CASE = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise SCREAMING_SNAKE_CASE = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) SCREAMING_SNAKE_CASE = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): """simple docstring""" return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def UpperCamelCase ( self : List[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): """simple docstring""" return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self : Union[str, Any] ): """simple docstring""" return self.config.num_train_timesteps
673
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ : Any = logging.get_logger(__name__) a_ : Dict = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="van" def __init__( self : Optional[Any] , snake_case__ : Tuple=2_2_4 , snake_case__ : Dict=3 , snake_case__ : Union[str, Any]=[7, 3, 3, 3] , snake_case__ : str=[4, 2, 2, 2] , snake_case__ : Optional[Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , snake_case__ : Optional[Any]=[3, 3, 1_2, 3] , snake_case__ : Tuple=[8, 8, 4, 4] , snake_case__ : Any="gelu" , snake_case__ : Dict=0.02 , snake_case__ : List[str]=1E-6 , snake_case__ : int=1E-2 , snake_case__ : Any=0.0 , snake_case__ : Tuple=0.0 , **snake_case__ : Any , ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_sizes SCREAMING_SNAKE_CASE = strides SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = mlp_ratios SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = dropout_rate
673
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ : str = { "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = ["AlbertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = ["AlbertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys a_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
673
def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : int ) -> list[str]: '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(_UpperCamelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
673
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING a_ : Dict = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : Any , **snake_case__ : Optional[int] ): """simple docstring""" super().__init__(**snake_case__ ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , 'vision' ) self.check_model_type(snake_case__ ) def __call__( self : List[Any] , snake_case__ : Union[str, "Image.Image", List[Dict[str, Any]]] , snake_case__ : Union[str, List[str]] = None , **snake_case__ : Union[str, Any] , ): """simple docstring""" if "text_queries" in kwargs: SCREAMING_SNAKE_CASE = kwargs.pop('text_queries' ) if isinstance(snake_case__ , (str, Image.Image) ): SCREAMING_SNAKE_CASE = {'image': image, 'candidate_labels': candidate_labels} else: SCREAMING_SNAKE_CASE = image SCREAMING_SNAKE_CASE = super().__call__(snake_case__ , **snake_case__ ) return results def UpperCamelCase ( self : Union[str, Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = {} if "threshold" in kwargs: SCREAMING_SNAKE_CASE = kwargs['threshold'] if "top_k" in kwargs: SCREAMING_SNAKE_CASE = kwargs['top_k'] return {}, {}, postprocess_params def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = load_image(inputs['image'] ) SCREAMING_SNAKE_CASE = inputs['candidate_labels'] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = candidate_labels.split(',' ) SCREAMING_SNAKE_CASE = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE = self.tokenizer(snake_case__ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE = self.image_processor(snake_case__ , return_tensors=self.framework ) yield { "is_last": i == len(snake_case__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def UpperCamelCase ( self : Any , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = model_inputs.pop('target_size' ) SCREAMING_SNAKE_CASE = model_inputs.pop('candidate_label' ) SCREAMING_SNAKE_CASE = model_inputs.pop('is_last' ) SCREAMING_SNAKE_CASE = self.model(**snake_case__ ) SCREAMING_SNAKE_CASE = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : str=0.1 , snake_case__ : Union[str, Any]=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: SCREAMING_SNAKE_CASE = model_output['candidate_label'] SCREAMING_SNAKE_CASE = BaseModelOutput(snake_case__ ) SCREAMING_SNAKE_CASE = self.image_processor.post_process_object_detection( outputs=snake_case__ , threshold=snake_case__ , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): SCREAMING_SNAKE_CASE = outputs['scores'][index].item() SCREAMING_SNAKE_CASE = self._get_bounding_box(outputs['boxes'][index][0] ) SCREAMING_SNAKE_CASE = {'score': score, 'label': label, 'box': box} results.append(snake_case__ ) SCREAMING_SNAKE_CASE = sorted(snake_case__ , key=lambda snake_case__ : x["score"] , reverse=snake_case__ ) if top_k: SCREAMING_SNAKE_CASE = results[:top_k] return results def UpperCamelCase ( self : List[Any] , snake_case__ : "torch.Tensor" ): """simple docstring""" if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = box.int().tolist() SCREAMING_SNAKE_CASE = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
673
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING a_ : Dict = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : Any , **snake_case__ : Optional[int] ): """simple docstring""" super().__init__(**snake_case__ ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , 'vision' ) self.check_model_type(snake_case__ ) def __call__( self : List[Any] , snake_case__ : Union[str, "Image.Image", List[Dict[str, Any]]] , snake_case__ : Union[str, List[str]] = None , **snake_case__ : Union[str, Any] , ): """simple docstring""" if "text_queries" in kwargs: SCREAMING_SNAKE_CASE = kwargs.pop('text_queries' ) if isinstance(snake_case__ , (str, Image.Image) ): SCREAMING_SNAKE_CASE = {'image': image, 'candidate_labels': candidate_labels} else: SCREAMING_SNAKE_CASE = image SCREAMING_SNAKE_CASE = super().__call__(snake_case__ , **snake_case__ ) return results def UpperCamelCase ( self : Union[str, Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = {} if "threshold" in kwargs: SCREAMING_SNAKE_CASE = kwargs['threshold'] if "top_k" in kwargs: SCREAMING_SNAKE_CASE = kwargs['top_k'] return {}, {}, postprocess_params def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = load_image(inputs['image'] ) SCREAMING_SNAKE_CASE = inputs['candidate_labels'] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = candidate_labels.split(',' ) SCREAMING_SNAKE_CASE = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE = self.tokenizer(snake_case__ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE = self.image_processor(snake_case__ , return_tensors=self.framework ) yield { "is_last": i == len(snake_case__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def UpperCamelCase ( self : Any , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = model_inputs.pop('target_size' ) SCREAMING_SNAKE_CASE = model_inputs.pop('candidate_label' ) SCREAMING_SNAKE_CASE = model_inputs.pop('is_last' ) SCREAMING_SNAKE_CASE = self.model(**snake_case__ ) SCREAMING_SNAKE_CASE = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : str=0.1 , snake_case__ : Union[str, Any]=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: SCREAMING_SNAKE_CASE = model_output['candidate_label'] SCREAMING_SNAKE_CASE = BaseModelOutput(snake_case__ ) SCREAMING_SNAKE_CASE = self.image_processor.post_process_object_detection( outputs=snake_case__ , threshold=snake_case__ , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): SCREAMING_SNAKE_CASE = outputs['scores'][index].item() SCREAMING_SNAKE_CASE = self._get_bounding_box(outputs['boxes'][index][0] ) SCREAMING_SNAKE_CASE = {'score': score, 'label': label, 'box': box} results.append(snake_case__ ) SCREAMING_SNAKE_CASE = sorted(snake_case__ , key=lambda snake_case__ : x["score"] , reverse=snake_case__ ) if top_k: SCREAMING_SNAKE_CASE = results[:top_k] return results def UpperCamelCase ( self : List[Any] , snake_case__ : "torch.Tensor" ): """simple docstring""" if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = box.int().tolist() SCREAMING_SNAKE_CASE = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
673
1
import math def __lowerCAmelCase ( _UpperCamelCase : int ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : float = 1 / 1_23_45 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 3 while True: SCREAMING_SNAKE_CASE = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_UpperCamelCase ): SCREAMING_SNAKE_CASE = int(_UpperCamelCase ) total_partitions += 1 if check_partition_perfect(_UpperCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_UpperCamelCase ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
673
def __lowerCAmelCase ( _UpperCamelCase : int = 10_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 2**power SCREAMING_SNAKE_CASE = str(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 for i in list_num: sum_of_num += int(_UpperCamelCase ) return sum_of_num if __name__ == "__main__": a_ : List[str] = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) a_ : int = solution(power) print("Sum of the digits is: ", result)
673
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a_ : Dict = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys a_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
673
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="facebook/bart-large-mnli" __UpperCamelCase =( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) __UpperCamelCase ="text_classifier" __UpperCamelCase =AutoTokenizer __UpperCamelCase =AutoModelForSequenceClassification __UpperCamelCase =["text", ["text"]] __UpperCamelCase =["text"] def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): SCREAMING_SNAKE_CASE = int(snake_case__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[str] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(snake_case__ ) , [F"""This example is {label}""" for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
673
1
import math def __lowerCAmelCase ( _UpperCamelCase : int = 1_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = sum(i * i for i in range(1 , n + 1 ) ) SCREAMING_SNAKE_CASE = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
673
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a_ : str = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a_ : int = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.1_5}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names a_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a_ : List[Any] = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a_ : Any = "allenai" def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = dict((re.sub(R'@@$' , '' , _UpperCamelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , _UpperCamelCase ), v) for k, v in d.items() ) SCREAMING_SNAKE_CASE = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] SCREAMING_SNAKE_CASE = d[k] # restore return da def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : List[str] ) -> Dict: '''simple docstring''' assert os.path.exists(_UpperCamelCase ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel SCREAMING_SNAKE_CASE = cls.hub_models() SCREAMING_SNAKE_CASE = {'bpe': 'fastbpe', 'tokenizer': 'moses'} SCREAMING_SNAKE_CASE = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"""using checkpoint {checkpoint_file}""" ) SCREAMING_SNAKE_CASE = hub_utils.from_pretrained( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , archive_map=_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = vars(chkpt['args']['model'] ) SCREAMING_SNAKE_CASE = args['source_lang'] SCREAMING_SNAKE_CASE = args['target_lang'] SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) # dicts SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{src_lang}.txt""" ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{tgt_lang}.txt""" ) SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(src_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-src.json' ) print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab SCREAMING_SNAKE_CASE = True for k in src_vocab.keys(): if not k.islower(): SCREAMING_SNAKE_CASE = False break SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(tgt_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-tgt.json' ) print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # merges_file (bpecodes) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.exists(_UpperCamelCase ): break with open(_UpperCamelCase , encoding='utf-8' ) as fin: SCREAMING_SNAKE_CASE = fin.read() SCREAMING_SNAKE_CASE = re.sub(R' \d+$' , '' , _UpperCamelCase , 0 , re.M ) # remove frequency number print(f"""Generating {merges_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_UpperCamelCase ) # model config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args['bpe']}""" assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args['tokenizer']}""" SCREAMING_SNAKE_CASE = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with SCREAMING_SNAKE_CASE = 5 SCREAMING_SNAKE_CASE = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: SCREAMING_SNAKE_CASE = best_score_hparams[model_dir]['length_penalty'] else: SCREAMING_SNAKE_CASE = 1.0 print(f"""Generating {fsmt_model_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # tokenizer config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = { 'langs': [src_lang, tgt_lang], 'model_max_length': 10_24, 'do_lower_case': do_lower_case, } print(f"""Generating {fsmt_tokenizer_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # model SCREAMING_SNAKE_CASE = chkpt['models'][0] SCREAMING_SNAKE_CASE = model.state_dict() # rename keys to start with 'model.' SCREAMING_SNAKE_CASE = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys SCREAMING_SNAKE_CASE = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTConfig.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTForConditionalGeneration(_UpperCamelCase ) # check that it loads ok model_new.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) # save SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(_UpperCamelCase , _UpperCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f"""cd {data_root}""" ) print(f"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a_ : int = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
673
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =VideoToVideoSDPipeline __UpperCamelCase =TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"image", "width", "height"} __UpperCamelCase =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"image"} __UpperCamelCase =PipelineTesterMixin.required_optional_params - {"latents"} __UpperCamelCase =False # No `output_type`. __UpperCamelCase =frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=3_2 , attention_head_dim=4 , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) SCREAMING_SNAKE_CASE = CLIPTextModel(snake_case__ ) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def UpperCamelCase ( self : Optional[int] , snake_case__ : List[str] , snake_case__ : Any=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3, 3_2, 3_2) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(snake_case__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = VideoToVideoSDPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 'np' SCREAMING_SNAKE_CASE = sd_pipe(**snake_case__ ).frames SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (3_2, 3_2, 3) SCREAMING_SNAKE_CASE = np.array([1_0_6, 1_1_7, 1_1_3, 1_7_4, 1_3_7, 1_1_2, 1_4_8, 1_5_1, 1_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case__ , expected_max_diff=5E-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def UpperCamelCase ( self : Tuple ): """simple docstring""" pass def UpperCamelCase ( self : List[Any] ): """simple docstring""" return super().test_progress_bar() @slow @skip_mps class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames SCREAMING_SNAKE_CASE = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE = torch.randn((1, 1_0, 3, 1_0_2_4, 5_7_6) , generator=snake_case__ ) SCREAMING_SNAKE_CASE = video.to('cuda' ) SCREAMING_SNAKE_CASE = 'Spiderman is surfing' SCREAMING_SNAKE_CASE = pipe(snake_case__ , video=snake_case__ , generator=snake_case__ , num_inference_steps=3 , output_type='pt' ).frames SCREAMING_SNAKE_CASE = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
673
import random def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : float , _UpperCamelCase : bool = False ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE = {i: [] for i in range(_UpperCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_UpperCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_UpperCamelCase ): for j in range(i + 1 , _UpperCamelCase ): if random.random() < probability: graph[i].append(_UpperCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_UpperCamelCase ) return graph def __lowerCAmelCase ( _UpperCamelCase : int ) -> dict: '''simple docstring''' return { i: [j for j in range(_UpperCamelCase ) if i != j] for i in range(_UpperCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
673
1
from __future__ import annotations from math import gcd def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 1 , _UpperCamelCase : int = 3 , ) -> int | None: '''simple docstring''' if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(_UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) -> int: return (pow(_UpperCamelCase , 2 ) + step) % modulus for _ in range(_UpperCamelCase ): # These track the position within the cycle detection logic. SCREAMING_SNAKE_CASE = seed SCREAMING_SNAKE_CASE = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. SCREAMING_SNAKE_CASE = rand_fn(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = rand_fn(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = rand_fn(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. SCREAMING_SNAKE_CASE = gcd(hare - tortoise , _UpperCamelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. SCREAMING_SNAKE_CASE = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse a_ : List[str] = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) a_ : Optional[Any] = parser.parse_args() a_ : Optional[int] = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"""{args.num} is probably prime""") else: a_ : Tuple = args.num // divisor print(F"""{args.num} = {divisor} * {quotient}""")
673
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : def __init__( self : List[str] , snake_case__ : Dict , snake_case__ : Optional[Any]=1_3 , snake_case__ : Union[str, Any]=7 , snake_case__ : List[str]=True , snake_case__ : Any=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=9_9 , snake_case__ : str=3_2 , snake_case__ : Dict=5 , snake_case__ : str=4 , snake_case__ : int=3_7 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Any=0.1 , snake_case__ : Dict=0.1 , snake_case__ : Optional[Any]=5_1_2 , snake_case__ : List[Any]=1_6 , snake_case__ : str=2 , snake_case__ : int=0.02 , snake_case__ : List[str]=3 , snake_case__ : Dict=4 , snake_case__ : str=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def UpperCamelCase ( self : List[str] , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : List[Any] , snake_case__ : str , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : int , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : int , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = NystromformerForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase =( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def UpperCamelCase ( self : List[str] ): """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(snake_case__ )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.4_532, -0.0_936, 0.5_137], [-0.2_676, 0.0_628, 0.6_186], [-0.3_629, -0.1_726, 0.4_716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1E-4 ) ) @slow def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = 'the [MASK] of Belgium is Brussels' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = tokenizer(snake_case__ , return_tensors='pt' ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(encoding.input_ids ).logits SCREAMING_SNAKE_CASE = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case__ ) , 'capital' )
673
1
def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : List[str] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None SCREAMING_SNAKE_CASE = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(_UpperCamelCase ): return None SCREAMING_SNAKE_CASE = sorted_collection[point] if current_item == item: return point else: if point < left: SCREAMING_SNAKE_CASE = left SCREAMING_SNAKE_CASE = point elif point > right: SCREAMING_SNAKE_CASE = right SCREAMING_SNAKE_CASE = point else: if item < current_item: SCREAMING_SNAKE_CASE = point - 1 else: SCREAMING_SNAKE_CASE = point + 1 return None def __lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Any ) -> Dict: '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None SCREAMING_SNAKE_CASE = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(_UpperCamelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) elif point > right: return interpolation_search_by_recursion(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , point - 1 ) else: return interpolation_search_by_recursion( _UpperCamelCase , _UpperCamelCase , point + 1 , _UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : Dict ) -> int: '''simple docstring''' if collection != sorted(_UpperCamelCase ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys a_ : Optional[Any] = 0 if debug == 1: a_ : Dict = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") a_ : Optional[Any] = 67 a_ : Dict = interpolation_search(collection, target) if result is not None: print(F"""{target} found at positions: {result}""") else: print("Not found")
673
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
673
1
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path a_ : Dict = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any]=True ) -> Any: '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=SCREAMING_SNAKE_CASE ) ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =None __UpperCamelCase =None def UpperCamelCase ( self : List[str] , snake_case__ : Any , snake_case__ : str ): """simple docstring""" with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE = dataset_module_factory(snake_case__ , cache_dir=snake_case__ ) SCREAMING_SNAKE_CASE = import_main_class(dataset_module.module_path , dataset=snake_case__ ) SCREAMING_SNAKE_CASE = builder_cls( cache_dir=snake_case__ , config_name=snake_case__ , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=snake_case__ ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) SCREAMING_SNAKE_CASE = cached_path(snake_case__ , cache_dir=snake_case__ ) self.assertTrue(os.path.exists(snake_case__ ) ) @pytest.mark.integration def __lowerCAmelCase ( _UpperCamelCase : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' SCREAMING_SNAKE_CASE = dataset_module_factory('wikipedia' , cache_dir=_UpperCamelCase ) SCREAMING_SNAKE_CASE = import_main_class(dataset_module.module_path ) SCREAMING_SNAKE_CASE = builder_cls( cache_dir=_UpperCamelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam SCREAMING_SNAKE_CASE = None builder_instance.download_and_prepare() SCREAMING_SNAKE_CASE = builder_instance.as_dataset() assert ds @pytest.mark.integration def __lowerCAmelCase ( _UpperCamelCase : List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = dataset_module_factory('wikipedia' , cache_dir=_UpperCamelCase ) SCREAMING_SNAKE_CASE = import_main_class(dataset_module.module_path , dataset=_UpperCamelCase ) SCREAMING_SNAKE_CASE = builder_cls( cache_dir=_UpperCamelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE = builder_instance.as_streaming_dataset() assert ds assert isinstance(_UpperCamelCase , _UpperCamelCase ) assert "train" in ds assert isinstance(ds['train'] , _UpperCamelCase ) assert next(iter(ds['train'] ) )
673
import heapq import sys import numpy as np a_ : Optional[int] = tuple[int, int] class UpperCamelCase : def __init__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() def UpperCamelCase ( self : List[Any] ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf' ) def UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.elements ) == 0 def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(snake_case__ ) else: # update # print("update", item) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" if item in self.set: self.set.remove(snake_case__ ) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def UpperCamelCase ( self : str ): """simple docstring""" return self.elements[0][1] def UpperCamelCase ( self : Tuple ): """simple docstring""" ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) self.set.remove(snake_case__ ) return (priority, item) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) return np.linalg.norm(a - b ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Dict: '''simple docstring''' return consistent_heuristic(_UpperCamelCase , _UpperCamelCase ) // t def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[int]: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : int , _UpperCamelCase : TPos , _UpperCamelCase : dict[TPos, float] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = g_function[start] + Wa * heuristics[i](_UpperCamelCase , _UpperCamelCase ) return ans def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = np.chararray((n, n) ) for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = '*' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE = '#' SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = x # print(x) SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[x] SCREAMING_SNAKE_CASE = '-' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: print(_UpperCamelCase , end=' ' ) SCREAMING_SNAKE_CASE = back_pointer[x] print(_UpperCamelCase ) sys.exit() def __lowerCAmelCase ( _UpperCamelCase : TPos ) -> Any: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , ) -> List[Any]: '''simple docstring''' for itera in range(_UpperCamelCase ): open_list[itera].remove_element(_UpperCamelCase ) # print("s", s) # print("j", j) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = s SCREAMING_SNAKE_CASE = (x - 1, y) SCREAMING_SNAKE_CASE = (x + 1, y) SCREAMING_SNAKE_CASE = (x, y + 1) SCREAMING_SNAKE_CASE = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = float('inf' ) if valid(_UpperCamelCase ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE = g_function[s] + 1 SCREAMING_SNAKE_CASE = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCamelCase , key(_UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , _UpperCamelCase ): if key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) <= Wa * key( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ): open_list[j].put( _UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a_ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a_ : List[str] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a_ : Union[str, Any] = make_common_ground() a_ : Tuple = blocks_blk # hyper parameters a_ : Any = 1 a_ : List[str] = 1 a_ : Union[str, Any] = 20 a_ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a_ : int = (0, 0) a_ : Optional[int] = (n - 1, n - 1) a_ : Union[str, Any] = 1 def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos , _UpperCamelCase : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {start: 0, goal: float('inf' )} SCREAMING_SNAKE_CASE = {start: -1, goal: -1} SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() for i in range(_UpperCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , _UpperCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = open_list[i].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_inad.append(_UpperCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE = open_list[0].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_anchor.append(_UpperCamelCase ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_UpperCamelCase ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
673
1
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : def __init__( self : str , snake_case__ : Optional[Any] , snake_case__ : str=1_3 , snake_case__ : Tuple=3_0 , snake_case__ : Dict=2 , snake_case__ : Optional[Any]=3 , snake_case__ : Tuple=True , snake_case__ : Any=True , snake_case__ : List[Any]=3_2 , snake_case__ : List[Any]=2 , snake_case__ : str=4 , snake_case__ : Optional[int]=3_7 , snake_case__ : Optional[Any]="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Any=0.1 , snake_case__ : List[str]=1_0 , snake_case__ : List[str]=0.02 , snake_case__ : int=3 , snake_case__ : Union[str, Any]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE = num_patches + 1 def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self : Any ): """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def UpperCamelCase ( self : str , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = TFViTModel(config=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. SCREAMING_SNAKE_CASE = self.image_size // 2 SCREAMING_SNAKE_CASE = pixel_values[:, :, :image_size, :image_size] SCREAMING_SNAKE_CASE = model(snake_case__ , interpolate_pos_encoding=snake_case__ , training=snake_case__ ) SCREAMING_SNAKE_CASE = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.type_sequence_label_size SCREAMING_SNAKE_CASE = TFViTForImageClassification(snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , labels=snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. SCREAMING_SNAKE_CASE = self.image_size // 2 SCREAMING_SNAKE_CASE = pixel_values[:, :, :image_size, :image_size] SCREAMING_SNAKE_CASE = model(snake_case__ , interpolate_pos_encoding=snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = TFViTForImageClassification(snake_case__ ) SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () __UpperCamelCase =( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = TFViTModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def UpperCamelCase ( self : Dict ): """simple docstring""" pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" pass def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Layer ) ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(snake_case__ ) SCREAMING_SNAKE_CASE = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case__ ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(snake_case__ ) def __lowerCAmelCase ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def UpperCamelCase ( self : Tuple ): """simple docstring""" return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=snake_case__ , return_tensors='tf' ) # forward pass SCREAMING_SNAKE_CASE = model(**snake_case__ ) # verify the logits SCREAMING_SNAKE_CASE = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case__ ) SCREAMING_SNAKE_CASE = tf.constant([-0.2_744, 0.8_215, -0.0_836] ) tf.debugging.assert_near(outputs.logits[0, :3] , snake_case__ , atol=1E-4 )
673
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a_ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : str = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Any=8 ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=5_12 , _UpperCamelCase : Union[str, Any]=5_12 ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) SCREAMING_SNAKE_CASE = np.array(pil_image.convert('RGB' ) ) SCREAMING_SNAKE_CASE = arr.astype(np.floataa ) / 1_27.5 - 1 SCREAMING_SNAKE_CASE = np.transpose(_UpperCamelCase , [2, 0, 1] ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : int , snake_case__ : UNetaDConditionModel , snake_case__ : DDPMScheduler , snake_case__ : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , ) SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase ( self : Any , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = min(int(num_inference_steps * strength ) , snake_case__ ) SCREAMING_SNAKE_CASE = max(num_inference_steps - init_timestep , 0 ) SCREAMING_SNAKE_CASE = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase ( self : List[str] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : str=None ): """simple docstring""" if not isinstance(snake_case__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case__ )}""" ) SCREAMING_SNAKE_CASE = image.to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = batch_size * num_images_per_prompt if image.shape[1] == 4: SCREAMING_SNAKE_CASE = image else: if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case__ ) ] SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) else: SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ ).latent_dist.sample(snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.config.scaling_factor * init_latents SCREAMING_SNAKE_CASE = torch.cat([init_latents] , dim=0 ) SCREAMING_SNAKE_CASE = init_latents.shape SCREAMING_SNAKE_CASE = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) # get latents SCREAMING_SNAKE_CASE = self.scheduler.add_noise(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = init_latents return latents def UpperCamelCase ( self : int , snake_case__ : List[str]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) SCREAMING_SNAKE_CASE = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[int]=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=snake_case__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase ( self : Dict ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case__ ) def __call__( self : str , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : int = 5_1_2 , snake_case__ : int = 5_1_2 , snake_case__ : int = 1_0_0 , snake_case__ : float = 4.0 , snake_case__ : float = 0.3 , snake_case__ : int = 1 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , ): """simple docstring""" SCREAMING_SNAKE_CASE = self._execution_device SCREAMING_SNAKE_CASE = guidance_scale > 1.0 if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = image_embeds.shape[0] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [image] if not all(isinstance(snake_case__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(snake_case__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) SCREAMING_SNAKE_CASE = torch.cat([prepare_image(snake_case__ , snake_case__ , snake_case__ ) for i in image] , dim=0 ) SCREAMING_SNAKE_CASE = image.to(dtype=image_embeds.dtype , device=snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ )['latents'] SCREAMING_SNAKE_CASE = latents.repeat_interleave(snake_case__ , dim=0 ) self.scheduler.set_timesteps(snake_case__ , device=snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_timesteps(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = timesteps[:1].repeat(batch_size * num_images_per_prompt ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = downscale_height_and_width(snake_case__ , snake_case__ , self.movq_scale_factor ) SCREAMING_SNAKE_CASE = self.prepare_latents( snake_case__ , snake_case__ , snake_case__ , snake_case__ , image_embeds.dtype , snake_case__ , snake_case__ ) for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE = {'image_embeds': image_embeds} SCREAMING_SNAKE_CASE = self.unet( sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , )[0] # post-processing SCREAMING_SNAKE_CASE = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
673
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available a_ : Optional[Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : str = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys a_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
673
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() a_ : List[Any] = logging.get_logger("transformers.models.speecht5") def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Dict: '''simple docstring''' hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Any=None , _UpperCamelCase : List[str]=None , ) -> Tuple: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig.from_pretrained(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE = SpeechTaHifiGan(_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = np.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() model.save_pretrained(_UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) a_ : Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
673
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ : Tuple = logging.get_logger(__name__) a_ : Tuple = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="roberta" def __init__( self : Any , snake_case__ : List[Any]=5_0_2_6_5 , snake_case__ : Tuple=7_6_8 , snake_case__ : Any=1_2 , snake_case__ : List[str]=1_2 , snake_case__ : Dict=3_0_7_2 , snake_case__ : Dict="gelu" , snake_case__ : int=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Dict=5_1_2 , snake_case__ : int=2 , snake_case__ : List[Any]=0.02 , snake_case__ : List[Any]=1E-12 , snake_case__ : Union[str, Any]=1 , snake_case__ : int=0 , snake_case__ : str=2 , snake_case__ : List[Any]="absolute" , snake_case__ : Tuple=True , snake_case__ : List[Any]=None , **snake_case__ : str , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = classifier_dropout class UpperCamelCase ( SCREAMING_SNAKE_CASE ): @property def UpperCamelCase ( self : Any ): """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
673
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a_ : Optional[int] = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } a_ : List[Any] = { "allenai/led-base-16384": 1_6384, } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =LEDTokenizer __UpperCamelCase =["input_ids", "attention_mask"] def __init__( self : Tuple , snake_case__ : List[Any]=None , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : Dict="replace" , snake_case__ : Tuple="<s>" , snake_case__ : Optional[Any]="</s>" , snake_case__ : int="</s>" , snake_case__ : Dict="<s>" , snake_case__ : Union[str, Any]="<unk>" , snake_case__ : Optional[int]="<pad>" , snake_case__ : List[str]="<mask>" , snake_case__ : List[Any]=False , snake_case__ : int=True , **snake_case__ : Dict , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(snake_case__ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**snake_case__ ) SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE = 'post_processor' SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state['cls'] ) SCREAMING_SNAKE_CASE = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(snake_case__ , state.pop('type' ) ) SCREAMING_SNAKE_CASE = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase ( self : List[Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value SCREAMING_SNAKE_CASE = value def UpperCamelCase ( self : Dict , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[str] , *snake_case__ : List[Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Tuple=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self : Optional[Any] , snake_case__ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case__ : Optional[int] = None , snake_case__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , ): """simple docstring""" SCREAMING_SNAKE_CASE = super()._pad( encoded_inputs=snake_case__ , max_length=snake_case__ , padding_strategy=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE = len(encoded_inputs['global_attention_mask'] ) != len(snake_case__ ) if needs_to_be_padded: SCREAMING_SNAKE_CASE = len(snake_case__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
673
1
def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' if n == 1 or not isinstance(_UpperCamelCase , _UpperCamelCase ): return 0 elif n == 2: return 1 else: SCREAMING_SNAKE_CASE = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 2 while digits < n: index += 1 SCREAMING_SNAKE_CASE = len(str(fibonacci(_UpperCamelCase ) ) ) return index def __lowerCAmelCase ( _UpperCamelCase : int = 10_00 ) -> int: '''simple docstring''' return fibonacci_digits_index(_UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
673
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __lowerCAmelCase ( *_UpperCamelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(_UpperCamelCase , 'r' ) as fh: fcntl.flock(_UpperCamelCase , fcntl.LOCK_EX ) try: print(*_UpperCamelCase ) finally: fcntl.flock(_UpperCamelCase , fcntl.LOCK_UN ) a_ : int = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) a_ : str = torch.device("cuda", local_rank) a_ : Optional[int] = socket.gethostname() a_ : Union[str, Any] = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank a_ : Dict = dist.get_rank() a_ : Any = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
673
1
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCamelCase : def __init__( self : Dict , snake_case__ : Tuple=2 , snake_case__ : int=3 , snake_case__ : Any=6_4 , snake_case__ : Tuple=None ): """simple docstring""" SCREAMING_SNAKE_CASE = np.random.default_rng(snake_case__ ) SCREAMING_SNAKE_CASE = length SCREAMING_SNAKE_CASE = rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : str ): """simple docstring""" return self.length def __getitem__( self : Dict , snake_case__ : int ): """simple docstring""" return {"x": self.x[i], "y": self.y[i]} class UpperCamelCase ( torch.nn.Module ): def __init__( self : Union[str, Any] , snake_case__ : List[Any]=0 , snake_case__ : Any=0 , snake_case__ : Union[str, Any]=False ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE = True def UpperCamelCase ( self : List[Any] , snake_case__ : Tuple=None ): """simple docstring""" if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) SCREAMING_SNAKE_CASE = False return x * self.a[0] + self.b[0] class UpperCamelCase ( torch.nn.Module ): def __init__( self : Union[str, Any] , snake_case__ : Tuple=0 , snake_case__ : int=0 , snake_case__ : Union[str, Any]=False ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) SCREAMING_SNAKE_CASE = True def UpperCamelCase ( self : Tuple , snake_case__ : Any=None ): """simple docstring""" if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) SCREAMING_SNAKE_CASE = False return x * self.a + self.b def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : int = 16 ) -> Any: '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} SCREAMING_SNAKE_CASE = load_dataset('csv' , data_files=_UpperCamelCase ) SCREAMING_SNAKE_CASE = datasets['train'].unique('label' ) SCREAMING_SNAKE_CASE = {v: i for i, v in enumerate(_UpperCamelCase )} def tokenize_function(_UpperCamelCase : List[Any] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=_UpperCamelCase , max_length=_UpperCamelCase , padding='max_length' ) if "label" in examples: SCREAMING_SNAKE_CASE = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE = datasets.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(_UpperCamelCase : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_UpperCamelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(_UpperCamelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE = DataLoader(tokenized_datasets['train'] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=2 ) SCREAMING_SNAKE_CASE = DataLoader(tokenized_datasets['validation'] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=1 ) return train_dataloader, eval_dataloader
673
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a_ : Optional[Any] = logging.get_logger(__name__) a_ : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } a_ : Union[str, Any] = {"allegro/herbert-base-cased": 514} a_ : List[Any] = {} class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_INIT_CONFIGURATION __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =HerbertTokenizer def __init__( self : Tuple , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : Optional[int]=None , snake_case__ : str="<s>" , snake_case__ : Tuple="<unk>" , snake_case__ : List[str]="<pad>" , snake_case__ : Tuple="<mask>" , snake_case__ : Dict="</s>" , **snake_case__ : List[str] , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sep_token=snake_case__ , **snake_case__ , ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
673
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a_ : Tuple = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
673
def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 while n > 0: res += n % 10 n //= 10 return res def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return sum(int(_UpperCamelCase ) for c in str(abs(_UpperCamelCase ) ) ) def __lowerCAmelCase ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_UpperCamelCase : Callable , _UpperCamelCase : int ) -> None: SCREAMING_SNAKE_CASE = f"""{func.__name__}({value})""" SCREAMING_SNAKE_CASE = timeit(f"""__main__.{call}""" , setup='import __main__' ) print(f"""{call:56} = {func(_UpperCamelCase )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_UpperCamelCase , _UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
673
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a_ : Optional[Any] = logging.get_logger(__name__) a_ : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : List[Any] ) -> List[Any]: '''simple docstring''' for attribute in key.split('.' ): SCREAMING_SNAKE_CASE = getattr(_UpperCamelCase , _UpperCamelCase ) if weight_type is not None: SCREAMING_SNAKE_CASE = getattr(_UpperCamelCase , _UpperCamelCase ).shape else: SCREAMING_SNAKE_CASE = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE = value elif weight_type == "bias": SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = fairseq_model.state_dict() SCREAMING_SNAKE_CASE = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == 'group' , ) SCREAMING_SNAKE_CASE = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): SCREAMING_SNAKE_CASE = True if "*" in mapped_key: SCREAMING_SNAKE_CASE = name.split(_UpperCamelCase )[0].split('.' )[-2] SCREAMING_SNAKE_CASE = mapped_key.replace('*' , _UpperCamelCase ) if "weight_g" in name: SCREAMING_SNAKE_CASE = 'weight_g' elif "weight_v" in name: SCREAMING_SNAKE_CASE = 'weight_v' elif "weight" in name: SCREAMING_SNAKE_CASE = 'weight' elif "bias" in name: SCREAMING_SNAKE_CASE = 'bias' else: SCREAMING_SNAKE_CASE = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : int ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = full_name.split('conv_layers.' )[-1] SCREAMING_SNAKE_CASE = name.split('.' ) SCREAMING_SNAKE_CASE = int(items[0] ) SCREAMING_SNAKE_CASE = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Tuple=None , _UpperCamelCase : Any=True ) -> Tuple: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE = HubertConfig.from_pretrained(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = HubertConfig() if is_finetuned: if dict_path: SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE = target_dict.pad_index SCREAMING_SNAKE_CASE = target_dict.bos_index SCREAMING_SNAKE_CASE = target_dict.eos_index SCREAMING_SNAKE_CASE = len(target_dict.symbols ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab.json' ) if not os.path.isdir(_UpperCamelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_UpperCamelCase ) ) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , _UpperCamelCase ) SCREAMING_SNAKE_CASE = WavaVecaCTCTokenizer( _UpperCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_UpperCamelCase , ) SCREAMING_SNAKE_CASE = True if config.feat_extract_norm == 'layer' else False SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) SCREAMING_SNAKE_CASE = WavaVecaProcessor(feature_extractor=_UpperCamelCase , tokenizer=_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = HubertForCTC(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = HubertModel(_UpperCamelCase ) if is_finetuned: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) SCREAMING_SNAKE_CASE = model[0].eval() recursively_load_weights(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) hf_wavavec.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) a_ : Optional[Any] = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
673
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
673
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class UpperCamelCase : def __init__( self : Any , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : bool = True , snake_case__ : bool = False ): """simple docstring""" SCREAMING_SNAKE_CASE = scheduler SCREAMING_SNAKE_CASE = optimizers if isinstance(snake_case__ , (list, tuple) ) else [optimizers] SCREAMING_SNAKE_CASE = split_batches SCREAMING_SNAKE_CASE = step_with_optimizer SCREAMING_SNAKE_CASE = GradientState() def UpperCamelCase ( self : List[Any] , *snake_case__ : List[str] , **snake_case__ : Any ): """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*snake_case__ , **snake_case__ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*snake_case__ , **snake_case__ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE = AcceleratorState().num_processes for _ in range(snake_case__ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*snake_case__ , **snake_case__ ) else: self.scheduler.step(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Dict ): """simple docstring""" return self.scheduler.get_last_lr() def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return self.scheduler.state_dict() def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[int] ): """simple docstring""" self.scheduler.load_state_dict(snake_case__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" return self.scheduler.get_lr() def UpperCamelCase ( self : Optional[Any] , *snake_case__ : Union[str, Any] , **snake_case__ : List[str] ): """simple docstring""" return self.scheduler.print_lr(*snake_case__ , **snake_case__ )
673
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =AudioLDMPipeline __UpperCamelCase =TEXT_TO_AUDIO_PARAMS __UpperCamelCase =TEXT_TO_AUDIO_BATCH_PARAMS __UpperCamelCase =frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(3_2, 6_4) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=snake_case__ , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) SCREAMING_SNAKE_CASE = ClapTextModelWithProjection(snake_case__ ) SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=7_7 ) SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=snake_case__ , ) SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def UpperCamelCase ( self : Optional[int] , snake_case__ : int , snake_case__ : int=0 ): """simple docstring""" if str(snake_case__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(snake_case__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) SCREAMING_SNAKE_CASE = prompt_embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE = negative_prompt SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = [] for p in [prompt, negative_prompt]: SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = text_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) embeds.append(snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 'egg cracking' SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ , negative_prompt=snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config.sampling_rate SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.016 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.016 SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.032 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.032 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = ['hey'] SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape assert audio_shape == (1, 2_5_6) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config config.model_in_dim *= 2 SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ).to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def UpperCamelCase ( self : Tuple ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=snake_case__ ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase ( self : Dict ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case__ ) @slow class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : int , snake_case__ : int , snake_case__ : Tuple="cpu" , snake_case__ : List[str]=torch.floataa , snake_case__ : Optional[Any]=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = np.random.RandomState(snake_case__ ).standard_normal((1, 8, 1_2_8, 1_6) ) SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 2_5 SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[7_7_2_3_0:7_7_2_4_0] SCREAMING_SNAKE_CASE = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[2_7_7_8_0:2_7_7_9_0] SCREAMING_SNAKE_CASE = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
673
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : Dict = logging.get_logger(__name__) a_ : Optional[int] = "▁" a_ : Optional[Any] = {"vocab_file": "spiece.model"} a_ : Dict = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } a_ : Optional[int] = { "google/reformer-crime-and-punishment": 52_4288, } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =["input_ids", "attention_mask"] def __init__( self : List[str] , snake_case__ : List[Any] , snake_case__ : Optional[int]="</s>" , snake_case__ : Dict="<unk>" , snake_case__ : List[Any]=[] , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case__ , unk_token=snake_case__ , additional_special_tokens=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) @property def UpperCamelCase ( self : Tuple ): """simple docstring""" return self.sp_model.get_piece_size() def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self : int , snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str ): """simple docstring""" return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : Tuple ): """simple docstring""" return self.sp_model.piece_to_id(snake_case__ ) def UpperCamelCase ( self : Any , snake_case__ : str ): """simple docstring""" if index < self.sp_model.get_piece_size(): SCREAMING_SNAKE_CASE = self.sp_model.IdToPiece(snake_case__ ) return token def UpperCamelCase ( self : int , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case__ ) + token SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(snake_case__ ) out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def UpperCamelCase ( self : List[Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , 'wb' ) as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
673
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase : def __init__( self : Dict , snake_case__ : str , snake_case__ : str=1_3 , snake_case__ : Tuple=7 , snake_case__ : Tuple=True , snake_case__ : Tuple=True , snake_case__ : List[str]=False , snake_case__ : Any=True , snake_case__ : Union[str, Any]=9_9 , snake_case__ : Dict=3_2 , snake_case__ : Optional[Any]=5 , snake_case__ : Optional[Any]=4 , snake_case__ : Union[str, Any]=3_7 , snake_case__ : Tuple="gelu" , snake_case__ : Dict=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : int=4 , snake_case__ : List[str]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Dict ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , use_stable_embedding=snake_case__ , ) def UpperCamelCase ( self : int , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : str , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : str , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , ) SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Tuple , ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : int , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Union[str, Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , use_cache=snake_case__ , ) SCREAMING_SNAKE_CASE = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCamelCase =(OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCamelCase =( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'single_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'multi_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase ( self : str , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = ids_tensor([1, 1_0] , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) )
673
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __lowerCAmelCase ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=_UpperCamelCase , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=_UpperCamelCase , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=_UpperCamelCase ) return parser.parse_args() def __lowerCAmelCase ( ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = parse_args() # Import training_script as a module. SCREAMING_SNAKE_CASE = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) SCREAMING_SNAKE_CASE = script_fpath.stem SCREAMING_SNAKE_CASE = importlib.import_module(_UpperCamelCase ) # Patch sys.argv SCREAMING_SNAKE_CASE = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
673
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="openai/whisper-base" __UpperCamelCase =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCamelCase ="transcriber" __UpperCamelCase =WhisperProcessor __UpperCamelCase =WhisperForConditionalGeneration __UpperCamelCase =["audio"] __UpperCamelCase =["text"] def UpperCamelCase ( self : Dict , snake_case__ : Tuple ): """simple docstring""" return self.pre_processor(snake_case__ , return_tensors='pt' ).input_features def UpperCamelCase ( self : Optional[int] , snake_case__ : Tuple ): """simple docstring""" return self.model.generate(inputs=snake_case__ ) def UpperCamelCase ( self : str , snake_case__ : Union[str, Any] ): """simple docstring""" return self.pre_processor.batch_decode(snake_case__ , skip_special_tokens=snake_case__ )[0]
673
1
from datetime import datetime as dt import os from github import Github a_ : Union[str, Any] = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def __lowerCAmelCase ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = Github(os.environ['GITHUB_TOKEN'] ) SCREAMING_SNAKE_CASE = g.get_repo('huggingface/transformers' ) SCREAMING_SNAKE_CASE = repo.get_issues(state='open' ) for issue in open_issues: SCREAMING_SNAKE_CASE = sorted([comment for comment in issue.get_comments()] , key=lambda _UpperCamelCase : i.created_at , reverse=_UpperCamelCase ) SCREAMING_SNAKE_CASE = comments[0] if len(_UpperCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='closed' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
673
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version a_ : List[str] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize a_ : Dict = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" a_ : str = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" a_ : int = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def UpperCamelCase ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def UpperCamelCase ( self : Dict , snake_case__ : int ): """simple docstring""" import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : List[Any]=0.9 , snake_case__ : Optional[Any]=3 , snake_case__ : Any=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5' ): SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score( word_tokenize(snake_case__ ) , word_tokenize(snake_case__ ) , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] else: SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score(snake_case__ , snake_case__ , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] return {"meteor": np.mean(snake_case__ )}
673
1
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ : Any = logging.get_logger(__name__) a_ : Dict = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="van" def __init__( self : Optional[Any] , snake_case__ : Tuple=2_2_4 , snake_case__ : Dict=3 , snake_case__ : Union[str, Any]=[7, 3, 3, 3] , snake_case__ : str=[4, 2, 2, 2] , snake_case__ : Optional[Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , snake_case__ : Optional[Any]=[3, 3, 1_2, 3] , snake_case__ : Tuple=[8, 8, 4, 4] , snake_case__ : Any="gelu" , snake_case__ : Dict=0.02 , snake_case__ : List[str]=1E-6 , snake_case__ : int=1E-2 , snake_case__ : Any=0.0 , snake_case__ : Tuple=0.0 , **snake_case__ : Any , ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_sizes SCREAMING_SNAKE_CASE = strides SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = mlp_ratios SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = dropout_rate
673
import numpy as np def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
673
1
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def __lowerCAmelCase ( _UpperCamelCase : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : Optional[int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: SCREAMING_SNAKE_CASE = s_dict.pop(_UpperCamelCase ) elif "subsample" in key: SCREAMING_SNAKE_CASE = s_dict.pop(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape SCREAMING_SNAKE_CASE = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase , map_location='cpu' ) SCREAMING_SNAKE_CASE = mam_aaa['args'] SCREAMING_SNAKE_CASE = mam_aaa['model'] SCREAMING_SNAKE_CASE = state_dict['decoder.output_projection.weight'] remove_ignore_keys_(_UpperCamelCase ) rename_keys(_UpperCamelCase ) SCREAMING_SNAKE_CASE = state_dict['decoder.embed_tokens.weight'].shape[0] SCREAMING_SNAKE_CASE = args.share_decoder_input_output_embed SCREAMING_SNAKE_CASE = [int(_UpperCamelCase ) for i in args.conv_kernel_sizes.split(',' )] SCREAMING_SNAKE_CASE = SpeechaTextConfig( vocab_size=_UpperCamelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , num_conv_layers=len(_UpperCamelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=_UpperCamelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=_UpperCamelCase , num_beams=5 , max_length=2_00 , use_cache=_UpperCamelCase , decoder_start_token_id=2 , early_stopping=_UpperCamelCase , ) SCREAMING_SNAKE_CASE = SpeechaTextForConditionalGeneration(_UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model.model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) if len(_UpperCamelCase ) > 0 and not set(_UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' f""" but all the following weights are missing {missing}""" ) if tie_embeds: SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.decoder.embed_tokens ) else: SCREAMING_SNAKE_CASE = lm_head_weights model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") a_ : str = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
673
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ : Any = logging.get_logger(__name__) a_ : Dict = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="van" def __init__( self : Optional[Any] , snake_case__ : Tuple=2_2_4 , snake_case__ : Dict=3 , snake_case__ : Union[str, Any]=[7, 3, 3, 3] , snake_case__ : str=[4, 2, 2, 2] , snake_case__ : Optional[Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , snake_case__ : Optional[Any]=[3, 3, 1_2, 3] , snake_case__ : Tuple=[8, 8, 4, 4] , snake_case__ : Any="gelu" , snake_case__ : Dict=0.02 , snake_case__ : List[str]=1E-6 , snake_case__ : int=1E-2 , snake_case__ : Any=0.0 , snake_case__ : Tuple=0.0 , **snake_case__ : Any , ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_sizes SCREAMING_SNAKE_CASE = strides SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = mlp_ratios SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = dropout_rate
673
1
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): a_ : Optional[Any] = True from torch.cuda.amp import autocast a_ : str = logging.getLogger(__name__) @dataclass class UpperCamelCase : __UpperCamelCase =field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Whether to log verbose messages or not."} , ) __UpperCamelCase =field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) __UpperCamelCase =field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) __UpperCamelCase =field( default=0.999995 , metadata={"help": "Decay of gumbel temperature during training."} ) def __lowerCAmelCase ( _UpperCamelCase : ModelArguments , _UpperCamelCase : TrainingArguments ) -> Any: '''simple docstring''' logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) SCREAMING_SNAKE_CASE = logging.WARNING if model_args.verbose_logging: SCREAMING_SNAKE_CASE = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): SCREAMING_SNAKE_CASE = logging.INFO logger.setLevel(_UpperCamelCase ) @dataclass class UpperCamelCase : __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __UpperCamelCase =field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) __UpperCamelCase =field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) __UpperCamelCase =field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"} , ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __UpperCamelCase =field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={"help": "The number of processes to use for the preprocessing."} , ) __UpperCamelCase =field( default=20.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class UpperCamelCase : __UpperCamelCase =42 __UpperCamelCase =42 __UpperCamelCase ="longest" __UpperCamelCase =None __UpperCamelCase =None def __call__( self : Tuple , snake_case__ : List[Dict[str, Union[List[int], torch.Tensor]]] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.feature_extractor.pad( snake_case__ , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = self.model._get_feat_extract_output_lengths(batch['input_values'].shape[-1] ) SCREAMING_SNAKE_CASE = batch['input_values'].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula SCREAMING_SNAKE_CASE = self.model._get_feat_extract_output_lengths(batch['attention_mask'].sum(-1 ) ).to( torch.long ) SCREAMING_SNAKE_CASE = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['input_values'].device ) # these two operations makes sure that all values # before the output lengths indices are attended to SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices SCREAMING_SNAKE_CASE = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=snake_case__ , min_masks=2 , ) return batch class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : Union[str, Any] , *snake_case__ : List[Any] , snake_case__ : Union[str, Any]=1 , snake_case__ : Any=0 , snake_case__ : Any=1.0 , **snake_case__ : Dict ): """simple docstring""" super().__init__(*snake_case__ , **snake_case__ ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = max_gumbel_temp SCREAMING_SNAKE_CASE = min_gumbel_temp SCREAMING_SNAKE_CASE = gumbel_temp_decay def UpperCamelCase ( self : Tuple , snake_case__ : nn.Module , snake_case__ : Dict[str, Union[torch.Tensor, Any]] ): """simple docstring""" model.train() SCREAMING_SNAKE_CASE = self._prepare_inputs(snake_case__ ) if self.use_amp: with autocast(): SCREAMING_SNAKE_CASE = self.compute_loss(snake_case__ , snake_case__ ) else: SCREAMING_SNAKE_CASE = self.compute_loss(snake_case__ , snake_case__ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": SCREAMING_SNAKE_CASE = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": SCREAMING_SNAKE_CASE = loss.sum() / (inputs['mask_time_indices']).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: SCREAMING_SNAKE_CASE = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(snake_case__ ).backward() elif self.use_apex: with amp.scale_loss(snake_case__ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(snake_case__ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def __lowerCAmelCase ( ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() configure_logger(_UpperCamelCase , _UpperCamelCase ) # Downloading and loading a dataset from the hub. SCREAMING_SNAKE_CASE = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" SCREAMING_SNAKE_CASE = DatasetDict() SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" SCREAMING_SNAKE_CASE = DatasetDict() SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='validation' , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_UpperCamelCase ) def prepare_dataset(_UpperCamelCase : str ): # check that all files have the correct sampling rate SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays SCREAMING_SNAKE_CASE = datasets.map( _UpperCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['train'].column_names ) # filter audio files that are too long SCREAMING_SNAKE_CASE = vectorized_datasets.filter( lambda _UpperCamelCase : len(data['speech'] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_UpperCamelCase : Tuple ): return feature_extractor(batch['speech'] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` SCREAMING_SNAKE_CASE = vectorized_datasets.map( _UpperCamelCase , batched=_UpperCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['train'].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 SCREAMING_SNAKE_CASE = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( 'PreTraining is only supported for ``config.do_stable_layer_norm=True`` and' ' ``config.feat_extract_norm=\'layer\'' ) SCREAMING_SNAKE_CASE = WavaVecaForPreTraining(_UpperCamelCase ) SCREAMING_SNAKE_CASE = DataCollatorForWavaVecaPretraining(model=_UpperCamelCase , feature_extractor=_UpperCamelCase ) SCREAMING_SNAKE_CASE = WavaVecaPreTrainer( model=_UpperCamelCase , data_collator=_UpperCamelCase , args=_UpperCamelCase , train_dataset=vectorized_datasets['train'] , eval_dataset=vectorized_datasets['validation'] , tokenizer=_UpperCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
673
def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : int ) -> list[str]: '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(_UpperCamelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
673
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ : Any = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = ["YolosFeatureExtractor"] a_ : str = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys a_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
673
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING a_ : Dict = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : Any , **snake_case__ : Optional[int] ): """simple docstring""" super().__init__(**snake_case__ ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , 'vision' ) self.check_model_type(snake_case__ ) def __call__( self : List[Any] , snake_case__ : Union[str, "Image.Image", List[Dict[str, Any]]] , snake_case__ : Union[str, List[str]] = None , **snake_case__ : Union[str, Any] , ): """simple docstring""" if "text_queries" in kwargs: SCREAMING_SNAKE_CASE = kwargs.pop('text_queries' ) if isinstance(snake_case__ , (str, Image.Image) ): SCREAMING_SNAKE_CASE = {'image': image, 'candidate_labels': candidate_labels} else: SCREAMING_SNAKE_CASE = image SCREAMING_SNAKE_CASE = super().__call__(snake_case__ , **snake_case__ ) return results def UpperCamelCase ( self : Union[str, Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = {} if "threshold" in kwargs: SCREAMING_SNAKE_CASE = kwargs['threshold'] if "top_k" in kwargs: SCREAMING_SNAKE_CASE = kwargs['top_k'] return {}, {}, postprocess_params def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = load_image(inputs['image'] ) SCREAMING_SNAKE_CASE = inputs['candidate_labels'] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = candidate_labels.split(',' ) SCREAMING_SNAKE_CASE = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE = self.tokenizer(snake_case__ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE = self.image_processor(snake_case__ , return_tensors=self.framework ) yield { "is_last": i == len(snake_case__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def UpperCamelCase ( self : Any , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = model_inputs.pop('target_size' ) SCREAMING_SNAKE_CASE = model_inputs.pop('candidate_label' ) SCREAMING_SNAKE_CASE = model_inputs.pop('is_last' ) SCREAMING_SNAKE_CASE = self.model(**snake_case__ ) SCREAMING_SNAKE_CASE = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : str=0.1 , snake_case__ : Union[str, Any]=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: SCREAMING_SNAKE_CASE = model_output['candidate_label'] SCREAMING_SNAKE_CASE = BaseModelOutput(snake_case__ ) SCREAMING_SNAKE_CASE = self.image_processor.post_process_object_detection( outputs=snake_case__ , threshold=snake_case__ , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): SCREAMING_SNAKE_CASE = outputs['scores'][index].item() SCREAMING_SNAKE_CASE = self._get_bounding_box(outputs['boxes'][index][0] ) SCREAMING_SNAKE_CASE = {'score': score, 'label': label, 'box': box} results.append(snake_case__ ) SCREAMING_SNAKE_CASE = sorted(snake_case__ , key=lambda snake_case__ : x["score"] , reverse=snake_case__ ) if top_k: SCREAMING_SNAKE_CASE = results[:top_k] return results def UpperCamelCase ( self : List[Any] , snake_case__ : "torch.Tensor" ): """simple docstring""" if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = box.int().tolist() SCREAMING_SNAKE_CASE = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
673
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a_ : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =XLMRobertaTokenizer __UpperCamelCase =XLMRobertaTokenizerFast __UpperCamelCase =True __UpperCamelCase =True def UpperCamelCase ( self : Optional[int] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = '<pad>' SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case__ ) , 1_0_0_2 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_2 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(snake_case__ , keep_accents=snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def UpperCamelCase ( self : Any ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(snake_case__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) @cached_property def UpperCamelCase ( self : Optional[int] ): """simple docstring""" return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def UpperCamelCase ( self : int ): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(snake_case__ , f.name ) SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(f.name , keep_accents=snake_case__ ) SCREAMING_SNAKE_CASE = pickle.dumps(snake_case__ ) pickle.loads(snake_case__ ) def UpperCamelCase ( self : Dict ): """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE = tokenizer.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(snake_case__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) @slow def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'Hello World!' SCREAMING_SNAKE_CASE = [0, 3_5_3_7_8, 6_6_6_1, 3_8, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) SCREAMING_SNAKE_CASE = [ 0, 3_2_9_3, 8_3, 1_0, 4_5_5_2, 4_9_8_9, 7_9_8_6, 6_7_8, 1_0, 5_9_1_5, 1_1_1, 1_7_9_4_5_9, 1_2_4_8_5_0, 4, 6_0_4_4, 2_3_7, 1_2, 6, 5, 6, 4, 6_7_8_0, 7_0_5, 1_5, 1_3_8_8, 4_4, 3_7_8, 1_0_1_1_4, 7_1_1, 1_5_2, 2_0, 6, 5, 2_2_3_7_6, 6_4_2, 1_2_2_1, 1_5_1_9_0, 3_4_1_5_3, 4_5_0, 5_6_0_8, 9_5_9, 1_1_1_9, 5_7_7_0_2, 1_3_6, 1_8_6, 4_7, 1_0_9_8, 2_9_3_6_7, 4_7, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_0_4_4, 2_3_7, 6_2_8_4, 5_0_9_0_1, 5_2_8, 3_1, 9_0, 3_4, 9_2_7, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = {'input_ids': [[0, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [0, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
673
def __lowerCAmelCase ( _UpperCamelCase : int = 10_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 2**power SCREAMING_SNAKE_CASE = str(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 for i in list_num: sum_of_num += int(_UpperCamelCase ) return sum_of_num if __name__ == "__main__": a_ : List[str] = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) a_ : int = solution(power) print("Sum of the digits is: ", result)
673
1
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case__ , 'width_multiplier' ) ) class UpperCamelCase : def __init__( self : Any , snake_case__ : List[Any] , snake_case__ : str=1_3 , snake_case__ : List[Any]=6_4 , snake_case__ : Tuple=2 , snake_case__ : List[Any]=3 , snake_case__ : List[Any]="swish" , snake_case__ : Dict=3 , snake_case__ : Union[str, Any]=3_2 , snake_case__ : Tuple=0.1 , snake_case__ : Union[str, Any]=0.02 , snake_case__ : Optional[Any]=True , snake_case__ : int=True , snake_case__ : int=1_0 , snake_case__ : str=None , snake_case__ : Optional[Any]=0.25 , snake_case__ : Optional[int]=0.0 , snake_case__ : Tuple=0.0 , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = make_divisible(5_1_2 * width_multiplier , divisor=8 ) SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = conv_kernel_size SCREAMING_SNAKE_CASE = output_stride SCREAMING_SNAKE_CASE = classifier_dropout_prob SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = width_multiplier SCREAMING_SNAKE_CASE = ffn_dropout SCREAMING_SNAKE_CASE = attn_dropout def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = MobileViTVaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase ( self : Dict , snake_case__ : Dict , snake_case__ : str , snake_case__ : Any , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = MobileViTVaForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : str , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = MobileViTVaForSemanticSegmentation(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) SCREAMING_SNAKE_CASE = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCamelCase =( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = MobileViTVaModelTester(self ) SCREAMING_SNAKE_CASE = MobileViTVaConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def UpperCamelCase ( self : str ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase ( self : Any ): """simple docstring""" pass def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(snake_case__ ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" def check_hidden_states_output(snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Tuple ): SCREAMING_SNAKE_CASE = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = 5 self.assertEqual(len(snake_case__ ) , snake_case__ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE = 2 for i in range(len(snake_case__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ ) @slow def UpperCamelCase ( self : List[Any] ): """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = MobileViTVaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __lowerCAmelCase ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def UpperCamelCase ( self : Optional[int] ): """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( snake_case__ ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**snake_case__ ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case__ ) SCREAMING_SNAKE_CASE = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) ) @slow def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) SCREAMING_SNAKE_CASE = model.to(snake_case__ ) SCREAMING_SNAKE_CASE = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**snake_case__ ) SCREAMING_SNAKE_CASE = outputs.logits # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , snake_case__ ) SCREAMING_SNAKE_CASE = torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=snake_case__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1E-4 ) ) @slow def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) SCREAMING_SNAKE_CASE = model.to(snake_case__ ) SCREAMING_SNAKE_CASE = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**snake_case__ ) SCREAMING_SNAKE_CASE = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(5_0, 6_0)] ) SCREAMING_SNAKE_CASE = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , snake_case__ ) SCREAMING_SNAKE_CASE = image_processor.post_process_semantic_segmentation(outputs=snake_case__ ) SCREAMING_SNAKE_CASE = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , snake_case__ )
673
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="facebook/bart-large-mnli" __UpperCamelCase =( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) __UpperCamelCase ="text_classifier" __UpperCamelCase =AutoTokenizer __UpperCamelCase =AutoModelForSequenceClassification __UpperCamelCase =["text", ["text"]] __UpperCamelCase =["text"] def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): SCREAMING_SNAKE_CASE = int(snake_case__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[str] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(snake_case__ ) , [F"""This example is {label}""" for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
673
1
import heapq import sys import numpy as np a_ : Optional[int] = tuple[int, int] class UpperCamelCase : def __init__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() def UpperCamelCase ( self : List[Any] ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf' ) def UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.elements ) == 0 def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(snake_case__ ) else: # update # print("update", item) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" if item in self.set: self.set.remove(snake_case__ ) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def UpperCamelCase ( self : str ): """simple docstring""" return self.elements[0][1] def UpperCamelCase ( self : Tuple ): """simple docstring""" ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) self.set.remove(snake_case__ ) return (priority, item) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) return np.linalg.norm(a - b ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Dict: '''simple docstring''' return consistent_heuristic(_UpperCamelCase , _UpperCamelCase ) // t def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[int]: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : int , _UpperCamelCase : TPos , _UpperCamelCase : dict[TPos, float] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = g_function[start] + Wa * heuristics[i](_UpperCamelCase , _UpperCamelCase ) return ans def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = np.chararray((n, n) ) for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = '*' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE = '#' SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = x # print(x) SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[x] SCREAMING_SNAKE_CASE = '-' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: print(_UpperCamelCase , end=' ' ) SCREAMING_SNAKE_CASE = back_pointer[x] print(_UpperCamelCase ) sys.exit() def __lowerCAmelCase ( _UpperCamelCase : TPos ) -> Any: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , ) -> List[Any]: '''simple docstring''' for itera in range(_UpperCamelCase ): open_list[itera].remove_element(_UpperCamelCase ) # print("s", s) # print("j", j) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = s SCREAMING_SNAKE_CASE = (x - 1, y) SCREAMING_SNAKE_CASE = (x + 1, y) SCREAMING_SNAKE_CASE = (x, y + 1) SCREAMING_SNAKE_CASE = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = float('inf' ) if valid(_UpperCamelCase ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE = g_function[s] + 1 SCREAMING_SNAKE_CASE = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCamelCase , key(_UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , _UpperCamelCase ): if key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) <= Wa * key( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ): open_list[j].put( _UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a_ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a_ : List[str] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a_ : Union[str, Any] = make_common_ground() a_ : Tuple = blocks_blk # hyper parameters a_ : Any = 1 a_ : List[str] = 1 a_ : Union[str, Any] = 20 a_ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a_ : int = (0, 0) a_ : Optional[int] = (n - 1, n - 1) a_ : Union[str, Any] = 1 def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos , _UpperCamelCase : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {start: 0, goal: float('inf' )} SCREAMING_SNAKE_CASE = {start: -1, goal: -1} SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() for i in range(_UpperCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , _UpperCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = open_list[i].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_inad.append(_UpperCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE = open_list[0].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_anchor.append(_UpperCamelCase ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_UpperCamelCase ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
673
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a_ : str = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a_ : int = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.1_5}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names a_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a_ : List[Any] = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a_ : Any = "allenai" def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = dict((re.sub(R'@@$' , '' , _UpperCamelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , _UpperCamelCase ), v) for k, v in d.items() ) SCREAMING_SNAKE_CASE = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] SCREAMING_SNAKE_CASE = d[k] # restore return da def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : List[str] ) -> Dict: '''simple docstring''' assert os.path.exists(_UpperCamelCase ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel SCREAMING_SNAKE_CASE = cls.hub_models() SCREAMING_SNAKE_CASE = {'bpe': 'fastbpe', 'tokenizer': 'moses'} SCREAMING_SNAKE_CASE = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"""using checkpoint {checkpoint_file}""" ) SCREAMING_SNAKE_CASE = hub_utils.from_pretrained( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , archive_map=_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = vars(chkpt['args']['model'] ) SCREAMING_SNAKE_CASE = args['source_lang'] SCREAMING_SNAKE_CASE = args['target_lang'] SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) # dicts SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{src_lang}.txt""" ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{tgt_lang}.txt""" ) SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(src_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-src.json' ) print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab SCREAMING_SNAKE_CASE = True for k in src_vocab.keys(): if not k.islower(): SCREAMING_SNAKE_CASE = False break SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(tgt_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-tgt.json' ) print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # merges_file (bpecodes) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.exists(_UpperCamelCase ): break with open(_UpperCamelCase , encoding='utf-8' ) as fin: SCREAMING_SNAKE_CASE = fin.read() SCREAMING_SNAKE_CASE = re.sub(R' \d+$' , '' , _UpperCamelCase , 0 , re.M ) # remove frequency number print(f"""Generating {merges_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_UpperCamelCase ) # model config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args['bpe']}""" assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args['tokenizer']}""" SCREAMING_SNAKE_CASE = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with SCREAMING_SNAKE_CASE = 5 SCREAMING_SNAKE_CASE = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: SCREAMING_SNAKE_CASE = best_score_hparams[model_dir]['length_penalty'] else: SCREAMING_SNAKE_CASE = 1.0 print(f"""Generating {fsmt_model_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # tokenizer config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = { 'langs': [src_lang, tgt_lang], 'model_max_length': 10_24, 'do_lower_case': do_lower_case, } print(f"""Generating {fsmt_tokenizer_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # model SCREAMING_SNAKE_CASE = chkpt['models'][0] SCREAMING_SNAKE_CASE = model.state_dict() # rename keys to start with 'model.' SCREAMING_SNAKE_CASE = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys SCREAMING_SNAKE_CASE = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTConfig.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTForConditionalGeneration(_UpperCamelCase ) # check that it loads ok model_new.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) # save SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(_UpperCamelCase , _UpperCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f"""cd {data_root}""" ) print(f"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a_ : int = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
673
1
import argparse from collections import defaultdict import yaml a_ : Tuple = "docs/source/en/_toctree.yml" def __lowerCAmelCase ( _UpperCamelCase : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = defaultdict(_UpperCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 SCREAMING_SNAKE_CASE = [key for key, value in counts.items() if value > 1] SCREAMING_SNAKE_CASE = [] for duplicate_key in duplicates: SCREAMING_SNAKE_CASE = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(_UpperCamelCase ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(_UpperCamelCase , key=lambda _UpperCamelCase : s["title"].lower() ) def __lowerCAmelCase ( _UpperCamelCase : int=False ) -> List[Any]: '''simple docstring''' with open(_UpperCamelCase , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE = yaml.safe_load(f.read() ) # Get to the API doc SCREAMING_SNAKE_CASE = 0 while content[api_idx]["title"] != "API": api_idx += 1 SCREAMING_SNAKE_CASE = content[api_idx]['sections'] # Then to the model doc SCREAMING_SNAKE_CASE = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 SCREAMING_SNAKE_CASE = api_doc[model_idx]['sections'] SCREAMING_SNAKE_CASE = [(idx, section) for idx, section in enumerate(_UpperCamelCase ) if 'sections' in section] SCREAMING_SNAKE_CASE = False for idx, modality_doc in modalities_docs: SCREAMING_SNAKE_CASE = modality_doc['sections'] SCREAMING_SNAKE_CASE = clean_model_doc_toc(_UpperCamelCase ) if old_modality_doc != new_modality_doc: SCREAMING_SNAKE_CASE = True if overwrite: SCREAMING_SNAKE_CASE = new_modality_doc if diff: if overwrite: SCREAMING_SNAKE_CASE = model_doc SCREAMING_SNAKE_CASE = api_doc with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(_UpperCamelCase , allow_unicode=_UpperCamelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") a_ : Any = parser.parse_args() check_model_doc(args.fix_and_overwrite)
673
import random def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : float , _UpperCamelCase : bool = False ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE = {i: [] for i in range(_UpperCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_UpperCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_UpperCamelCase ): for j in range(i + 1 , _UpperCamelCase ): if random.random() < probability: graph[i].append(_UpperCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_UpperCamelCase ) return graph def __lowerCAmelCase ( _UpperCamelCase : int ) -> dict: '''simple docstring''' return { i: [j for j in range(_UpperCamelCase ) if i != j] for i in range(_UpperCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
673
1
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class UpperCamelCase : __UpperCamelCase =BlenderbotSmallConfig __UpperCamelCase ={} __UpperCamelCase ="gelu" def __init__( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : List[Any]=1_3 , snake_case__ : List[Any]=7 , snake_case__ : str=True , snake_case__ : Optional[Any]=False , snake_case__ : Union[str, Any]=9_9 , snake_case__ : Optional[int]=3_2 , snake_case__ : str=2 , snake_case__ : str=4 , snake_case__ : Dict=3_7 , snake_case__ : Dict=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Optional[int]=2_0 , snake_case__ : int=2 , snake_case__ : str=1 , snake_case__ : Union[str, Any]=0 , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = pad_token_id SCREAMING_SNAKE_CASE = bos_token_id def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) SCREAMING_SNAKE_CASE = prepare_blenderbot_small_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, inputs_dict def UpperCamelCase ( self : Any , snake_case__ : Tuple , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFBlenderbotSmallModel(config=snake_case__ ).get_decoder() SCREAMING_SNAKE_CASE = inputs_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids[:1, :] SCREAMING_SNAKE_CASE = inputs_dict['attention_mask'][:1, :] SCREAMING_SNAKE_CASE = inputs_dict['head_mask'] SCREAMING_SNAKE_CASE = 1 # first forward pass SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ )[0] SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1E-3 ) def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Tuple=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , ) -> Union[str, Any]: '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(_UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __UpperCamelCase =(TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase =( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFBlenderbotSmallModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) @require_tokenizers @require_tf class UpperCamelCase ( unittest.TestCase ): __UpperCamelCase =[ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] __UpperCamelCase ="facebook/blenderbot_small-90M" @cached_property def UpperCamelCase ( self : List[str] ): """simple docstring""" return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) @cached_property def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , return_tensors='tf' ) SCREAMING_SNAKE_CASE = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=snake_case__ , ) SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
673
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : def __init__( self : List[str] , snake_case__ : Dict , snake_case__ : Optional[Any]=1_3 , snake_case__ : Union[str, Any]=7 , snake_case__ : List[str]=True , snake_case__ : Any=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=9_9 , snake_case__ : str=3_2 , snake_case__ : Dict=5 , snake_case__ : str=4 , snake_case__ : int=3_7 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Any=0.1 , snake_case__ : Dict=0.1 , snake_case__ : Optional[Any]=5_1_2 , snake_case__ : List[Any]=1_6 , snake_case__ : str=2 , snake_case__ : int=0.02 , snake_case__ : List[str]=3 , snake_case__ : Dict=4 , snake_case__ : str=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def UpperCamelCase ( self : List[str] , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : List[Any] , snake_case__ : str , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : int , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : int , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = NystromformerForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase =( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def UpperCamelCase ( self : List[str] ): """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(snake_case__ )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.4_532, -0.0_936, 0.5_137], [-0.2_676, 0.0_628, 0.6_186], [-0.3_629, -0.1_726, 0.4_716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1E-4 ) ) @slow def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = 'the [MASK] of Belgium is Brussels' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = tokenizer(snake_case__ , return_tensors='pt' ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(encoding.input_ids ).logits SCREAMING_SNAKE_CASE = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case__ ) , 'capital' )
673
1
from __future__ import annotations import math def __lowerCAmelCase ( _UpperCamelCase : int ) -> list[int]: '''simple docstring''' if num <= 0: SCREAMING_SNAKE_CASE = f"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(_UpperCamelCase ) SCREAMING_SNAKE_CASE = [True] * (num + 1) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = int(math.sqrt(_UpperCamelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_UpperCamelCase ) # Set multiples of start be False for i in range(start * start , num + 1 , _UpperCamelCase ): if sieve[i] is True: SCREAMING_SNAKE_CASE = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_UpperCamelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
673
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
673
1
def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str = " " ) -> list: '''simple docstring''' SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 for index, char in enumerate(_UpperCamelCase ): if char == separator: split_words.append(string[last_index:index] ) SCREAMING_SNAKE_CASE = index + 1 elif index + 1 == len(_UpperCamelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
673
import heapq import sys import numpy as np a_ : Optional[int] = tuple[int, int] class UpperCamelCase : def __init__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() def UpperCamelCase ( self : List[Any] ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf' ) def UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.elements ) == 0 def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(snake_case__ ) else: # update # print("update", item) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" if item in self.set: self.set.remove(snake_case__ ) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def UpperCamelCase ( self : str ): """simple docstring""" return self.elements[0][1] def UpperCamelCase ( self : Tuple ): """simple docstring""" ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) self.set.remove(snake_case__ ) return (priority, item) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) return np.linalg.norm(a - b ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Dict: '''simple docstring''' return consistent_heuristic(_UpperCamelCase , _UpperCamelCase ) // t def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[int]: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : int , _UpperCamelCase : TPos , _UpperCamelCase : dict[TPos, float] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = g_function[start] + Wa * heuristics[i](_UpperCamelCase , _UpperCamelCase ) return ans def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = np.chararray((n, n) ) for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = '*' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE = '#' SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = x # print(x) SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[x] SCREAMING_SNAKE_CASE = '-' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: print(_UpperCamelCase , end=' ' ) SCREAMING_SNAKE_CASE = back_pointer[x] print(_UpperCamelCase ) sys.exit() def __lowerCAmelCase ( _UpperCamelCase : TPos ) -> Any: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , ) -> List[Any]: '''simple docstring''' for itera in range(_UpperCamelCase ): open_list[itera].remove_element(_UpperCamelCase ) # print("s", s) # print("j", j) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = s SCREAMING_SNAKE_CASE = (x - 1, y) SCREAMING_SNAKE_CASE = (x + 1, y) SCREAMING_SNAKE_CASE = (x, y + 1) SCREAMING_SNAKE_CASE = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = float('inf' ) if valid(_UpperCamelCase ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE = g_function[s] + 1 SCREAMING_SNAKE_CASE = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCamelCase , key(_UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , _UpperCamelCase ): if key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) <= Wa * key( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ): open_list[j].put( _UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a_ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a_ : List[str] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a_ : Union[str, Any] = make_common_ground() a_ : Tuple = blocks_blk # hyper parameters a_ : Any = 1 a_ : List[str] = 1 a_ : Union[str, Any] = 20 a_ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a_ : int = (0, 0) a_ : Optional[int] = (n - 1, n - 1) a_ : Union[str, Any] = 1 def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos , _UpperCamelCase : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {start: 0, goal: float('inf' )} SCREAMING_SNAKE_CASE = {start: -1, goal: -1} SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() for i in range(_UpperCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , _UpperCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = open_list[i].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_inad.append(_UpperCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE = open_list[0].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_anchor.append(_UpperCamelCase ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_UpperCamelCase ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
673
1
import random def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = a[left_index] SCREAMING_SNAKE_CASE = left_index + 1 for j in range(left_index + 1 , _UpperCamelCase ): if a[j] < pivot: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = a[i], a[j] i += 1 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = a[i - 1], a[left_index] return i - 1 def __lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : int , _UpperCamelCase : str ) -> str: '''simple docstring''' if left < right: SCREAMING_SNAKE_CASE = random.randint(_UpperCamelCase , right - 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ( a[left], a[pivot], ) # switches the pivot with the left most bound SCREAMING_SNAKE_CASE = partition(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) quick_sort_random( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # recursive quicksort to the left of the pivot point quick_sort_random( _UpperCamelCase , pivot_index + 1 , _UpperCamelCase ) # recursive quicksort to the right of the pivot point def __lowerCAmelCase ( ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = input('Enter numbers separated by a comma:\n' ).strip() SCREAMING_SNAKE_CASE = [int(_UpperCamelCase ) for item in user_input.split(',' )] quick_sort_random(_UpperCamelCase , 0 , len(_UpperCamelCase ) ) print(_UpperCamelCase ) if __name__ == "__main__": main()
673
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a_ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : str = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Any=8 ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=5_12 , _UpperCamelCase : Union[str, Any]=5_12 ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) SCREAMING_SNAKE_CASE = np.array(pil_image.convert('RGB' ) ) SCREAMING_SNAKE_CASE = arr.astype(np.floataa ) / 1_27.5 - 1 SCREAMING_SNAKE_CASE = np.transpose(_UpperCamelCase , [2, 0, 1] ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : int , snake_case__ : UNetaDConditionModel , snake_case__ : DDPMScheduler , snake_case__ : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , ) SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase ( self : Any , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = min(int(num_inference_steps * strength ) , snake_case__ ) SCREAMING_SNAKE_CASE = max(num_inference_steps - init_timestep , 0 ) SCREAMING_SNAKE_CASE = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase ( self : List[str] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : str=None ): """simple docstring""" if not isinstance(snake_case__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case__ )}""" ) SCREAMING_SNAKE_CASE = image.to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = batch_size * num_images_per_prompt if image.shape[1] == 4: SCREAMING_SNAKE_CASE = image else: if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case__ ) ] SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) else: SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ ).latent_dist.sample(snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.config.scaling_factor * init_latents SCREAMING_SNAKE_CASE = torch.cat([init_latents] , dim=0 ) SCREAMING_SNAKE_CASE = init_latents.shape SCREAMING_SNAKE_CASE = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) # get latents SCREAMING_SNAKE_CASE = self.scheduler.add_noise(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = init_latents return latents def UpperCamelCase ( self : int , snake_case__ : List[str]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) SCREAMING_SNAKE_CASE = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[int]=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=snake_case__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase ( self : Dict ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case__ ) def __call__( self : str , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : int = 5_1_2 , snake_case__ : int = 5_1_2 , snake_case__ : int = 1_0_0 , snake_case__ : float = 4.0 , snake_case__ : float = 0.3 , snake_case__ : int = 1 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , ): """simple docstring""" SCREAMING_SNAKE_CASE = self._execution_device SCREAMING_SNAKE_CASE = guidance_scale > 1.0 if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = image_embeds.shape[0] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [image] if not all(isinstance(snake_case__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(snake_case__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) SCREAMING_SNAKE_CASE = torch.cat([prepare_image(snake_case__ , snake_case__ , snake_case__ ) for i in image] , dim=0 ) SCREAMING_SNAKE_CASE = image.to(dtype=image_embeds.dtype , device=snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ )['latents'] SCREAMING_SNAKE_CASE = latents.repeat_interleave(snake_case__ , dim=0 ) self.scheduler.set_timesteps(snake_case__ , device=snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_timesteps(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = timesteps[:1].repeat(batch_size * num_images_per_prompt ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = downscale_height_and_width(snake_case__ , snake_case__ , self.movq_scale_factor ) SCREAMING_SNAKE_CASE = self.prepare_latents( snake_case__ , snake_case__ , snake_case__ , snake_case__ , image_embeds.dtype , snake_case__ , snake_case__ ) for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE = {'image_embeds': image_embeds} SCREAMING_SNAKE_CASE = self.unet( sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , )[0] # post-processing SCREAMING_SNAKE_CASE = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
673
1
import numpy as np def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
673
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() a_ : List[Any] = logging.get_logger("transformers.models.speecht5") def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Dict: '''simple docstring''' hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Any=None , _UpperCamelCase : List[str]=None , ) -> Tuple: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig.from_pretrained(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE = SpeechTaHifiGan(_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = np.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() model.save_pretrained(_UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) a_ : Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
673
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig a_ : Dict = logging.get_logger(__name__) # General docstring a_ : int = "RegNetConfig" # Base docstring a_ : List[str] = "facebook/regnet-y-040" a_ : Dict = [1, 1088, 7, 7] # Image classification docstring a_ : Optional[Any] = "facebook/regnet-y-040" a_ : int = "tabby, tabby cat" a_ : List[str] = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : Tuple , snake_case__ : int , snake_case__ : int = 3 , snake_case__ : int = 1 , snake_case__ : int = 1 , snake_case__ : Optional[str] = "relu" , **snake_case__ : Optional[int] , ): """simple docstring""" super().__init__(**snake_case__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb SCREAMING_SNAKE_CASE = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) SCREAMING_SNAKE_CASE = tf.keras.layers.ConvaD( filters=snake_case__ , kernel_size=snake_case__ , strides=snake_case__ , padding='VALID' , groups=snake_case__ , use_bias=snake_case__ , name='convolution' , ) SCREAMING_SNAKE_CASE = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) SCREAMING_SNAKE_CASE = ACTaFN[activation] if activation is not None else tf.identity def UpperCamelCase ( self : int , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.convolution(self.padding(snake_case__ ) ) SCREAMING_SNAKE_CASE = self.normalization(snake_case__ ) SCREAMING_SNAKE_CASE = self.activation(snake_case__ ) return hidden_state class UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : Dict , snake_case__ : RegNetConfig , **snake_case__ : Union[str, Any] ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = config.num_channels SCREAMING_SNAKE_CASE = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def UpperCamelCase ( self : Tuple , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = shape_list(snake_case__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) SCREAMING_SNAKE_CASE = tf.transpose(snake_case__ , perm=(0, 2, 3, 1) ) SCREAMING_SNAKE_CASE = self.embedder(snake_case__ ) return hidden_state class UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : str , snake_case__ : int , snake_case__ : int = 2 , **snake_case__ : Tuple ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = tf.keras.layers.ConvaD( filters=snake_case__ , kernel_size=1 , strides=snake_case__ , use_bias=snake_case__ , name='convolution' ) SCREAMING_SNAKE_CASE = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) def UpperCamelCase ( self : List[Any] , snake_case__ : tf.Tensor , snake_case__ : bool = False ): """simple docstring""" return self.normalization(self.convolution(snake_case__ ) , training=snake_case__ ) class UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : Tuple , snake_case__ : int , snake_case__ : int , **snake_case__ : List[Any] ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case__ , name='pooler' ) SCREAMING_SNAKE_CASE = [ tf.keras.layers.ConvaD(filters=snake_case__ , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=snake_case__ , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.pooler(snake_case__ ) for layer_module in self.attention: SCREAMING_SNAKE_CASE = layer_module(snake_case__ ) SCREAMING_SNAKE_CASE = hidden_state * pooled return hidden_state class UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : Optional[int] , snake_case__ : RegNetConfig , snake_case__ : int , snake_case__ : int , snake_case__ : int = 1 , **snake_case__ : Dict ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE = max(1 , out_channels // config.groups_width ) SCREAMING_SNAKE_CASE = ( TFRegNetShortCut(snake_case__ , stride=snake_case__ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. SCREAMING_SNAKE_CASE = [ TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( snake_case__ , stride=snake_case__ , groups=snake_case__ , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=snake_case__ , name='layer.2' ), ] SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] def UpperCamelCase ( self : Optional[int] , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = hidden_state for layer_module in self.layers: SCREAMING_SNAKE_CASE = layer_module(snake_case__ ) SCREAMING_SNAKE_CASE = self.shortcut(snake_case__ ) hidden_state += residual SCREAMING_SNAKE_CASE = self.activation(snake_case__ ) return hidden_state class UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : int , snake_case__ : RegNetConfig , snake_case__ : int , snake_case__ : int , snake_case__ : int = 1 , **snake_case__ : Any ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE = max(1 , out_channels // config.groups_width ) SCREAMING_SNAKE_CASE = ( TFRegNetShortCut(snake_case__ , stride=snake_case__ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) SCREAMING_SNAKE_CASE = [ TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( snake_case__ , stride=snake_case__ , groups=snake_case__ , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(snake_case__ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=snake_case__ , name='layer.3' ), ] SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] def UpperCamelCase ( self : Optional[int] , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = hidden_state for layer_module in self.layers: SCREAMING_SNAKE_CASE = layer_module(snake_case__ ) SCREAMING_SNAKE_CASE = self.shortcut(snake_case__ ) hidden_state += residual SCREAMING_SNAKE_CASE = self.activation(snake_case__ ) return hidden_state class UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : Optional[Any] , snake_case__ : RegNetConfig , snake_case__ : int , snake_case__ : int , snake_case__ : int = 2 , snake_case__ : int = 2 , **snake_case__ : Optional[Any] ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer SCREAMING_SNAKE_CASE = [ # downsampling is done in the first layer with stride of 2 layer(snake_case__ , snake_case__ , snake_case__ , stride=snake_case__ , name='layers.0' ), *[layer(snake_case__ , snake_case__ , snake_case__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def UpperCamelCase ( self : List[str] , snake_case__ : Tuple ): """simple docstring""" for layer_module in self.layers: SCREAMING_SNAKE_CASE = layer_module(snake_case__ ) return hidden_state class UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : List[Any] , snake_case__ : RegNetConfig , **snake_case__ : Union[str, Any] ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( snake_case__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) SCREAMING_SNAKE_CASE = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(snake_case__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(snake_case__ , snake_case__ , snake_case__ , depth=snake_case__ , name=F"""stages.{i+1}""" ) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : tf.Tensor , snake_case__ : bool = False , snake_case__ : bool = True ): """simple docstring""" SCREAMING_SNAKE_CASE = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: SCREAMING_SNAKE_CASE = hidden_states + (hidden_state,) SCREAMING_SNAKE_CASE = stage_module(snake_case__ ) if output_hidden_states: SCREAMING_SNAKE_CASE = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=snake_case__ , hidden_states=snake_case__ ) @keras_serializable class UpperCamelCase ( tf.keras.layers.Layer ): __UpperCamelCase =RegNetConfig def __init__( self : Optional[int] , snake_case__ : Dict , **snake_case__ : List[str] ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = config SCREAMING_SNAKE_CASE = TFRegNetEmbeddings(snake_case__ , name='embedder' ) SCREAMING_SNAKE_CASE = TFRegNetEncoder(snake_case__ , name='encoder' ) SCREAMING_SNAKE_CASE = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case__ , name='pooler' ) @unpack_inputs def UpperCamelCase ( self : Optional[Any] , snake_case__ : tf.Tensor , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , snake_case__ : bool = False , ): """simple docstring""" SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE = self.embedder(snake_case__ , training=snake_case__ ) SCREAMING_SNAKE_CASE = self.encoder( snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , training=snake_case__ ) SCREAMING_SNAKE_CASE = encoder_outputs[0] SCREAMING_SNAKE_CASE = self.pooler(snake_case__ ) # Change to NCHW output format have uniformity in the modules SCREAMING_SNAKE_CASE = tf.transpose(snake_case__ , perm=(0, 3, 1, 2) ) SCREAMING_SNAKE_CASE = tf.transpose(snake_case__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: SCREAMING_SNAKE_CASE = tuple([tf.transpose(snake_case__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case__ , pooler_output=snake_case__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =RegNetConfig __UpperCamelCase ="regnet" __UpperCamelCase ="pixel_values" @property def UpperCamelCase ( self : Dict ): """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} a_ : Optional[Any] = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" a_ : Dict = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , SCREAMING_SNAKE_CASE , ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : Union[str, Any] , snake_case__ : RegNetConfig , *snake_case__ : Any , **snake_case__ : Any ): """simple docstring""" super().__init__(snake_case__ , *snake_case__ , **snake_case__ ) SCREAMING_SNAKE_CASE = TFRegNetMainLayer(snake_case__ , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self : Dict , snake_case__ : tf.Tensor , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , snake_case__ : Any=False , ): """simple docstring""" SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE = self.regnet( pixel_values=snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , training=snake_case__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , SCREAMING_SNAKE_CASE , ) class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def __init__( self : str , snake_case__ : RegNetConfig , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): """simple docstring""" super().__init__(snake_case__ , *snake_case__ , **snake_case__ ) SCREAMING_SNAKE_CASE = config.num_labels SCREAMING_SNAKE_CASE = TFRegNetMainLayer(snake_case__ , name='regnet' ) # classification head SCREAMING_SNAKE_CASE = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self : int , snake_case__ : tf.Tensor = None , snake_case__ : tf.Tensor = None , snake_case__ : bool = None , snake_case__ : bool = None , snake_case__ : Dict=False , ): """simple docstring""" SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE = self.regnet( snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , training=snake_case__ ) SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE = self.classifier[0](snake_case__ ) SCREAMING_SNAKE_CASE = self.classifier[1](snake_case__ ) SCREAMING_SNAKE_CASE = None if labels is None else self.hf_compute_loss(labels=snake_case__ , logits=snake_case__ ) if not return_dict: SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=snake_case__ , logits=snake_case__ , hidden_states=outputs.hidden_states )
673
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a_ : Optional[int] = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } a_ : List[Any] = { "allenai/led-base-16384": 1_6384, } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =LEDTokenizer __UpperCamelCase =["input_ids", "attention_mask"] def __init__( self : Tuple , snake_case__ : List[Any]=None , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : Dict="replace" , snake_case__ : Tuple="<s>" , snake_case__ : Optional[Any]="</s>" , snake_case__ : int="</s>" , snake_case__ : Dict="<s>" , snake_case__ : Union[str, Any]="<unk>" , snake_case__ : Optional[int]="<pad>" , snake_case__ : List[str]="<mask>" , snake_case__ : List[Any]=False , snake_case__ : int=True , **snake_case__ : Dict , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(snake_case__ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**snake_case__ ) SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE = 'post_processor' SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state['cls'] ) SCREAMING_SNAKE_CASE = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(snake_case__ , state.pop('type' ) ) SCREAMING_SNAKE_CASE = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase ( self : List[Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value SCREAMING_SNAKE_CASE = value def UpperCamelCase ( self : Dict , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[str] , *snake_case__ : List[Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Tuple=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self : Optional[Any] , snake_case__ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case__ : Optional[int] = None , snake_case__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , ): """simple docstring""" SCREAMING_SNAKE_CASE = super()._pad( encoded_inputs=snake_case__ , max_length=snake_case__ , padding_strategy=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE = len(encoded_inputs['global_attention_mask'] ) != len(snake_case__ ) if needs_to_be_padded: SCREAMING_SNAKE_CASE = len(snake_case__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
673
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() a_ : Any = logging.get_logger(__name__) def __lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : List[str]=False ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def __lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : str=False ) -> Optional[int]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE = '' else: SCREAMING_SNAKE_CASE = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) SCREAMING_SNAKE_CASE = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def __lowerCAmelCase ( _UpperCamelCase : Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = dct.pop(_UpperCamelCase ) SCREAMING_SNAKE_CASE = val def __lowerCAmelCase ( ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTConfig() SCREAMING_SNAKE_CASE = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = int(vit_name[-12:-10] ) SCREAMING_SNAKE_CASE = int(vit_name[-9:-6] ) else: SCREAMING_SNAKE_CASE = 10_00 SCREAMING_SNAKE_CASE = 'huggingface/label-files' SCREAMING_SNAKE_CASE = 'imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE = {int(_UpperCamelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = int(vit_name[-6:-4] ) SCREAMING_SNAKE_CASE = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): SCREAMING_SNAKE_CASE = 1_92 SCREAMING_SNAKE_CASE = 7_68 SCREAMING_SNAKE_CASE = 12 SCREAMING_SNAKE_CASE = 3 elif vit_name[9:].startswith('small' ): SCREAMING_SNAKE_CASE = 3_84 SCREAMING_SNAKE_CASE = 15_36 SCREAMING_SNAKE_CASE = 12 SCREAMING_SNAKE_CASE = 6 else: pass else: if vit_name[4:].startswith('small' ): SCREAMING_SNAKE_CASE = 7_68 SCREAMING_SNAKE_CASE = 23_04 SCREAMING_SNAKE_CASE = 8 SCREAMING_SNAKE_CASE = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): SCREAMING_SNAKE_CASE = 10_24 SCREAMING_SNAKE_CASE = 40_96 SCREAMING_SNAKE_CASE = 24 SCREAMING_SNAKE_CASE = 16 elif vit_name[4:].startswith('huge' ): SCREAMING_SNAKE_CASE = 12_80 SCREAMING_SNAKE_CASE = 51_20 SCREAMING_SNAKE_CASE = 32 SCREAMING_SNAKE_CASE = 16 # load original model from timm SCREAMING_SNAKE_CASE = timm.create_model(_UpperCamelCase , pretrained=_UpperCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE = timm_model.state_dict() if base_model: remove_classification_head_(_UpperCamelCase ) SCREAMING_SNAKE_CASE = create_rename_keys(_UpperCamelCase , _UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) read_in_q_k_v(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": SCREAMING_SNAKE_CASE = ViTModel(_UpperCamelCase ).eval() else: SCREAMING_SNAKE_CASE = ViTForImageClassification(_UpperCamelCase ).eval() model.load_state_dict(_UpperCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: SCREAMING_SNAKE_CASE = DeiTImageProcessor(size=config.image_size ) else: SCREAMING_SNAKE_CASE = ViTImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE = image_processor(images=prepare_img() , return_tensors='pt' ) SCREAMING_SNAKE_CASE = encoding['pixel_values'] SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) if base_model: SCREAMING_SNAKE_CASE = timm_model.forward_features(_UpperCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_UpperCamelCase , outputs.pooler_output , atol=1e-3 ) else: SCREAMING_SNAKE_CASE = timm_model(_UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_UpperCamelCase , outputs.logits , atol=1e-3 ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) a_ : Union[str, Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
673
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __lowerCAmelCase ( *_UpperCamelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(_UpperCamelCase , 'r' ) as fh: fcntl.flock(_UpperCamelCase , fcntl.LOCK_EX ) try: print(*_UpperCamelCase ) finally: fcntl.flock(_UpperCamelCase , fcntl.LOCK_UN ) a_ : int = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) a_ : str = torch.device("cuda", local_rank) a_ : Optional[int] = socket.gethostname() a_ : Union[str, Any] = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank a_ : Dict = dist.get_rank() a_ : Any = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
673
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device a_ : int = False class UpperCamelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe.dual_guided( prompt='first prompt' , image=snake_case__ , text_to_image_strength=0.75 , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = VersatileDiffusionPipeline.from_pretrained(snake_case__ , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = generator.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe.dual_guided( prompt='first prompt' , image=snake_case__ , text_to_image_strength=0.75 , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'cyberpunk 2077' SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe.dual_guided( prompt=snake_case__ , image=snake_case__ , text_to_image_strength=0.75 , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' , ).images SCREAMING_SNAKE_CASE = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) SCREAMING_SNAKE_CASE = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger ' SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe.text_to_image( prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' ).images SCREAMING_SNAKE_CASE = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) SCREAMING_SNAKE_CASE = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 SCREAMING_SNAKE_CASE = pipe.image_variation(snake_case__ , generator=snake_case__ , output_type='numpy' ).images SCREAMING_SNAKE_CASE = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) SCREAMING_SNAKE_CASE = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
673
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a_ : Optional[Any] = logging.get_logger(__name__) a_ : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } a_ : Union[str, Any] = {"allegro/herbert-base-cased": 514} a_ : List[Any] = {} class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_INIT_CONFIGURATION __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =HerbertTokenizer def __init__( self : Tuple , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : Optional[int]=None , snake_case__ : str="<s>" , snake_case__ : Tuple="<unk>" , snake_case__ : List[str]="<pad>" , snake_case__ : Tuple="<mask>" , snake_case__ : Dict="</s>" , **snake_case__ : List[str] , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sep_token=snake_case__ , **snake_case__ , ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
673
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a_ : str = logging.get_logger(__name__) a_ : Tuple = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="gptj" __UpperCamelCase ={ "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[Any] , snake_case__ : List[Any]=5_0_4_0_0 , snake_case__ : List[Any]=2_0_4_8 , snake_case__ : str=4_0_9_6 , snake_case__ : Dict=2_8 , snake_case__ : int=1_6 , snake_case__ : Tuple=6_4 , snake_case__ : Union[str, Any]=None , snake_case__ : Any="gelu_new" , snake_case__ : List[Any]=0.0 , snake_case__ : str=0.0 , snake_case__ : Tuple=0.0 , snake_case__ : Any=1E-5 , snake_case__ : Tuple=0.02 , snake_case__ : List[str]=True , snake_case__ : Tuple=5_0_2_5_6 , snake_case__ : Union[str, Any]=5_0_2_5_6 , snake_case__ : Optional[Any]=False , **snake_case__ : Optional[int] , ): """simple docstring""" SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = n_positions SCREAMING_SNAKE_CASE = n_embd SCREAMING_SNAKE_CASE = n_layer SCREAMING_SNAKE_CASE = n_head SCREAMING_SNAKE_CASE = n_inner SCREAMING_SNAKE_CASE = rotary_dim SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_pdrop SCREAMING_SNAKE_CASE = embd_pdrop SCREAMING_SNAKE_CASE = attn_pdrop SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = eos_token_id super().__init__( bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : Optional[Any] , snake_case__ : PretrainedConfig , snake_case__ : str = "default" , snake_case__ : List[PatchingSpec] = None , snake_case__ : bool = False , ): """simple docstring""" super().__init__(snake_case__ , task=snake_case__ , patching_specs=snake_case__ , use_past=snake_case__ ) if not getattr(self._config , 'pad_token_id' , snake_case__ ): # TODO: how to do that better? SCREAMING_SNAKE_CASE = 0 @property def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(snake_case__ , direction='inputs' ) SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'past_sequence + sequence'} else: SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'sequence'} return common_inputs @property def UpperCamelCase ( self : List[Any] ): """simple docstring""" return self._config.n_layer @property def UpperCamelCase ( self : int ): """simple docstring""" return self._config.n_head def UpperCamelCase ( self : Optional[Any] , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ): """simple docstring""" SCREAMING_SNAKE_CASE = super(snake_case__ , self ).generate_dummy_inputs( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs['input_ids'].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE = seqlen + 2 SCREAMING_SNAKE_CASE = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE = [ (torch.zeros(snake_case__ ), torch.zeros(snake_case__ )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE = common_inputs['attention_mask'] if self.use_past: SCREAMING_SNAKE_CASE = ordered_inputs['attention_mask'].dtype SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs['attention_mask'], torch.ones(snake_case__ , snake_case__ , dtype=snake_case__ )] , dim=1 ) return ordered_inputs @property def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return 1_3
673
def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 while n > 0: res += n % 10 n //= 10 return res def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return sum(int(_UpperCamelCase ) for c in str(abs(_UpperCamelCase ) ) ) def __lowerCAmelCase ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_UpperCamelCase : Callable , _UpperCamelCase : int ) -> None: SCREAMING_SNAKE_CASE = f"""{func.__name__}({value})""" SCREAMING_SNAKE_CASE = timeit(f"""__main__.{call}""" , setup='import __main__' ) print(f"""{call:56} = {func(_UpperCamelCase )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_UpperCamelCase , _UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
673
1
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. a_ : Dict = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. a_ : int = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. a_ : Dict = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> tuple[str, float]: '''simple docstring''' SCREAMING_SNAKE_CASE = len([g for position, g in enumerate(_UpperCamelCase ) if g == main_target[position]] ) return (item, float(_UpperCamelCase )) def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> tuple[str, str]: '''simple docstring''' SCREAMING_SNAKE_CASE = random.randint(0 , len(_UpperCamelCase ) - 1 ) SCREAMING_SNAKE_CASE = parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : list[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE = random.choice(_UpperCamelCase ) return "".join(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : tuple[str, float] , _UpperCamelCase : list[tuple[str, float]] , _UpperCamelCase : list[str] , ) -> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE = int(parent_a[1] * 1_00 ) + 1 SCREAMING_SNAKE_CASE = 10 if child_n >= 10 else child_n for _ in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = population_score[random.randint(0 , _UpperCamelCase )][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = crossover(parent_a[0] , _UpperCamelCase ) # Append new string to the population list. pop.append(mutate(_UpperCamelCase , _UpperCamelCase ) ) pop.append(mutate(_UpperCamelCase , _UpperCamelCase ) ) return pop def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : list[str] , _UpperCamelCase : bool = True ) -> tuple[int, int, str]: '''simple docstring''' if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(_UpperCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE = sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(_UpperCamelCase ) # Generate random starting population. SCREAMING_SNAKE_CASE = [] for _ in range(_UpperCamelCase ): population.append(''.join([random.choice(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE = [evaluate(_UpperCamelCase , _UpperCamelCase ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE = sorted(_UpperCamelCase , key=lambda _UpperCamelCase : x[1] , reverse=_UpperCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCamelCase ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE = [ (item, score / len(_UpperCamelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCamelCase ): population.extend(select(population_score[int(_UpperCamelCase )] , _UpperCamelCase , _UpperCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCamelCase ) > N_POPULATION: break if __name__ == "__main__": a_ : Union[str, Any] = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) a_ : Optional[int] = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) a_ , a_ , a_ : List[str] = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
673
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
673
1
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch a_ : Optional[int] = True except ImportError: a_ : Optional[int] = False try: from torch.hub import _get_torch_home a_ : Dict = _get_torch_home() except ImportError: a_ : str = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) a_ : str = os.path.join(torch_cache_home, "transformers") a_ : int = "https://cdn.huggingface.co" a_ : Optional[int] = "https://s3.amazonaws.com/models.huggingface.co/bert" a_ : Union[str, Any] = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) a_ : Tuple = os.path.join(PATH, "config.yaml") a_ : Tuple = os.path.join(PATH, "attributes.txt") a_ : List[Any] = os.path.join(PATH, "objects.txt") a_ : List[Any] = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) a_ : int = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) a_ : Optional[int] = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) a_ : List[Any] = "pytorch_model.bin" a_ : List[str] = "config.yaml" def __lowerCAmelCase ( _UpperCamelCase : Tuple=OBJECTS , _UpperCamelCase : Any=ATTRIBUTES ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = [] with open(_UpperCamelCase ) as f: for object in f.readlines(): vg_classes.append(object.split(',' )[0].lower().strip() ) SCREAMING_SNAKE_CASE = [] with open(_UpperCamelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split(',' )[0].lower().strip() ) return vg_classes, vg_attrs def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = OrderedDict() with open(_UpperCamelCase , 'rb' ) as f: SCREAMING_SNAKE_CASE = pkl.load(_UpperCamelCase )['model'] for k in copy.deepcopy(list(ckp.keys() ) ): SCREAMING_SNAKE_CASE = ckp.pop(_UpperCamelCase ) if isinstance(_UpperCamelCase , np.ndarray ): SCREAMING_SNAKE_CASE = torch.tensor(_UpperCamelCase ) else: assert isinstance(_UpperCamelCase , torch.tensor ), type(_UpperCamelCase ) SCREAMING_SNAKE_CASE = v return r class UpperCamelCase : __UpperCamelCase ={} def __init__( self : Tuple , snake_case__ : dict , snake_case__ : str = "root" , snake_case__ : Dict=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = name SCREAMING_SNAKE_CASE = level SCREAMING_SNAKE_CASE = {} for k, v in dictionary.items(): if v is None: raise ValueError() SCREAMING_SNAKE_CASE = copy.deepcopy(snake_case__ ) SCREAMING_SNAKE_CASE = copy.deepcopy(snake_case__ ) if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = Config(snake_case__ , name=snake_case__ , level=level + 1 ) SCREAMING_SNAKE_CASE = v setattr(self , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = d def __repr__( self : Optional[Any] ): """simple docstring""" return str(list((self._pointer.keys()) ) ) def __setattr__( self : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = val SCREAMING_SNAKE_CASE = val SCREAMING_SNAKE_CASE = key.split('.' ) SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 SCREAMING_SNAKE_CASE = self._pointer if len(snake_case__ ) > 1: for i, l in enumerate(snake_case__ ): if hasattr(self , snake_case__ ) and isinstance(getattr(self , snake_case__ ) , snake_case__ ): setattr(getattr(self , snake_case__ ) , '.'.join(levels[i:] ) , snake_case__ ) if l == last_level: SCREAMING_SNAKE_CASE = val else: SCREAMING_SNAKE_CASE = pointer[l] def UpperCamelCase ( self : Optional[int] ): """simple docstring""" return self._pointer def UpperCamelCase ( self : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[str] ): """simple docstring""" with open(F"""{file_name}""" , 'w' ) as stream: dump(snake_case__ , snake_case__ ) def UpperCamelCase ( self : Tuple , snake_case__ : Tuple , snake_case__ : str ): """simple docstring""" with open(F"""{file_name}""" , 'w' ) as stream: json.dump(snake_case__ , snake_case__ ) @staticmethod def UpperCamelCase ( snake_case__ : Union[str, Any] ): """simple docstring""" with open(snake_case__ ) as stream: SCREAMING_SNAKE_CASE = load(snake_case__ , Loader=snake_case__ ) return data def __str__( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = ' ' if self._name != "root": SCREAMING_SNAKE_CASE = F"""{t * (self._level-1)}{self._name}:\n""" else: SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(snake_case__ , snake_case__ ): r += F"""{t * (self._level)}{v}\n""" self._level += 1 else: r += F"""{t * (self._level)}{k}: {v} ({type(snake_case__ ).__name__})\n""" SCREAMING_SNAKE_CASE = level return r[:-1] @classmethod def UpperCamelCase ( cls : int , snake_case__ : str , **snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(snake_case__ , **snake_case__ ) return cls(snake_case__ ) @classmethod def UpperCamelCase ( cls : int , snake_case__ : str , **snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.pop('cache_dir' , snake_case__ ) SCREAMING_SNAKE_CASE = kwargs.pop('force_download' , snake_case__ ) SCREAMING_SNAKE_CASE = kwargs.pop('resume_download' , snake_case__ ) SCREAMING_SNAKE_CASE = kwargs.pop('proxies' , snake_case__ ) SCREAMING_SNAKE_CASE = kwargs.pop('local_files_only' , snake_case__ ) if os.path.isdir(snake_case__ ): SCREAMING_SNAKE_CASE = os.path.join(snake_case__ , snake_case__ ) elif os.path.isfile(snake_case__ ) or is_remote_url(snake_case__ ): SCREAMING_SNAKE_CASE = pretrained_model_name_or_path else: SCREAMING_SNAKE_CASE = hf_bucket_url(snake_case__ , filename=snake_case__ , use_cdn=snake_case__ ) try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE = cached_path( snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , ) # Load config dict if resolved_config_file is None: raise EnvironmentError SCREAMING_SNAKE_CASE = Config.load_yaml(snake_case__ ) except EnvironmentError: SCREAMING_SNAKE_CASE = 'Can\'t load config for' raise EnvironmentError(snake_case__ ) if resolved_config_file == config_file: print('loading configuration file from path' ) else: print('loading configuration file cache' ) return Config.load_yaml(snake_case__ ), kwargs def __lowerCAmelCase ( _UpperCamelCase : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = torch.load('dump.pt' , map_location=in_tensor.device ) SCREAMING_SNAKE_CASE = in_tensor.numpy() SCREAMING_SNAKE_CASE = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(_UpperCamelCase , _UpperCamelCase , rtol=0.01 , atol=0.1 ), ( f"""{sum([1 for x in np.isclose(_UpperCamelCase , _UpperCamelCase , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*1_00:.4f} %""" " element-wise mismatch" ) raise Exception('tensors are all good' ) # Hugging face functions below def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = urlparse(_UpperCamelCase ) return parsed.scheme in ("http", "https") def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : List[Any]=True ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX SCREAMING_SNAKE_CASE = '/' not in model_id if legacy_format: return f"""{endpoint}/{model_id}-{filename}""" else: return f"""{endpoint}/{model_id}/{filename}""" def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Dict , _UpperCamelCase : int=None , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : Tuple=None , ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 'python/{}'.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(_UpperCamelCase , _UpperCamelCase ): ua += "; " + "; ".join('{}/{}'.format(_UpperCamelCase , _UpperCamelCase ) for k, v in user_agent.items() ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): ua += "; " + user_agent SCREAMING_SNAKE_CASE = {'user-agent': ua} if resume_size > 0: SCREAMING_SNAKE_CASE = 'bytes=%d-' % (resume_size,) SCREAMING_SNAKE_CASE = requests.get(_UpperCamelCase , stream=_UpperCamelCase , proxies=_UpperCamelCase , headers=_UpperCamelCase ) if response.status_code == 4_16: # Range not satisfiable return SCREAMING_SNAKE_CASE = response.headers.get('Content-Length' ) SCREAMING_SNAKE_CASE = resume_size + int(_UpperCamelCase ) if content_length is not None else None SCREAMING_SNAKE_CASE = tqdm( unit='B' , unit_scale=_UpperCamelCase , total=_UpperCamelCase , initial=_UpperCamelCase , desc='Downloading' , ) for chunk in response.iter_content(chunk_size=10_24 ): if chunk: # filter out keep-alive new chunks progress.update(len(_UpperCamelCase ) ) temp_file.write(_UpperCamelCase ) progress.close() def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Dict=False , _UpperCamelCase : int=None , _UpperCamelCase : Union[str, Any]=10 , _UpperCamelCase : Union[str, Any]=False , _UpperCamelCase : Tuple=None , _UpperCamelCase : List[str]=False , ) -> Optional[int]: '''simple docstring''' if cache_dir is None: SCREAMING_SNAKE_CASE = TRANSFORMERS_CACHE if isinstance(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = str(_UpperCamelCase ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) SCREAMING_SNAKE_CASE = None if not local_files_only: try: SCREAMING_SNAKE_CASE = requests.head(_UpperCamelCase , allow_redirects=_UpperCamelCase , proxies=_UpperCamelCase , timeout=_UpperCamelCase ) if response.status_code == 2_00: SCREAMING_SNAKE_CASE = response.headers.get('ETag' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass SCREAMING_SNAKE_CASE = url_to_filename(_UpperCamelCase , _UpperCamelCase ) # get cache path to put the file SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(_UpperCamelCase ): return cache_path else: SCREAMING_SNAKE_CASE = [ file for file in fnmatch.filter(os.listdir(_UpperCamelCase ) , filename + '.*' ) if not file.endswith('.json' ) and not file.endswith('.lock' ) ] if len(_UpperCamelCase ) > 0: return os.path.join(_UpperCamelCase , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( 'Cannot find the requested files in the cached path and outgoing traffic has been' ' disabled. To enable model look-ups and downloads online, set \'local_files_only\'' ' to False.' ) return None # From now on, etag is not None. if os.path.exists(_UpperCamelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. SCREAMING_SNAKE_CASE = cache_path + '.lock' with FileLock(_UpperCamelCase ): # If the download just completed while the lock was activated. if os.path.exists(_UpperCamelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: SCREAMING_SNAKE_CASE = cache_path + '.incomplete' @contextmanager def _resumable_file_manager(): with open(_UpperCamelCase , 'a+b' ) as f: yield f SCREAMING_SNAKE_CASE = _resumable_file_manager if os.path.exists(_UpperCamelCase ): SCREAMING_SNAKE_CASE = os.stat(_UpperCamelCase ).st_size else: SCREAMING_SNAKE_CASE = 0 else: SCREAMING_SNAKE_CASE = partial(tempfile.NamedTemporaryFile , dir=_UpperCamelCase , delete=_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '%s not found in cache or force_download set to True, downloading to %s' , _UpperCamelCase , temp_file.name , ) http_get( _UpperCamelCase , _UpperCamelCase , proxies=_UpperCamelCase , resume_size=_UpperCamelCase , user_agent=_UpperCamelCase , ) os.replace(temp_file.name , _UpperCamelCase ) SCREAMING_SNAKE_CASE = {'url': url, 'etag': etag} SCREAMING_SNAKE_CASE = cache_path + '.json' with open(_UpperCamelCase , 'w' ) as meta_file: json.dump(_UpperCamelCase , _UpperCamelCase ) return cache_path def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str]=None ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = url.encode('utf-8' ) SCREAMING_SNAKE_CASE = shaaaa(_UpperCamelCase ) SCREAMING_SNAKE_CASE = url_hash.hexdigest() if etag: SCREAMING_SNAKE_CASE = etag.encode('utf-8' ) SCREAMING_SNAKE_CASE = shaaaa(_UpperCamelCase ) filename += "." + etag_hash.hexdigest() if url.endswith('.h5' ): filename += ".h5" return filename def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Dict=None , _UpperCamelCase : Dict=False , _UpperCamelCase : Tuple=None , _UpperCamelCase : str=False , _UpperCamelCase : int=None , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : str=False , _UpperCamelCase : str=False , ) -> List[Any]: '''simple docstring''' if cache_dir is None: SCREAMING_SNAKE_CASE = TRANSFORMERS_CACHE if isinstance(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = str(_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = str(_UpperCamelCase ) if is_remote_url(_UpperCamelCase ): # URL, so get it from the cache (downloading if necessary) SCREAMING_SNAKE_CASE = get_from_cache( _UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , proxies=_UpperCamelCase , resume_download=_UpperCamelCase , user_agent=_UpperCamelCase , local_files_only=_UpperCamelCase , ) elif os.path.exists(_UpperCamelCase ): # File, and it exists. SCREAMING_SNAKE_CASE = url_or_filename elif urlparse(_UpperCamelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('file {} not found'.format(_UpperCamelCase ) ) else: # Something unknown raise ValueError('unable to parse {} as a URL or as a local path'.format(_UpperCamelCase ) ) if extract_compressed_file: if not is_zipfile(_UpperCamelCase ) and not tarfile.is_tarfile(_UpperCamelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = os.path.split(_UpperCamelCase ) SCREAMING_SNAKE_CASE = output_file.replace('.' , '-' ) + '-extracted' SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions SCREAMING_SNAKE_CASE = output_path + '.lock' with FileLock(_UpperCamelCase ): shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase ) os.makedirs(_UpperCamelCase ) if is_zipfile(_UpperCamelCase ): with ZipFile(_UpperCamelCase , 'r' ) as zip_file: zip_file.extractall(_UpperCamelCase ) zip_file.close() elif tarfile.is_tarfile(_UpperCamelCase ): SCREAMING_SNAKE_CASE = tarfile.open(_UpperCamelCase ) tar_file.extractall(_UpperCamelCase ) tar_file.close() else: raise EnvironmentError('Archive format of {} could not be identified'.format(_UpperCamelCase ) ) return output_path_extracted return output_path def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Dict="," ) -> Dict: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) if os.path.isfile(_UpperCamelCase ): with open(_UpperCamelCase ) as f: SCREAMING_SNAKE_CASE = eval(f.read() ) else: SCREAMING_SNAKE_CASE = requests.get(_UpperCamelCase ) try: SCREAMING_SNAKE_CASE = requests.json() except Exception: SCREAMING_SNAKE_CASE = req.content.decode() assert data is not None, "could not connect" try: SCREAMING_SNAKE_CASE = eval(_UpperCamelCase ) except Exception: SCREAMING_SNAKE_CASE = data.split('\n' ) req.close() return data def __lowerCAmelCase ( _UpperCamelCase : Dict ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = requests.get(_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.array(Image.open(BytesIO(response.content ) ) ) return img def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = url.split('/' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(_UpperCamelCase ) with open(_UpperCamelCase , 'rb' ) as stream: SCREAMING_SNAKE_CASE = pkl.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = weights.pop('model' ) SCREAMING_SNAKE_CASE = {} for k, v in model.items(): SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ) if "running_var" in k: SCREAMING_SNAKE_CASE = torch.tensor([0] ) SCREAMING_SNAKE_CASE = k.replace('running_var' , 'num_batches_tracked' ) SCREAMING_SNAKE_CASE = zero return new def __lowerCAmelCase ( ) -> List[str]: '''simple docstring''' print(f"""{os.path.abspath(os.path.join(_UpperCamelCase , os.pardir ) )}/demo.ipynb""" ) def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int]="RGB" ) -> Tuple: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) if os.path.isfile(_UpperCamelCase ): SCREAMING_SNAKE_CASE = cva.imread(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = get_image_from_url(_UpperCamelCase ) assert img is not None, f"""could not connect to: {im}""" SCREAMING_SNAKE_CASE = cva.cvtColor(_UpperCamelCase , cva.COLOR_BGR2RGB ) if input_format == "RGB": SCREAMING_SNAKE_CASE = img[:, :, ::-1] return img def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : List[str]=1 ) -> int: '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ))
673
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =AudioLDMPipeline __UpperCamelCase =TEXT_TO_AUDIO_PARAMS __UpperCamelCase =TEXT_TO_AUDIO_BATCH_PARAMS __UpperCamelCase =frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(3_2, 6_4) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=snake_case__ , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) SCREAMING_SNAKE_CASE = ClapTextModelWithProjection(snake_case__ ) SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=7_7 ) SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=snake_case__ , ) SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def UpperCamelCase ( self : Optional[int] , snake_case__ : int , snake_case__ : int=0 ): """simple docstring""" if str(snake_case__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(snake_case__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) SCREAMING_SNAKE_CASE = prompt_embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE = negative_prompt SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = [] for p in [prompt, negative_prompt]: SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = text_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) embeds.append(snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 'egg cracking' SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ , negative_prompt=snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config.sampling_rate SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.016 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.016 SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.032 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.032 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = ['hey'] SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape assert audio_shape == (1, 2_5_6) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config config.model_in_dim *= 2 SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ).to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def UpperCamelCase ( self : Tuple ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=snake_case__ ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase ( self : Dict ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case__ ) @slow class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : int , snake_case__ : int , snake_case__ : Tuple="cpu" , snake_case__ : List[str]=torch.floataa , snake_case__ : Optional[Any]=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = np.random.RandomState(snake_case__ ).standard_normal((1, 8, 1_2_8, 1_6) ) SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 2_5 SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[7_7_2_3_0:7_7_2_4_0] SCREAMING_SNAKE_CASE = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[2_7_7_8_0:2_7_7_9_0] SCREAMING_SNAKE_CASE = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
673
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a_ : List[str] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class UpperCamelCase : __UpperCamelCase =field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={"help": "The column name of the images in the files."} ) __UpperCamelCase =field(default=SCREAMING_SNAKE_CASE , metadata={"help": "A folder containing the training data."} ) __UpperCamelCase =field(default=SCREAMING_SNAKE_CASE , metadata={"help": "A folder containing the validation data."} ) __UpperCamelCase =field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = {} if self.train_dir is not None: SCREAMING_SNAKE_CASE = self.train_dir if self.validation_dir is not None: SCREAMING_SNAKE_CASE = self.validation_dir SCREAMING_SNAKE_CASE = data_files if data_files else None @dataclass class UpperCamelCase : __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) __UpperCamelCase =field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCamelCase =field(default=SCREAMING_SNAKE_CASE , metadata={"help": "Name or path of preprocessor config."} ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) __UpperCamelCase =field( default=0.75 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Whether or not to train with normalized pixel values as target."} ) @dataclass class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =field( default=1e-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} ) def __lowerCAmelCase ( _UpperCamelCase : Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _UpperCamelCase ) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE = ds['train'].train_test_split(data_args.train_val_split ) SCREAMING_SNAKE_CASE = split['train'] SCREAMING_SNAKE_CASE = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: SCREAMING_SNAKE_CASE = ViTMAEConfig.from_pretrained(model_args.config_name , **_UpperCamelCase ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: SCREAMING_SNAKE_CASE = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_UpperCamelCase ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = ViTImageProcessor() # create model if model_args.model_name_or_path: SCREAMING_SNAKE_CASE = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) SCREAMING_SNAKE_CASE = ViTMAEForPreTraining(_UpperCamelCase ) if training_args.do_train: SCREAMING_SNAKE_CASE = ds['train'].column_names else: SCREAMING_SNAKE_CASE = ds['validation'].column_names if data_args.image_column_name is not None: SCREAMING_SNAKE_CASE = data_args.image_column_name elif "image" in column_names: SCREAMING_SNAKE_CASE = 'image' elif "img" in column_names: SCREAMING_SNAKE_CASE = 'img' else: SCREAMING_SNAKE_CASE = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: SCREAMING_SNAKE_CASE = image_processor.size['shortest_edge'] else: SCREAMING_SNAKE_CASE = (image_processor.size['height'], image_processor.size['width']) SCREAMING_SNAKE_CASE = Compose( [ Lambda(lambda _UpperCamelCase : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_UpperCamelCase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_UpperCamelCase : str ): SCREAMING_SNAKE_CASE = [transforms(_UpperCamelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_UpperCamelCase ) # Compute absolute learning rate SCREAMING_SNAKE_CASE = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: SCREAMING_SNAKE_CASE = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer SCREAMING_SNAKE_CASE = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_UpperCamelCase , data_collator=_UpperCamelCase , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE = last_checkpoint SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE = trainer.evaluate() trainer.log_metrics('eval' , _UpperCamelCase ) trainer.save_metrics('eval' , _UpperCamelCase ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
673
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase : def __init__( self : Dict , snake_case__ : str , snake_case__ : str=1_3 , snake_case__ : Tuple=7 , snake_case__ : Tuple=True , snake_case__ : Tuple=True , snake_case__ : List[str]=False , snake_case__ : Any=True , snake_case__ : Union[str, Any]=9_9 , snake_case__ : Dict=3_2 , snake_case__ : Optional[Any]=5 , snake_case__ : Optional[Any]=4 , snake_case__ : Union[str, Any]=3_7 , snake_case__ : Tuple="gelu" , snake_case__ : Dict=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : int=4 , snake_case__ : List[str]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Dict ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , use_stable_embedding=snake_case__ , ) def UpperCamelCase ( self : int , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : str , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : str , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , ) SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Tuple , ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : int , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Union[str, Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , use_cache=snake_case__ , ) SCREAMING_SNAKE_CASE = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCamelCase =(OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCamelCase =( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'single_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'multi_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase ( self : str , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = ids_tensor([1, 1_0] , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) )
673
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def __lowerCAmelCase ( _UpperCamelCase : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =StableDiffusionLatentUpscalePipeline __UpperCamelCase =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } __UpperCamelCase =PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} __UpperCamelCase =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCamelCase =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCamelCase =frozenset([] ) __UpperCamelCase =True @property def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = (1_6, 1_6) SCREAMING_SNAKE_CASE = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case__ ) return image def UpperCamelCase ( self : str ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=snake_case__ , block_out_channels=[3_2, 3_2, 6_4, 6_4] , time_cond_proj_dim=1_6_0 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=3_2 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=snake_case__ , only_cross_attention=snake_case__ , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4, 6_4] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) SCREAMING_SNAKE_CASE = EulerDiscreteScheduler(prediction_type='sample' ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='quick_gelu' , projection_dim=5_1_2 , ) SCREAMING_SNAKE_CASE = CLIPTextModel(snake_case__ ) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def UpperCamelCase ( self : List[str] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=0 ): """simple docstring""" if str(snake_case__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(snake_case__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = pipe(**snake_case__ ).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_5_6, 2_5_6, 3) ) SCREAMING_SNAKE_CASE = np.array( [0.47_222_412, 0.41_921_633, 0.44_717_434, 0.46_874_192, 0.42_588_258, 0.46_150_726, 0.4_677_534, 0.45_583_832, 0.48_579_055] ) SCREAMING_SNAKE_CASE = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case__ , 1E-3 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**snake_case__ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue SCREAMING_SNAKE_CASE = getattr(snake_case__ , scheduler_enum.name ) SCREAMING_SNAKE_CASE = scheduler_cls.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE = pipe(**snake_case__ )[0] outputs.append(snake_case__ ) assert check_same_shape(snake_case__ ) @require_torch_gpu @slow class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : List[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.manual_seed(3_3 ) SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa ) pipe.to('cuda' ) SCREAMING_SNAKE_CASE = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) SCREAMING_SNAKE_CASE = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' SCREAMING_SNAKE_CASE = pipe(snake_case__ , generator=snake_case__ , output_type='latent' ).images SCREAMING_SNAKE_CASE = upscaler( prompt=snake_case__ , image=snake_case__ , num_inference_steps=2_0 , guidance_scale=0 , generator=snake_case__ , output_type='np' , ).images[0] SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.manual_seed(3_3 ) SCREAMING_SNAKE_CASE = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) SCREAMING_SNAKE_CASE = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) SCREAMING_SNAKE_CASE = upscaler( prompt=snake_case__ , image=snake_case__ , num_inference_steps=2_0 , guidance_scale=0 , generator=snake_case__ , output_type='np' , ).images[0] SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5E-2
673
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="openai/whisper-base" __UpperCamelCase =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCamelCase ="transcriber" __UpperCamelCase =WhisperProcessor __UpperCamelCase =WhisperForConditionalGeneration __UpperCamelCase =["audio"] __UpperCamelCase =["text"] def UpperCamelCase ( self : Dict , snake_case__ : Tuple ): """simple docstring""" return self.pre_processor(snake_case__ , return_tensors='pt' ).input_features def UpperCamelCase ( self : Optional[int] , snake_case__ : Tuple ): """simple docstring""" return self.model.generate(inputs=snake_case__ ) def UpperCamelCase ( self : str , snake_case__ : Union[str, Any] ): """simple docstring""" return self.pre_processor.batch_decode(snake_case__ , skip_special_tokens=snake_case__ )[0]
673
1
def __lowerCAmelCase ( _UpperCamelCase : int = 2_00_00_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = [0 for i in range(n + 1 )] SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , _UpperCamelCase ): SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 0 for i in range(_UpperCamelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
673
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version a_ : List[str] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize a_ : Dict = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" a_ : str = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" a_ : int = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def UpperCamelCase ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def UpperCamelCase ( self : Dict , snake_case__ : int ): """simple docstring""" import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : List[Any]=0.9 , snake_case__ : Optional[Any]=3 , snake_case__ : Any=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5' ): SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score( word_tokenize(snake_case__ ) , word_tokenize(snake_case__ ) , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] else: SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score(snake_case__ , snake_case__ , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] return {"meteor": np.mean(snake_case__ )}
673
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() a_ : Optional[int] = logging.get_logger(__name__) def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = UniSpeechSatForSequenceClassification.from_pretrained(_UpperCamelCase , config=_UpperCamelCase ) SCREAMING_SNAKE_CASE = downstream_dict['projector.weight'] SCREAMING_SNAKE_CASE = downstream_dict['projector.bias'] SCREAMING_SNAKE_CASE = downstream_dict['model.post_net.linear.weight'] SCREAMING_SNAKE_CASE = downstream_dict['model.post_net.linear.bias'] return model def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = UniSpeechSatForAudioFrameClassification.from_pretrained(_UpperCamelCase , config=_UpperCamelCase ) SCREAMING_SNAKE_CASE = downstream_dict['model.linear.weight'] SCREAMING_SNAKE_CASE = downstream_dict['model.linear.bias'] return model def __lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = UniSpeechSatForXVector.from_pretrained(_UpperCamelCase , config=_UpperCamelCase ) SCREAMING_SNAKE_CASE = downstream_dict['connector.weight'] SCREAMING_SNAKE_CASE = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): SCREAMING_SNAKE_CASE = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] SCREAMING_SNAKE_CASE = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] SCREAMING_SNAKE_CASE = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] SCREAMING_SNAKE_CASE = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] SCREAMING_SNAKE_CASE = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] SCREAMING_SNAKE_CASE = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] SCREAMING_SNAKE_CASE = downstream_dict['objective.W'] return model @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : str , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase , map_location='cpu' ) SCREAMING_SNAKE_CASE = checkpoint['Downstream'] SCREAMING_SNAKE_CASE = UniSpeechSatConfig.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( _UpperCamelCase , return_attention_mask=_UpperCamelCase , do_normalize=_UpperCamelCase ) SCREAMING_SNAKE_CASE = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): SCREAMING_SNAKE_CASE = convert_classification(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) elif arch.endswith('ForAudioFrameClassification' ): SCREAMING_SNAKE_CASE = convert_diarization(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) elif arch.endswith('ForXVector' ): SCREAMING_SNAKE_CASE = convert_xvector(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: SCREAMING_SNAKE_CASE = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(_UpperCamelCase ) hf_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") a_ : str = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
673
import numpy as np def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
673
1
import numpy as np def __lowerCAmelCase ( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : float = 1e-12 , _UpperCamelCase : int = 1_00 , ) -> tuple[float, np.ndarray]: '''simple docstring''' assert np.shape(_UpperCamelCase )[0] == np.shape(_UpperCamelCase )[1] # Ensure proper dimensionality. assert np.shape(_UpperCamelCase )[0] == np.shape(_UpperCamelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(_UpperCamelCase ) == np.iscomplexobj(_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.iscomplexobj(_UpperCamelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(_UpperCamelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1e12 while not convergence: # Multiple matrix by the vector. SCREAMING_SNAKE_CASE = np.dot(_UpperCamelCase , _UpperCamelCase ) # Normalize the resulting output vector. SCREAMING_SNAKE_CASE = w / np.linalg.norm(_UpperCamelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) SCREAMING_SNAKE_CASE = vector.conj().T if is_complex else vector.T SCREAMING_SNAKE_CASE = np.dot(_UpperCamelCase , np.dot(_UpperCamelCase , _UpperCamelCase ) ) # Check convergence. SCREAMING_SNAKE_CASE = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = lambda_ if is_complex: SCREAMING_SNAKE_CASE = np.real(lambda_ ) return lambda_, vector def __lowerCAmelCase ( ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) SCREAMING_SNAKE_CASE = np.array([41, 4, 20] ) SCREAMING_SNAKE_CASE = real_input_matrix.astype(np.complexaaa ) SCREAMING_SNAKE_CASE = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T SCREAMING_SNAKE_CASE = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": SCREAMING_SNAKE_CASE = real_input_matrix SCREAMING_SNAKE_CASE = real_vector elif problem_type == "complex": SCREAMING_SNAKE_CASE = complex_input_matrix SCREAMING_SNAKE_CASE = complex_vector # Our implementation. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = power_iteration(_UpperCamelCase , _UpperCamelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = np.linalg.eigh(_UpperCamelCase ) # Last eigenvalue is the maximum one. SCREAMING_SNAKE_CASE = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. SCREAMING_SNAKE_CASE = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(_UpperCamelCase ) - np.abs(_UpperCamelCase ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
673
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ : Any = logging.get_logger(__name__) a_ : Dict = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="van" def __init__( self : Optional[Any] , snake_case__ : Tuple=2_2_4 , snake_case__ : Dict=3 , snake_case__ : Union[str, Any]=[7, 3, 3, 3] , snake_case__ : str=[4, 2, 2, 2] , snake_case__ : Optional[Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , snake_case__ : Optional[Any]=[3, 3, 1_2, 3] , snake_case__ : Tuple=[8, 8, 4, 4] , snake_case__ : Any="gelu" , snake_case__ : Dict=0.02 , snake_case__ : List[str]=1E-6 , snake_case__ : int=1E-2 , snake_case__ : Any=0.0 , snake_case__ : Tuple=0.0 , **snake_case__ : Any , ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_sizes SCREAMING_SNAKE_CASE = strides SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = mlp_ratios SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = dropout_rate
673
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a_ : Any = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[Any] = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys a_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
673
def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : int ) -> list[str]: '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(_UpperCamelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
673
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class UpperCamelCase ( unittest.TestCase , SCREAMING_SNAKE_CASE ): def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = load_tool('text-classification' ) self.tool.setup() SCREAMING_SNAKE_CASE = load_tool('text-classification' , remote=snake_case__ ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(snake_case__ , 'positive' ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.remote_tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(snake_case__ , 'positive' ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(snake_case__ , 'positive' ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(snake_case__ , 'positive' )
673
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING a_ : Dict = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : Any , **snake_case__ : Optional[int] ): """simple docstring""" super().__init__(**snake_case__ ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , 'vision' ) self.check_model_type(snake_case__ ) def __call__( self : List[Any] , snake_case__ : Union[str, "Image.Image", List[Dict[str, Any]]] , snake_case__ : Union[str, List[str]] = None , **snake_case__ : Union[str, Any] , ): """simple docstring""" if "text_queries" in kwargs: SCREAMING_SNAKE_CASE = kwargs.pop('text_queries' ) if isinstance(snake_case__ , (str, Image.Image) ): SCREAMING_SNAKE_CASE = {'image': image, 'candidate_labels': candidate_labels} else: SCREAMING_SNAKE_CASE = image SCREAMING_SNAKE_CASE = super().__call__(snake_case__ , **snake_case__ ) return results def UpperCamelCase ( self : Union[str, Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = {} if "threshold" in kwargs: SCREAMING_SNAKE_CASE = kwargs['threshold'] if "top_k" in kwargs: SCREAMING_SNAKE_CASE = kwargs['top_k'] return {}, {}, postprocess_params def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = load_image(inputs['image'] ) SCREAMING_SNAKE_CASE = inputs['candidate_labels'] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = candidate_labels.split(',' ) SCREAMING_SNAKE_CASE = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE = self.tokenizer(snake_case__ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE = self.image_processor(snake_case__ , return_tensors=self.framework ) yield { "is_last": i == len(snake_case__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def UpperCamelCase ( self : Any , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = model_inputs.pop('target_size' ) SCREAMING_SNAKE_CASE = model_inputs.pop('candidate_label' ) SCREAMING_SNAKE_CASE = model_inputs.pop('is_last' ) SCREAMING_SNAKE_CASE = self.model(**snake_case__ ) SCREAMING_SNAKE_CASE = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : str=0.1 , snake_case__ : Union[str, Any]=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: SCREAMING_SNAKE_CASE = model_output['candidate_label'] SCREAMING_SNAKE_CASE = BaseModelOutput(snake_case__ ) SCREAMING_SNAKE_CASE = self.image_processor.post_process_object_detection( outputs=snake_case__ , threshold=snake_case__ , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): SCREAMING_SNAKE_CASE = outputs['scores'][index].item() SCREAMING_SNAKE_CASE = self._get_bounding_box(outputs['boxes'][index][0] ) SCREAMING_SNAKE_CASE = {'score': score, 'label': label, 'box': box} results.append(snake_case__ ) SCREAMING_SNAKE_CASE = sorted(snake_case__ , key=lambda snake_case__ : x["score"] , reverse=snake_case__ ) if top_k: SCREAMING_SNAKE_CASE = results[:top_k] return results def UpperCamelCase ( self : List[Any] , snake_case__ : "torch.Tensor" ): """simple docstring""" if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = box.int().tolist() SCREAMING_SNAKE_CASE = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
673
1
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a_ : str = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp a_ : int = 5 a_ : Union[str, Any] = 10 @require_sentencepiece @require_tokenizers class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =SpeechaTextTokenizer __UpperCamelCase =False __UpperCamelCase =True def UpperCamelCase ( self : List[str] ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE = sp.SentencePieceProcessor() spm_model.Load(snake_case__ ) SCREAMING_SNAKE_CASE = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(snake_case__ ) )] SCREAMING_SNAKE_CASE = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE = Path(self.tmpdirname ) save_json(snake_case__ , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case__ , save_dir / VOCAB_FILES_NAMES['spm_file'] ) SCREAMING_SNAKE_CASE = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = '<pad>' SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 1_0_0_1 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_1 ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [2_8_9, 5_0, 1_4, 1_7_4, 3_8_6] , ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual(snake_case__ , [1_2, 2_5, 8_8, 5_9, 2_8, 2_3, 1_1, 4, 6_0_6, 3_5_1, 3_5_1, 3_5_1, 7, 1_6, 7_0, 5_0, 7_6, 8_4, 1_0, 4, 8] ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = {'input_ids': [[3_7_9_1, 7_9_7, 3_1, 1_1, 6_4, 7_9_7, 3_1, 2_4_2_9, 4_3_3, 1_2, 1_1_7_6, 1_2, 2_0, 7_8_6, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 3_2_3_8, 7_9_7, 3_1, 1_1, 3_5, 9_3, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_7, 6_1_0, 4_0, 6_2, 4_5_5, 6_5_7, 1_0_4_2, 1_2_3, 7_8_0, 1_7_7, 3_7, 3_0_9, 2_4_1, 1_2_9_8, 5_1_4, 2_0, 2_9_2, 2_7_3_7, 1_1_4, 2_4_6_9, 2_4_1, 8_5, 6_4, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 4, 5_0_9, 4_0_6, 4_2_3, 3_7, 6_0_1, 4, 7_7_7, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 2_8_4, 4, 3_3_8_8, 5_1_1, 4_5_9, 4, 3_5_5_5, 4_0, 3_2_1, 3_0_2, 7_0_5, 4, 3_3_8_8, 5_1_1, 5_8_3, 3_2_6, 5, 5, 5, 6_2, 3_3_1_0, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 3_2, 3_1, 8_5_3, 4_1_8, 6_4, 5_8_3, 5_1_1, 1_6_0_5, 6_2, 3_5, 9_3, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 1_5_2_1, 6_4, 5_8_3, 5_1_1, 5_1_9, 6_2, 2_0, 1_5_1_5, 7_6_4, 2_0, 1_4_9, 2_6_1, 5_6_2_5, 7_9_7_2, 2_0, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_9_2_5, 1_6_7_5, 1_1, 1_5, 8_0_2, 7_9_7_2, 5_7_6, 2_1_7, 1_5_0_8, 1_1, 3_5, 9_3, 1_2_5_3, 2_4_4_1, 1_5, 2_8_9, 6_5_2, 3_1, 4_1_6, 3_2_1, 3_8_4_2, 1_1_5, 4_0, 9_1_1, 8, 4_7_6, 6_1_9, 4, 3_8_0, 1_4_2, 4_2_3, 3_3_5, 2_4_0, 3_5, 9_3, 2_6_4, 8, 1_1, 3_3_5, 5_6_9, 4_2_0, 1_6_3, 5, 2], [2_6_0, 5_4_8, 5_2_8, 4_2_3, 2_0, 4_5_1, 2_0, 2_6_8_1, 1_1_5_3, 3_4_3_4, 2_0, 5_5_4_0, 3_7, 5_6_7, 1_2_6, 1_2_5_3, 2_4_4_1, 3_3_7_6, 4_4_9, 2_1_0, 4_3_1, 1_5_6_3, 1_7_7, 7_6_7, 5_5_4_0, 1_1, 1_2_0_3, 4_7_2, 1_1, 2_9_5_3, 6_8_5, 2_8_5, 3_6_4, 7_0_6, 1_1_5_3, 2_0, 6_7_9_9, 2_0, 2_8_6_9, 2_0, 4_4_6_4, 1_2_6, 4_0, 2_4_2_9, 2_0, 1_0_4_0, 8_6_6, 2_6_6_4, 4_1_8, 2_0, 3_1_8, 2_0, 1_7_2_6, 1_8_6, 2_0, 2_6_5, 5_2_2, 3_5, 9_3, 2_1_9_1, 4_6_3_4, 2_0, 1_0_4_0, 1_2, 6_7_9_9, 1_5, 2_2_8, 2_3_5_6, 1_4_2, 3_1, 1_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_7_5, 2_6_6_6, 6_8_4, 1_5_8_2, 1_1_7_6, 1_2, 6_2_7, 1_4_9, 6_1_9, 2_0, 4_9_0_2, 5_6_3, 1_1, 2_0, 1_4_9, 2_6_1, 3_4_2_0, 2_3_5_6, 1_7_4, 1_4_2, 4_7_1_4, 1_3_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class UpperCamelCase ( unittest.TestCase ): __UpperCamelCase ="valhalla/s2t_mustc_multilinguial_medium" __UpperCamelCase ="C'est trop cool" __UpperCamelCase ="Esto es genial" @classmethod def UpperCamelCase ( cls : int ): """simple docstring""" SCREAMING_SNAKE_CASE = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def UpperCamelCase ( self : str ): """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 1_1 ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 1_0_0_0_0 ) def UpperCamelCase ( self : Dict ): """simple docstring""" self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE = [ES_CODE, 4, 1_6_0_1, 4_7, 7_6_4_7, 2] SCREAMING_SNAKE_CASE = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) SCREAMING_SNAKE_CASE = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'fr' SCREAMING_SNAKE_CASE = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , snake_case__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) SCREAMING_SNAKE_CASE = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
673
def __lowerCAmelCase ( _UpperCamelCase : int = 10_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 2**power SCREAMING_SNAKE_CASE = str(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 for i in list_num: sum_of_num += int(_UpperCamelCase ) return sum_of_num if __name__ == "__main__": a_ : List[str] = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) a_ : int = solution(power) print("Sum of the digits is: ", result)
673
1
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class UpperCamelCase ( unittest.TestCase ): __UpperCamelCase =inspect.getfile(accelerate.test_utils ) __UpperCamelCase =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_cli.py"] ) __UpperCamelCase =["accelerate", "launch"] __UpperCamelCase =Path.home() / ".cache/huggingface/accelerate" __UpperCamelCase ="default_config.yaml" __UpperCamelCase =config_folder / config_file __UpperCamelCase =config_folder / "_default_config.yaml" __UpperCamelCase =Path("tests/test_configs" ) @classmethod def UpperCamelCase ( cls : str ): """simple docstring""" if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def UpperCamelCase ( cls : Optional[int] ): """simple docstring""" if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def UpperCamelCase ( self : Tuple ): """simple docstring""" for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=snake_case__ ): execute_subprocess_async( self.base_cmd + ['--config_file', str(snake_case__ ), self.test_file_path] , env=os.environ.copy() ) def UpperCamelCase ( self : str ): """simple docstring""" execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() ) class UpperCamelCase ( unittest.TestCase ): __UpperCamelCase ="test-tpu" __UpperCamelCase ="us-central1-a" __UpperCamelCase ="ls" __UpperCamelCase =["accelerate", "tpu-config"] __UpperCamelCase ="cd /usr/share" __UpperCamelCase ="tests/test_samples/test_command_file.sh" __UpperCamelCase ="Running gcloud compute tpus tpu-vm ssh" def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=snake_case__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , snake_case__ , ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=snake_case__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , snake_case__ , ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=snake_case__ ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , snake_case__ , ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=snake_case__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , snake_case__ , ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=snake_case__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , snake_case__ , ) def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=snake_case__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , snake_case__ , ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=snake_case__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , snake_case__ , ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=snake_case__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , snake_case__ , ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=snake_case__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , snake_case__ , )
673
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="facebook/bart-large-mnli" __UpperCamelCase =( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) __UpperCamelCase ="text_classifier" __UpperCamelCase =AutoTokenizer __UpperCamelCase =AutoModelForSequenceClassification __UpperCamelCase =["text", ["text"]] __UpperCamelCase =["text"] def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): SCREAMING_SNAKE_CASE = int(snake_case__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[str] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(snake_case__ ) , [F"""This example is {label}""" for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
673
1
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline a_ : List[str] = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") a_ : Union[str, Any] = parser.parse_args() a_ : Optional[int] = "cpu" a_ : List[Any] = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" a_ : Tuple = "path-to-your-trained-model" a_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: a_ : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) a_ : str = pipe.to(device) # to channels last a_ : Tuple = pipe.unet.to(memory_format=torch.channels_last) a_ : Optional[Any] = pipe.vae.to(memory_format=torch.channels_last) a_ : str = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: a_ : Dict = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex a_ : List[Any] = torch.randn(2, 4, 64, 64) a_ : List[str] = torch.rand(1) * 999 a_ : Optional[Any] = torch.randn(2, 77, 768) a_ : List[str] = (sample, timestep, encoder_hidden_status) try: a_ : int = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: a_ : Optional[int] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) a_ : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) a_ : Union[str, Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: a_ : List[str] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute a_ : Union[str, Any] = 666 a_ : Any = torch.Generator(device).manual_seed(seed) a_ : Optional[int] = {"generator": generator} if args.steps is not None: a_ : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): a_ : Union[str, Any] = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
673
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a_ : str = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a_ : int = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.1_5}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names a_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a_ : List[Any] = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a_ : Any = "allenai" def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = dict((re.sub(R'@@$' , '' , _UpperCamelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , _UpperCamelCase ), v) for k, v in d.items() ) SCREAMING_SNAKE_CASE = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] SCREAMING_SNAKE_CASE = d[k] # restore return da def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : List[str] ) -> Dict: '''simple docstring''' assert os.path.exists(_UpperCamelCase ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel SCREAMING_SNAKE_CASE = cls.hub_models() SCREAMING_SNAKE_CASE = {'bpe': 'fastbpe', 'tokenizer': 'moses'} SCREAMING_SNAKE_CASE = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"""using checkpoint {checkpoint_file}""" ) SCREAMING_SNAKE_CASE = hub_utils.from_pretrained( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , archive_map=_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = vars(chkpt['args']['model'] ) SCREAMING_SNAKE_CASE = args['source_lang'] SCREAMING_SNAKE_CASE = args['target_lang'] SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) # dicts SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{src_lang}.txt""" ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{tgt_lang}.txt""" ) SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(src_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-src.json' ) print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab SCREAMING_SNAKE_CASE = True for k in src_vocab.keys(): if not k.islower(): SCREAMING_SNAKE_CASE = False break SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(tgt_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-tgt.json' ) print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # merges_file (bpecodes) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.exists(_UpperCamelCase ): break with open(_UpperCamelCase , encoding='utf-8' ) as fin: SCREAMING_SNAKE_CASE = fin.read() SCREAMING_SNAKE_CASE = re.sub(R' \d+$' , '' , _UpperCamelCase , 0 , re.M ) # remove frequency number print(f"""Generating {merges_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_UpperCamelCase ) # model config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args['bpe']}""" assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args['tokenizer']}""" SCREAMING_SNAKE_CASE = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with SCREAMING_SNAKE_CASE = 5 SCREAMING_SNAKE_CASE = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: SCREAMING_SNAKE_CASE = best_score_hparams[model_dir]['length_penalty'] else: SCREAMING_SNAKE_CASE = 1.0 print(f"""Generating {fsmt_model_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # tokenizer config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = { 'langs': [src_lang, tgt_lang], 'model_max_length': 10_24, 'do_lower_case': do_lower_case, } print(f"""Generating {fsmt_tokenizer_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # model SCREAMING_SNAKE_CASE = chkpt['models'][0] SCREAMING_SNAKE_CASE = model.state_dict() # rename keys to start with 'model.' SCREAMING_SNAKE_CASE = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys SCREAMING_SNAKE_CASE = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTConfig.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTForConditionalGeneration(_UpperCamelCase ) # check that it loads ok model_new.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) # save SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(_UpperCamelCase , _UpperCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f"""cd {data_root}""" ) print(f"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a_ : int = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
673
1
from __future__ import annotations def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : str ) -> Union[str, Any]: # noqa: E741 '''simple docstring''' while r - l > 1: SCREAMING_SNAKE_CASE = (l + r) // 2 if v[m] >= key: SCREAMING_SNAKE_CASE = m else: SCREAMING_SNAKE_CASE = m # noqa: E741 return r def __lowerCAmelCase ( _UpperCamelCase : list[int] ) -> int: '''simple docstring''' if len(_UpperCamelCase ) == 0: return 0 SCREAMING_SNAKE_CASE = [0] * len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = v[0] for i in range(1 , len(_UpperCamelCase ) ): if v[i] < tail[0]: SCREAMING_SNAKE_CASE = v[i] elif v[i] > tail[length - 1]: SCREAMING_SNAKE_CASE = v[i] length += 1 else: SCREAMING_SNAKE_CASE = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
673
import random def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : float , _UpperCamelCase : bool = False ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE = {i: [] for i in range(_UpperCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_UpperCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_UpperCamelCase ): for j in range(i + 1 , _UpperCamelCase ): if random.random() < probability: graph[i].append(_UpperCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_UpperCamelCase ) return graph def __lowerCAmelCase ( _UpperCamelCase : int ) -> dict: '''simple docstring''' return { i: [j for j in range(_UpperCamelCase ) if i != j] for i in range(_UpperCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
673
1
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() a_ : List[Any] = logging.get_logger("transformers.models.speecht5") def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Dict: '''simple docstring''' hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Any=None , _UpperCamelCase : List[str]=None , ) -> Tuple: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig.from_pretrained(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE = SpeechTaHifiGan(_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = np.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() model.save_pretrained(_UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) a_ : Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
673
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : def __init__( self : List[str] , snake_case__ : Dict , snake_case__ : Optional[Any]=1_3 , snake_case__ : Union[str, Any]=7 , snake_case__ : List[str]=True , snake_case__ : Any=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=9_9 , snake_case__ : str=3_2 , snake_case__ : Dict=5 , snake_case__ : str=4 , snake_case__ : int=3_7 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Any=0.1 , snake_case__ : Dict=0.1 , snake_case__ : Optional[Any]=5_1_2 , snake_case__ : List[Any]=1_6 , snake_case__ : str=2 , snake_case__ : int=0.02 , snake_case__ : List[str]=3 , snake_case__ : Dict=4 , snake_case__ : str=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def UpperCamelCase ( self : List[str] , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : List[Any] , snake_case__ : str , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : int , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : int , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = NystromformerForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase =( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def UpperCamelCase ( self : List[str] ): """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(snake_case__ )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.4_532, -0.0_936, 0.5_137], [-0.2_676, 0.0_628, 0.6_186], [-0.3_629, -0.1_726, 0.4_716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1E-4 ) ) @slow def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = 'the [MASK] of Belgium is Brussels' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = tokenizer(snake_case__ , return_tensors='pt' ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(encoding.input_ids ).logits SCREAMING_SNAKE_CASE = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case__ ) , 'capital' )
673
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ : int = { "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = [ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys a_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
673
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
673
1
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ : str = logging.get_logger(__name__) a_ : List[Any] = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="owlvit_text_model" def __init__( self : int , snake_case__ : int=4_9_4_0_8 , snake_case__ : str=5_1_2 , snake_case__ : str=2_0_4_8 , snake_case__ : Optional[Any]=1_2 , snake_case__ : List[Any]=8 , snake_case__ : str=1_6 , snake_case__ : int="quick_gelu" , snake_case__ : int=1E-5 , snake_case__ : Union[str, Any]=0.0 , snake_case__ : List[Any]=0.02 , snake_case__ : Optional[Any]=1.0 , snake_case__ : Optional[int]=0 , snake_case__ : Any=4_9_4_0_6 , snake_case__ : str=4_9_4_0_7 , **snake_case__ : Any , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = initializer_factor @classmethod def UpperCamelCase ( cls : List[str] , snake_case__ : Union[str, os.PathLike] , **snake_case__ : str ): """simple docstring""" cls._set_token_in_kwargs(snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(snake_case__ , **snake_case__ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": SCREAMING_SNAKE_CASE = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case__ , **snake_case__ ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="owlvit_vision_model" def __init__( self : List[str] , snake_case__ : str=7_6_8 , snake_case__ : Any=3_0_7_2 , snake_case__ : str=1_2 , snake_case__ : Union[str, Any]=1_2 , snake_case__ : Dict=3 , snake_case__ : Dict=7_6_8 , snake_case__ : Dict=3_2 , snake_case__ : str="quick_gelu" , snake_case__ : Optional[int]=1E-5 , snake_case__ : Union[str, Any]=0.0 , snake_case__ : Any=0.02 , snake_case__ : Optional[int]=1.0 , **snake_case__ : int , ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = initializer_factor @classmethod def UpperCamelCase ( cls : Any , snake_case__ : Union[str, os.PathLike] , **snake_case__ : Union[str, Any] ): """simple docstring""" cls._set_token_in_kwargs(snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(snake_case__ , **snake_case__ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": SCREAMING_SNAKE_CASE = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case__ , **snake_case__ ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="owlvit" __UpperCamelCase =True def __init__( self : Union[str, Any] , snake_case__ : int=None , snake_case__ : str=None , snake_case__ : Dict=5_1_2 , snake_case__ : int=2.6_592 , snake_case__ : Optional[Any]=True , **snake_case__ : Any , ): """simple docstring""" super().__init__(**snake_case__ ) if text_config is None: SCREAMING_SNAKE_CASE = {} logger.info('text_config is None. Initializing the OwlViTTextConfig with default values.' ) if vision_config is None: SCREAMING_SNAKE_CASE = {} logger.info('vision_config is None. initializing the OwlViTVisionConfig with default values.' ) SCREAMING_SNAKE_CASE = OwlViTTextConfig(**snake_case__ ) SCREAMING_SNAKE_CASE = OwlViTVisionConfig(**snake_case__ ) SCREAMING_SNAKE_CASE = projection_dim SCREAMING_SNAKE_CASE = logit_scale_init_value SCREAMING_SNAKE_CASE = return_dict SCREAMING_SNAKE_CASE = 1.0 @classmethod def UpperCamelCase ( cls : str , snake_case__ : Union[str, os.PathLike] , **snake_case__ : List[str] ): """simple docstring""" cls._set_token_in_kwargs(snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(snake_case__ , **snake_case__ ) if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case__ , **snake_case__ ) @classmethod def UpperCamelCase ( cls : str , snake_case__ : Dict , snake_case__ : Dict , **snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = text_config SCREAMING_SNAKE_CASE = vision_config return cls.from_dict(snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE = self.text_config.to_dict() SCREAMING_SNAKE_CASE = self.vision_config.to_dict() SCREAMING_SNAKE_CASE = self.__class__.model_type return output class UpperCamelCase ( SCREAMING_SNAKE_CASE ): @property def UpperCamelCase ( self : Any ): """simple docstring""" return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ] ) @property def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return OrderedDict( [ ('logits_per_image', {0: 'batch'}), ('logits_per_text', {0: 'batch'}), ('text_embeds', {0: 'batch'}), ('image_embeds', {0: 'batch'}), ] ) @property def UpperCamelCase ( self : List[str] ): """simple docstring""" return 1E-4 def UpperCamelCase ( self : int , snake_case__ : "ProcessorMixin" , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : Optional["TensorType"] = None , ): """simple docstring""" SCREAMING_SNAKE_CASE = super().generate_dummy_inputs( processor.tokenizer , batch_size=snake_case__ , seq_length=snake_case__ , framework=snake_case__ ) SCREAMING_SNAKE_CASE = super().generate_dummy_inputs( processor.image_processor , batch_size=snake_case__ , framework=snake_case__ ) return {**text_input_dict, **image_input_dict} @property def UpperCamelCase ( self : Any ): """simple docstring""" return 1_4
673
import heapq import sys import numpy as np a_ : Optional[int] = tuple[int, int] class UpperCamelCase : def __init__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() def UpperCamelCase ( self : List[Any] ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf' ) def UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.elements ) == 0 def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(snake_case__ ) else: # update # print("update", item) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" if item in self.set: self.set.remove(snake_case__ ) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def UpperCamelCase ( self : str ): """simple docstring""" return self.elements[0][1] def UpperCamelCase ( self : Tuple ): """simple docstring""" ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) self.set.remove(snake_case__ ) return (priority, item) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) return np.linalg.norm(a - b ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Dict: '''simple docstring''' return consistent_heuristic(_UpperCamelCase , _UpperCamelCase ) // t def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[int]: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : int , _UpperCamelCase : TPos , _UpperCamelCase : dict[TPos, float] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = g_function[start] + Wa * heuristics[i](_UpperCamelCase , _UpperCamelCase ) return ans def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = np.chararray((n, n) ) for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = '*' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE = '#' SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = x # print(x) SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[x] SCREAMING_SNAKE_CASE = '-' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: print(_UpperCamelCase , end=' ' ) SCREAMING_SNAKE_CASE = back_pointer[x] print(_UpperCamelCase ) sys.exit() def __lowerCAmelCase ( _UpperCamelCase : TPos ) -> Any: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , ) -> List[Any]: '''simple docstring''' for itera in range(_UpperCamelCase ): open_list[itera].remove_element(_UpperCamelCase ) # print("s", s) # print("j", j) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = s SCREAMING_SNAKE_CASE = (x - 1, y) SCREAMING_SNAKE_CASE = (x + 1, y) SCREAMING_SNAKE_CASE = (x, y + 1) SCREAMING_SNAKE_CASE = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = float('inf' ) if valid(_UpperCamelCase ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE = g_function[s] + 1 SCREAMING_SNAKE_CASE = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCamelCase , key(_UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , _UpperCamelCase ): if key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) <= Wa * key( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ): open_list[j].put( _UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a_ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a_ : List[str] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a_ : Union[str, Any] = make_common_ground() a_ : Tuple = blocks_blk # hyper parameters a_ : Any = 1 a_ : List[str] = 1 a_ : Union[str, Any] = 20 a_ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a_ : int = (0, 0) a_ : Optional[int] = (n - 1, n - 1) a_ : Union[str, Any] = 1 def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos , _UpperCamelCase : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {start: 0, goal: float('inf' )} SCREAMING_SNAKE_CASE = {start: -1, goal: -1} SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() for i in range(_UpperCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , _UpperCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = open_list[i].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_inad.append(_UpperCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE = open_list[0].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_anchor.append(_UpperCamelCase ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_UpperCamelCase ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
673
1
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =AudioLDMPipeline __UpperCamelCase =TEXT_TO_AUDIO_PARAMS __UpperCamelCase =TEXT_TO_AUDIO_BATCH_PARAMS __UpperCamelCase =frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(3_2, 6_4) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=snake_case__ , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) SCREAMING_SNAKE_CASE = ClapTextModelWithProjection(snake_case__ ) SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=7_7 ) SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=snake_case__ , ) SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def UpperCamelCase ( self : Optional[int] , snake_case__ : int , snake_case__ : int=0 ): """simple docstring""" if str(snake_case__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(snake_case__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) SCREAMING_SNAKE_CASE = prompt_embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE = negative_prompt SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = [] for p in [prompt, negative_prompt]: SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = text_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) embeds.append(snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 'egg cracking' SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ , negative_prompt=snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config.sampling_rate SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.016 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.016 SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.032 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.032 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = ['hey'] SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape assert audio_shape == (1, 2_5_6) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config config.model_in_dim *= 2 SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ).to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def UpperCamelCase ( self : Tuple ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=snake_case__ ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase ( self : Dict ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case__ ) @slow class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : int , snake_case__ : int , snake_case__ : Tuple="cpu" , snake_case__ : List[str]=torch.floataa , snake_case__ : Optional[Any]=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = np.random.RandomState(snake_case__ ).standard_normal((1, 8, 1_2_8, 1_6) ) SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 2_5 SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[7_7_2_3_0:7_7_2_4_0] SCREAMING_SNAKE_CASE = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[2_7_7_8_0:2_7_7_9_0] SCREAMING_SNAKE_CASE = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
673
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a_ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : str = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Any=8 ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=5_12 , _UpperCamelCase : Union[str, Any]=5_12 ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) SCREAMING_SNAKE_CASE = np.array(pil_image.convert('RGB' ) ) SCREAMING_SNAKE_CASE = arr.astype(np.floataa ) / 1_27.5 - 1 SCREAMING_SNAKE_CASE = np.transpose(_UpperCamelCase , [2, 0, 1] ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : int , snake_case__ : UNetaDConditionModel , snake_case__ : DDPMScheduler , snake_case__ : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , ) SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase ( self : Any , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = min(int(num_inference_steps * strength ) , snake_case__ ) SCREAMING_SNAKE_CASE = max(num_inference_steps - init_timestep , 0 ) SCREAMING_SNAKE_CASE = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase ( self : List[str] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : str=None ): """simple docstring""" if not isinstance(snake_case__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case__ )}""" ) SCREAMING_SNAKE_CASE = image.to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = batch_size * num_images_per_prompt if image.shape[1] == 4: SCREAMING_SNAKE_CASE = image else: if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case__ ) ] SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) else: SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ ).latent_dist.sample(snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.config.scaling_factor * init_latents SCREAMING_SNAKE_CASE = torch.cat([init_latents] , dim=0 ) SCREAMING_SNAKE_CASE = init_latents.shape SCREAMING_SNAKE_CASE = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) # get latents SCREAMING_SNAKE_CASE = self.scheduler.add_noise(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = init_latents return latents def UpperCamelCase ( self : int , snake_case__ : List[str]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) SCREAMING_SNAKE_CASE = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[int]=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=snake_case__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase ( self : Dict ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case__ ) def __call__( self : str , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : int = 5_1_2 , snake_case__ : int = 5_1_2 , snake_case__ : int = 1_0_0 , snake_case__ : float = 4.0 , snake_case__ : float = 0.3 , snake_case__ : int = 1 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , ): """simple docstring""" SCREAMING_SNAKE_CASE = self._execution_device SCREAMING_SNAKE_CASE = guidance_scale > 1.0 if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = image_embeds.shape[0] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [image] if not all(isinstance(snake_case__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(snake_case__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) SCREAMING_SNAKE_CASE = torch.cat([prepare_image(snake_case__ , snake_case__ , snake_case__ ) for i in image] , dim=0 ) SCREAMING_SNAKE_CASE = image.to(dtype=image_embeds.dtype , device=snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ )['latents'] SCREAMING_SNAKE_CASE = latents.repeat_interleave(snake_case__ , dim=0 ) self.scheduler.set_timesteps(snake_case__ , device=snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_timesteps(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = timesteps[:1].repeat(batch_size * num_images_per_prompt ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = downscale_height_and_width(snake_case__ , snake_case__ , self.movq_scale_factor ) SCREAMING_SNAKE_CASE = self.prepare_latents( snake_case__ , snake_case__ , snake_case__ , snake_case__ , image_embeds.dtype , snake_case__ , snake_case__ ) for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE = {'image_embeds': image_embeds} SCREAMING_SNAKE_CASE = self.unet( sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , )[0] # post-processing SCREAMING_SNAKE_CASE = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
673
1
from functools import reduce a_ : str = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def __lowerCAmelCase ( _UpperCamelCase : str = N ) -> int: '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _UpperCamelCase , _UpperCamelCase : str(int(_UpperCamelCase ) * int(_UpperCamelCase ) ) , n[i : i + 13] ) ) for i in range(len(_UpperCamelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
673
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() a_ : List[Any] = logging.get_logger("transformers.models.speecht5") def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Dict: '''simple docstring''' hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Any=None , _UpperCamelCase : List[str]=None , ) -> Tuple: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig.from_pretrained(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE = SpeechTaHifiGan(_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = np.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() model.save_pretrained(_UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) a_ : Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
673
1
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : str ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCamelCase ) as metadata_file: SCREAMING_SNAKE_CASE = json.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = LukeConfig(use_entity_aware_attention=_UpperCamelCase , **metadata['model_config'] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase , map_location='cpu' )['module'] # Load the entity vocab file SCREAMING_SNAKE_CASE = load_original_entity_vocab(_UpperCamelCase ) # add an entry for [MASK2] SCREAMING_SNAKE_CASE = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE = AddedToken('<ent>' , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) SCREAMING_SNAKE_CASE = AddedToken('<ent2>' , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(_UpperCamelCase ) with open(os.path.join(_UpperCamelCase , 'tokenizer_config.json' ) , 'r' ) as f: SCREAMING_SNAKE_CASE = json.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 'MLukeTokenizer' with open(os.path.join(_UpperCamelCase , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) with open(os.path.join(_UpperCamelCase , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(_UpperCamelCase ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(['@'] )[0] SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(['#'] )[0] SCREAMING_SNAKE_CASE = state_dict['embeddings.word_embeddings.weight'] SCREAMING_SNAKE_CASE = word_emb[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = word_emb[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: SCREAMING_SNAKE_CASE = state_dict[bias_name] SCREAMING_SNAKE_CASE = decoder_bias[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = decoder_bias[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE = f"""encoder.layer.{layer_index}.attention.self.""" SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE = state_dict['entity_embeddings.entity_embeddings.weight'] SCREAMING_SNAKE_CASE = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' SCREAMING_SNAKE_CASE = state_dict['entity_predictions.bias'] SCREAMING_SNAKE_CASE = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([entity_prediction_bias, entity_mask_bias] ) SCREAMING_SNAKE_CASE = LukeForMaskedLM(config=_UpperCamelCase ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) SCREAMING_SNAKE_CASE = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): SCREAMING_SNAKE_CASE = state_dict[key] else: SCREAMING_SNAKE_CASE = state_dict[key] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) if set(_UpperCamelCase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(_UpperCamelCase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(_UpperCamelCase , task='entity_classification' ) SCREAMING_SNAKE_CASE = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' SCREAMING_SNAKE_CASE = (0, 9) SCREAMING_SNAKE_CASE = tokenizer(_UpperCamelCase , entity_spans=[span] , return_tensors='pt' ) SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE = torch.Size((1, 33, 7_68) ) SCREAMING_SNAKE_CASE = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _UpperCamelCase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE = torch.Size((1, 1, 7_68) ) SCREAMING_SNAKE_CASE = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _UpperCamelCase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 'Tokyo is the capital of <mask>.' SCREAMING_SNAKE_CASE = (24, 30) SCREAMING_SNAKE_CASE = tokenizer(_UpperCamelCase , entity_spans=[span] , return_tensors='pt' ) SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = encoding['input_ids'][0].tolist() SCREAMING_SNAKE_CASE = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) SCREAMING_SNAKE_CASE = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.entity_logits[0][0].argmax().item() SCREAMING_SNAKE_CASE = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(_UpperCamelCase ) ) model.save_pretrained(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = ['[MASK]', '[PAD]', '[UNK]'] SCREAMING_SNAKE_CASE = [json.loads(_UpperCamelCase ) for line in open(_UpperCamelCase )] SCREAMING_SNAKE_CASE = {} for entry in data: SCREAMING_SNAKE_CASE = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: SCREAMING_SNAKE_CASE = entity_id break SCREAMING_SNAKE_CASE = f"""{language}:{entity_name}""" SCREAMING_SNAKE_CASE = entity_id return new_mapping if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) a_ : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
673
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a_ : Optional[int] = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } a_ : List[Any] = { "allenai/led-base-16384": 1_6384, } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =LEDTokenizer __UpperCamelCase =["input_ids", "attention_mask"] def __init__( self : Tuple , snake_case__ : List[Any]=None , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : Dict="replace" , snake_case__ : Tuple="<s>" , snake_case__ : Optional[Any]="</s>" , snake_case__ : int="</s>" , snake_case__ : Dict="<s>" , snake_case__ : Union[str, Any]="<unk>" , snake_case__ : Optional[int]="<pad>" , snake_case__ : List[str]="<mask>" , snake_case__ : List[Any]=False , snake_case__ : int=True , **snake_case__ : Dict , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(snake_case__ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**snake_case__ ) SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE = 'post_processor' SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state['cls'] ) SCREAMING_SNAKE_CASE = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(snake_case__ , state.pop('type' ) ) SCREAMING_SNAKE_CASE = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase ( self : List[Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value SCREAMING_SNAKE_CASE = value def UpperCamelCase ( self : Dict , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[str] , *snake_case__ : List[Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Tuple=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self : Optional[Any] , snake_case__ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case__ : Optional[int] = None , snake_case__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , ): """simple docstring""" SCREAMING_SNAKE_CASE = super()._pad( encoded_inputs=snake_case__ , max_length=snake_case__ , padding_strategy=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE = len(encoded_inputs['global_attention_mask'] ) != len(snake_case__ ) if needs_to_be_padded: SCREAMING_SNAKE_CASE = len(snake_case__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
673
1
from __future__ import annotations a_ : Optional[Any] = list[list[int]] # assigning initial values to the grid a_ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution a_ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def __lowerCAmelCase ( _UpperCamelCase : Matrix , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) -> bool: '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def __lowerCAmelCase ( _UpperCamelCase : Matrix ) -> tuple[int, int] | None: '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def __lowerCAmelCase ( _UpperCamelCase : Matrix ) -> Matrix | None: '''simple docstring''' if location := find_empty_location(_UpperCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = digit if sudoku(_UpperCamelCase ) is not None: return grid SCREAMING_SNAKE_CASE = 0 return None def __lowerCAmelCase ( _UpperCamelCase : Matrix ) -> None: '''simple docstring''' for row in grid: for cell in row: print(_UpperCamelCase , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") a_ : Union[str, Any] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
673
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __lowerCAmelCase ( *_UpperCamelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(_UpperCamelCase , 'r' ) as fh: fcntl.flock(_UpperCamelCase , fcntl.LOCK_EX ) try: print(*_UpperCamelCase ) finally: fcntl.flock(_UpperCamelCase , fcntl.LOCK_UN ) a_ : int = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) a_ : str = torch.device("cuda", local_rank) a_ : Optional[int] = socket.gethostname() a_ : Union[str, Any] = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank a_ : Dict = dist.get_rank() a_ : Any = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
673
1
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): @property def UpperCamelCase ( self : Optional[int] ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = ort.SessionOptions() SCREAMING_SNAKE_CASE = False return options def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) SCREAMING_SNAKE_CASE = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A red cat sitting on a park bench' SCREAMING_SNAKE_CASE = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=1_0 , generator=snake_case__ , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) SCREAMING_SNAKE_CASE = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx' ) SCREAMING_SNAKE_CASE = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A red cat sitting on a park bench' SCREAMING_SNAKE_CASE = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=2_0 , generator=snake_case__ , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) SCREAMING_SNAKE_CASE = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
673
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a_ : Optional[Any] = logging.get_logger(__name__) a_ : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } a_ : Union[str, Any] = {"allegro/herbert-base-cased": 514} a_ : List[Any] = {} class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_INIT_CONFIGURATION __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =HerbertTokenizer def __init__( self : Tuple , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : Optional[int]=None , snake_case__ : str="<s>" , snake_case__ : Tuple="<unk>" , snake_case__ : List[str]="<pad>" , snake_case__ : Tuple="<mask>" , snake_case__ : Dict="</s>" , **snake_case__ : List[str] , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sep_token=snake_case__ , **snake_case__ , ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
673
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Any = logging.get_logger(__name__) a_ : Any = { "naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="donut-swin" __UpperCamelCase ={ "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Any , snake_case__ : Dict=2_2_4 , snake_case__ : Tuple=4 , snake_case__ : Optional[Any]=3 , snake_case__ : Union[str, Any]=9_6 , snake_case__ : List[Any]=[2, 2, 6, 2] , snake_case__ : Optional[Any]=[3, 6, 1_2, 2_4] , snake_case__ : str=7 , snake_case__ : Optional[Any]=4.0 , snake_case__ : Union[str, Any]=True , snake_case__ : int=0.0 , snake_case__ : Optional[int]=0.0 , snake_case__ : List[str]=0.1 , snake_case__ : Dict="gelu" , snake_case__ : int=False , snake_case__ : List[Any]=0.02 , snake_case__ : Tuple=1E-5 , **snake_case__ : Dict , ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embed_dim SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = len(snake_case__ ) SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = window_size SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = qkv_bias SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = use_absolute_embeddings SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE = int(embed_dim * 2 ** (len(snake_case__ ) - 1) )
673
def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 while n > 0: res += n % 10 n //= 10 return res def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return sum(int(_UpperCamelCase ) for c in str(abs(_UpperCamelCase ) ) ) def __lowerCAmelCase ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_UpperCamelCase : Callable , _UpperCamelCase : int ) -> None: SCREAMING_SNAKE_CASE = f"""{func.__name__}({value})""" SCREAMING_SNAKE_CASE = timeit(f"""__main__.{call}""" , setup='import __main__' ) print(f"""{call:56} = {func(_UpperCamelCase )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_UpperCamelCase , _UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
673
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging a_ : str = logging.get_logger(__name__) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =["input_features", "is_longer"] def __init__( self : int , snake_case__ : List[Any]=6_4 , snake_case__ : Any=4_8_0_0_0 , snake_case__ : Tuple=4_8_0 , snake_case__ : Union[str, Any]=1_0 , snake_case__ : Dict=1_0_2_4 , snake_case__ : str=0.0 , snake_case__ : Any=False , snake_case__ : float = 0 , snake_case__ : float = 1_4_0_0_0 , snake_case__ : int = None , snake_case__ : str = "fusion" , snake_case__ : str = "repeatpad" , **snake_case__ : List[Any] , ): """simple docstring""" super().__init__( feature_size=snake_case__ , sampling_rate=snake_case__ , padding_value=snake_case__ , return_attention_mask=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = top_db SCREAMING_SNAKE_CASE = truncation SCREAMING_SNAKE_CASE = padding SCREAMING_SNAKE_CASE = fft_window_size SCREAMING_SNAKE_CASE = (fft_window_size >> 1) + 1 SCREAMING_SNAKE_CASE = hop_length SCREAMING_SNAKE_CASE = max_length_s SCREAMING_SNAKE_CASE = max_length_s * sampling_rate SCREAMING_SNAKE_CASE = sampling_rate SCREAMING_SNAKE_CASE = frequency_min SCREAMING_SNAKE_CASE = frequency_max SCREAMING_SNAKE_CASE = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case__ , min_frequency=snake_case__ , max_frequency=snake_case__ , sampling_rate=snake_case__ , norm=snake_case__ , mel_scale='htk' , ) SCREAMING_SNAKE_CASE = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case__ , min_frequency=snake_case__ , max_frequency=snake_case__ , sampling_rate=snake_case__ , norm='slaney' , mel_scale='slaney' , ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCamelCase ( self : str , snake_case__ : np.array , snake_case__ : Optional[np.array] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = spectrogram( snake_case__ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=snake_case__ , log_mel='dB' , ) return log_mel_spectrogram.T def UpperCamelCase ( self : str , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE = [0] # randomly choose index for each part SCREAMING_SNAKE_CASE = np.random.choice(ranges[0] ) SCREAMING_SNAKE_CASE = np.random.choice(ranges[1] ) SCREAMING_SNAKE_CASE = np.random.choice(ranges[2] ) SCREAMING_SNAKE_CASE = mel[idx_front : idx_front + chunk_frames, :] SCREAMING_SNAKE_CASE = mel[idx_middle : idx_middle + chunk_frames, :] SCREAMING_SNAKE_CASE = mel[idx_back : idx_back + chunk_frames, :] SCREAMING_SNAKE_CASE = torch.tensor(mel[None, None, :] ) SCREAMING_SNAKE_CASE = torch.nn.functional.interpolate( snake_case__ , size=[chunk_frames, 6_4] , mode='bilinear' , align_corners=snake_case__ ) SCREAMING_SNAKE_CASE = mel_shrink[0][0].numpy() SCREAMING_SNAKE_CASE = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def UpperCamelCase ( self : Tuple , snake_case__ : np.array , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : str ): """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": SCREAMING_SNAKE_CASE = True # random crop to max_length (for compatibility) -> this should be handled by self.pad SCREAMING_SNAKE_CASE = len(snake_case__ ) - max_length SCREAMING_SNAKE_CASE = np.random.randint(0 , overflow + 1 ) SCREAMING_SNAKE_CASE = waveform[idx : idx + max_length] SCREAMING_SNAKE_CASE = self._np_extract_fbank_features(snake_case__ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": SCREAMING_SNAKE_CASE = self._np_extract_fbank_features(snake_case__ , self.mel_filters ) SCREAMING_SNAKE_CASE = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed SCREAMING_SNAKE_CASE = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. SCREAMING_SNAKE_CASE = np.stack([mel, mel, mel, mel] , axis=0 ) SCREAMING_SNAKE_CASE = False else: SCREAMING_SNAKE_CASE = self._random_mel_fusion(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: SCREAMING_SNAKE_CASE = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": SCREAMING_SNAKE_CASE = int(max_length / len(snake_case__ ) ) SCREAMING_SNAKE_CASE = np.stack(np.tile(snake_case__ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": SCREAMING_SNAKE_CASE = int(max_length / len(snake_case__ ) ) SCREAMING_SNAKE_CASE = np.stack(np.tile(snake_case__ , snake_case__ ) ) SCREAMING_SNAKE_CASE = np.pad(snake_case__ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": SCREAMING_SNAKE_CASE = self._np_extract_fbank_features(snake_case__ , self.mel_filters ) SCREAMING_SNAKE_CASE = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: SCREAMING_SNAKE_CASE = self._np_extract_fbank_features(snake_case__ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Optional[int] , snake_case__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case__ : str = None , snake_case__ : Optional[str] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[str, TensorType]] = None , **snake_case__ : List[str] , ): """simple docstring""" SCREAMING_SNAKE_CASE = truncation if truncation is not None else self.truncation SCREAMING_SNAKE_CASE = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) SCREAMING_SNAKE_CASE = isinstance(snake_case__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) SCREAMING_SNAKE_CASE = is_batched_numpy or ( isinstance(snake_case__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE = [np.asarray(snake_case__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case__ , np.ndarray ): SCREAMING_SNAKE_CASE = np.asarray(snake_case__ , dtype=np.floataa ) elif isinstance(snake_case__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE = [np.asarray(snake_case__ )] # convert to mel spectrogram, truncate and pad if needed. SCREAMING_SNAKE_CASE = [ self._get_input_mel(snake_case__ , max_length if max_length else self.nb_max_samples , snake_case__ , snake_case__ ) for waveform in raw_speech ] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for mel, longer in padded_inputs: input_mel.append(snake_case__ ) is_longer.append(snake_case__ ) if truncation == "fusion" and sum(snake_case__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer SCREAMING_SNAKE_CASE = np.random.randint(0 , len(snake_case__ ) ) SCREAMING_SNAKE_CASE = True if isinstance(input_mel[0] , snake_case__ ): SCREAMING_SNAKE_CASE = [np.asarray(snake_case__ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool SCREAMING_SNAKE_CASE = [[longer] for longer in is_longer] SCREAMING_SNAKE_CASE = {'input_features': input_mel, 'is_longer': is_longer} SCREAMING_SNAKE_CASE = BatchFeature(snake_case__ ) if return_tensors is not None: SCREAMING_SNAKE_CASE = input_features.convert_to_tensors(snake_case__ ) return input_features
673
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
673
1
from typing import TYPE_CHECKING from ..utils import _LazyModule a_ : Union[str, Any] = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys a_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
673
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =AudioLDMPipeline __UpperCamelCase =TEXT_TO_AUDIO_PARAMS __UpperCamelCase =TEXT_TO_AUDIO_BATCH_PARAMS __UpperCamelCase =frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(3_2, 6_4) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=snake_case__ , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) SCREAMING_SNAKE_CASE = ClapTextModelWithProjection(snake_case__ ) SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=7_7 ) SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=snake_case__ , ) SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def UpperCamelCase ( self : Optional[int] , snake_case__ : int , snake_case__ : int=0 ): """simple docstring""" if str(snake_case__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(snake_case__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) SCREAMING_SNAKE_CASE = prompt_embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE = negative_prompt SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = [] for p in [prompt, negative_prompt]: SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = text_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) embeds.append(snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 'egg cracking' SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ , negative_prompt=snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config.sampling_rate SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.016 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.016 SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.032 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.032 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = ['hey'] SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape assert audio_shape == (1, 2_5_6) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config config.model_in_dim *= 2 SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ).to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def UpperCamelCase ( self : Tuple ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=snake_case__ ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase ( self : Dict ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case__ ) @slow class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : int , snake_case__ : int , snake_case__ : Tuple="cpu" , snake_case__ : List[str]=torch.floataa , snake_case__ : Optional[Any]=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = np.random.RandomState(snake_case__ ).standard_normal((1, 8, 1_2_8, 1_6) ) SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 2_5 SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[7_7_2_3_0:7_7_2_4_0] SCREAMING_SNAKE_CASE = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[2_7_7_8_0:2_7_7_9_0] SCREAMING_SNAKE_CASE = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
673
1
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters a_ : Dict = (720, 1280) # Height, Width a_ : Tuple = (0.4, 0.6) # if height or width lower than this scale, drop it. a_ : str = 1 / 100 a_ : Dict = "" a_ : Optional[int] = "" a_ : int = "" a_ : Any = 250 def __lowerCAmelCase ( ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_dataset(_UpperCamelCase , _UpperCamelCase ) for index in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = random.sample(range(len(_UpperCamelCase ) ) , 4 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = update_image_and_anno( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , filter_scale=_UpperCamelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' SCREAMING_SNAKE_CASE = random_chars(32 ) SCREAMING_SNAKE_CASE = path.split(os.sep )[-1].rsplit('.' , 1 )[0] SCREAMING_SNAKE_CASE = f"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(f"""{file_root}.jpg""" , _UpperCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) SCREAMING_SNAKE_CASE = [] for anno in new_annos: SCREAMING_SNAKE_CASE = anno[3] - anno[1] SCREAMING_SNAKE_CASE = anno[4] - anno[2] SCREAMING_SNAKE_CASE = anno[1] + width / 2 SCREAMING_SNAKE_CASE = anno[2] + height / 2 SCREAMING_SNAKE_CASE = f"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(_UpperCamelCase ) with open(f"""{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> tuple[list, list]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for label_file in glob.glob(os.path.join(_UpperCamelCase , '*.txt' ) ): SCREAMING_SNAKE_CASE = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(_UpperCamelCase ) as in_file: SCREAMING_SNAKE_CASE = in_file.readlines() SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""{label_name}.jpg""" ) SCREAMING_SNAKE_CASE = [] for obj_list in obj_lists: SCREAMING_SNAKE_CASE = obj_list.rstrip('\n' ).split(' ' ) SCREAMING_SNAKE_CASE = float(obj[1] ) - float(obj[3] ) / 2 SCREAMING_SNAKE_CASE = float(obj[2] ) - float(obj[4] ) / 2 SCREAMING_SNAKE_CASE = float(obj[1] ) + float(obj[3] ) / 2 SCREAMING_SNAKE_CASE = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(_UpperCamelCase ) labels.append(_UpperCamelCase ) return img_paths, labels def __lowerCAmelCase ( _UpperCamelCase : list , _UpperCamelCase : list , _UpperCamelCase : list[int] , _UpperCamelCase : tuple[int, int] , _UpperCamelCase : tuple[float, float] , _UpperCamelCase : float = 0.0 , ) -> tuple[list, list, str]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) SCREAMING_SNAKE_CASE = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) SCREAMING_SNAKE_CASE = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) SCREAMING_SNAKE_CASE = int(scale_x * output_size[1] ) SCREAMING_SNAKE_CASE = int(scale_y * output_size[0] ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i, index in enumerate(_UpperCamelCase ): SCREAMING_SNAKE_CASE = all_img_list[index] path_list.append(_UpperCamelCase ) SCREAMING_SNAKE_CASE = all_annos[index] SCREAMING_SNAKE_CASE = cva.imread(_UpperCamelCase ) if i == 0: # top-left SCREAMING_SNAKE_CASE = cva.resize(_UpperCamelCase , (divid_point_x, divid_point_y) ) SCREAMING_SNAKE_CASE = img for bbox in img_annos: SCREAMING_SNAKE_CASE = bbox[1] * scale_x SCREAMING_SNAKE_CASE = bbox[2] * scale_y SCREAMING_SNAKE_CASE = bbox[3] * scale_x SCREAMING_SNAKE_CASE = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right SCREAMING_SNAKE_CASE = cva.resize(_UpperCamelCase , (output_size[1] - divid_point_x, divid_point_y) ) SCREAMING_SNAKE_CASE = img for bbox in img_annos: SCREAMING_SNAKE_CASE = scale_x + bbox[1] * (1 - scale_x) SCREAMING_SNAKE_CASE = bbox[2] * scale_y SCREAMING_SNAKE_CASE = scale_x + bbox[3] * (1 - scale_x) SCREAMING_SNAKE_CASE = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left SCREAMING_SNAKE_CASE = cva.resize(_UpperCamelCase , (divid_point_x, output_size[0] - divid_point_y) ) SCREAMING_SNAKE_CASE = img for bbox in img_annos: SCREAMING_SNAKE_CASE = bbox[1] * scale_x SCREAMING_SNAKE_CASE = scale_y + bbox[2] * (1 - scale_y) SCREAMING_SNAKE_CASE = bbox[3] * scale_x SCREAMING_SNAKE_CASE = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right SCREAMING_SNAKE_CASE = cva.resize( _UpperCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) SCREAMING_SNAKE_CASE = img for bbox in img_annos: SCREAMING_SNAKE_CASE = scale_x + bbox[1] * (1 - scale_x) SCREAMING_SNAKE_CASE = scale_y + bbox[2] * (1 - scale_y) SCREAMING_SNAKE_CASE = scale_x + bbox[3] * (1 - scale_x) SCREAMING_SNAKE_CASE = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: SCREAMING_SNAKE_CASE = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __lowerCAmelCase ( _UpperCamelCase : int ) -> str: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" SCREAMING_SNAKE_CASE = ascii_lowercase + digits return "".join(random.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
673
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase : def __init__( self : Dict , snake_case__ : str , snake_case__ : str=1_3 , snake_case__ : Tuple=7 , snake_case__ : Tuple=True , snake_case__ : Tuple=True , snake_case__ : List[str]=False , snake_case__ : Any=True , snake_case__ : Union[str, Any]=9_9 , snake_case__ : Dict=3_2 , snake_case__ : Optional[Any]=5 , snake_case__ : Optional[Any]=4 , snake_case__ : Union[str, Any]=3_7 , snake_case__ : Tuple="gelu" , snake_case__ : Dict=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : int=4 , snake_case__ : List[str]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Dict ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , use_stable_embedding=snake_case__ , ) def UpperCamelCase ( self : int , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : str , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : str , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , ) SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Tuple , ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : int , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Union[str, Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , use_cache=snake_case__ , ) SCREAMING_SNAKE_CASE = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCamelCase =(OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCamelCase =( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'single_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'multi_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase ( self : str , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = ids_tensor([1, 1_0] , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) )
673
1
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a_ : int = logging.get_logger(__name__) a_ : List[Any] = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="conditional_detr" __UpperCamelCase =["past_key_values"] __UpperCamelCase ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : int , snake_case__ : Optional[Any]=True , snake_case__ : Optional[int]=None , snake_case__ : Any=3 , snake_case__ : Any=3_0_0 , snake_case__ : Union[str, Any]=6 , snake_case__ : int=2_0_4_8 , snake_case__ : Tuple=8 , snake_case__ : List[Any]=6 , snake_case__ : Union[str, Any]=2_0_4_8 , snake_case__ : str=8 , snake_case__ : List[Any]=0.0 , snake_case__ : Union[str, Any]=0.0 , snake_case__ : int=True , snake_case__ : Tuple="relu" , snake_case__ : List[str]=2_5_6 , snake_case__ : Optional[int]=0.1 , snake_case__ : Tuple=0.0 , snake_case__ : Any=0.0 , snake_case__ : Any=0.02 , snake_case__ : List[str]=1.0 , snake_case__ : int=False , snake_case__ : str="sine" , snake_case__ : Dict="resnet50" , snake_case__ : Tuple=True , snake_case__ : List[Any]=False , snake_case__ : Union[str, Any]=2 , snake_case__ : Union[str, Any]=5 , snake_case__ : Optional[Any]=2 , snake_case__ : Dict=1 , snake_case__ : str=1 , snake_case__ : str=2 , snake_case__ : Any=5 , snake_case__ : Optional[int]=2 , snake_case__ : List[Any]=0.25 , **snake_case__ : List[str] , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) SCREAMING_SNAKE_CASE = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = backbone_config.get('model_type' ) SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE = config_class.from_dict(snake_case__ ) SCREAMING_SNAKE_CASE = use_timm_backbone SCREAMING_SNAKE_CASE = backbone_config SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = num_queries SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = encoder_ffn_dim SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = encoder_attention_heads SCREAMING_SNAKE_CASE = decoder_ffn_dim SCREAMING_SNAKE_CASE = decoder_layers SCREAMING_SNAKE_CASE = decoder_attention_heads SCREAMING_SNAKE_CASE = dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = init_std SCREAMING_SNAKE_CASE = init_xavier_std SCREAMING_SNAKE_CASE = encoder_layerdrop SCREAMING_SNAKE_CASE = decoder_layerdrop SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = auxiliary_loss SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = backbone SCREAMING_SNAKE_CASE = use_pretrained_backbone SCREAMING_SNAKE_CASE = dilation # Hungarian matcher SCREAMING_SNAKE_CASE = class_cost SCREAMING_SNAKE_CASE = bbox_cost SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE = mask_loss_coefficient SCREAMING_SNAKE_CASE = dice_loss_coefficient SCREAMING_SNAKE_CASE = cls_loss_coefficient SCREAMING_SNAKE_CASE = bbox_loss_coefficient SCREAMING_SNAKE_CASE = giou_loss_coefficient SCREAMING_SNAKE_CASE = focal_alpha super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def UpperCamelCase ( self : Tuple ): """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase ( self : Tuple ): """simple docstring""" return self.d_model def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE = self.__class__.model_type return output class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =version.parse("1.11" ) @property def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def UpperCamelCase ( self : Dict ): """simple docstring""" return 1E-5 @property def UpperCamelCase ( self : Any ): """simple docstring""" return 1_2
673
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="openai/whisper-base" __UpperCamelCase =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCamelCase ="transcriber" __UpperCamelCase =WhisperProcessor __UpperCamelCase =WhisperForConditionalGeneration __UpperCamelCase =["audio"] __UpperCamelCase =["text"] def UpperCamelCase ( self : Dict , snake_case__ : Tuple ): """simple docstring""" return self.pre_processor(snake_case__ , return_tensors='pt' ).input_features def UpperCamelCase ( self : Optional[int] , snake_case__ : Tuple ): """simple docstring""" return self.model.generate(inputs=snake_case__ ) def UpperCamelCase ( self : str , snake_case__ : Union[str, Any] ): """simple docstring""" return self.pre_processor.batch_decode(snake_case__ , skip_special_tokens=snake_case__ )[0]
673
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a_ : Optional[Any] = get_logger() a_ : Optional[dict] = None class UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self : Optional[Any] , snake_case__ : List[str]=None , snake_case__ : List[str]=None , **snake_case__ : Tuple ): """simple docstring""" super().__init__(features=snake_case__ ) import jax from jaxlib.xla_client import Device if isinstance(snake_case__ , snake_case__ ): raise ValueError( F"""Expected {device} to be a `str` not {type(snake_case__ )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) SCREAMING_SNAKE_CASE = device if isinstance(snake_case__ , snake_case__ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) SCREAMING_SNAKE_CASE = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE = jnp_array_kwargs @staticmethod def UpperCamelCase ( ): """simple docstring""" import jax return {str(snake_case__ ): device for device in jax.devices()} def UpperCamelCase ( self : List[str] , snake_case__ : Optional[int] ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(snake_case__ , snake_case__ ) and column: if all( isinstance(snake_case__ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(snake_case__ , axis=0 ) return column def UpperCamelCase ( self : Optional[int] , snake_case__ : List[str] ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(snake_case__ , (str, bytes, type(snake_case__ )) ): return value elif isinstance(snake_case__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE = {} if isinstance(snake_case__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE = {'dtype': jnp.intaa} else: SCREAMING_SNAKE_CASE = {'dtype': jnp.intaa} elif isinstance(snake_case__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(snake_case__ , PIL.Image.Image ): SCREAMING_SNAKE_CASE = np.asarray(snake_case__ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(snake_case__ , **{**default_dtype, **self.jnp_array_kwargs} ) def UpperCamelCase ( self : str , snake_case__ : Dict ): """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(snake_case__ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(snake_case__ , '__array__' ) and not isinstance(snake_case__ , jax.Array ): SCREAMING_SNAKE_CASE = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(snake_case__ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(snake_case__ ) for substruct in data_struct] ) elif isinstance(snake_case__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(snake_case__ ) for substruct in data_struct] ) return self._tensorize(snake_case__ ) def UpperCamelCase ( self : str , snake_case__ : dict ): """simple docstring""" return map_nested(self._recursive_tensorize , snake_case__ , map_list=snake_case__ ) def UpperCamelCase ( self : int , snake_case__ : pa.Table ): """simple docstring""" SCREAMING_SNAKE_CASE = self.numpy_arrow_extractor().extract_row(snake_case__ ) SCREAMING_SNAKE_CASE = self.python_features_decoder.decode_row(snake_case__ ) return self.recursive_tensorize(snake_case__ ) def UpperCamelCase ( self : Any , snake_case__ : pa.Table ): """simple docstring""" SCREAMING_SNAKE_CASE = self.numpy_arrow_extractor().extract_column(snake_case__ ) SCREAMING_SNAKE_CASE = self.python_features_decoder.decode_column(snake_case__ , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE = self.recursive_tensorize(snake_case__ ) SCREAMING_SNAKE_CASE = self._consolidate(snake_case__ ) return column def UpperCamelCase ( self : Tuple , snake_case__ : pa.Table ): """simple docstring""" SCREAMING_SNAKE_CASE = self.numpy_arrow_extractor().extract_batch(snake_case__ ) SCREAMING_SNAKE_CASE = self.python_features_decoder.decode_batch(snake_case__ ) SCREAMING_SNAKE_CASE = self.recursive_tensorize(snake_case__ ) for column_name in batch: SCREAMING_SNAKE_CASE = self._consolidate(batch[column_name] ) return batch
673
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version a_ : List[str] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize a_ : Dict = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" a_ : str = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" a_ : int = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def UpperCamelCase ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def UpperCamelCase ( self : Dict , snake_case__ : int ): """simple docstring""" import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : List[Any]=0.9 , snake_case__ : Optional[Any]=3 , snake_case__ : Any=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5' ): SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score( word_tokenize(snake_case__ ) , word_tokenize(snake_case__ ) , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] else: SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score(snake_case__ , snake_case__ , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] return {"meteor": np.mean(snake_case__ )}
673
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : Any = { "configuration_bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys a_ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
673
import numpy as np def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
673
1
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser a_ : int = logging.getLogger(__name__) torch.set_grad_enabled(False) a_ : Any = "cuda" if torch.cuda.is_available() else "cpu" def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : Any=1_00 , _UpperCamelCase : List[Any]=" " ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = text.split(_UpperCamelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase )] def __lowerCAmelCase ( _UpperCamelCase : dict ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], [] for title, text in zip(documents['title'] , documents['text'] ): if text is not None: for passage in split_text(_UpperCamelCase ): titles.append(title if title is not None else '' ) texts.append(_UpperCamelCase ) return {"title": titles, "text": texts} def __lowerCAmelCase ( _UpperCamelCase : dict , _UpperCamelCase : DPRContextEncoder , _UpperCamelCase : DPRContextEncoderTokenizerFast ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE = ctx_tokenizer( documents['title'] , documents['text'] , truncation=_UpperCamelCase , padding='longest' , return_tensors='pt' )['input_ids'] SCREAMING_SNAKE_CASE = ctx_encoder(input_ids.to(device=_UpperCamelCase ) , return_dict=_UpperCamelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCAmelCase ( _UpperCamelCase : "RagExampleArguments" , _UpperCamelCase : "ProcessingArguments" , _UpperCamelCase : "IndexHnswArguments" , ) -> int: '''simple docstring''' logger.info('Step 1 - Create the dataset' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way SCREAMING_SNAKE_CASE = load_dataset( 'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words SCREAMING_SNAKE_CASE = dataset.map(_UpperCamelCase , batched=_UpperCamelCase , num_proc=processing_args.num_proc ) # And compute the embeddings SCREAMING_SNAKE_CASE = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_UpperCamelCase ) SCREAMING_SNAKE_CASE = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) SCREAMING_SNAKE_CASE = Features( {'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space SCREAMING_SNAKE_CASE = dataset.map( partial(_UpperCamelCase , ctx_encoder=_UpperCamelCase , ctx_tokenizer=_UpperCamelCase ) , batched=_UpperCamelCase , batch_size=processing_args.batch_size , features=_UpperCamelCase , ) # And finally save your dataset SCREAMING_SNAKE_CASE = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' ) dataset.save_to_disk(_UpperCamelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search SCREAMING_SNAKE_CASE = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('embeddings' , custom_index=_UpperCamelCase ) # And save the index SCREAMING_SNAKE_CASE = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' ) dataset.get_index('embeddings' ).save(_UpperCamelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class UpperCamelCase : __UpperCamelCase =field( default=str(Path(SCREAMING_SNAKE_CASE ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) __UpperCamelCase =field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) __UpperCamelCase =field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) __UpperCamelCase =field( default=str(Path(SCREAMING_SNAKE_CASE ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class UpperCamelCase : __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) __UpperCamelCase =field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class UpperCamelCase : __UpperCamelCase =field( default=7_68 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) __UpperCamelCase =field( default=1_28 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) a_ : Any = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) a_ , a_ , a_ : int = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: a_ : int = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
673
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ : Any = logging.get_logger(__name__) a_ : Dict = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="van" def __init__( self : Optional[Any] , snake_case__ : Tuple=2_2_4 , snake_case__ : Dict=3 , snake_case__ : Union[str, Any]=[7, 3, 3, 3] , snake_case__ : str=[4, 2, 2, 2] , snake_case__ : Optional[Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , snake_case__ : Optional[Any]=[3, 3, 1_2, 3] , snake_case__ : Tuple=[8, 8, 4, 4] , snake_case__ : Any="gelu" , snake_case__ : Dict=0.02 , snake_case__ : List[str]=1E-6 , snake_case__ : int=1E-2 , snake_case__ : Any=0.0 , snake_case__ : Tuple=0.0 , **snake_case__ : Any , ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_sizes SCREAMING_SNAKE_CASE = strides SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = mlp_ratios SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = dropout_rate
673
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer a_ : int = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} a_ : int = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } a_ : Optional[Any] = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } a_ : Dict = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_INIT_CONFIGURATION __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =ElectraTokenizer def __init__( self : Any , snake_case__ : List[str]=None , snake_case__ : Tuple=None , snake_case__ : str=True , snake_case__ : Tuple="[UNK]" , snake_case__ : Any="[SEP]" , snake_case__ : Any="[PAD]" , snake_case__ : str="[CLS]" , snake_case__ : Optional[int]="[MASK]" , snake_case__ : Optional[Any]=True , snake_case__ : int=None , **snake_case__ : Union[str, Any] , ): """simple docstring""" super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , snake_case__ ) != do_lower_case or normalizer_state.get('strip_accents' , snake_case__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , snake_case__ ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE = getattr(snake_case__ , normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = strip_accents SCREAMING_SNAKE_CASE = tokenize_chinese_chars SCREAMING_SNAKE_CASE = normalizer_class(**snake_case__ ) SCREAMING_SNAKE_CASE = do_lower_case def UpperCamelCase ( self : List[str] , snake_case__ : List[str] , snake_case__ : str=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : List[Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
673
def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : int ) -> list[str]: '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(_UpperCamelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
673
1
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
673
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING a_ : Dict = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : Any , **snake_case__ : Optional[int] ): """simple docstring""" super().__init__(**snake_case__ ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , 'vision' ) self.check_model_type(snake_case__ ) def __call__( self : List[Any] , snake_case__ : Union[str, "Image.Image", List[Dict[str, Any]]] , snake_case__ : Union[str, List[str]] = None , **snake_case__ : Union[str, Any] , ): """simple docstring""" if "text_queries" in kwargs: SCREAMING_SNAKE_CASE = kwargs.pop('text_queries' ) if isinstance(snake_case__ , (str, Image.Image) ): SCREAMING_SNAKE_CASE = {'image': image, 'candidate_labels': candidate_labels} else: SCREAMING_SNAKE_CASE = image SCREAMING_SNAKE_CASE = super().__call__(snake_case__ , **snake_case__ ) return results def UpperCamelCase ( self : Union[str, Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = {} if "threshold" in kwargs: SCREAMING_SNAKE_CASE = kwargs['threshold'] if "top_k" in kwargs: SCREAMING_SNAKE_CASE = kwargs['top_k'] return {}, {}, postprocess_params def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = load_image(inputs['image'] ) SCREAMING_SNAKE_CASE = inputs['candidate_labels'] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = candidate_labels.split(',' ) SCREAMING_SNAKE_CASE = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE = self.tokenizer(snake_case__ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE = self.image_processor(snake_case__ , return_tensors=self.framework ) yield { "is_last": i == len(snake_case__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def UpperCamelCase ( self : Any , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = model_inputs.pop('target_size' ) SCREAMING_SNAKE_CASE = model_inputs.pop('candidate_label' ) SCREAMING_SNAKE_CASE = model_inputs.pop('is_last' ) SCREAMING_SNAKE_CASE = self.model(**snake_case__ ) SCREAMING_SNAKE_CASE = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : str=0.1 , snake_case__ : Union[str, Any]=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: SCREAMING_SNAKE_CASE = model_output['candidate_label'] SCREAMING_SNAKE_CASE = BaseModelOutput(snake_case__ ) SCREAMING_SNAKE_CASE = self.image_processor.post_process_object_detection( outputs=snake_case__ , threshold=snake_case__ , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): SCREAMING_SNAKE_CASE = outputs['scores'][index].item() SCREAMING_SNAKE_CASE = self._get_bounding_box(outputs['boxes'][index][0] ) SCREAMING_SNAKE_CASE = {'score': score, 'label': label, 'box': box} results.append(snake_case__ ) SCREAMING_SNAKE_CASE = sorted(snake_case__ , key=lambda snake_case__ : x["score"] , reverse=snake_case__ ) if top_k: SCREAMING_SNAKE_CASE = results[:top_k] return results def UpperCamelCase ( self : List[Any] , snake_case__ : "torch.Tensor" ): """simple docstring""" if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = box.int().tolist() SCREAMING_SNAKE_CASE = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
673
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =CTRLTokenizer __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] SCREAMING_SNAKE_CASE = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] SCREAMING_SNAKE_CASE = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def UpperCamelCase ( self : List[str] , **snake_case__ : Any ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = 'adapt react readapt apt' SCREAMING_SNAKE_CASE = 'adapt react readapt apt' return input_text, output_text def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE = 'adapt react readapt apt' SCREAMING_SNAKE_CASE = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() SCREAMING_SNAKE_CASE = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ )
673
def __lowerCAmelCase ( _UpperCamelCase : int = 10_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 2**power SCREAMING_SNAKE_CASE = str(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 for i in list_num: sum_of_num += int(_UpperCamelCase ) return sum_of_num if __name__ == "__main__": a_ : List[str] = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) a_ : int = solution(power) print("Sum of the digits is: ", result)
673
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any=0.9_99 , _UpperCamelCase : Optional[Any]="cosine" , ) -> Optional[Any]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCamelCase : int ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCamelCase : str ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) SCREAMING_SNAKE_CASE = [] for i in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = i / num_diffusion_timesteps SCREAMING_SNAKE_CASE = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_UpperCamelCase ) / alpha_bar_fn(_UpperCamelCase ) , _UpperCamelCase ) ) return torch.tensor(_UpperCamelCase , dtype=torch.floataa ) class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase =[e.name for e in KarrasDiffusionSchedulers] __UpperCamelCase =2 @register_to_config def __init__( self : Union[str, Any] , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.00_085 , snake_case__ : float = 0.012 , snake_case__ : str = "linear" , snake_case__ : Optional[Union[np.ndarray, List[float]]] = None , snake_case__ : str = "epsilon" , snake_case__ : Optional[bool] = False , snake_case__ : Optional[bool] = False , snake_case__ : float = 1.0 , snake_case__ : str = "linspace" , snake_case__ : int = 0 , ): """simple docstring""" if trained_betas is not None: SCREAMING_SNAKE_CASE = torch.tensor(snake_case__ , dtype=torch.floataa ) elif beta_schedule == "linear": SCREAMING_SNAKE_CASE = torch.linspace(snake_case__ , snake_case__ , snake_case__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. SCREAMING_SNAKE_CASE = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule SCREAMING_SNAKE_CASE = betas_for_alpha_bar(snake_case__ , alpha_transform_type='cosine' ) elif beta_schedule == "exp": SCREAMING_SNAKE_CASE = betas_for_alpha_bar(snake_case__ , alpha_transform_type='exp' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) SCREAMING_SNAKE_CASE = 1.0 - self.betas SCREAMING_SNAKE_CASE = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = use_karras_sigmas def UpperCamelCase ( self : str , snake_case__ : Dict , snake_case__ : List[Any]=None ): """simple docstring""" if schedule_timesteps is None: SCREAMING_SNAKE_CASE = self.timesteps SCREAMING_SNAKE_CASE = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: SCREAMING_SNAKE_CASE = 1 if len(snake_case__ ) > 1 else 0 else: SCREAMING_SNAKE_CASE = timestep.cpu().item() if torch.is_tensor(snake_case__ ) else timestep SCREAMING_SNAKE_CASE = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase ( self : str ): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase ( self : Union[str, Any] , snake_case__ : torch.FloatTensor , snake_case__ : Union[float, torch.FloatTensor] , ): """simple docstring""" SCREAMING_SNAKE_CASE = self.index_for_timestep(snake_case__ ) SCREAMING_SNAKE_CASE = self.sigmas[step_index] SCREAMING_SNAKE_CASE = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Union[str, torch.device] = None , snake_case__ : Optional[int] = None , ): """simple docstring""" SCREAMING_SNAKE_CASE = num_inference_steps SCREAMING_SNAKE_CASE = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": SCREAMING_SNAKE_CASE = np.linspace(0 , num_train_timesteps - 1 , snake_case__ , dtype=snake_case__ )[::-1].copy() elif self.config.timestep_spacing == "leading": SCREAMING_SNAKE_CASE = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE = (np.arange(0 , snake_case__ ) * step_ratio).round()[::-1].copy().astype(snake_case__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": SCREAMING_SNAKE_CASE = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE = (np.arange(snake_case__ , 0 , -step_ratio )).round().copy().astype(snake_case__ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) SCREAMING_SNAKE_CASE = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) SCREAMING_SNAKE_CASE = np.log(snake_case__ ) SCREAMING_SNAKE_CASE = np.interp(snake_case__ , np.arange(0 , len(snake_case__ ) ) , snake_case__ ) if self.config.use_karras_sigmas: SCREAMING_SNAKE_CASE = self._convert_to_karras(in_sigmas=snake_case__ , num_inference_steps=self.num_inference_steps ) SCREAMING_SNAKE_CASE = np.array([self._sigma_to_t(snake_case__ , snake_case__ ) for sigma in sigmas] ) SCREAMING_SNAKE_CASE = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ).to(device=snake_case__ ) SCREAMING_SNAKE_CASE = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ) SCREAMING_SNAKE_CASE = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(snake_case__ ).startswith('mps' ): # mps does not support float64 SCREAMING_SNAKE_CASE = timesteps.to(snake_case__ , dtype=torch.floataa ) else: SCREAMING_SNAKE_CASE = timesteps.to(device=snake_case__ ) # empty dt and derivative SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter SCREAMING_SNAKE_CASE = defaultdict(snake_case__ ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Any , snake_case__ : int ): """simple docstring""" SCREAMING_SNAKE_CASE = np.log(snake_case__ ) # get distribution SCREAMING_SNAKE_CASE = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range SCREAMING_SNAKE_CASE = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) SCREAMING_SNAKE_CASE = low_idx + 1 SCREAMING_SNAKE_CASE = log_sigmas[low_idx] SCREAMING_SNAKE_CASE = log_sigmas[high_idx] # interpolate sigmas SCREAMING_SNAKE_CASE = (low - log_sigma) / (low - high) SCREAMING_SNAKE_CASE = np.clip(snake_case__ , 0 , 1 ) # transform interpolation to time range SCREAMING_SNAKE_CASE = (1 - w) * low_idx + w * high_idx SCREAMING_SNAKE_CASE = t.reshape(sigma.shape ) return t def UpperCamelCase ( self : List[Any] , snake_case__ : torch.FloatTensor , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = in_sigmas[-1].item() SCREAMING_SNAKE_CASE = in_sigmas[0].item() SCREAMING_SNAKE_CASE = 7.0 # 7.0 is the value used in the paper SCREAMING_SNAKE_CASE = np.linspace(0 , 1 , snake_case__ ) SCREAMING_SNAKE_CASE = sigma_min ** (1 / rho) SCREAMING_SNAKE_CASE = sigma_max ** (1 / rho) SCREAMING_SNAKE_CASE = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def UpperCamelCase ( self : Any ): """simple docstring""" return self.dt is None def UpperCamelCase ( self : List[Any] , snake_case__ : Union[torch.FloatTensor, np.ndarray] , snake_case__ : Union[float, torch.FloatTensor] , snake_case__ : Union[torch.FloatTensor, np.ndarray] , snake_case__ : bool = True , ): """simple docstring""" SCREAMING_SNAKE_CASE = self.index_for_timestep(snake_case__ ) # advance index counter by 1 SCREAMING_SNAKE_CASE = timestep.cpu().item() if torch.is_tensor(snake_case__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: SCREAMING_SNAKE_CASE = self.sigmas[step_index] SCREAMING_SNAKE_CASE = self.sigmas[step_index + 1] else: # 2nd order / Heun's method SCREAMING_SNAKE_CASE = self.sigmas[step_index - 1] SCREAMING_SNAKE_CASE = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE = sigma_hat if self.state_in_first_order else sigma_next SCREAMING_SNAKE_CASE = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": SCREAMING_SNAKE_CASE = sigma_hat if self.state_in_first_order else sigma_next SCREAMING_SNAKE_CASE = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": SCREAMING_SNAKE_CASE = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: SCREAMING_SNAKE_CASE = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order SCREAMING_SNAKE_CASE = (sample - pred_original_sample) / sigma_hat # 3. delta timestep SCREAMING_SNAKE_CASE = sigma_next - sigma_hat # store for 2nd order step SCREAMING_SNAKE_CASE = derivative SCREAMING_SNAKE_CASE = dt SCREAMING_SNAKE_CASE = sample else: # 2. 2nd order / Heun's method SCREAMING_SNAKE_CASE = (sample - pred_original_sample) / sigma_next SCREAMING_SNAKE_CASE = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample SCREAMING_SNAKE_CASE = self.dt SCREAMING_SNAKE_CASE = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case__ ) def UpperCamelCase ( self : Any , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , ): """simple docstring""" SCREAMING_SNAKE_CASE = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case__ ): # mps does not support float64 SCREAMING_SNAKE_CASE = self.timesteps.to(original_samples.device , dtype=torch.floataa ) SCREAMING_SNAKE_CASE = timesteps.to(original_samples.device , dtype=torch.floataa ) else: SCREAMING_SNAKE_CASE = self.timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE = timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE = [self.index_for_timestep(snake_case__ , snake_case__ ) for t in timesteps] SCREAMING_SNAKE_CASE = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): SCREAMING_SNAKE_CASE = sigma.unsqueeze(-1 ) SCREAMING_SNAKE_CASE = original_samples + noise * sigma return noisy_samples def __len__( self : int ): """simple docstring""" return self.config.num_train_timesteps
673
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="facebook/bart-large-mnli" __UpperCamelCase =( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) __UpperCamelCase ="text_classifier" __UpperCamelCase =AutoTokenizer __UpperCamelCase =AutoModelForSequenceClassification __UpperCamelCase =["text", ["text"]] __UpperCamelCase =["text"] def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): SCREAMING_SNAKE_CASE = int(snake_case__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[str] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(snake_case__ ) , [F"""This example is {label}""" for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
673
1
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def __lowerCAmelCase ( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : bool = False ) -> list[float]: '''simple docstring''' if radian_mode: return [magnitude * cos(_UpperCamelCase ), magnitude * sin(_UpperCamelCase )] return [magnitude * cos(radians(_UpperCamelCase ) ), magnitude * sin(radians(_UpperCamelCase ) )] def __lowerCAmelCase ( _UpperCamelCase : NDArray[floataa] , _UpperCamelCase : NDArray[floataa] , _UpperCamelCase : float = 10**-1 ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE = cross(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = sum(_UpperCamelCase ) return abs(_UpperCamelCase ) < eps if __name__ == "__main__": # Test to check if it works a_ : str = array( [ polar_force(7_1_8.4, 180 - 30), polar_force(8_7_9.5_4, 45), polar_force(100, -90), ] ) a_ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg a_ : Tuple = array( [ polar_force(30 * 9.8_1, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) a_ : Optional[int] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg a_ : List[Any] = array([[0, -2000], [0, -1200], [0, 1_5600], [0, -1_2400]]) a_ : str = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
673
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a_ : str = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a_ : int = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.1_5}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names a_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a_ : List[Any] = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a_ : Any = "allenai" def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = dict((re.sub(R'@@$' , '' , _UpperCamelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , _UpperCamelCase ), v) for k, v in d.items() ) SCREAMING_SNAKE_CASE = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] SCREAMING_SNAKE_CASE = d[k] # restore return da def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : List[str] ) -> Dict: '''simple docstring''' assert os.path.exists(_UpperCamelCase ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel SCREAMING_SNAKE_CASE = cls.hub_models() SCREAMING_SNAKE_CASE = {'bpe': 'fastbpe', 'tokenizer': 'moses'} SCREAMING_SNAKE_CASE = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"""using checkpoint {checkpoint_file}""" ) SCREAMING_SNAKE_CASE = hub_utils.from_pretrained( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , archive_map=_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = vars(chkpt['args']['model'] ) SCREAMING_SNAKE_CASE = args['source_lang'] SCREAMING_SNAKE_CASE = args['target_lang'] SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) # dicts SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{src_lang}.txt""" ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{tgt_lang}.txt""" ) SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(src_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-src.json' ) print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab SCREAMING_SNAKE_CASE = True for k in src_vocab.keys(): if not k.islower(): SCREAMING_SNAKE_CASE = False break SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(tgt_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-tgt.json' ) print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # merges_file (bpecodes) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.exists(_UpperCamelCase ): break with open(_UpperCamelCase , encoding='utf-8' ) as fin: SCREAMING_SNAKE_CASE = fin.read() SCREAMING_SNAKE_CASE = re.sub(R' \d+$' , '' , _UpperCamelCase , 0 , re.M ) # remove frequency number print(f"""Generating {merges_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_UpperCamelCase ) # model config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args['bpe']}""" assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args['tokenizer']}""" SCREAMING_SNAKE_CASE = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with SCREAMING_SNAKE_CASE = 5 SCREAMING_SNAKE_CASE = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: SCREAMING_SNAKE_CASE = best_score_hparams[model_dir]['length_penalty'] else: SCREAMING_SNAKE_CASE = 1.0 print(f"""Generating {fsmt_model_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # tokenizer config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = { 'langs': [src_lang, tgt_lang], 'model_max_length': 10_24, 'do_lower_case': do_lower_case, } print(f"""Generating {fsmt_tokenizer_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # model SCREAMING_SNAKE_CASE = chkpt['models'][0] SCREAMING_SNAKE_CASE = model.state_dict() # rename keys to start with 'model.' SCREAMING_SNAKE_CASE = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys SCREAMING_SNAKE_CASE = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTConfig.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTForConditionalGeneration(_UpperCamelCase ) # check that it loads ok model_new.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) # save SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(_UpperCamelCase , _UpperCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f"""cd {data_root}""" ) print(f"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a_ : int = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
673
1