code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase ="hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[Any]=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = np.random.RandomState(snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs() SCREAMING_SNAKE_CASE = pipe(**snake_case__ ).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) SCREAMING_SNAKE_CASE = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) SCREAMING_SNAKE_CASE = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs() SCREAMING_SNAKE_CASE = pipe(**snake_case__ ).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) SCREAMING_SNAKE_CASE = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs() SCREAMING_SNAKE_CASE = pipe(**snake_case__ ).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) SCREAMING_SNAKE_CASE = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) SCREAMING_SNAKE_CASE = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs() SCREAMING_SNAKE_CASE = pipe(**snake_case__ ).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) SCREAMING_SNAKE_CASE = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) SCREAMING_SNAKE_CASE = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs() SCREAMING_SNAKE_CASE = pipe(**snake_case__ ).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) SCREAMING_SNAKE_CASE = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs() SCREAMING_SNAKE_CASE = pipe(**snake_case__ ).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) SCREAMING_SNAKE_CASE = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs() SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.images[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = self.get_dummy_inputs() SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = pipe.tokenizer( snake_case__ , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='np' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'] SCREAMING_SNAKE_CASE = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] SCREAMING_SNAKE_CASE = prompt_embeds # forward SCREAMING_SNAKE_CASE = pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs() SCREAMING_SNAKE_CASE = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE = negative_prompt SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.images[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = self.get_dummy_inputs() SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = [] for p in [prompt, negative_prompt]: SCREAMING_SNAKE_CASE = pipe.tokenizer( snake_case__ , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='np' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = embeds # forward SCREAMING_SNAKE_CASE = pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): @property def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = ort.SessionOptions() SCREAMING_SNAKE_CASE = False return options def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger' np.random.seed(0 ) SCREAMING_SNAKE_CASE = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=1_0 , output_type='np' ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) SCREAMING_SNAKE_CASE = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'open neural network exchange' SCREAMING_SNAKE_CASE = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=1_0 , generator=snake_case__ , output_type='np' ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) SCREAMING_SNAKE_CASE = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'open neural network exchange' SCREAMING_SNAKE_CASE = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=1_0 , generator=snake_case__ , output_type='np' ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) SCREAMING_SNAKE_CASE = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = 0 def test_callback_fn(snake_case__ : int , snake_case__ : int , snake_case__ : np.ndarray ) -> None: SCREAMING_SNAKE_CASE = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 6_4, 6_4) SCREAMING_SNAKE_CASE = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 6_4, 6_4) SCREAMING_SNAKE_CASE = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'Andromeda galaxy in a bottle' SCREAMING_SNAKE_CASE = np.random.RandomState(0 ) pipe( prompt=snake_case__ , num_inference_steps=5 , guidance_scale=7.5 , generator=snake_case__ , callback=snake_case__ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(snake_case__ , snake_case__ ) assert pipe.safety_checker is None SCREAMING_SNAKE_CASE = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained(snake_case__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None SCREAMING_SNAKE_CASE = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None
673
import random def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : float , _UpperCamelCase : bool = False ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE = {i: [] for i in range(_UpperCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_UpperCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_UpperCamelCase ): for j in range(i + 1 , _UpperCamelCase ): if random.random() < probability: graph[i].append(_UpperCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_UpperCamelCase ) return graph def __lowerCAmelCase ( _UpperCamelCase : int ) -> dict: '''simple docstring''' return { i: [j for j in range(_UpperCamelCase ) if i != j] for i in range(_UpperCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
673
1
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class UpperCamelCase ( unittest.TestCase ): __UpperCamelCase =MODEL_FOR_CAUSAL_LM_MAPPING __UpperCamelCase =TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output SCREAMING_SNAKE_CASE = text_generator('This is a test' , do_sample=snake_case__ ) self.assertEqual( snake_case__ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) SCREAMING_SNAKE_CASE = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( snake_case__ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) SCREAMING_SNAKE_CASE = text_generator('This is a test' , do_sample=snake_case__ , num_return_sequences=2 , return_tensors=snake_case__ ) self.assertEqual( snake_case__ , [ {'generated_token_ids': ANY(snake_case__ )}, {'generated_token_ids': ANY(snake_case__ )}, ] , ) SCREAMING_SNAKE_CASE = text_generator.model.config.eos_token_id SCREAMING_SNAKE_CASE = '<pad>' SCREAMING_SNAKE_CASE = text_generator( ['This is a test', 'This is a second test'] , do_sample=snake_case__ , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case__ , ) self.assertEqual( snake_case__ , [ [ {'generated_token_ids': ANY(snake_case__ )}, {'generated_token_ids': ANY(snake_case__ )}, ], [ {'generated_token_ids': ANY(snake_case__ )}, {'generated_token_ids': ANY(snake_case__ )}, ], ] , ) @require_tf def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output SCREAMING_SNAKE_CASE = text_generator('This is a test' , do_sample=snake_case__ ) self.assertEqual( snake_case__ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) SCREAMING_SNAKE_CASE = text_generator(['This is a test', 'This is a second test'] , do_sample=snake_case__ ) self.assertEqual( snake_case__ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def UpperCamelCase ( self : str , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE = TextGenerationPipeline(model=snake_case__ , tokenizer=snake_case__ ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'Hello I believe in' SCREAMING_SNAKE_CASE = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) SCREAMING_SNAKE_CASE = text_generator(snake_case__ ) self.assertEqual( snake_case__ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) SCREAMING_SNAKE_CASE = text_generator(snake_case__ , stop_sequence=' fe' ) self.assertEqual(snake_case__ , [{'generated_text': 'Hello I believe in fe'}] ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = text_generator.model SCREAMING_SNAKE_CASE = text_generator.tokenizer SCREAMING_SNAKE_CASE = text_generator('This is a test' ) self.assertEqual(snake_case__ , [{'generated_text': ANY(snake_case__ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) SCREAMING_SNAKE_CASE = text_generator('This is a test' , return_full_text=snake_case__ ) self.assertEqual(snake_case__ , [{'generated_text': ANY(snake_case__ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) SCREAMING_SNAKE_CASE = pipeline(task='text-generation' , model=snake_case__ , tokenizer=snake_case__ , return_full_text=snake_case__ ) SCREAMING_SNAKE_CASE = text_generator('This is a test' ) self.assertEqual(snake_case__ , [{'generated_text': ANY(snake_case__ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) SCREAMING_SNAKE_CASE = text_generator('This is a test' , return_full_text=snake_case__ ) self.assertEqual(snake_case__ , [{'generated_text': ANY(snake_case__ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) SCREAMING_SNAKE_CASE = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=snake_case__ ) self.assertEqual( snake_case__ , [ [{'generated_text': ANY(snake_case__ )}, {'generated_text': ANY(snake_case__ )}], [{'generated_text': ANY(snake_case__ )}, {'generated_text': ANY(snake_case__ )}], ] , ) if text_generator.tokenizer.pad_token is not None: SCREAMING_SNAKE_CASE = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case__ ) self.assertEqual( snake_case__ , [ [{'generated_text': ANY(snake_case__ )}, {'generated_text': ANY(snake_case__ )}], [{'generated_text': ANY(snake_case__ )}, {'generated_text': ANY(snake_case__ )}], ] , ) with self.assertRaises(snake_case__ ): SCREAMING_SNAKE_CASE = text_generator('test' , return_full_text=snake_case__ , return_text=snake_case__ ) with self.assertRaises(snake_case__ ): SCREAMING_SNAKE_CASE = text_generator('test' , return_full_text=snake_case__ , return_tensors=snake_case__ ) with self.assertRaises(snake_case__ ): SCREAMING_SNAKE_CASE = text_generator('test' , return_text=snake_case__ , return_tensors=snake_case__ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): SCREAMING_SNAKE_CASE = text_generator('' ) self.assertEqual(snake_case__ , [{'generated_text': ANY(snake_case__ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): SCREAMING_SNAKE_CASE = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. SCREAMING_SNAKE_CASE = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 1_0_0_0_0 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 5_0_0 , max_new_tokens=2_0 ) SCREAMING_SNAKE_CASE = text_generator('This is a test' * 5_0_0 , handle_long_generation='hole' , max_new_tokens=2_0 ) # Hole strategy cannot work with self.assertRaises(snake_case__ ): text_generator( 'This is a test' * 5_0_0 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 1_0 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" import torch # Classic `model_kwargs` SCREAMING_SNAKE_CASE = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) SCREAMING_SNAKE_CASE = pipe('This is a test' ) self.assertEqual( snake_case__ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) SCREAMING_SNAKE_CASE = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) SCREAMING_SNAKE_CASE = pipe('This is a test' ) self.assertEqual( snake_case__ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 SCREAMING_SNAKE_CASE = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) SCREAMING_SNAKE_CASE = pipe('This is a test' ) self.assertEqual( snake_case__ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase ( self : List[Any] ): """simple docstring""" import torch SCREAMING_SNAKE_CASE = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase ( self : List[Any] ): """simple docstring""" import torch SCREAMING_SNAKE_CASE = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=snake_case__ , top_p=0.5 ) def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = 'Hello world' SCREAMING_SNAKE_CASE = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": SCREAMING_SNAKE_CASE = logging.get_logger('transformers.generation.tf_utils' ) else: SCREAMING_SNAKE_CASE = logging.get_logger('transformers.generation.utils' ) SCREAMING_SNAKE_CASE = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(snake_case__ ) as cl: SCREAMING_SNAKE_CASE = text_generator(snake_case__ , max_length=1_0 , max_new_tokens=1 ) self.assertIn(snake_case__ , cl.out ) # The user only sets one -> no warning with CaptureLogger(snake_case__ ) as cl: SCREAMING_SNAKE_CASE = text_generator(snake_case__ , max_new_tokens=1 ) self.assertNotIn(snake_case__ , cl.out ) with CaptureLogger(snake_case__ ) as cl: SCREAMING_SNAKE_CASE = text_generator(snake_case__ , max_length=1_0 ) self.assertNotIn(snake_case__ , cl.out )
673
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : def __init__( self : List[str] , snake_case__ : Dict , snake_case__ : Optional[Any]=1_3 , snake_case__ : Union[str, Any]=7 , snake_case__ : List[str]=True , snake_case__ : Any=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=9_9 , snake_case__ : str=3_2 , snake_case__ : Dict=5 , snake_case__ : str=4 , snake_case__ : int=3_7 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Any=0.1 , snake_case__ : Dict=0.1 , snake_case__ : Optional[Any]=5_1_2 , snake_case__ : List[Any]=1_6 , snake_case__ : str=2 , snake_case__ : int=0.02 , snake_case__ : List[str]=3 , snake_case__ : Dict=4 , snake_case__ : str=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def UpperCamelCase ( self : List[str] , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : List[Any] , snake_case__ : str , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : int , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : int , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = NystromformerForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase =( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def UpperCamelCase ( self : List[str] ): """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(snake_case__ )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.4_532, -0.0_936, 0.5_137], [-0.2_676, 0.0_628, 0.6_186], [-0.3_629, -0.1_726, 0.4_716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1E-4 ) ) @slow def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = 'the [MASK] of Belgium is Brussels' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = tokenizer(snake_case__ , return_tensors='pt' ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(encoding.input_ids ).logits SCREAMING_SNAKE_CASE = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case__ ) , 'capital' )
673
1
def __lowerCAmelCase ( _UpperCamelCase : int ) -> bool: '''simple docstring''' if number < 0: raise ValueError('number must not be negative' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
673
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
673
1
def __lowerCAmelCase ( _UpperCamelCase : list[list[int | float]] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = len(matrix[0] ) SCREAMING_SNAKE_CASE = min(_UpperCamelCase , _UpperCamelCase ) for row in range(_UpperCamelCase ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , _UpperCamelCase ): SCREAMING_SNAKE_CASE = matrix[col][row] / matrix[row][row] for i in range(_UpperCamelCase , _UpperCamelCase ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows SCREAMING_SNAKE_CASE = True for i in range(row + 1 , _UpperCamelCase ): if matrix[i][row] != 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = matrix[i], matrix[row] SCREAMING_SNAKE_CASE = False break if reduce: rank -= 1 for i in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
673
import heapq import sys import numpy as np a_ : Optional[int] = tuple[int, int] class UpperCamelCase : def __init__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() def UpperCamelCase ( self : List[Any] ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf' ) def UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.elements ) == 0 def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(snake_case__ ) else: # update # print("update", item) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" if item in self.set: self.set.remove(snake_case__ ) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def UpperCamelCase ( self : str ): """simple docstring""" return self.elements[0][1] def UpperCamelCase ( self : Tuple ): """simple docstring""" ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) self.set.remove(snake_case__ ) return (priority, item) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) return np.linalg.norm(a - b ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Dict: '''simple docstring''' return consistent_heuristic(_UpperCamelCase , _UpperCamelCase ) // t def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[int]: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : int , _UpperCamelCase : TPos , _UpperCamelCase : dict[TPos, float] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = g_function[start] + Wa * heuristics[i](_UpperCamelCase , _UpperCamelCase ) return ans def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = np.chararray((n, n) ) for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = '*' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE = '#' SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = x # print(x) SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[x] SCREAMING_SNAKE_CASE = '-' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: print(_UpperCamelCase , end=' ' ) SCREAMING_SNAKE_CASE = back_pointer[x] print(_UpperCamelCase ) sys.exit() def __lowerCAmelCase ( _UpperCamelCase : TPos ) -> Any: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , ) -> List[Any]: '''simple docstring''' for itera in range(_UpperCamelCase ): open_list[itera].remove_element(_UpperCamelCase ) # print("s", s) # print("j", j) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = s SCREAMING_SNAKE_CASE = (x - 1, y) SCREAMING_SNAKE_CASE = (x + 1, y) SCREAMING_SNAKE_CASE = (x, y + 1) SCREAMING_SNAKE_CASE = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = float('inf' ) if valid(_UpperCamelCase ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE = g_function[s] + 1 SCREAMING_SNAKE_CASE = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCamelCase , key(_UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , _UpperCamelCase ): if key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) <= Wa * key( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ): open_list[j].put( _UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a_ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a_ : List[str] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a_ : Union[str, Any] = make_common_ground() a_ : Tuple = blocks_blk # hyper parameters a_ : Any = 1 a_ : List[str] = 1 a_ : Union[str, Any] = 20 a_ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a_ : int = (0, 0) a_ : Optional[int] = (n - 1, n - 1) a_ : Union[str, Any] = 1 def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos , _UpperCamelCase : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {start: 0, goal: float('inf' )} SCREAMING_SNAKE_CASE = {start: -1, goal: -1} SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() for i in range(_UpperCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , _UpperCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = open_list[i].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_inad.append(_UpperCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE = open_list[0].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_anchor.append(_UpperCamelCase ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_UpperCamelCase ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
673
1
import math def __lowerCAmelCase ( _UpperCamelCase : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowerCAmelCase ( _UpperCamelCase : int = 1_00_01 ) -> int: '''simple docstring''' try: SCREAMING_SNAKE_CASE = int(_UpperCamelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 2 while len(_UpperCamelCase ) < nth: if is_prime(_UpperCamelCase ): primes.append(_UpperCamelCase ) num += 1 else: num += 1 return primes[len(_UpperCamelCase ) - 1] if __name__ == "__main__": print(F"""{solution() = }""")
673
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a_ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : str = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Any=8 ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=5_12 , _UpperCamelCase : Union[str, Any]=5_12 ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) SCREAMING_SNAKE_CASE = np.array(pil_image.convert('RGB' ) ) SCREAMING_SNAKE_CASE = arr.astype(np.floataa ) / 1_27.5 - 1 SCREAMING_SNAKE_CASE = np.transpose(_UpperCamelCase , [2, 0, 1] ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : int , snake_case__ : UNetaDConditionModel , snake_case__ : DDPMScheduler , snake_case__ : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , ) SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase ( self : Any , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = min(int(num_inference_steps * strength ) , snake_case__ ) SCREAMING_SNAKE_CASE = max(num_inference_steps - init_timestep , 0 ) SCREAMING_SNAKE_CASE = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase ( self : List[str] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : str=None ): """simple docstring""" if not isinstance(snake_case__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case__ )}""" ) SCREAMING_SNAKE_CASE = image.to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = batch_size * num_images_per_prompt if image.shape[1] == 4: SCREAMING_SNAKE_CASE = image else: if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case__ ) ] SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) else: SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ ).latent_dist.sample(snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.config.scaling_factor * init_latents SCREAMING_SNAKE_CASE = torch.cat([init_latents] , dim=0 ) SCREAMING_SNAKE_CASE = init_latents.shape SCREAMING_SNAKE_CASE = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) # get latents SCREAMING_SNAKE_CASE = self.scheduler.add_noise(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = init_latents return latents def UpperCamelCase ( self : int , snake_case__ : List[str]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) SCREAMING_SNAKE_CASE = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[int]=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=snake_case__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase ( self : Dict ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case__ ) def __call__( self : str , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : int = 5_1_2 , snake_case__ : int = 5_1_2 , snake_case__ : int = 1_0_0 , snake_case__ : float = 4.0 , snake_case__ : float = 0.3 , snake_case__ : int = 1 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , ): """simple docstring""" SCREAMING_SNAKE_CASE = self._execution_device SCREAMING_SNAKE_CASE = guidance_scale > 1.0 if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = image_embeds.shape[0] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [image] if not all(isinstance(snake_case__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(snake_case__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) SCREAMING_SNAKE_CASE = torch.cat([prepare_image(snake_case__ , snake_case__ , snake_case__ ) for i in image] , dim=0 ) SCREAMING_SNAKE_CASE = image.to(dtype=image_embeds.dtype , device=snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ )['latents'] SCREAMING_SNAKE_CASE = latents.repeat_interleave(snake_case__ , dim=0 ) self.scheduler.set_timesteps(snake_case__ , device=snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_timesteps(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = timesteps[:1].repeat(batch_size * num_images_per_prompt ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = downscale_height_and_width(snake_case__ , snake_case__ , self.movq_scale_factor ) SCREAMING_SNAKE_CASE = self.prepare_latents( snake_case__ , snake_case__ , snake_case__ , snake_case__ , image_embeds.dtype , snake_case__ , snake_case__ ) for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE = {'image_embeds': image_embeds} SCREAMING_SNAKE_CASE = self.unet( sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , )[0] # post-processing SCREAMING_SNAKE_CASE = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
673
1
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCamelCase ( unittest.TestCase ): def __init__( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : str=1_3 , snake_case__ : Dict=7 , snake_case__ : Any=True , snake_case__ : List[str]=True , snake_case__ : List[str]=True , snake_case__ : Tuple=True , snake_case__ : str=9_9 , snake_case__ : Dict=3_2 , snake_case__ : Any=5 , snake_case__ : List[Any]=4 , snake_case__ : Tuple=3_7 , snake_case__ : List[Any]="gelu" , snake_case__ : str=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : int=5_1_2 , snake_case__ : int=1_6 , snake_case__ : List[str]=2 , snake_case__ : str=0.02 , snake_case__ : List[str]=4 , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_attention_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_choices def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_attention_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = FlaxAlbertModelTester(self ) @slow def UpperCamelCase ( self : int ): """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class_name.from_pretrained('albert-base-v2' ) SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case__ ) @require_flax class UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = FlaxAlbertModel.from_pretrained('albert-base-v2' ) SCREAMING_SNAKE_CASE = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) SCREAMING_SNAKE_CASE = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ )[0] SCREAMING_SNAKE_CASE = (1, 1_1, 7_6_8) self.assertEqual(output.shape , snake_case__ ) SCREAMING_SNAKE_CASE = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1E-4 ) )
673
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() a_ : List[Any] = logging.get_logger("transformers.models.speecht5") def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Dict: '''simple docstring''' hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Any=None , _UpperCamelCase : List[str]=None , ) -> Tuple: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig.from_pretrained(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE = SpeechTaHifiGan(_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = np.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() model.save_pretrained(_UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) a_ : Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
673
1
def __lowerCAmelCase ( _UpperCamelCase : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [0] * len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [1] * len(_UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCamelCase ) ): if indegree[i] == 0: queue.append(_UpperCamelCase ) while queue: SCREAMING_SNAKE_CASE = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: SCREAMING_SNAKE_CASE = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_UpperCamelCase ) print(max(_UpperCamelCase ) ) # Adjacency list of Graph a_ : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
673
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a_ : Optional[int] = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } a_ : List[Any] = { "allenai/led-base-16384": 1_6384, } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =LEDTokenizer __UpperCamelCase =["input_ids", "attention_mask"] def __init__( self : Tuple , snake_case__ : List[Any]=None , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : Dict="replace" , snake_case__ : Tuple="<s>" , snake_case__ : Optional[Any]="</s>" , snake_case__ : int="</s>" , snake_case__ : Dict="<s>" , snake_case__ : Union[str, Any]="<unk>" , snake_case__ : Optional[int]="<pad>" , snake_case__ : List[str]="<mask>" , snake_case__ : List[Any]=False , snake_case__ : int=True , **snake_case__ : Dict , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(snake_case__ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**snake_case__ ) SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE = 'post_processor' SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state['cls'] ) SCREAMING_SNAKE_CASE = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(snake_case__ , state.pop('type' ) ) SCREAMING_SNAKE_CASE = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase ( self : List[Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value SCREAMING_SNAKE_CASE = value def UpperCamelCase ( self : Dict , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[str] , *snake_case__ : List[Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Tuple=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self : Optional[Any] , snake_case__ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case__ : Optional[int] = None , snake_case__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , ): """simple docstring""" SCREAMING_SNAKE_CASE = super()._pad( encoded_inputs=snake_case__ , max_length=snake_case__ , padding_strategy=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE = len(encoded_inputs['global_attention_mask'] ) != len(snake_case__ ) if needs_to_be_padded: SCREAMING_SNAKE_CASE = len(snake_case__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
673
1
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a_ : Optional[int] = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } a_ : List[Any] = { "allenai/led-base-16384": 1_6384, } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =LEDTokenizer __UpperCamelCase =["input_ids", "attention_mask"] def __init__( self : Tuple , snake_case__ : List[Any]=None , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : Dict="replace" , snake_case__ : Tuple="<s>" , snake_case__ : Optional[Any]="</s>" , snake_case__ : int="</s>" , snake_case__ : Dict="<s>" , snake_case__ : Union[str, Any]="<unk>" , snake_case__ : Optional[int]="<pad>" , snake_case__ : List[str]="<mask>" , snake_case__ : List[Any]=False , snake_case__ : int=True , **snake_case__ : Dict , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(snake_case__ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**snake_case__ ) SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE = 'post_processor' SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state['cls'] ) SCREAMING_SNAKE_CASE = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(snake_case__ , state.pop('type' ) ) SCREAMING_SNAKE_CASE = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase ( self : List[Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value SCREAMING_SNAKE_CASE = value def UpperCamelCase ( self : Dict , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[str] , *snake_case__ : List[Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Tuple=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self : Optional[Any] , snake_case__ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case__ : Optional[int] = None , snake_case__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , ): """simple docstring""" SCREAMING_SNAKE_CASE = super()._pad( encoded_inputs=snake_case__ , max_length=snake_case__ , padding_strategy=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE = len(encoded_inputs['global_attention_mask'] ) != len(snake_case__ ) if needs_to_be_padded: SCREAMING_SNAKE_CASE = len(snake_case__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
673
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __lowerCAmelCase ( *_UpperCamelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(_UpperCamelCase , 'r' ) as fh: fcntl.flock(_UpperCamelCase , fcntl.LOCK_EX ) try: print(*_UpperCamelCase ) finally: fcntl.flock(_UpperCamelCase , fcntl.LOCK_UN ) a_ : int = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) a_ : str = torch.device("cuda", local_rank) a_ : Optional[int] = socket.gethostname() a_ : Union[str, Any] = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank a_ : Dict = dist.get_rank() a_ : Any = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
673
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a_ : Optional[Any] = logging.get_logger(__name__) a_ : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} a_ : Optional[int] = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } a_ : List[str] = {"mobilebert-uncased": 512} a_ : Dict = {} class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_INIT_CONFIGURATION __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =MobileBertTokenizer def __init__( self : Any , snake_case__ : int=None , snake_case__ : Optional[Any]=None , snake_case__ : Optional[int]=True , snake_case__ : List[str]="[UNK]" , snake_case__ : Optional[int]="[SEP]" , snake_case__ : Any="[PAD]" , snake_case__ : str="[CLS]" , snake_case__ : Any="[MASK]" , snake_case__ : Any=True , snake_case__ : List[Any]=None , **snake_case__ : Union[str, Any] , ): """simple docstring""" super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , snake_case__ ) != do_lower_case or normalizer_state.get('strip_accents' , snake_case__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , snake_case__ ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE = getattr(snake_case__ , normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = strip_accents SCREAMING_SNAKE_CASE = tokenize_chinese_chars SCREAMING_SNAKE_CASE = normalizer_class(**snake_case__ ) SCREAMING_SNAKE_CASE = do_lower_case def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : List[str]=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : int , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
673
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a_ : Optional[Any] = logging.get_logger(__name__) a_ : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } a_ : Union[str, Any] = {"allegro/herbert-base-cased": 514} a_ : List[Any] = {} class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_INIT_CONFIGURATION __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =HerbertTokenizer def __init__( self : Tuple , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : Optional[int]=None , snake_case__ : str="<s>" , snake_case__ : Tuple="<unk>" , snake_case__ : List[str]="<pad>" , snake_case__ : Tuple="<mask>" , snake_case__ : Dict="</s>" , **snake_case__ : List[str] , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sep_token=snake_case__ , **snake_case__ , ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
673
1
def __lowerCAmelCase ( _UpperCamelCase : int = 1_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
673
def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 while n > 0: res += n % 10 n //= 10 return res def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return sum(int(_UpperCamelCase ) for c in str(abs(_UpperCamelCase ) ) ) def __lowerCAmelCase ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_UpperCamelCase : Callable , _UpperCamelCase : int ) -> None: SCREAMING_SNAKE_CASE = f"""{func.__name__}({value})""" SCREAMING_SNAKE_CASE = timeit(f"""__main__.{call}""" , setup='import __main__' ) print(f"""{call:56} = {func(_UpperCamelCase )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_UpperCamelCase , _UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
673
1
import sys a_ : Tuple = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def __lowerCAmelCase ( _UpperCamelCase : str ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 1 for digit in s: product *= int(_UpperCamelCase ) return product def __lowerCAmelCase ( _UpperCamelCase : str = N ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = -sys.maxsize - 1 SCREAMING_SNAKE_CASE = n[:13] SCREAMING_SNAKE_CASE = 13 while cur_index < len(_UpperCamelCase ) - 13: if int(n[cur_index] ) >= int(substr[0] ): SCREAMING_SNAKE_CASE = substr[1:] + n[cur_index] cur_index += 1 else: SCREAMING_SNAKE_CASE = max(_UpperCamelCase , str_eval(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
673
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
673
1
def __lowerCAmelCase ( _UpperCamelCase : int ) -> list: '''simple docstring''' SCREAMING_SNAKE_CASE = int(_UpperCamelCase ) if n_element < 1: SCREAMING_SNAKE_CASE = ValueError('a should be a positive number' ) raise my_error SCREAMING_SNAKE_CASE = [1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = (0, 0, 0) SCREAMING_SNAKE_CASE = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": a_ : Dict = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") a_ : Any = hamming(int(n)) print("-----------------------------------------------------") print(F"""The list with nth numbers is: {hamming_numbers}""") print("-----------------------------------------------------")
673
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =AudioLDMPipeline __UpperCamelCase =TEXT_TO_AUDIO_PARAMS __UpperCamelCase =TEXT_TO_AUDIO_BATCH_PARAMS __UpperCamelCase =frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(3_2, 6_4) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=snake_case__ , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) SCREAMING_SNAKE_CASE = ClapTextModelWithProjection(snake_case__ ) SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=7_7 ) SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=snake_case__ , ) SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def UpperCamelCase ( self : Optional[int] , snake_case__ : int , snake_case__ : int=0 ): """simple docstring""" if str(snake_case__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(snake_case__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) SCREAMING_SNAKE_CASE = prompt_embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE = negative_prompt SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = [] for p in [prompt, negative_prompt]: SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = text_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) embeds.append(snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 'egg cracking' SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ , negative_prompt=snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config.sampling_rate SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.016 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.016 SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.032 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.032 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = ['hey'] SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape assert audio_shape == (1, 2_5_6) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config config.model_in_dim *= 2 SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ).to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def UpperCamelCase ( self : Tuple ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=snake_case__ ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase ( self : Dict ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case__ ) @slow class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : int , snake_case__ : int , snake_case__ : Tuple="cpu" , snake_case__ : List[str]=torch.floataa , snake_case__ : Optional[Any]=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = np.random.RandomState(snake_case__ ).standard_normal((1, 8, 1_2_8, 1_6) ) SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 2_5 SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[7_7_2_3_0:7_7_2_4_0] SCREAMING_SNAKE_CASE = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[2_7_7_8_0:2_7_7_9_0] SCREAMING_SNAKE_CASE = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
673
1
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __lowerCAmelCase ( ) -> List[Any]: '''simple docstring''' raise RuntimeError('CUDA out of memory.' ) class UpperCamelCase ( nn.Module ): def __init__( self : Any ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE = nn.Linear(4 , 5 ) def UpperCamelCase ( self : Any , snake_case__ : str ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(snake_case__ ) ) ) class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(snake_case__ : int ): nonlocal batch_sizes batch_sizes.append(snake_case__ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(snake_case__ , [1_2_8, 6_4, 3_2, 1_6, 8] ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(snake_case__ : Union[str, Any] , snake_case__ : Any ): nonlocal batch_sizes batch_sizes.append(snake_case__ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = mock_training_loop_function('hello' ) self.assertListEqual(snake_case__ , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(snake_case__ : Union[str, Any] ): pass with self.assertRaises(snake_case__ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase ( self : int ): """simple docstring""" @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(snake_case__ : Union[str, Any] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(snake_case__ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase ( self : int ): """simple docstring""" @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(snake_case__ : int , snake_case__ : Tuple , snake_case__ : Tuple ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(snake_case__ ) as cm: mock_training_loop_function(1_2_8 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(snake_case__ : Dict ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(snake_case__ ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , snake_case__ ) SCREAMING_SNAKE_CASE = release_memory(snake_case__ ) self.assertEqual(torch.cuda.memory_allocated() , snake_case__ )
673
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase : def __init__( self : Dict , snake_case__ : str , snake_case__ : str=1_3 , snake_case__ : Tuple=7 , snake_case__ : Tuple=True , snake_case__ : Tuple=True , snake_case__ : List[str]=False , snake_case__ : Any=True , snake_case__ : Union[str, Any]=9_9 , snake_case__ : Dict=3_2 , snake_case__ : Optional[Any]=5 , snake_case__ : Optional[Any]=4 , snake_case__ : Union[str, Any]=3_7 , snake_case__ : Tuple="gelu" , snake_case__ : Dict=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : int=4 , snake_case__ : List[str]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Dict ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , use_stable_embedding=snake_case__ , ) def UpperCamelCase ( self : int , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : str , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : str , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , ) SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Tuple , ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : int , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Union[str, Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , use_cache=snake_case__ , ) SCREAMING_SNAKE_CASE = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCamelCase =(OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCamelCase =( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'single_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'multi_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase ( self : str , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = ids_tensor([1, 1_0] , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) )
673
1
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE ): @require_torch def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(snake_case__ ) BertModel.from_pretrained(snake_case__ ) BertTokenizer.from_pretrained(snake_case__ ) pipeline(task='fill-mask' , model=snake_case__ ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE = '1' SCREAMING_SNAKE_CASE = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(snake_case__ ) BertModel.from_pretrained(snake_case__ ) BertTokenizer.from_pretrained(snake_case__ ) pipeline(task='fill-mask' , model=snake_case__ ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE = self.get_env() SCREAMING_SNAKE_CASE = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' SCREAMING_SNAKE_CASE = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE = self.get_env() SCREAMING_SNAKE_CASE = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network SCREAMING_SNAKE_CASE = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE = '1' SCREAMING_SNAKE_CASE = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = '\nfrom transformers import pipeline\n ' SCREAMING_SNAKE_CASE = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' SCREAMING_SNAKE_CASE = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' SCREAMING_SNAKE_CASE = self.get_env() SCREAMING_SNAKE_CASE = '1' SCREAMING_SNAKE_CASE = [sys.executable, '-c', '\n'.join([load, mock, run] )] SCREAMING_SNAKE_CASE = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = '\nfrom transformers import AutoModel\n ' SCREAMING_SNAKE_CASE = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE = self.get_env() SCREAMING_SNAKE_CASE = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE = '1' SCREAMING_SNAKE_CASE = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
673
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="openai/whisper-base" __UpperCamelCase =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCamelCase ="transcriber" __UpperCamelCase =WhisperProcessor __UpperCamelCase =WhisperForConditionalGeneration __UpperCamelCase =["audio"] __UpperCamelCase =["text"] def UpperCamelCase ( self : Dict , snake_case__ : Tuple ): """simple docstring""" return self.pre_processor(snake_case__ , return_tensors='pt' ).input_features def UpperCamelCase ( self : Optional[int] , snake_case__ : Tuple ): """simple docstring""" return self.model.generate(inputs=snake_case__ ) def UpperCamelCase ( self : str , snake_case__ : Union[str, Any] ): """simple docstring""" return self.pre_processor.batch_decode(snake_case__ , skip_special_tokens=snake_case__ )[0]
673
1
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 a_ : Optional[Any] = get_tests_dir("fixtures/dummy-config.json") class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 0 def UpperCamelCase ( self : Any ): """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('transformers.models.auto' ) ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained('bert-base-uncased' ) self.assertIsInstance(snake_case__ , snake_case__ ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = AutoConfig.for_model('roberta' ) self.assertIsInstance(snake_case__ , snake_case__ ) def UpperCamelCase ( self : Dict ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. SCREAMING_SNAKE_CASE = os.path.join(snake_case__ , 'fake-roberta' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) with open(os.path.join(snake_case__ , 'config.json' ) , 'w' ) as f: f.write(json.dumps({} ) ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(type(snake_case__ ) , snake_case__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" try: AutoConfig.register('custom' , snake_case__ ) # Wrong model type will raise an error with self.assertRaises(snake_case__ ): AutoConfig.register('model' , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoConfig.register('bert' , snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def UpperCamelCase ( self : List[Any] ): """simple docstring""" with self.assertRaisesRegex( snake_case__ , 'bert-base is not a local folder and is not a valid model identifier' ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained('bert-base' ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( snake_case__ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(snake_case__ , revision='aaaaaa' ) def UpperCamelCase ( self : Any ): """simple docstring""" with self.assertRaisesRegex( snake_case__ , 'hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.' , ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained('hf-internal-testing/no-config-test-repo' ) def UpperCamelCase ( self : List[str] ): """simple docstring""" with self.assertRaises(snake_case__ ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=snake_case__ ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=snake_case__ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(snake_case__ , trust_remote_code=snake_case__ ) self.assertEqual(reloaded_config.__class__.__name__ , 'NewModelConfig' ) def UpperCamelCase ( self : Dict ): """simple docstring""" class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="new-model" try: AutoConfig.register('new-model' , snake_case__ ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=snake_case__ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=snake_case__ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
673
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version a_ : List[str] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize a_ : Dict = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" a_ : str = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" a_ : int = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def UpperCamelCase ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def UpperCamelCase ( self : Dict , snake_case__ : int ): """simple docstring""" import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : List[Any]=0.9 , snake_case__ : Optional[Any]=3 , snake_case__ : Any=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5' ): SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score( word_tokenize(snake_case__ ) , word_tokenize(snake_case__ ) , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] else: SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score(snake_case__ , snake_case__ , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] return {"meteor": np.mean(snake_case__ )}
673
1
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __lowerCAmelCase ( *_UpperCamelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(_UpperCamelCase , 'r' ) as fh: fcntl.flock(_UpperCamelCase , fcntl.LOCK_EX ) try: print(*_UpperCamelCase ) finally: fcntl.flock(_UpperCamelCase , fcntl.LOCK_UN ) a_ : int = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) a_ : str = torch.device("cuda", local_rank) a_ : Optional[int] = socket.gethostname() a_ : Union[str, Any] = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank a_ : Dict = dist.get_rank() a_ : Any = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
673
import numpy as np def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
673
1
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() a_ : Dict = logging.get_logger(__name__) a_ : Any = "The Nymphenburg Palace is a beautiful palace in Munich!" def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 10_24, 'hidden_size': 7_68, 'max_length': 5_12, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 10_24, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1e-5, 'token_type_vocab_size': 2, } SCREAMING_SNAKE_CASE = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py SCREAMING_SNAKE_CASE = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=_UpperCamelCase , output_all_encodings=_UpperCamelCase , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , _UpperCamelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later SCREAMING_SNAKE_CASE = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab SCREAMING_SNAKE_CASE = os.path.join(get_home_dir() , 'models' ) SCREAMING_SNAKE_CASE = _load_vocab(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , cls=_UpperCamelCase ) SCREAMING_SNAKE_CASE = nlp.model.BERTModel( _UpperCamelCase , len(_UpperCamelCase ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=_UpperCamelCase , use_token_type_embed=_UpperCamelCase , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=_UpperCamelCase , use_decoder=_UpperCamelCase , ) original_bort.load_parameters(_UpperCamelCase , cast_dtype=_UpperCamelCase , ignore_extra=_UpperCamelCase ) SCREAMING_SNAKE_CASE = original_bort._collect_params_with_prefix() # Build our config 🤗 SCREAMING_SNAKE_CASE = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(_UpperCamelCase ), } SCREAMING_SNAKE_CASE = BertConfig.from_dict(_UpperCamelCase ) SCREAMING_SNAKE_CASE = BertForMaskedLM(_UpperCamelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(_UpperCamelCase : Union[str, Any] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(_UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = hf_param.shape SCREAMING_SNAKE_CASE = to_torch(params[gluon_param] ) SCREAMING_SNAKE_CASE = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param SCREAMING_SNAKE_CASE = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) SCREAMING_SNAKE_CASE = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) SCREAMING_SNAKE_CASE = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) SCREAMING_SNAKE_CASE = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) SCREAMING_SNAKE_CASE = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): SCREAMING_SNAKE_CASE = hf_bort_model.bert.encoder.layer[i] # self attention SCREAMING_SNAKE_CASE = layer.attention.self SCREAMING_SNAKE_CASE = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) SCREAMING_SNAKE_CASE = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) SCREAMING_SNAKE_CASE = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) SCREAMING_SNAKE_CASE = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) SCREAMING_SNAKE_CASE = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) SCREAMING_SNAKE_CASE = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output SCREAMING_SNAKE_CASE = layer.attention.output SCREAMING_SNAKE_CASE = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) SCREAMING_SNAKE_CASE = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) SCREAMING_SNAKE_CASE = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) SCREAMING_SNAKE_CASE = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate SCREAMING_SNAKE_CASE = layer.intermediate SCREAMING_SNAKE_CASE = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) SCREAMING_SNAKE_CASE = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output SCREAMING_SNAKE_CASE = layer.output SCREAMING_SNAKE_CASE = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) SCREAMING_SNAKE_CASE = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) SCREAMING_SNAKE_CASE = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) SCREAMING_SNAKE_CASE = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained('roberta-base' ) SCREAMING_SNAKE_CASE = tokenizer.encode_plus(_UpperCamelCase )['input_ids'] # Get gluon output SCREAMING_SNAKE_CASE = mx.nd.array([input_ids] ) SCREAMING_SNAKE_CASE = original_bort(inputs=_UpperCamelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = BertModel.from_pretrained(_UpperCamelCase ) hf_bort_model.eval() SCREAMING_SNAKE_CASE = tokenizer.encode_plus(_UpperCamelCase , return_tensors='pt' ) SCREAMING_SNAKE_CASE = hf_bort_model(**_UpperCamelCase )[0] SCREAMING_SNAKE_CASE = output_gluon[0].asnumpy() SCREAMING_SNAKE_CASE = output_hf[0].detach().numpy() SCREAMING_SNAKE_CASE = np.max(np.abs(hf_layer - gluon_layer ) ).item() SCREAMING_SNAKE_CASE = np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , _UpperCamelCase ) if __name__ == "__main__": a_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a_ : Any = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
673
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ : Any = logging.get_logger(__name__) a_ : Dict = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="van" def __init__( self : Optional[Any] , snake_case__ : Tuple=2_2_4 , snake_case__ : Dict=3 , snake_case__ : Union[str, Any]=[7, 3, 3, 3] , snake_case__ : str=[4, 2, 2, 2] , snake_case__ : Optional[Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , snake_case__ : Optional[Any]=[3, 3, 1_2, 3] , snake_case__ : Tuple=[8, 8, 4, 4] , snake_case__ : Any="gelu" , snake_case__ : Dict=0.02 , snake_case__ : List[str]=1E-6 , snake_case__ : int=1E-2 , snake_case__ : Any=0.0 , snake_case__ : Tuple=0.0 , **snake_case__ : Any , ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_sizes SCREAMING_SNAKE_CASE = strides SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = mlp_ratios SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = dropout_rate
673
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ : Union[str, Any] = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : str = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
673
def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : int ) -> list[str]: '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(_UpperCamelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
673
1
import math def __lowerCAmelCase ( _UpperCamelCase : int ) -> bool: '''simple docstring''' return math.sqrt(_UpperCamelCase ) * math.sqrt(_UpperCamelCase ) == num def __lowerCAmelCase ( _UpperCamelCase : int ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = n while left <= right: SCREAMING_SNAKE_CASE = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: SCREAMING_SNAKE_CASE = mid - 1 else: SCREAMING_SNAKE_CASE = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
673
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING a_ : Dict = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : Any , **snake_case__ : Optional[int] ): """simple docstring""" super().__init__(**snake_case__ ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , 'vision' ) self.check_model_type(snake_case__ ) def __call__( self : List[Any] , snake_case__ : Union[str, "Image.Image", List[Dict[str, Any]]] , snake_case__ : Union[str, List[str]] = None , **snake_case__ : Union[str, Any] , ): """simple docstring""" if "text_queries" in kwargs: SCREAMING_SNAKE_CASE = kwargs.pop('text_queries' ) if isinstance(snake_case__ , (str, Image.Image) ): SCREAMING_SNAKE_CASE = {'image': image, 'candidate_labels': candidate_labels} else: SCREAMING_SNAKE_CASE = image SCREAMING_SNAKE_CASE = super().__call__(snake_case__ , **snake_case__ ) return results def UpperCamelCase ( self : Union[str, Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = {} if "threshold" in kwargs: SCREAMING_SNAKE_CASE = kwargs['threshold'] if "top_k" in kwargs: SCREAMING_SNAKE_CASE = kwargs['top_k'] return {}, {}, postprocess_params def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = load_image(inputs['image'] ) SCREAMING_SNAKE_CASE = inputs['candidate_labels'] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = candidate_labels.split(',' ) SCREAMING_SNAKE_CASE = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE = self.tokenizer(snake_case__ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE = self.image_processor(snake_case__ , return_tensors=self.framework ) yield { "is_last": i == len(snake_case__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def UpperCamelCase ( self : Any , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = model_inputs.pop('target_size' ) SCREAMING_SNAKE_CASE = model_inputs.pop('candidate_label' ) SCREAMING_SNAKE_CASE = model_inputs.pop('is_last' ) SCREAMING_SNAKE_CASE = self.model(**snake_case__ ) SCREAMING_SNAKE_CASE = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : str=0.1 , snake_case__ : Union[str, Any]=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: SCREAMING_SNAKE_CASE = model_output['candidate_label'] SCREAMING_SNAKE_CASE = BaseModelOutput(snake_case__ ) SCREAMING_SNAKE_CASE = self.image_processor.post_process_object_detection( outputs=snake_case__ , threshold=snake_case__ , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): SCREAMING_SNAKE_CASE = outputs['scores'][index].item() SCREAMING_SNAKE_CASE = self._get_bounding_box(outputs['boxes'][index][0] ) SCREAMING_SNAKE_CASE = {'score': score, 'label': label, 'box': box} results.append(snake_case__ ) SCREAMING_SNAKE_CASE = sorted(snake_case__ , key=lambda snake_case__ : x["score"] , reverse=snake_case__ ) if top_k: SCREAMING_SNAKE_CASE = results[:top_k] return results def UpperCamelCase ( self : List[Any] , snake_case__ : "torch.Tensor" ): """simple docstring""" if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = box.int().tolist() SCREAMING_SNAKE_CASE = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
673
1
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> str: '''simple docstring''' if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path SCREAMING_SNAKE_CASE = quote(_UpperCamelCase ) return hfh.hf_hub_url(_UpperCamelCase , _UpperCamelCase , repo_type='dataset' , revision=_UpperCamelCase )
673
def __lowerCAmelCase ( _UpperCamelCase : int = 10_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 2**power SCREAMING_SNAKE_CASE = str(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 for i in list_num: sum_of_num += int(_UpperCamelCase ) return sum_of_num if __name__ == "__main__": a_ : List[str] = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) a_ : int = solution(power) print("Sum of the digits is: ", result)
673
1
import operator def __lowerCAmelCase ( _UpperCamelCase : list , _UpperCamelCase : bool = False , _UpperCamelCase : list | None = None ) -> list: '''simple docstring''' SCREAMING_SNAKE_CASE = operator.lt if reverse else operator.gt SCREAMING_SNAKE_CASE = solution or [] if not arr: return solution SCREAMING_SNAKE_CASE = [arr.pop(0 )] for i, item in enumerate(_UpperCamelCase ): if _operator(_UpperCamelCase , sublist[-1] ): sublist.append(_UpperCamelCase ) arr.pop(_UpperCamelCase ) # merging sublist into solution list if not solution: solution.extend(_UpperCamelCase ) else: while sublist: SCREAMING_SNAKE_CASE = sublist.pop(0 ) for i, xx in enumerate(_UpperCamelCase ): if not _operator(_UpperCamelCase , _UpperCamelCase ): solution.insert(_UpperCamelCase , _UpperCamelCase ) break else: solution.append(_UpperCamelCase ) strand_sort(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
673
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="facebook/bart-large-mnli" __UpperCamelCase =( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) __UpperCamelCase ="text_classifier" __UpperCamelCase =AutoTokenizer __UpperCamelCase =AutoModelForSequenceClassification __UpperCamelCase =["text", ["text"]] __UpperCamelCase =["text"] def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): SCREAMING_SNAKE_CASE = int(snake_case__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[str] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(snake_case__ ) , [F"""This example is {label}""" for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
673
1
def __lowerCAmelCase ( _UpperCamelCase : int = 10_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 2**power SCREAMING_SNAKE_CASE = str(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 for i in list_num: sum_of_num += int(_UpperCamelCase ) return sum_of_num if __name__ == "__main__": a_ : List[str] = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) a_ : int = solution(power) print("Sum of the digits is: ", result)
673
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a_ : str = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a_ : int = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.1_5}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names a_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a_ : List[Any] = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a_ : Any = "allenai" def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = dict((re.sub(R'@@$' , '' , _UpperCamelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , _UpperCamelCase ), v) for k, v in d.items() ) SCREAMING_SNAKE_CASE = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] SCREAMING_SNAKE_CASE = d[k] # restore return da def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : List[str] ) -> Dict: '''simple docstring''' assert os.path.exists(_UpperCamelCase ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel SCREAMING_SNAKE_CASE = cls.hub_models() SCREAMING_SNAKE_CASE = {'bpe': 'fastbpe', 'tokenizer': 'moses'} SCREAMING_SNAKE_CASE = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"""using checkpoint {checkpoint_file}""" ) SCREAMING_SNAKE_CASE = hub_utils.from_pretrained( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , archive_map=_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = vars(chkpt['args']['model'] ) SCREAMING_SNAKE_CASE = args['source_lang'] SCREAMING_SNAKE_CASE = args['target_lang'] SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) # dicts SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{src_lang}.txt""" ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{tgt_lang}.txt""" ) SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(src_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-src.json' ) print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab SCREAMING_SNAKE_CASE = True for k in src_vocab.keys(): if not k.islower(): SCREAMING_SNAKE_CASE = False break SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(tgt_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-tgt.json' ) print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # merges_file (bpecodes) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.exists(_UpperCamelCase ): break with open(_UpperCamelCase , encoding='utf-8' ) as fin: SCREAMING_SNAKE_CASE = fin.read() SCREAMING_SNAKE_CASE = re.sub(R' \d+$' , '' , _UpperCamelCase , 0 , re.M ) # remove frequency number print(f"""Generating {merges_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_UpperCamelCase ) # model config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args['bpe']}""" assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args['tokenizer']}""" SCREAMING_SNAKE_CASE = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with SCREAMING_SNAKE_CASE = 5 SCREAMING_SNAKE_CASE = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: SCREAMING_SNAKE_CASE = best_score_hparams[model_dir]['length_penalty'] else: SCREAMING_SNAKE_CASE = 1.0 print(f"""Generating {fsmt_model_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # tokenizer config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = { 'langs': [src_lang, tgt_lang], 'model_max_length': 10_24, 'do_lower_case': do_lower_case, } print(f"""Generating {fsmt_tokenizer_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # model SCREAMING_SNAKE_CASE = chkpt['models'][0] SCREAMING_SNAKE_CASE = model.state_dict() # rename keys to start with 'model.' SCREAMING_SNAKE_CASE = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys SCREAMING_SNAKE_CASE = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTConfig.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTForConditionalGeneration(_UpperCamelCase ) # check that it loads ok model_new.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) # save SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(_UpperCamelCase , _UpperCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f"""cd {data_root}""" ) print(f"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a_ : int = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
673
1
from __future__ import annotations import os from typing import Any import requests a_ : Any = "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user a_ : List[Any] = BASE_URL + "/user" # https://github.com/settings/tokens a_ : Any = os.environ.get("USER_TOKEN", "") def __lowerCAmelCase ( _UpperCamelCase : str ) -> dict[Any, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = { 'Authorization': f"""token {auth_token}""", 'Accept': 'application/vnd.github.v3+json', } return requests.get(_UpperCamelCase , headers=_UpperCamelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F"""{key}: {value}""") else: raise ValueError("'USER_TOKEN' field cannot be empty.")
673
import random def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : float , _UpperCamelCase : bool = False ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE = {i: [] for i in range(_UpperCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_UpperCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_UpperCamelCase ): for j in range(i + 1 , _UpperCamelCase ): if random.random() < probability: graph[i].append(_UpperCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_UpperCamelCase ) return graph def __lowerCAmelCase ( _UpperCamelCase : int ) -> dict: '''simple docstring''' return { i: [j for j in range(_UpperCamelCase ) if i != j] for i in range(_UpperCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
673
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : List[str] = { "configuration_xmod": [ "XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP", "XmodConfig", "XmodOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ "XMOD_PRETRAINED_MODEL_ARCHIVE_LIST", "XmodForCausalLM", "XmodForMaskedLM", "XmodForMultipleChoice", "XmodForQuestionAnswering", "XmodForSequenceClassification", "XmodForTokenClassification", "XmodModel", "XmodPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys a_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
673
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : def __init__( self : List[str] , snake_case__ : Dict , snake_case__ : Optional[Any]=1_3 , snake_case__ : Union[str, Any]=7 , snake_case__ : List[str]=True , snake_case__ : Any=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=9_9 , snake_case__ : str=3_2 , snake_case__ : Dict=5 , snake_case__ : str=4 , snake_case__ : int=3_7 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Any=0.1 , snake_case__ : Dict=0.1 , snake_case__ : Optional[Any]=5_1_2 , snake_case__ : List[Any]=1_6 , snake_case__ : str=2 , snake_case__ : int=0.02 , snake_case__ : List[str]=3 , snake_case__ : Dict=4 , snake_case__ : str=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def UpperCamelCase ( self : List[str] , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : List[Any] , snake_case__ : str , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : int , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : int , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = NystromformerForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase =( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def UpperCamelCase ( self : List[str] ): """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(snake_case__ )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.4_532, -0.0_936, 0.5_137], [-0.2_676, 0.0_628, 0.6_186], [-0.3_629, -0.1_726, 0.4_716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1E-4 ) ) @slow def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = 'the [MASK] of Belgium is Brussels' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = tokenizer(snake_case__ , return_tensors='pt' ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(encoding.input_ids ).logits SCREAMING_SNAKE_CASE = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case__ ) , 'capital' )
673
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a_ : Any = logging.get_logger(__name__) def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = DPTConfig() if "large" in checkpoint_url: SCREAMING_SNAKE_CASE = 10_24 SCREAMING_SNAKE_CASE = 40_96 SCREAMING_SNAKE_CASE = 24 SCREAMING_SNAKE_CASE = 16 SCREAMING_SNAKE_CASE = [5, 11, 17, 23] SCREAMING_SNAKE_CASE = [2_56, 5_12, 10_24, 10_24] SCREAMING_SNAKE_CASE = (1, 3_84, 3_84) if "ade" in checkpoint_url: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = 1_50 SCREAMING_SNAKE_CASE = 'huggingface/label-files' SCREAMING_SNAKE_CASE = 'ade20k-id2label.json' SCREAMING_SNAKE_CASE = json.load(open(cached_download(hf_hub_url(_UpperCamelCase , _UpperCamelCase , repo_type='dataset' ) ) , 'r' ) ) SCREAMING_SNAKE_CASE = {int(_UpperCamelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = [1, 1_50, 4_80, 4_80] return config, expected_shape def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): SCREAMING_SNAKE_CASE = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: SCREAMING_SNAKE_CASE = name.replace('patch_embed' , 'patch_embeddings' ) if "pos_embed" in name: SCREAMING_SNAKE_CASE = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: SCREAMING_SNAKE_CASE = name.replace('proj' , 'projection' ) if "blocks" in name: SCREAMING_SNAKE_CASE = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name: SCREAMING_SNAKE_CASE = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: SCREAMING_SNAKE_CASE = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: SCREAMING_SNAKE_CASE = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: SCREAMING_SNAKE_CASE = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: SCREAMING_SNAKE_CASE = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: SCREAMING_SNAKE_CASE = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: SCREAMING_SNAKE_CASE = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: SCREAMING_SNAKE_CASE = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: SCREAMING_SNAKE_CASE = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 SCREAMING_SNAKE_CASE = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: SCREAMING_SNAKE_CASE = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: SCREAMING_SNAKE_CASE = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: SCREAMING_SNAKE_CASE = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: SCREAMING_SNAKE_CASE = name.replace('conv1' , 'convolution1' ) if "conv2" in name: SCREAMING_SNAKE_CASE = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained' , 'dpt' ) if "bn" in name: SCREAMING_SNAKE_CASE = name.replace('bn' , 'batch_norm' ) if "head" in name: SCREAMING_SNAKE_CASE = name.replace('head' , 'head.head' ) if "encoder.norm" in name: SCREAMING_SNAKE_CASE = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: SCREAMING_SNAKE_CASE = name.replace('auxlayer' , 'auxiliary_head.head' ) return name def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : Optional[Any] ) -> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) SCREAMING_SNAKE_CASE = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[: config.hidden_size, :] SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_dpt_config(_UpperCamelCase ) # load original state_dict from URL SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location='cpu' ) # remove certain keys remove_ignore_keys_(_UpperCamelCase ) # rename keys for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE = state_dict.pop(_UpperCamelCase ) SCREAMING_SNAKE_CASE = val # read in qkv matrices read_in_q_k_v(_UpperCamelCase , _UpperCamelCase ) # load HuggingFace model SCREAMING_SNAKE_CASE = DPTForSemanticSegmentation(_UpperCamelCase ) if 'ade' in checkpoint_url else DPTForDepthEstimation(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() # Check outputs on an image SCREAMING_SNAKE_CASE = 4_80 if 'ade' in checkpoint_url else 3_84 SCREAMING_SNAKE_CASE = DPTImageProcessor(size=_UpperCamelCase ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(_UpperCamelCase , return_tensors='pt' ) # forward pass SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ).logits if 'ade' in checkpoint_url else model(**_UpperCamelCase ).predicted_depth # Assert logits SCREAMING_SNAKE_CASE = torch.tensor([[6.31_99, 6.36_29, 6.41_48], [6.38_50, 6.36_15, 6.41_66], [6.35_19, 6.31_76, 6.35_75]] ) if "ade" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[4.04_80, 4.24_20, 4.43_60], [4.31_24, 4.56_93, 4.82_61], [4.57_68, 4.89_65, 5.21_63]] ) assert outputs.shape == torch.Size(_UpperCamelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] , _UpperCamelCase , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _UpperCamelCase ) ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_UpperCamelCase ) if push_to_hub: print('Pushing model to hub...' ) model.push_to_hub( repo_path_or_name=Path(_UpperCamelCase , _UpperCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_UpperCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_UpperCamelCase , _UpperCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_UpperCamelCase , ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) a_ : Any = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
673
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
673
1
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a_ : str = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a_ : int = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.1_5}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names a_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a_ : List[Any] = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a_ : Any = "allenai" def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = dict((re.sub(R'@@$' , '' , _UpperCamelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , _UpperCamelCase ), v) for k, v in d.items() ) SCREAMING_SNAKE_CASE = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] SCREAMING_SNAKE_CASE = d[k] # restore return da def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : List[str] ) -> Dict: '''simple docstring''' assert os.path.exists(_UpperCamelCase ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel SCREAMING_SNAKE_CASE = cls.hub_models() SCREAMING_SNAKE_CASE = {'bpe': 'fastbpe', 'tokenizer': 'moses'} SCREAMING_SNAKE_CASE = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"""using checkpoint {checkpoint_file}""" ) SCREAMING_SNAKE_CASE = hub_utils.from_pretrained( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , archive_map=_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = vars(chkpt['args']['model'] ) SCREAMING_SNAKE_CASE = args['source_lang'] SCREAMING_SNAKE_CASE = args['target_lang'] SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) # dicts SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{src_lang}.txt""" ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{tgt_lang}.txt""" ) SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(src_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-src.json' ) print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab SCREAMING_SNAKE_CASE = True for k in src_vocab.keys(): if not k.islower(): SCREAMING_SNAKE_CASE = False break SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(tgt_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-tgt.json' ) print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # merges_file (bpecodes) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.exists(_UpperCamelCase ): break with open(_UpperCamelCase , encoding='utf-8' ) as fin: SCREAMING_SNAKE_CASE = fin.read() SCREAMING_SNAKE_CASE = re.sub(R' \d+$' , '' , _UpperCamelCase , 0 , re.M ) # remove frequency number print(f"""Generating {merges_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_UpperCamelCase ) # model config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args['bpe']}""" assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args['tokenizer']}""" SCREAMING_SNAKE_CASE = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with SCREAMING_SNAKE_CASE = 5 SCREAMING_SNAKE_CASE = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: SCREAMING_SNAKE_CASE = best_score_hparams[model_dir]['length_penalty'] else: SCREAMING_SNAKE_CASE = 1.0 print(f"""Generating {fsmt_model_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # tokenizer config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = { 'langs': [src_lang, tgt_lang], 'model_max_length': 10_24, 'do_lower_case': do_lower_case, } print(f"""Generating {fsmt_tokenizer_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # model SCREAMING_SNAKE_CASE = chkpt['models'][0] SCREAMING_SNAKE_CASE = model.state_dict() # rename keys to start with 'model.' SCREAMING_SNAKE_CASE = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys SCREAMING_SNAKE_CASE = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTConfig.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTForConditionalGeneration(_UpperCamelCase ) # check that it loads ok model_new.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) # save SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(_UpperCamelCase , _UpperCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f"""cd {data_root}""" ) print(f"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a_ : int = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
673
import heapq import sys import numpy as np a_ : Optional[int] = tuple[int, int] class UpperCamelCase : def __init__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() def UpperCamelCase ( self : List[Any] ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf' ) def UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.elements ) == 0 def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(snake_case__ ) else: # update # print("update", item) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" if item in self.set: self.set.remove(snake_case__ ) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def UpperCamelCase ( self : str ): """simple docstring""" return self.elements[0][1] def UpperCamelCase ( self : Tuple ): """simple docstring""" ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) self.set.remove(snake_case__ ) return (priority, item) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) return np.linalg.norm(a - b ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Dict: '''simple docstring''' return consistent_heuristic(_UpperCamelCase , _UpperCamelCase ) // t def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[int]: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : int , _UpperCamelCase : TPos , _UpperCamelCase : dict[TPos, float] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = g_function[start] + Wa * heuristics[i](_UpperCamelCase , _UpperCamelCase ) return ans def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = np.chararray((n, n) ) for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = '*' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE = '#' SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = x # print(x) SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[x] SCREAMING_SNAKE_CASE = '-' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: print(_UpperCamelCase , end=' ' ) SCREAMING_SNAKE_CASE = back_pointer[x] print(_UpperCamelCase ) sys.exit() def __lowerCAmelCase ( _UpperCamelCase : TPos ) -> Any: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , ) -> List[Any]: '''simple docstring''' for itera in range(_UpperCamelCase ): open_list[itera].remove_element(_UpperCamelCase ) # print("s", s) # print("j", j) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = s SCREAMING_SNAKE_CASE = (x - 1, y) SCREAMING_SNAKE_CASE = (x + 1, y) SCREAMING_SNAKE_CASE = (x, y + 1) SCREAMING_SNAKE_CASE = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = float('inf' ) if valid(_UpperCamelCase ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE = g_function[s] + 1 SCREAMING_SNAKE_CASE = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCamelCase , key(_UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , _UpperCamelCase ): if key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) <= Wa * key( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ): open_list[j].put( _UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a_ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a_ : List[str] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a_ : Union[str, Any] = make_common_ground() a_ : Tuple = blocks_blk # hyper parameters a_ : Any = 1 a_ : List[str] = 1 a_ : Union[str, Any] = 20 a_ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a_ : int = (0, 0) a_ : Optional[int] = (n - 1, n - 1) a_ : Union[str, Any] = 1 def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos , _UpperCamelCase : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {start: 0, goal: float('inf' )} SCREAMING_SNAKE_CASE = {start: -1, goal: -1} SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() for i in range(_UpperCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , _UpperCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = open_list[i].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_inad.append(_UpperCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE = open_list[0].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_anchor.append(_UpperCamelCase ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_UpperCamelCase ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
673
1
def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) + 1 SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. SCREAMING_SNAKE_CASE = [[0 for i in range(_UpperCamelCase )] for j in range(_UpperCamelCase )] # since string of zero length match pattern of zero length SCREAMING_SNAKE_CASE = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _UpperCamelCase ): SCREAMING_SNAKE_CASE = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _UpperCamelCase ): SCREAMING_SNAKE_CASE = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _UpperCamelCase ): for j in range(1 , _UpperCamelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": SCREAMING_SNAKE_CASE = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: SCREAMING_SNAKE_CASE = 1 elif pattern[j - 2] in (input_string[i - 1], "."): SCREAMING_SNAKE_CASE = dp[i - 1][j] else: SCREAMING_SNAKE_CASE = 0 else: SCREAMING_SNAKE_CASE = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a_ : Optional[int] = "aab" a_ : List[Any] = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"""{input_string} matches the given pattern {pattern}""") else: print(F"""{input_string} does not match with the given pattern {pattern}""")
673
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a_ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : str = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Any=8 ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=5_12 , _UpperCamelCase : Union[str, Any]=5_12 ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) SCREAMING_SNAKE_CASE = np.array(pil_image.convert('RGB' ) ) SCREAMING_SNAKE_CASE = arr.astype(np.floataa ) / 1_27.5 - 1 SCREAMING_SNAKE_CASE = np.transpose(_UpperCamelCase , [2, 0, 1] ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : int , snake_case__ : UNetaDConditionModel , snake_case__ : DDPMScheduler , snake_case__ : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , ) SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase ( self : Any , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = min(int(num_inference_steps * strength ) , snake_case__ ) SCREAMING_SNAKE_CASE = max(num_inference_steps - init_timestep , 0 ) SCREAMING_SNAKE_CASE = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase ( self : List[str] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : str=None ): """simple docstring""" if not isinstance(snake_case__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case__ )}""" ) SCREAMING_SNAKE_CASE = image.to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = batch_size * num_images_per_prompt if image.shape[1] == 4: SCREAMING_SNAKE_CASE = image else: if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case__ ) ] SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) else: SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ ).latent_dist.sample(snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.config.scaling_factor * init_latents SCREAMING_SNAKE_CASE = torch.cat([init_latents] , dim=0 ) SCREAMING_SNAKE_CASE = init_latents.shape SCREAMING_SNAKE_CASE = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) # get latents SCREAMING_SNAKE_CASE = self.scheduler.add_noise(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = init_latents return latents def UpperCamelCase ( self : int , snake_case__ : List[str]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) SCREAMING_SNAKE_CASE = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[int]=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=snake_case__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase ( self : Dict ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case__ ) def __call__( self : str , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : int = 5_1_2 , snake_case__ : int = 5_1_2 , snake_case__ : int = 1_0_0 , snake_case__ : float = 4.0 , snake_case__ : float = 0.3 , snake_case__ : int = 1 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , ): """simple docstring""" SCREAMING_SNAKE_CASE = self._execution_device SCREAMING_SNAKE_CASE = guidance_scale > 1.0 if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = image_embeds.shape[0] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [image] if not all(isinstance(snake_case__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(snake_case__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) SCREAMING_SNAKE_CASE = torch.cat([prepare_image(snake_case__ , snake_case__ , snake_case__ ) for i in image] , dim=0 ) SCREAMING_SNAKE_CASE = image.to(dtype=image_embeds.dtype , device=snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ )['latents'] SCREAMING_SNAKE_CASE = latents.repeat_interleave(snake_case__ , dim=0 ) self.scheduler.set_timesteps(snake_case__ , device=snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_timesteps(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = timesteps[:1].repeat(batch_size * num_images_per_prompt ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = downscale_height_and_width(snake_case__ , snake_case__ , self.movq_scale_factor ) SCREAMING_SNAKE_CASE = self.prepare_latents( snake_case__ , snake_case__ , snake_case__ , snake_case__ , image_embeds.dtype , snake_case__ , snake_case__ ) for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE = {'image_embeds': image_embeds} SCREAMING_SNAKE_CASE = self.unet( sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , )[0] # post-processing SCREAMING_SNAKE_CASE = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
673
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: a_ : Any = None a_ : List[str] = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} a_ : List[str] = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } a_ : List[Any] = { "google/bigbird-roberta-base": 4096, "google/bigbird-roberta-large": 4096, "google/bigbird-base-trivia-itc": 4096, } a_ : Dict = "▁" class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =BigBirdTokenizer __UpperCamelCase =["input_ids", "attention_mask"] __UpperCamelCase =[] def __init__( self : Optional[Any] , snake_case__ : Dict=None , snake_case__ : List[str]=None , snake_case__ : Union[str, Any]="<unk>" , snake_case__ : int="<s>" , snake_case__ : Tuple="</s>" , snake_case__ : Tuple="<pad>" , snake_case__ : Tuple="[SEP]" , snake_case__ : Union[str, Any]="[MASK]" , snake_case__ : Dict="[CLS]" , **snake_case__ : Dict , ): """simple docstring""" SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = False if not self.vocab_file else True def UpperCamelCase ( self : Any , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
673
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() a_ : List[Any] = logging.get_logger("transformers.models.speecht5") def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Dict: '''simple docstring''' hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Any=None , _UpperCamelCase : List[str]=None , ) -> Tuple: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig.from_pretrained(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE = SpeechTaHifiGan(_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = np.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() model.save_pretrained(_UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) a_ : Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
673
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Dict = logging.get_logger(__name__) a_ : List[str] = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class UpperCamelCase ( _lowerCamelCase ): __UpperCamelCase ="sew" def __init__( self : List[Any] , snake_case__ : Tuple=3_2 , snake_case__ : Any=7_6_8 , snake_case__ : int=1_2 , snake_case__ : Optional[int]=1_2 , snake_case__ : List[str]=3_0_7_2 , snake_case__ : Any=2 , snake_case__ : int="gelu" , snake_case__ : List[Any]=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : Union[str, Any]=0.0 , snake_case__ : List[str]=0.1 , snake_case__ : Dict=0.1 , snake_case__ : str=0.02 , snake_case__ : Optional[int]=1E-5 , snake_case__ : List[Any]="group" , snake_case__ : Any="gelu" , snake_case__ : Optional[Any]=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case__ : Optional[Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case__ : List[Any]=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case__ : List[str]=False , snake_case__ : List[str]=1_2_8 , snake_case__ : List[str]=1_6 , snake_case__ : List[Any]=True , snake_case__ : List[str]=0.05 , snake_case__ : Dict=1_0 , snake_case__ : str=2 , snake_case__ : Union[str, Any]=0.0 , snake_case__ : Tuple=1_0 , snake_case__ : Tuple=0 , snake_case__ : str="mean" , snake_case__ : Any=False , snake_case__ : Optional[Any]=False , snake_case__ : Optional[Any]=2_5_6 , snake_case__ : Any=0 , snake_case__ : Optional[Any]=1 , snake_case__ : Any=2 , **snake_case__ : Optional[int] , ): """simple docstring""" super().__init__(**A__ , pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ ) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = feat_extract_norm SCREAMING_SNAKE_CASE = feat_extract_activation SCREAMING_SNAKE_CASE = list(A__ ) SCREAMING_SNAKE_CASE = list(A__ ) SCREAMING_SNAKE_CASE = list(A__ ) SCREAMING_SNAKE_CASE = conv_bias SCREAMING_SNAKE_CASE = num_conv_pos_embeddings SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE = len(self.conv_dim ) SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = squeeze_factor SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = feat_proj_dropout SCREAMING_SNAKE_CASE = final_dropout SCREAMING_SNAKE_CASE = layerdrop SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE = apply_spec_augment SCREAMING_SNAKE_CASE = mask_time_prob SCREAMING_SNAKE_CASE = mask_time_length SCREAMING_SNAKE_CASE = mask_time_min_masks SCREAMING_SNAKE_CASE = mask_feature_prob SCREAMING_SNAKE_CASE = mask_feature_length SCREAMING_SNAKE_CASE = mask_feature_min_masks # ctc loss SCREAMING_SNAKE_CASE = ctc_loss_reduction SCREAMING_SNAKE_CASE = ctc_zero_infinity # sequence classification SCREAMING_SNAKE_CASE = use_weighted_layer_sum SCREAMING_SNAKE_CASE = classifier_proj_size @property def UpperCamelCase ( self : List[Any] ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
700
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a_ : Optional[int] = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } a_ : List[Any] = { "allenai/led-base-16384": 1_6384, } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =LEDTokenizer __UpperCamelCase =["input_ids", "attention_mask"] def __init__( self : Tuple , snake_case__ : List[Any]=None , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : Dict="replace" , snake_case__ : Tuple="<s>" , snake_case__ : Optional[Any]="</s>" , snake_case__ : int="</s>" , snake_case__ : Dict="<s>" , snake_case__ : Union[str, Any]="<unk>" , snake_case__ : Optional[int]="<pad>" , snake_case__ : List[str]="<mask>" , snake_case__ : List[Any]=False , snake_case__ : int=True , **snake_case__ : Dict , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(snake_case__ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**snake_case__ ) SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE = 'post_processor' SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state['cls'] ) SCREAMING_SNAKE_CASE = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(snake_case__ , state.pop('type' ) ) SCREAMING_SNAKE_CASE = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase ( self : List[Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value SCREAMING_SNAKE_CASE = value def UpperCamelCase ( self : Dict , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[str] , *snake_case__ : List[Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Tuple=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self : Optional[Any] , snake_case__ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case__ : Optional[int] = None , snake_case__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , ): """simple docstring""" SCREAMING_SNAKE_CASE = super()._pad( encoded_inputs=snake_case__ , max_length=snake_case__ , padding_strategy=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE = len(encoded_inputs['global_attention_mask'] ) != len(snake_case__ ) if needs_to_be_padded: SCREAMING_SNAKE_CASE = len(snake_case__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
673
0
'''simple docstring''' def __lowerCAmelCase ( _UpperCamelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) SCREAMING_SNAKE_CASE = hex_num[0] == '-' if is_negative: SCREAMING_SNAKE_CASE = hex_num[1:] try: SCREAMING_SNAKE_CASE = int(__A , 16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) SCREAMING_SNAKE_CASE = '' while int_num > 0: SCREAMING_SNAKE_CASE = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
701
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __lowerCAmelCase ( *_UpperCamelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(_UpperCamelCase , 'r' ) as fh: fcntl.flock(_UpperCamelCase , fcntl.LOCK_EX ) try: print(*_UpperCamelCase ) finally: fcntl.flock(_UpperCamelCase , fcntl.LOCK_UN ) a_ : int = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) a_ : str = torch.device("cuda", local_rank) a_ : Optional[int] = socket.gethostname() a_ : Union[str, Any] = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank a_ : Dict = dist.get_rank() a_ : Any = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
673
0
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers a_ : Optional[Any] = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : List[str]=None ) -> int: '''simple docstring''' require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
702
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a_ : Optional[Any] = logging.get_logger(__name__) a_ : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } a_ : Union[str, Any] = {"allegro/herbert-base-cased": 514} a_ : List[Any] = {} class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_INIT_CONFIGURATION __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =HerbertTokenizer def __init__( self : Tuple , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : Optional[int]=None , snake_case__ : str="<s>" , snake_case__ : Tuple="<unk>" , snake_case__ : List[str]="<pad>" , snake_case__ : Tuple="<mask>" , snake_case__ : Dict="</s>" , **snake_case__ : List[str] , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sep_token=snake_case__ , **snake_case__ , ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
673
0
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCamelCase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =VideoToVideoSDPipeline __UpperCamelCase =TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"image", "width", "height"} __UpperCamelCase =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"image"} __UpperCamelCase =PipelineTesterMixin.required_optional_params - {"latents"} __UpperCamelCase =False # No `output_type`. __UpperCamelCase =frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self : str ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=3_2 , attention_head_dim=4 , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) SCREAMING_SNAKE_CASE = CLIPTextModel(A_ ) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def UpperCamelCase ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3, 3_2, 3_2) , rng=random.Random(A_ ) ).to(A_ ) if str(A_ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(A_ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=A_ ).manual_seed(A_ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = VideoToVideoSDPipeline(**A_ ) SCREAMING_SNAKE_CASE = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(A_ ) SCREAMING_SNAKE_CASE = 'np' SCREAMING_SNAKE_CASE = sd_pipe(**A_ ).frames SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (3_2, 3_2, 3) SCREAMING_SNAKE_CASE = np.array([1_0_6, 1_1_7, 1_1_3, 1_7_4, 1_3_7, 1_1_2, 1_4_8, 1_5_1, 1_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase ( self : int ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_ , expected_max_diff=5E-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def UpperCamelCase ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def UpperCamelCase ( self : Dict ): """simple docstring""" pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def UpperCamelCase ( self : List[str] ): """simple docstring""" pass def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" return super().test_progress_bar() @slow @skip_mps class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames SCREAMING_SNAKE_CASE = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE = torch.randn((1, 1_0, 3, 1_0_2_4, 5_7_6) , generator=A_ ) SCREAMING_SNAKE_CASE = video.to('cuda' ) SCREAMING_SNAKE_CASE = 'Spiderman is surfing' SCREAMING_SNAKE_CASE = pipe(A_ , video=A_ , generator=A_ , num_inference_steps=3 , output_type='pt' ).frames SCREAMING_SNAKE_CASE = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
703
def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 while n > 0: res += n % 10 n //= 10 return res def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return sum(int(_UpperCamelCase ) for c in str(abs(_UpperCamelCase ) ) ) def __lowerCAmelCase ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_UpperCamelCase : Callable , _UpperCamelCase : int ) -> None: SCREAMING_SNAKE_CASE = f"""{func.__name__}({value})""" SCREAMING_SNAKE_CASE = timeit(f"""__main__.{call}""" , setup='import __main__' ) print(f"""{call:56} = {func(_UpperCamelCase )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_UpperCamelCase , _UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
673
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest'] # fmt: on SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE = { 'do_resize': True, 'size': {'height': 1_8, 'width': 1_8}, 'do_normalize': True, 'image_mean': [0.5, 0.5, 0.5], 'image_std': [0.5, 0.5, 0.5], } SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , UpperCamelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) def UpperCamelCase ( self : Any , **snake_case__ : List[str] ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def UpperCamelCase ( self : Optional[Any] , **snake_case__ : Dict ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=UpperCamelCase_ , padding_value=1.0 ) SCREAMING_SNAKE_CASE = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = image_processor(UpperCamelCase_ , return_tensors='np' ) SCREAMING_SNAKE_CASE = processor(images=UpperCamelCase_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) SCREAMING_SNAKE_CASE = 'lower newer' SCREAMING_SNAKE_CASE = processor(text=UpperCamelCase_ ) SCREAMING_SNAKE_CASE = tokenizer(UpperCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) SCREAMING_SNAKE_CASE = 'lower newer' SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with self.assertRaises(UpperCamelCase_ ): processor() def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(UpperCamelCase_ ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) SCREAMING_SNAKE_CASE = 'lower newer' SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
704
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
673
0
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCamelCase ( unittest.TestCase , lowercase__ ): def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = load_tool('text-to-speech' ) self.tool.setup() def UpperCamelCase ( self : int ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = self.tool('hey' ) SCREAMING_SNAKE_CASE = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) ) def UpperCamelCase ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = self.tool('hey' ) SCREAMING_SNAKE_CASE = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
705
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =AudioLDMPipeline __UpperCamelCase =TEXT_TO_AUDIO_PARAMS __UpperCamelCase =TEXT_TO_AUDIO_BATCH_PARAMS __UpperCamelCase =frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(3_2, 6_4) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=snake_case__ , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) SCREAMING_SNAKE_CASE = ClapTextModelWithProjection(snake_case__ ) SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=7_7 ) SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=snake_case__ , ) SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def UpperCamelCase ( self : Optional[int] , snake_case__ : int , snake_case__ : int=0 ): """simple docstring""" if str(snake_case__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(snake_case__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) SCREAMING_SNAKE_CASE = prompt_embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE = negative_prompt SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = [] for p in [prompt, negative_prompt]: SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = text_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) embeds.append(snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 'egg cracking' SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ , negative_prompt=snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config.sampling_rate SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.016 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.016 SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.032 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.032 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = ['hey'] SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape assert audio_shape == (1, 2_5_6) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config config.model_in_dim *= 2 SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ).to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def UpperCamelCase ( self : Tuple ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=snake_case__ ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase ( self : Dict ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case__ ) @slow class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : int , snake_case__ : int , snake_case__ : Tuple="cpu" , snake_case__ : List[str]=torch.floataa , snake_case__ : Optional[Any]=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = np.random.RandomState(snake_case__ ).standard_normal((1, 8, 1_2_8, 1_6) ) SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 2_5 SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[7_7_2_3_0:7_7_2_4_0] SCREAMING_SNAKE_CASE = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[2_7_7_8_0:2_7_7_9_0] SCREAMING_SNAKE_CASE = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
673
0
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node a_ : Any = 4 a_ : int = 3 class UpperCamelCase ( __lowerCamelCase ): pass def __lowerCAmelCase ( _UpperCamelCase : List[str] ) -> Optional[Any]: '''simple docstring''' for shard in shards: for i in range(lowerCamelCase_ ): yield {"i": i, "shard": shard} def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = int(os.environ['RANK'] ) SCREAMING_SNAKE_CASE = int(os.environ['WORLD_SIZE'] ) SCREAMING_SNAKE_CASE = ArgumentParser() parser.add_argument('--streaming' , type=lowerCamelCase_ ) parser.add_argument('--local_rank' , type=lowerCamelCase_ ) parser.add_argument('--num_workers' , type=lowerCamelCase_ , default=0 ) SCREAMING_SNAKE_CASE = parser.parse_args() SCREAMING_SNAKE_CASE = args.streaming SCREAMING_SNAKE_CASE = args.num_workers SCREAMING_SNAKE_CASE = {'shards': [f"""shard_{shard_idx}""" for shard_idx in range(lowerCamelCase_ )]} SCREAMING_SNAKE_CASE = IterableDataset.from_generator(lowerCamelCase_ , gen_kwargs=lowerCamelCase_ ) if not streaming: SCREAMING_SNAKE_CASE = Dataset.from_list(list(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE = split_dataset_by_node(lowerCamelCase_ , rank=lowerCamelCase_ , world_size=lowerCamelCase_ ) SCREAMING_SNAKE_CASE = torch.utils.data.DataLoader(lowerCamelCase_ , num_workers=lowerCamelCase_ ) SCREAMING_SNAKE_CASE = NUM_SHARDS * NUM_ITEMS_PER_SHARD SCREAMING_SNAKE_CASE = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) SCREAMING_SNAKE_CASE = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
706
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase : def __init__( self : Dict , snake_case__ : str , snake_case__ : str=1_3 , snake_case__ : Tuple=7 , snake_case__ : Tuple=True , snake_case__ : Tuple=True , snake_case__ : List[str]=False , snake_case__ : Any=True , snake_case__ : Union[str, Any]=9_9 , snake_case__ : Dict=3_2 , snake_case__ : Optional[Any]=5 , snake_case__ : Optional[Any]=4 , snake_case__ : Union[str, Any]=3_7 , snake_case__ : Tuple="gelu" , snake_case__ : Dict=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : int=4 , snake_case__ : List[str]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Dict ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , use_stable_embedding=snake_case__ , ) def UpperCamelCase ( self : int , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : str , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : str , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , ) SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Tuple , ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : int , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Union[str, Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , use_cache=snake_case__ , ) SCREAMING_SNAKE_CASE = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCamelCase =(OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCamelCase =( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'single_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'multi_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase ( self : str , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = ids_tensor([1, 1_0] , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) )
673
0
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a_ : Any = logging.get_logger(__name__) class UpperCamelCase ( UpperCAmelCase_ ): def __init__( self : Optional[Any] , *snake_case__ : Optional[int] , **snake_case__ : List[str] ): """simple docstring""" warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
707
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="openai/whisper-base" __UpperCamelCase =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCamelCase ="transcriber" __UpperCamelCase =WhisperProcessor __UpperCamelCase =WhisperForConditionalGeneration __UpperCamelCase =["audio"] __UpperCamelCase =["text"] def UpperCamelCase ( self : Dict , snake_case__ : Tuple ): """simple docstring""" return self.pre_processor(snake_case__ , return_tensors='pt' ).input_features def UpperCamelCase ( self : Optional[int] , snake_case__ : Tuple ): """simple docstring""" return self.model.generate(inputs=snake_case__ ) def UpperCamelCase ( self : str , snake_case__ : Union[str, Any] ): """simple docstring""" return self.pre_processor.batch_decode(snake_case__ , skip_special_tokens=snake_case__ )[0]
673
0
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(snake_case__ ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = FlaxAutoModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def UpperCamelCase ( self : List[str] ): """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: with self.subTest(snake_case__ ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = FlaxAutoModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**snake_case__ : Optional[int] ): return model(**snake_case__ ) eval(**snake_case__ ).block_until_ready() @slow def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = FlaxRobertaModel.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**snake_case__ : Optional[int] ): return model(**snake_case__ ) eval(**snake_case__ ).block_until_ready() def UpperCamelCase ( self : str ): """simple docstring""" with self.assertRaisesRegex( snake_case__ , 'bert-base is not a local folder and is not a valid model identifier' ): SCREAMING_SNAKE_CASE = FlaxAutoModel.from_pretrained('bert-base' ) def UpperCamelCase ( self : Any ): """simple docstring""" with self.assertRaisesRegex( snake_case__ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): SCREAMING_SNAKE_CASE = FlaxAutoModel.from_pretrained(snake_case__ , revision='aaaaaa' ) def UpperCamelCase ( self : Dict ): """simple docstring""" with self.assertRaisesRegex( snake_case__ , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): SCREAMING_SNAKE_CASE = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCamelCase ( self : Dict ): """simple docstring""" with self.assertRaisesRegex(snake_case__ , 'Use `from_pt=True` to load this model' ): SCREAMING_SNAKE_CASE = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
708
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version a_ : List[str] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize a_ : Dict = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" a_ : str = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" a_ : int = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def UpperCamelCase ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def UpperCamelCase ( self : Dict , snake_case__ : int ): """simple docstring""" import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : List[Any]=0.9 , snake_case__ : Optional[Any]=3 , snake_case__ : Any=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5' ): SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score( word_tokenize(snake_case__ ) , word_tokenize(snake_case__ ) , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] else: SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score(snake_case__ , snake_case__ , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] return {"meteor": np.mean(snake_case__ )}
673
0
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __lowerCAmelCase ( *_UpperCamelCase : int ) -> Dict: '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE = list(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): SCREAMING_SNAKE_CASE = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __lowerCAmelCase ( _UpperCamelCase : Exception ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = [ 'CUDA out of memory.', # CUDA OOM 'cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.', # CUDNN SNAFU 'DefaultCPUAllocator: can\'t allocate memory', # CPU OOM ] if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __lowerCAmelCase ( _UpperCamelCase : callable = None , _UpperCamelCase : int = 1_28 ) -> Optional[int]: '''simple docstring''' if function is None: return functools.partial(__lowerCAmelCase , starting_batch_size=__lowerCAmelCase ) SCREAMING_SNAKE_CASE = starting_batch_size def decorator(*_UpperCamelCase : Optional[Any] , **_UpperCamelCase : int ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() SCREAMING_SNAKE_CASE = list(inspect.signature(__lowerCAmelCase ).parameters.keys() ) # Guard against user error if len(__lowerCAmelCase ) < (len(__lowerCAmelCase ) + 1): SCREAMING_SNAKE_CASE = ', '.join([f"""{arg}={value}""" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f"""Batch size was passed into `{function.__name__}` as the first argument when called.""" f"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" ) while True: if batch_size == 0: raise RuntimeError('No executable batch size found, reached zero.' ) try: return function(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ) except Exception as e: if should_reduce_batch_size(__lowerCAmelCase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
709
import numpy as np def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
673
0
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class UpperCamelCase ( pl.LightningModule ): def __init__( self : Optional[Any] , snake_case__ : str ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE = model SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = nn.Linear(self.model.config.hidden_size , self.num_labels ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" pass def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = LongformerModel.from_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = LightningModel(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = torch.load(lowerCamelCase__ , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model SCREAMING_SNAKE_CASE = LongformerForQuestionAnswering.from_pretrained(lowerCamelCase__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowerCamelCase__ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a_ : int = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
710
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ : Any = logging.get_logger(__name__) a_ : Dict = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="van" def __init__( self : Optional[Any] , snake_case__ : Tuple=2_2_4 , snake_case__ : Dict=3 , snake_case__ : Union[str, Any]=[7, 3, 3, 3] , snake_case__ : str=[4, 2, 2, 2] , snake_case__ : Optional[Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , snake_case__ : Optional[Any]=[3, 3, 1_2, 3] , snake_case__ : Tuple=[8, 8, 4, 4] , snake_case__ : Any="gelu" , snake_case__ : Dict=0.02 , snake_case__ : List[str]=1E-6 , snake_case__ : int=1E-2 , snake_case__ : Any=0.0 , snake_case__ : Tuple=0.0 , **snake_case__ : Any , ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_sizes SCREAMING_SNAKE_CASE = strides SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = mlp_ratios SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = dropout_rate
673
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =["image_processor"] __UpperCamelCase ="SamImageProcessor" def __init__( self : Any , snake_case__ : Optional[int] ): """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE = self.image_processor SCREAMING_SNAKE_CASE = -1_0 SCREAMING_SNAKE_CASE = self.image_processor.size["longest_edge"] def __call__( self : Any , snake_case__ : Tuple=None , snake_case__ : Any=None , snake_case__ : Optional[Any]=None , snake_case__ : Dict=None , snake_case__ : Optional[Union[str, TensorType]] = None , **snake_case__ : str , ): """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processor( __A , return_tensors=__A , **__A , ) # pop arguments that are not used in the foward but used nevertheless SCREAMING_SNAKE_CASE = encoding_image_processor["original_sizes"] if hasattr(__A , 'numpy' ): # Checks if Torch or TF tensor SCREAMING_SNAKE_CASE = original_sizes.numpy() SCREAMING_SNAKE_CASE = self._check_and_preprocess_points( input_points=__A , input_labels=__A , input_boxes=__A , ) SCREAMING_SNAKE_CASE = self._normalize_and_convert( __A , __A , input_points=__A , input_labels=__A , input_boxes=__A , return_tensors=__A , ) return encoding_image_processor def UpperCamelCase ( self : List[str] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[str]=None , snake_case__ : int=None , snake_case__ : Any=None , snake_case__ : int="pt" , ): """simple docstring""" if input_points is not None: if len(__A ) != len(__A ): SCREAMING_SNAKE_CASE = [ self._normalize_coordinates(self.target_size , __A , original_sizes[0] ) for point in input_points ] else: SCREAMING_SNAKE_CASE = [ self._normalize_coordinates(self.target_size , __A , __A ) for point, original_size in zip(__A , __A ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: SCREAMING_SNAKE_CASE = self._pad_points_and_labels(__A , __A ) SCREAMING_SNAKE_CASE = np.array(__A ) if input_labels is not None: SCREAMING_SNAKE_CASE = np.array(__A ) if input_boxes is not None: if len(__A ) != len(__A ): SCREAMING_SNAKE_CASE = [ self._normalize_coordinates(self.target_size , __A , original_sizes[0] , is_bounding_box=__A ) for box in input_boxes ] else: SCREAMING_SNAKE_CASE = [ self._normalize_coordinates(self.target_size , __A , __A , is_bounding_box=__A ) for box, original_size in zip(__A , __A ) ] SCREAMING_SNAKE_CASE = np.array(__A ) if input_boxes is not None: if return_tensors == "pt": SCREAMING_SNAKE_CASE = torch.from_numpy(__A ) # boxes batch size of 1 by default SCREAMING_SNAKE_CASE = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": SCREAMING_SNAKE_CASE = tf.convert_to_tensor(__A ) # boxes batch size of 1 by default SCREAMING_SNAKE_CASE = tf.expand_dims(__A , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes} ) if input_points is not None: if return_tensors == "pt": SCREAMING_SNAKE_CASE = torch.from_numpy(__A ) # point batch size of 1 by default SCREAMING_SNAKE_CASE = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": SCREAMING_SNAKE_CASE = tf.convert_to_tensor(__A ) # point batch size of 1 by default SCREAMING_SNAKE_CASE = tf.expand_dims(__A , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'input_points': input_points} ) if input_labels is not None: if return_tensors == "pt": SCREAMING_SNAKE_CASE = torch.from_numpy(__A ) # point batch size of 1 by default SCREAMING_SNAKE_CASE = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": SCREAMING_SNAKE_CASE = tf.convert_to_tensor(__A ) # point batch size of 1 by default SCREAMING_SNAKE_CASE = tf.expand_dims(__A , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels} ) return encoding_image_processor def UpperCamelCase ( self : List[str] , snake_case__ : Dict , snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE = max([point.shape[0] for point in input_points] ) SCREAMING_SNAKE_CASE = [] for i, point in enumerate(__A ): if point.shape[0] != expected_nb_points: SCREAMING_SNAKE_CASE = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) SCREAMING_SNAKE_CASE = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(__A ) SCREAMING_SNAKE_CASE = processed_input_points return input_points, input_labels def UpperCamelCase ( self : int , snake_case__ : int , snake_case__ : np.ndarray , snake_case__ : Union[str, Any] , snake_case__ : Optional[int]=False ): """simple docstring""" SCREAMING_SNAKE_CASE = original_size SCREAMING_SNAKE_CASE = self.image_processor._get_preprocess_shape(__A , longest_edge=__A ) SCREAMING_SNAKE_CASE = deepcopy(__A ).astype(__A ) if is_bounding_box: SCREAMING_SNAKE_CASE = coords.reshape(-1 , 2 , 2 ) SCREAMING_SNAKE_CASE = coords[..., 0] * (new_w / old_w) SCREAMING_SNAKE_CASE = coords[..., 1] * (new_h / old_h) if is_bounding_box: SCREAMING_SNAKE_CASE = coords.reshape(-1 , 4 ) return coords def UpperCamelCase ( self : List[str] , snake_case__ : str=None , snake_case__ : Tuple=None , snake_case__ : List[Any]=None , ): """simple docstring""" if input_points is not None: if hasattr(__A , 'numpy' ): # Checks for TF or Torch tensor SCREAMING_SNAKE_CASE = input_points.numpy().tolist() if not isinstance(__A , __A ) or not isinstance(input_points[0] , __A ): raise ValueError('Input points must be a list of list of floating points.' ) SCREAMING_SNAKE_CASE = [np.array(__A ) for input_point in input_points] else: SCREAMING_SNAKE_CASE = None if input_labels is not None: if hasattr(__A , 'numpy' ): SCREAMING_SNAKE_CASE = input_labels.numpy().tolist() if not isinstance(__A , __A ) or not isinstance(input_labels[0] , __A ): raise ValueError('Input labels must be a list of list integers.' ) SCREAMING_SNAKE_CASE = [np.array(__A ) for label in input_labels] else: SCREAMING_SNAKE_CASE = None if input_boxes is not None: if hasattr(__A , 'numpy' ): SCREAMING_SNAKE_CASE = input_boxes.numpy().tolist() if ( not isinstance(__A , __A ) or not isinstance(input_boxes[0] , __A ) or not isinstance(input_boxes[0][0] , __A ) ): raise ValueError('Input boxes must be a list of list of list of floating points.' ) SCREAMING_SNAKE_CASE = [np.array(__A ).astype(np.floataa ) for box in input_boxes] else: SCREAMING_SNAKE_CASE = None return input_points, input_labels, input_boxes @property def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(__A ) ) def UpperCamelCase ( self : List[str] , *snake_case__ : int , **snake_case__ : Union[str, Any] ): """simple docstring""" return self.image_processor.post_process_masks(*__A , **__A )
711
def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : int ) -> list[str]: '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(_UpperCamelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
673
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) a_ : str = "\\n Text data.\n Second line of data." a_ : List[Any] = "file" @pytest.fixture(scope='session' ) def __lowerCAmelCase ( _UpperCamelCase : Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data' ) / (FILE_PATH + """.zstd""") SCREAMING_SNAKE_CASE = bytes(__lowerCAmelCase , 'utf-8' ) with zstd.open(__lowerCAmelCase , 'wb' ) as f: f.write(__lowerCAmelCase ) return path @pytest.fixture def __lowerCAmelCase ( _UpperCamelCase : Tuple ) -> int: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , __lowerCAmelCase ) , 'w' ) as f: f.write(__lowerCAmelCase ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} SCREAMING_SNAKE_CASE = input_paths[compression_format] SCREAMING_SNAKE_CASE = tmp_path / """cache""" SCREAMING_SNAKE_CASE = DownloadConfig(cache_dir=__lowerCAmelCase , extract_compressed_file=__lowerCAmelCase ) SCREAMING_SNAKE_CASE = cached_path(__lowerCAmelCase , download_config=__lowerCAmelCase ) with open(__lowerCAmelCase ) as f: SCREAMING_SNAKE_CASE = f.read() with open(__lowerCAmelCase ) as f: SCREAMING_SNAKE_CASE = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : int , _UpperCamelCase : str , _UpperCamelCase : int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = """custom_cache""" SCREAMING_SNAKE_CASE = """custom_extracted_dir""" SCREAMING_SNAKE_CASE = tmp_path / """custom_extracted_path""" if default_extracted: SCREAMING_SNAKE_CASE = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , __lowerCAmelCase ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) SCREAMING_SNAKE_CASE = xz_file SCREAMING_SNAKE_CASE = ( DownloadConfig(extract_compressed_file=__lowerCAmelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE = cached_path(__lowerCAmelCase , download_config=__lowerCAmelCase ) assert Path(__lowerCAmelCase ).parent.parts[-2:] == expected def __lowerCAmelCase ( _UpperCamelCase : Optional[int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = str(Path(__lowerCAmelCase ).resolve() ) assert cached_path(__lowerCAmelCase ) == text_file # relative path SCREAMING_SNAKE_CASE = str(Path(__lowerCAmelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__lowerCAmelCase ) == text_file def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(__lowerCAmelCase ): cached_path(__lowerCAmelCase ) # relative path SCREAMING_SNAKE_CASE = """./__missing_file__.txt""" with pytest.raises(__lowerCAmelCase ): cached_path(__lowerCAmelCase ) def __lowerCAmelCase ( _UpperCamelCase : Dict ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = get_from_cache(f"""tmp://{tmpfs_file}""" ) with open(__lowerCAmelCase ) as f: SCREAMING_SNAKE_CASE = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , __lowerCAmelCase ) def __lowerCAmelCase ( ) -> List[Any]: '''simple docstring''' with pytest.raises(__lowerCAmelCase ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __lowerCAmelCase ) def __lowerCAmelCase ( _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data' ) / """file.html""" with pytest.raises(__lowerCAmelCase ): http_get('https://huggingface.co' , temp_file=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __lowerCAmelCase ) def __lowerCAmelCase ( _UpperCamelCase : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data' ) / """file.html""" with pytest.raises(__lowerCAmelCase ): ftp_get('ftp://huggingface.co' , temp_file=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __lowerCAmelCase ) def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data' ) / """file.html""" with pytest.raises(__lowerCAmelCase ): fsspec_get('s3://huggingface.co' , temp_file=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase ): fsspec_head('s3://huggingface.co' )
712
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING a_ : Dict = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : Any , **snake_case__ : Optional[int] ): """simple docstring""" super().__init__(**snake_case__ ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , 'vision' ) self.check_model_type(snake_case__ ) def __call__( self : List[Any] , snake_case__ : Union[str, "Image.Image", List[Dict[str, Any]]] , snake_case__ : Union[str, List[str]] = None , **snake_case__ : Union[str, Any] , ): """simple docstring""" if "text_queries" in kwargs: SCREAMING_SNAKE_CASE = kwargs.pop('text_queries' ) if isinstance(snake_case__ , (str, Image.Image) ): SCREAMING_SNAKE_CASE = {'image': image, 'candidate_labels': candidate_labels} else: SCREAMING_SNAKE_CASE = image SCREAMING_SNAKE_CASE = super().__call__(snake_case__ , **snake_case__ ) return results def UpperCamelCase ( self : Union[str, Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = {} if "threshold" in kwargs: SCREAMING_SNAKE_CASE = kwargs['threshold'] if "top_k" in kwargs: SCREAMING_SNAKE_CASE = kwargs['top_k'] return {}, {}, postprocess_params def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = load_image(inputs['image'] ) SCREAMING_SNAKE_CASE = inputs['candidate_labels'] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = candidate_labels.split(',' ) SCREAMING_SNAKE_CASE = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE = self.tokenizer(snake_case__ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE = self.image_processor(snake_case__ , return_tensors=self.framework ) yield { "is_last": i == len(snake_case__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def UpperCamelCase ( self : Any , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = model_inputs.pop('target_size' ) SCREAMING_SNAKE_CASE = model_inputs.pop('candidate_label' ) SCREAMING_SNAKE_CASE = model_inputs.pop('is_last' ) SCREAMING_SNAKE_CASE = self.model(**snake_case__ ) SCREAMING_SNAKE_CASE = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : str=0.1 , snake_case__ : Union[str, Any]=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: SCREAMING_SNAKE_CASE = model_output['candidate_label'] SCREAMING_SNAKE_CASE = BaseModelOutput(snake_case__ ) SCREAMING_SNAKE_CASE = self.image_processor.post_process_object_detection( outputs=snake_case__ , threshold=snake_case__ , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): SCREAMING_SNAKE_CASE = outputs['scores'][index].item() SCREAMING_SNAKE_CASE = self._get_bounding_box(outputs['boxes'][index][0] ) SCREAMING_SNAKE_CASE = {'score': score, 'label': label, 'box': box} results.append(snake_case__ ) SCREAMING_SNAKE_CASE = sorted(snake_case__ , key=lambda snake_case__ : x["score"] , reverse=snake_case__ ) if top_k: SCREAMING_SNAKE_CASE = results[:top_k] return results def UpperCamelCase ( self : List[Any] , snake_case__ : "torch.Tensor" ): """simple docstring""" if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = box.int().tolist() SCREAMING_SNAKE_CASE = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
673
0
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCamelCase ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : List[str] , snake_case__ : float , snake_case__ : Callable , snake_case__ : int , snake_case__ : float = 1.0 , snake_case__ : str = None , ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE = initial_learning_rate SCREAMING_SNAKE_CASE = warmup_steps SCREAMING_SNAKE_CASE = power SCREAMING_SNAKE_CASE = decay_schedule_fn SCREAMING_SNAKE_CASE = name def __call__( self : List[str] , snake_case__ : List[str] ): """simple docstring""" with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. SCREAMING_SNAKE_CASE = tf.cast(snake_case__ , tf.floataa ) SCREAMING_SNAKE_CASE = tf.cast(self.warmup_steps , tf.floataa ) SCREAMING_SNAKE_CASE = global_step_float / warmup_steps_float SCREAMING_SNAKE_CASE = self.initial_learning_rate * tf.math.pow(snake_case__ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=snake_case__ , ) def UpperCamelCase ( self : Any ): """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple = 0.0 , _UpperCamelCase : Optional[Any] = 0.9 , _UpperCamelCase : List[str] = 0.9_99 , _UpperCamelCase : Optional[Any] = 1e-8 , _UpperCamelCase : List[str] = None , _UpperCamelCase : Optional[Any] = None , _UpperCamelCase : Any = 0.0 , _UpperCamelCase : int = 1.0 , _UpperCamelCase : int = None , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=__UpperCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=__UpperCAmelCase , ) if num_warmup_steps: SCREAMING_SNAKE_CASE = WarmUp( initial_learning_rate=__UpperCAmelCase , decay_schedule_fn=__UpperCAmelCase , warmup_steps=__UpperCAmelCase , ) if weight_decay_rate > 0.0: SCREAMING_SNAKE_CASE = AdamWeightDecay( learning_rate=__UpperCAmelCase , weight_decay_rate=__UpperCAmelCase , beta_a=__UpperCAmelCase , beta_a=__UpperCAmelCase , epsilon=__UpperCAmelCase , clipnorm=__UpperCAmelCase , global_clipnorm=__UpperCAmelCase , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=__UpperCAmelCase , ) else: SCREAMING_SNAKE_CASE = tf.keras.optimizers.Adam( learning_rate=__UpperCAmelCase , beta_a=__UpperCAmelCase , beta_a=__UpperCAmelCase , epsilon=__UpperCAmelCase , clipnorm=__UpperCAmelCase , global_clipnorm=__UpperCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCamelCase ( _snake_case ): def __init__( self : List[Any] , snake_case__ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , snake_case__ : float = 0.9 , snake_case__ : float = 0.999 , snake_case__ : float = 1E-7 , snake_case__ : bool = False , snake_case__ : float = 0.0 , snake_case__ : Optional[List[str]] = None , snake_case__ : Optional[List[str]] = None , snake_case__ : str = "AdamWeightDecay" , **snake_case__ : str , ): """simple docstring""" super().__init__(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ) SCREAMING_SNAKE_CASE = weight_decay_rate SCREAMING_SNAKE_CASE = include_in_weight_decay SCREAMING_SNAKE_CASE = exclude_from_weight_decay @classmethod def UpperCamelCase ( cls : int , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = {'WarmUp': WarmUp} return super(snake_case__ , cls ).from_config(snake_case__ , custom_objects=snake_case__ ) def UpperCamelCase ( self : Dict , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Optional[Any] ): """simple docstring""" super(snake_case__ , self )._prepare_local(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def UpperCamelCase ( self : List[Any] , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Dict=None , **snake_case__ : int ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = list(zip(*snake_case__ ) ) return super(snake_case__ , self ).apply_gradients(zip(snake_case__ , snake_case__ ) , name=snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Any ): """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} SCREAMING_SNAKE_CASE = apply_state or {} SCREAMING_SNAKE_CASE = apply_state.get((var_device, var_dtype) ) if coefficients is None: SCREAMING_SNAKE_CASE = self._fallback_apply_state(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCamelCase ( self : List[str] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str]=None ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._get_lr(var.device , var.dtype.base_dtype , snake_case__ ) SCREAMING_SNAKE_CASE = self._decay_weights_op(snake_case__ , snake_case__ , snake_case__ ) with tf.control_dependencies([decay] ): return super(snake_case__ , self )._resource_apply_dense(snake_case__ , snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Union[str, Any]=None ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._get_lr(var.device , var.dtype.base_dtype , snake_case__ ) SCREAMING_SNAKE_CASE = self._decay_weights_op(snake_case__ , snake_case__ , snake_case__ ) with tf.control_dependencies([decay] ): return super(snake_case__ , self )._resource_apply_sparse(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def UpperCamelCase ( self : Optional[Any] , snake_case__ : Optional[int] ): """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(snake_case__ , snake_case__ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(snake_case__ , snake_case__ ) is not None: return False return True class UpperCamelCase ( _snake_case ): def __init__( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = None @property def UpperCamelCase ( self : int ): """simple docstring""" if self._accum_steps is None: SCREAMING_SNAKE_CASE = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=snake_case__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCamelCase ( self : Any ): """simple docstring""" if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : str , snake_case__ : Any ): """simple docstring""" if not self._gradients: SCREAMING_SNAKE_CASE = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(snake_case__ ) , trainable=snake_case__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(snake_case__ ) != len(self._gradients ): raise ValueError(F"""Expected {len(self._gradients )} gradients, but got {len(snake_case__ )}""" ) for accum_gradient, gradient in zip(self._gradients , snake_case__ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(snake_case__ ) self._accum_steps.assign_add(1 ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(snake_case__ ) )
713
def __lowerCAmelCase ( _UpperCamelCase : int = 10_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 2**power SCREAMING_SNAKE_CASE = str(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 for i in list_num: sum_of_num += int(_UpperCamelCase ) return sum_of_num if __name__ == "__main__": a_ : List[str] = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) a_ : int = solution(power) print("Sum of the digits is: ", result)
673
0
from __future__ import annotations import math def __lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Tuple ) -> List[Any]: '''simple docstring''' if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(lowerCAmelCase__ ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) return min( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) def __lowerCAmelCase ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] SCREAMING_SNAKE_CASE = math.log(len(lowerCAmelCase__ ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
714
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="facebook/bart-large-mnli" __UpperCamelCase =( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) __UpperCamelCase ="text_classifier" __UpperCamelCase =AutoTokenizer __UpperCamelCase =AutoModelForSequenceClassification __UpperCamelCase =["text", ["text"]] __UpperCamelCase =["text"] def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): SCREAMING_SNAKE_CASE = int(snake_case__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[str] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(snake_case__ ) , [F"""This example is {label}""" for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
673
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( __lowerCAmelCase , unittest.TestCase ): __UpperCamelCase =RobertaTokenizer __UpperCamelCase =RobertaTokenizerFast __UpperCamelCase =True __UpperCamelCase ={"cls_token": "<s>"} def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] SCREAMING_SNAKE_CASE = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] SCREAMING_SNAKE_CASE = {"""unk_token""": """<unk>"""} SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCamelCase ) ) def UpperCamelCase ( self : int , **snake_case__ : Optional[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def UpperCamelCase ( self : int , **snake_case__ : Tuple ): """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def UpperCamelCase ( self : Any , snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE = """lower newer""" SCREAMING_SNAKE_CASE = """lower newer""" return input_text, output_text def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE = """lower newer""" SCREAMING_SNAKE_CASE = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] SCREAMING_SNAKE_CASE = tokenizer.tokenize(_UpperCamelCase ) # , add_prefix_space=True) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , _UpperCamelCase ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=_UpperCamelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=_UpperCamelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained('roberta-base' ) SCREAMING_SNAKE_CASE = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode( 'sequence builders' , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase , _UpperCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = """Encode this sequence.""" SCREAMING_SNAKE_CASE = tokenizer.byte_encoder[""" """.encode('utf-8' )[0]] # Testing encoder arguments SCREAMING_SNAKE_CASE = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) SCREAMING_SNAKE_CASE = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) # Testing spaces after special tokens SCREAMING_SNAKE_CASE = """<mask>""" tokenizer.add_special_tokens( {'mask_token': AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase )} ) # mask token has a left space SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) SCREAMING_SNAKE_CASE = """Encode <mask> sequence""" SCREAMING_SNAKE_CASE = """Encode <mask>sequence""" SCREAMING_SNAKE_CASE = tokenizer.encode(_UpperCamelCase ) SCREAMING_SNAKE_CASE = encoded.index(_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode(_UpperCamelCase ) SCREAMING_SNAKE_CASE = encoded.index(_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase ( self : Tuple ): """simple docstring""" pass def UpperCamelCase ( self : Optional[int] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = """A, <mask> AllenNLP sentence.""" SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer_p.encode_plus(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( _UpperCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _UpperCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCamelCase ( self : Tuple ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) SCREAMING_SNAKE_CASE = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) SCREAMING_SNAKE_CASE = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , _UpperCamelCase ) self.assertEqual(post_processor_state['add_prefix_space'] , _UpperCamelCase ) self.assertEqual(post_processor_state['trim_offsets'] , _UpperCamelCase ) def UpperCamelCase ( self : str ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE = F"""{text_of_1_token} {text_of_1_token}""" SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ) + 1, len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ) + 1, len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ), len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ), len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) SCREAMING_SNAKE_CASE = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ) + 1, 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ), 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ), 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , )
715
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a_ : str = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a_ : int = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.1_5}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names a_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a_ : List[Any] = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a_ : Any = "allenai" def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = dict((re.sub(R'@@$' , '' , _UpperCamelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , _UpperCamelCase ), v) for k, v in d.items() ) SCREAMING_SNAKE_CASE = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] SCREAMING_SNAKE_CASE = d[k] # restore return da def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : List[str] ) -> Dict: '''simple docstring''' assert os.path.exists(_UpperCamelCase ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel SCREAMING_SNAKE_CASE = cls.hub_models() SCREAMING_SNAKE_CASE = {'bpe': 'fastbpe', 'tokenizer': 'moses'} SCREAMING_SNAKE_CASE = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"""using checkpoint {checkpoint_file}""" ) SCREAMING_SNAKE_CASE = hub_utils.from_pretrained( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , archive_map=_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = vars(chkpt['args']['model'] ) SCREAMING_SNAKE_CASE = args['source_lang'] SCREAMING_SNAKE_CASE = args['target_lang'] SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) # dicts SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{src_lang}.txt""" ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{tgt_lang}.txt""" ) SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(src_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-src.json' ) print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab SCREAMING_SNAKE_CASE = True for k in src_vocab.keys(): if not k.islower(): SCREAMING_SNAKE_CASE = False break SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(tgt_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-tgt.json' ) print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # merges_file (bpecodes) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.exists(_UpperCamelCase ): break with open(_UpperCamelCase , encoding='utf-8' ) as fin: SCREAMING_SNAKE_CASE = fin.read() SCREAMING_SNAKE_CASE = re.sub(R' \d+$' , '' , _UpperCamelCase , 0 , re.M ) # remove frequency number print(f"""Generating {merges_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_UpperCamelCase ) # model config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args['bpe']}""" assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args['tokenizer']}""" SCREAMING_SNAKE_CASE = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with SCREAMING_SNAKE_CASE = 5 SCREAMING_SNAKE_CASE = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: SCREAMING_SNAKE_CASE = best_score_hparams[model_dir]['length_penalty'] else: SCREAMING_SNAKE_CASE = 1.0 print(f"""Generating {fsmt_model_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # tokenizer config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = { 'langs': [src_lang, tgt_lang], 'model_max_length': 10_24, 'do_lower_case': do_lower_case, } print(f"""Generating {fsmt_tokenizer_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # model SCREAMING_SNAKE_CASE = chkpt['models'][0] SCREAMING_SNAKE_CASE = model.state_dict() # rename keys to start with 'model.' SCREAMING_SNAKE_CASE = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys SCREAMING_SNAKE_CASE = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTConfig.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTForConditionalGeneration(_UpperCamelCase ) # check that it loads ok model_new.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) # save SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(_UpperCamelCase , _UpperCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f"""cd {data_root}""" ) print(f"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a_ : int = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
673
0
import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a_ : Tuple = get_logger() a_ : List[str] = None class UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self : Tuple , snake_case__ : Union[str, Any]=None , snake_case__ : str=None , **snake_case__ : Dict ): """simple docstring""" super().__init__(features=_A ) import jax from jaxlib.xla_client import Device if isinstance(_A , _A ): raise ValueError( F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) SCREAMING_SNAKE_CASE = device if isinstance(_A , _A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) SCREAMING_SNAKE_CASE = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE = jnp_array_kwargs @staticmethod def UpperCamelCase ( ): """simple docstring""" import jax return {str(_A ): device for device in jax.devices()} def UpperCamelCase ( self : Optional[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(_A , _A ) and column: if all( isinstance(_A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_A , axis=0 ) return column def UpperCamelCase ( self : Tuple , snake_case__ : Optional[int] ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(_A , (str, bytes, type(_A )) ): return value elif isinstance(_A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE = {} if isinstance(_A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE = {'dtype': jnp.intaa} else: SCREAMING_SNAKE_CASE = {'dtype': jnp.intaa} elif isinstance(_A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A , PIL.Image.Image ): SCREAMING_SNAKE_CASE = np.asarray(_A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A , **{**default_dtype, **self.jnp_array_kwargs} ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_A , '__array__' ) and not isinstance(_A , jax.Array ): SCREAMING_SNAKE_CASE = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def UpperCamelCase ( self : Tuple , snake_case__ : Dict ): """simple docstring""" return map_nested(self._recursive_tensorize , _A , map_list=_A ) def UpperCamelCase ( self : List[Any] , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.numpy_arrow_extractor().extract_row(_A ) SCREAMING_SNAKE_CASE = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.numpy_arrow_extractor().extract_column(_A ) SCREAMING_SNAKE_CASE = self.python_features_decoder.decode_column(_A , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE = self.recursive_tensorize(_A ) SCREAMING_SNAKE_CASE = self._consolidate(_A ) return column def UpperCamelCase ( self : Any , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.numpy_arrow_extractor().extract_batch(_A ) SCREAMING_SNAKE_CASE = self.python_features_decoder.decode_batch(_A ) SCREAMING_SNAKE_CASE = self.recursive_tensorize(_A ) for column_name in batch: SCREAMING_SNAKE_CASE = self._consolidate(batch[column_name] ) return batch
716
import random def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : float , _UpperCamelCase : bool = False ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE = {i: [] for i in range(_UpperCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_UpperCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_UpperCamelCase ): for j in range(i + 1 , _UpperCamelCase ): if random.random() < probability: graph[i].append(_UpperCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_UpperCamelCase ) return graph def __lowerCAmelCase ( _UpperCamelCase : int ) -> dict: '''simple docstring''' return { i: [j for j in range(_UpperCamelCase ) if i != j] for i in range(_UpperCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
673
0
def __lowerCAmelCase ( _UpperCamelCase : str ) -> Union[str, Any]: '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") a_ : Any = int(input("Enter number: ").strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
717
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : def __init__( self : List[str] , snake_case__ : Dict , snake_case__ : Optional[Any]=1_3 , snake_case__ : Union[str, Any]=7 , snake_case__ : List[str]=True , snake_case__ : Any=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=9_9 , snake_case__ : str=3_2 , snake_case__ : Dict=5 , snake_case__ : str=4 , snake_case__ : int=3_7 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Any=0.1 , snake_case__ : Dict=0.1 , snake_case__ : Optional[Any]=5_1_2 , snake_case__ : List[Any]=1_6 , snake_case__ : str=2 , snake_case__ : int=0.02 , snake_case__ : List[str]=3 , snake_case__ : Dict=4 , snake_case__ : str=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def UpperCamelCase ( self : List[str] , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : List[Any] , snake_case__ : str , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : int , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : int , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = NystromformerForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase =( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def UpperCamelCase ( self : List[str] ): """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(snake_case__ )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.4_532, -0.0_936, 0.5_137], [-0.2_676, 0.0_628, 0.6_186], [-0.3_629, -0.1_726, 0.4_716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1E-4 ) ) @slow def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = 'the [MASK] of Belgium is Brussels' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = tokenizer(snake_case__ , return_tensors='pt' ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(encoding.input_ids ).logits SCREAMING_SNAKE_CASE = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case__ ) , 'capital' )
673
0
from __future__ import annotations def __lowerCAmelCase ( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> tuple[str, float]: '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
673
0
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def __lowerCAmelCase ( _UpperCamelCase : Optional[int]=32 , _UpperCamelCase : Optional[Any]=10 , _UpperCamelCase : Tuple=1_00 , _UpperCamelCase : Optional[Any]=10_26 , _UpperCamelCase : Optional[Any]=True , _UpperCamelCase : Optional[int]="data/tokenized_stories_train_wikitext103.jbl" , _UpperCamelCase : Optional[Any]="igf_context_pairs.jbl" , ) -> List[str]: '''simple docstring''' set_seed(3 ) # generate train_data and objective_set SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = generate_datasets( _A , _A , number=_A , min_len=10_26 , trim=_A ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? SCREAMING_SNAKE_CASE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model SCREAMING_SNAKE_CASE = load_gpta('gpt2' ).to(_A ) print('computing perplexity on objective set' ) SCREAMING_SNAKE_CASE = compute_perplexity(_A , _A , _A ).item() print('perplexity on objective set:' , _A ) # collect igf pairs and save to file demo.jbl collect_objective_set(_A , _A , _A , _A , _A , _A , _A , _A ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : str=15 , _UpperCamelCase : List[str]=1_28 , _UpperCamelCase : int=1_00 , _UpperCamelCase : Dict="igf_model.pt" , ) -> Any: '''simple docstring''' set_seed(42 ) # Load pre-trained model SCREAMING_SNAKE_CASE = GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model SCREAMING_SNAKE_CASE = SecondaryLearner(_A ) # Train secondary learner SCREAMING_SNAKE_CASE = train_secondary_learner( _A , _A , max_epochs=_A , batch_size=_A , eval_freq=1_00 , igf_model_path=_A , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple=32 , _UpperCamelCase : Optional[Any]=10_00 , _UpperCamelCase : List[str]=16 , _UpperCamelCase : Dict=1.0 , _UpperCamelCase : int=recopy_gpta , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Dict=10 , _UpperCamelCase : List[Any]="gpt2_finetuned.pt" , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) SCREAMING_SNAKE_CASE = RandomSampler(_A ) SCREAMING_SNAKE_CASE = DataLoader(_A , sampler=_A ) SCREAMING_SNAKE_CASE = max_steps // (len(_A )) + 1 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = torch.zeros((1, context_len) , dtype=torch.long , device=_A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = recopy_model(_A , _A , _A ) model.train() if secondary_learner is not None: secondary_learner.to(_A ) secondary_learner.eval() SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] # Compute the performance of the transformer model at the beginning SCREAMING_SNAKE_CASE = compute_perplexity(_A , _A , _A ) test_perps.append(_A ) print('Test perplexity, step' , _A , ':' , _A ) for epoch in range(int(_A ) ): for step, example in enumerate(_A ): torch.cuda.empty_cache() SCREAMING_SNAKE_CASE = random.randint(0 , example.size(2 ) - context_len - 1 ) SCREAMING_SNAKE_CASE = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() SCREAMING_SNAKE_CASE = model(_A , labels=_A ) SCREAMING_SNAKE_CASE = True if secondary_learner is not None: SCREAMING_SNAKE_CASE = secondary_learner.forward( torch.tensor(_A , dtype=torch.long , device=_A ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_A ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: SCREAMING_SNAKE_CASE = -1 if predicted_q < threshold: SCREAMING_SNAKE_CASE = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) SCREAMING_SNAKE_CASE = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() SCREAMING_SNAKE_CASE = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: SCREAMING_SNAKE_CASE = compute_perplexity(_A , _A , _A ) test_perps.append(_A ) print('Test perplexity, step' , _A , ':' , _A ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _A ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def __lowerCAmelCase ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir' , default=_A , type=_A , required=_A , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=_A , default=_A , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=_A , default=_A , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=_A , type=_A , required=_A , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=_A , type=_A , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=_A , default=_A , help='A seed for reproducible training.' ) parser.add_argument( '--context_len' , default=32 , type=_A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=1_00 , type=_A , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=1_00 , type=_A , help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps' , default=10_00 , type=_A , help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size' , default=1_28 , type=_A , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=_A , help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval' , default=10 , type=_A , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=1_00 , type=_A , help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len' , default=10_26 , type=_A , help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=_A , help='number of epochs to train secondary learner' ) parser.add_argument('--trim' , default=_A , type=_A , help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold' , default=1.0 , type=_A , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=_A , help='finetuned_model_name' ) parser.add_argument( '--recopy_model' , default=_A , type=_A , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=_A , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner SCREAMING_SNAKE_CASE = joblib.load('data/IGF_values.jbl' ) # Train secondary learner SCREAMING_SNAKE_CASE = training_secondary_learner( _A , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model SCREAMING_SNAKE_CASE = GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=1_00 , min_len=10_26 , trim=_A ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _A , _A , _A , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=_A , secondary_learner=_A , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
719
import heapq import sys import numpy as np a_ : Optional[int] = tuple[int, int] class UpperCamelCase : def __init__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() def UpperCamelCase ( self : List[Any] ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf' ) def UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.elements ) == 0 def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(snake_case__ ) else: # update # print("update", item) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" if item in self.set: self.set.remove(snake_case__ ) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def UpperCamelCase ( self : str ): """simple docstring""" return self.elements[0][1] def UpperCamelCase ( self : Tuple ): """simple docstring""" ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) self.set.remove(snake_case__ ) return (priority, item) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) return np.linalg.norm(a - b ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Dict: '''simple docstring''' return consistent_heuristic(_UpperCamelCase , _UpperCamelCase ) // t def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[int]: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : int , _UpperCamelCase : TPos , _UpperCamelCase : dict[TPos, float] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = g_function[start] + Wa * heuristics[i](_UpperCamelCase , _UpperCamelCase ) return ans def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = np.chararray((n, n) ) for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = '*' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE = '#' SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = x # print(x) SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[x] SCREAMING_SNAKE_CASE = '-' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: print(_UpperCamelCase , end=' ' ) SCREAMING_SNAKE_CASE = back_pointer[x] print(_UpperCamelCase ) sys.exit() def __lowerCAmelCase ( _UpperCamelCase : TPos ) -> Any: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , ) -> List[Any]: '''simple docstring''' for itera in range(_UpperCamelCase ): open_list[itera].remove_element(_UpperCamelCase ) # print("s", s) # print("j", j) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = s SCREAMING_SNAKE_CASE = (x - 1, y) SCREAMING_SNAKE_CASE = (x + 1, y) SCREAMING_SNAKE_CASE = (x, y + 1) SCREAMING_SNAKE_CASE = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = float('inf' ) if valid(_UpperCamelCase ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE = g_function[s] + 1 SCREAMING_SNAKE_CASE = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCamelCase , key(_UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , _UpperCamelCase ): if key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) <= Wa * key( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ): open_list[j].put( _UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a_ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a_ : List[str] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a_ : Union[str, Any] = make_common_ground() a_ : Tuple = blocks_blk # hyper parameters a_ : Any = 1 a_ : List[str] = 1 a_ : Union[str, Any] = 20 a_ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a_ : int = (0, 0) a_ : Optional[int] = (n - 1, n - 1) a_ : Union[str, Any] = 1 def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos , _UpperCamelCase : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {start: 0, goal: float('inf' )} SCREAMING_SNAKE_CASE = {start: -1, goal: -1} SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() for i in range(_UpperCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , _UpperCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = open_list[i].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_inad.append(_UpperCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE = open_list[0].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_anchor.append(_UpperCamelCase ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_UpperCamelCase ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
673
0
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase : __UpperCamelCase =None def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , snake_case_ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_json_file(snake_case_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_pretrained(snake_case_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.feature_extraction_class() self.assertIsNotNone(snake_case_ )
720
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a_ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : str = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Any=8 ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=5_12 , _UpperCamelCase : Union[str, Any]=5_12 ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) SCREAMING_SNAKE_CASE = np.array(pil_image.convert('RGB' ) ) SCREAMING_SNAKE_CASE = arr.astype(np.floataa ) / 1_27.5 - 1 SCREAMING_SNAKE_CASE = np.transpose(_UpperCamelCase , [2, 0, 1] ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : int , snake_case__ : UNetaDConditionModel , snake_case__ : DDPMScheduler , snake_case__ : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , ) SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase ( self : Any , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = min(int(num_inference_steps * strength ) , snake_case__ ) SCREAMING_SNAKE_CASE = max(num_inference_steps - init_timestep , 0 ) SCREAMING_SNAKE_CASE = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase ( self : List[str] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : str=None ): """simple docstring""" if not isinstance(snake_case__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case__ )}""" ) SCREAMING_SNAKE_CASE = image.to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = batch_size * num_images_per_prompt if image.shape[1] == 4: SCREAMING_SNAKE_CASE = image else: if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case__ ) ] SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) else: SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ ).latent_dist.sample(snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.config.scaling_factor * init_latents SCREAMING_SNAKE_CASE = torch.cat([init_latents] , dim=0 ) SCREAMING_SNAKE_CASE = init_latents.shape SCREAMING_SNAKE_CASE = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) # get latents SCREAMING_SNAKE_CASE = self.scheduler.add_noise(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = init_latents return latents def UpperCamelCase ( self : int , snake_case__ : List[str]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) SCREAMING_SNAKE_CASE = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[int]=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=snake_case__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase ( self : Dict ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case__ ) def __call__( self : str , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : int = 5_1_2 , snake_case__ : int = 5_1_2 , snake_case__ : int = 1_0_0 , snake_case__ : float = 4.0 , snake_case__ : float = 0.3 , snake_case__ : int = 1 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , ): """simple docstring""" SCREAMING_SNAKE_CASE = self._execution_device SCREAMING_SNAKE_CASE = guidance_scale > 1.0 if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = image_embeds.shape[0] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [image] if not all(isinstance(snake_case__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(snake_case__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) SCREAMING_SNAKE_CASE = torch.cat([prepare_image(snake_case__ , snake_case__ , snake_case__ ) for i in image] , dim=0 ) SCREAMING_SNAKE_CASE = image.to(dtype=image_embeds.dtype , device=snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ )['latents'] SCREAMING_SNAKE_CASE = latents.repeat_interleave(snake_case__ , dim=0 ) self.scheduler.set_timesteps(snake_case__ , device=snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_timesteps(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = timesteps[:1].repeat(batch_size * num_images_per_prompt ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = downscale_height_and_width(snake_case__ , snake_case__ , self.movq_scale_factor ) SCREAMING_SNAKE_CASE = self.prepare_latents( snake_case__ , snake_case__ , snake_case__ , snake_case__ , image_embeds.dtype , snake_case__ , snake_case__ ) for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE = {'image_embeds': image_embeds} SCREAMING_SNAKE_CASE = self.unet( sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , )[0] # post-processing SCREAMING_SNAKE_CASE = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
673
0
from __future__ import annotations def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> Any: '''simple docstring''' if b == 0: return (1, 0) (SCREAMING_SNAKE_CASE) = extended_euclid(__UpperCamelCase , a % b ) SCREAMING_SNAKE_CASE = a // b return (y, x - k * y) def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) -> List[Any]: '''simple docstring''' (SCREAMING_SNAKE_CASE) = extended_euclid(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE = na * na SCREAMING_SNAKE_CASE = ra * x * na + ra * y * na return (n % m + m) % m def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> Optional[Any]: '''simple docstring''' (SCREAMING_SNAKE_CASE) = extended_euclid(__UpperCamelCase , __UpperCamelCase ) if b < 0: SCREAMING_SNAKE_CASE = (b % n + n) % n return b def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = invert_modulo(__UpperCamelCase , __UpperCamelCase ), invert_modulo(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE = na * na SCREAMING_SNAKE_CASE = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
721
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() a_ : List[Any] = logging.get_logger("transformers.models.speecht5") def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Dict: '''simple docstring''' hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Any=None , _UpperCamelCase : List[str]=None , ) -> Tuple: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig.from_pretrained(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE = SpeechTaHifiGan(_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = np.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() model.save_pretrained(_UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) a_ : Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
673
0
def __lowerCAmelCase ( _UpperCamelCase : list[list[int]] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : set ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = len(snake_case__ ), len(grid[0] ) if ( min(snake_case__ , snake_case__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) SCREAMING_SNAKE_CASE = 0 count += depth_first_search(snake_case__ , row + 1 , snake_case__ , snake_case__ ) count += depth_first_search(snake_case__ , row - 1 , snake_case__ , snake_case__ ) count += depth_first_search(snake_case__ , snake_case__ , col + 1 , snake_case__ ) count += depth_first_search(snake_case__ , snake_case__ , col - 1 , snake_case__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
700
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a_ : Optional[int] = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } a_ : List[Any] = { "allenai/led-base-16384": 1_6384, } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =LEDTokenizer __UpperCamelCase =["input_ids", "attention_mask"] def __init__( self : Tuple , snake_case__ : List[Any]=None , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : Dict="replace" , snake_case__ : Tuple="<s>" , snake_case__ : Optional[Any]="</s>" , snake_case__ : int="</s>" , snake_case__ : Dict="<s>" , snake_case__ : Union[str, Any]="<unk>" , snake_case__ : Optional[int]="<pad>" , snake_case__ : List[str]="<mask>" , snake_case__ : List[Any]=False , snake_case__ : int=True , **snake_case__ : Dict , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(snake_case__ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**snake_case__ ) SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE = 'post_processor' SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state['cls'] ) SCREAMING_SNAKE_CASE = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(snake_case__ , state.pop('type' ) ) SCREAMING_SNAKE_CASE = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase ( self : List[Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value SCREAMING_SNAKE_CASE = value def UpperCamelCase ( self : Dict , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[str] , *snake_case__ : List[Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Tuple=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self : Optional[Any] , snake_case__ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case__ : Optional[int] = None , snake_case__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , ): """simple docstring""" SCREAMING_SNAKE_CASE = super()._pad( encoded_inputs=snake_case__ , max_length=snake_case__ , padding_strategy=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE = len(encoded_inputs['global_attention_mask'] ) != len(snake_case__ ) if needs_to_be_padded: SCREAMING_SNAKE_CASE = len(snake_case__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
673
0
'''simple docstring''' import re def __lowerCAmelCase ( _UpperCamelCase : Any ) -> list: '''simple docstring''' return [char.split() for char in re.split(R'[^ a-z A-Z 0-9 \s]' , str_ )] def __lowerCAmelCase ( _UpperCamelCase : List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = split_input(str_ ) return "".join( [''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] ) -> str: '''simple docstring''' try: SCREAMING_SNAKE_CASE = split_input(__SCREAMING_SNAKE_CASE ) if upper: SCREAMING_SNAKE_CASE = ''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: SCREAMING_SNAKE_CASE = ''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> str: '''simple docstring''' return to_simple_case(__SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] ) -> str: '''simple docstring''' try: SCREAMING_SNAKE_CASE = to_simple_case(__SCREAMING_SNAKE_CASE ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : Any ) -> str: '''simple docstring''' return to_complex_case(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , '_' ) def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : List[str] ) -> str: '''simple docstring''' return to_complex_case(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , '-' ) if __name__ == "__main__": __import__("doctest").testmod()
701
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __lowerCAmelCase ( *_UpperCamelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(_UpperCamelCase , 'r' ) as fh: fcntl.flock(_UpperCamelCase , fcntl.LOCK_EX ) try: print(*_UpperCamelCase ) finally: fcntl.flock(_UpperCamelCase , fcntl.LOCK_UN ) a_ : int = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) a_ : str = torch.device("cuda", local_rank) a_ : Optional[int] = socket.gethostname() a_ : Union[str, Any] = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank a_ : Dict = dist.get_rank() a_ : Any = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
673
0
def __lowerCAmelCase ( _UpperCamelCase : list[int] , _UpperCamelCase : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): SCREAMING_SNAKE_CASE = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): SCREAMING_SNAKE_CASE = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: SCREAMING_SNAKE_CASE = subset[i - 1][j] if arr[i - 1] <= j: SCREAMING_SNAKE_CASE = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
702
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a_ : Optional[Any] = logging.get_logger(__name__) a_ : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } a_ : Union[str, Any] = {"allegro/herbert-base-cased": 514} a_ : List[Any] = {} class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_INIT_CONFIGURATION __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =HerbertTokenizer def __init__( self : Tuple , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : Optional[int]=None , snake_case__ : str="<s>" , snake_case__ : Tuple="<unk>" , snake_case__ : List[str]="<pad>" , snake_case__ : Tuple="<mask>" , snake_case__ : Dict="</s>" , **snake_case__ : List[str] , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sep_token=snake_case__ , **snake_case__ , ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
673
0
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class UpperCamelCase : def __init__( self : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any]=1_3 , snake_case__ : int=7 , snake_case__ : Optional[int]=True , snake_case__ : str=True , snake_case__ : Dict=False , snake_case__ : Tuple=True , snake_case__ : List[str]=9_9 , snake_case__ : Tuple=6_4 , snake_case__ : int=5 , snake_case__ : Any=4 , snake_case__ : List[str]=6_4 , snake_case__ : int="gelu" , snake_case__ : Any=0.1 , snake_case__ : str=0.1 , snake_case__ : str=5_1_2 , snake_case__ : str=1_6 , snake_case__ : Tuple=2 , snake_case__ : Any=0.02 , snake_case__ : str=3 , snake_case__ : Optional[int]=4 , snake_case__ : Tuple=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : Any ): """simple docstring""" return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : str ): """simple docstring""" return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCamelCase ( self : str , snake_case__ : Dict , snake_case__ : str , snake_case__ : Any , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = MPNetModel(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE = model(__A , __A ) SCREAMING_SNAKE_CASE = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = MPNetForQuestionAnswering(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE = model( __A , attention_mask=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : int , snake_case__ : str , snake_case__ : List[str] , snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = MPNetForSequenceClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : Any , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = MPNetForMultipleChoice(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = model( __A , attention_mask=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = MPNetForTokenClassification(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() (SCREAMING_SNAKE_CASE) = config_and_inputs SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): __UpperCamelCase =( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) __UpperCamelCase =( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =True def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = MPNetModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__A , hidden_size=3_7 ) def UpperCamelCase ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*__A ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*__A ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*__A ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*__A ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*__A ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = MPNetModel.from_pretrained('microsoft/mpnet-base' ) SCREAMING_SNAKE_CASE = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) SCREAMING_SNAKE_CASE = model(__A )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , __A ) SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.0_550, 0.1_943, -0.0_740], [-0.0_562, 0.2_211, -0.0_579], [-0.0_437, 0.3_337, -0.0_641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1E-4 ) )
703
def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 while n > 0: res += n % 10 n //= 10 return res def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return sum(int(_UpperCamelCase ) for c in str(abs(_UpperCamelCase ) ) ) def __lowerCAmelCase ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_UpperCamelCase : Callable , _UpperCamelCase : int ) -> None: SCREAMING_SNAKE_CASE = f"""{func.__name__}({value})""" SCREAMING_SNAKE_CASE = timeit(f"""__main__.{call}""" , setup='import __main__' ) print(f"""{call:56} = {func(_UpperCamelCase )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_UpperCamelCase , _UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
673
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ : Any = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys a_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
704
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
673
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : Tuple , _UpperCamelCase : int , _UpperCamelCase : Optional[Any] , _UpperCamelCase : str=True , _UpperCamelCase : Optional[Any]="pt" ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {"""add_prefix_space""": True} if isinstance(_UpperCamelCase , _UpperCamelCase ) and not line.startswith(' ' ) else {} SCREAMING_SNAKE_CASE = padding_side return tokenizer( [line] , max_length=_UpperCamelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCamelCase , return_tensors=_UpperCamelCase , add_special_tokens=_UpperCamelCase , **_UpperCamelCase , ) def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any]=None , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = input_ids.ne(_UpperCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Tuple="train" , snake_case__ : Optional[int]=None , snake_case__ : Any=None , snake_case__ : int=None , snake_case__ : Union[str, Any]="" , ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE = Path(_a ).joinpath(type_path + '.source' ) SCREAMING_SNAKE_CASE = Path(_a ).joinpath(type_path + '.target' ) SCREAMING_SNAKE_CASE = self.get_char_lens(self.src_file ) SCREAMING_SNAKE_CASE = max_source_length SCREAMING_SNAKE_CASE = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" SCREAMING_SNAKE_CASE = tokenizer SCREAMING_SNAKE_CASE = prefix if n_obs is not None: SCREAMING_SNAKE_CASE = self.src_lens[:n_obs] SCREAMING_SNAKE_CASE = src_lang SCREAMING_SNAKE_CASE = tgt_lang def __len__( self : Tuple ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : List[str] , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = index + 1 # linecache starts at 1 SCREAMING_SNAKE_CASE = self.prefix + linecache.getline(str(self.src_file ) , _a ).rstrip('\n' ) SCREAMING_SNAKE_CASE = linecache.getline(str(self.tgt_file ) , _a ).rstrip('\n' ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , _a ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right SCREAMING_SNAKE_CASE = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _a ) else self.tokenizer ) SCREAMING_SNAKE_CASE = self.tokenizer.generator if isinstance(self.tokenizer , _a ) else self.tokenizer SCREAMING_SNAKE_CASE = encode_line(_a , _a , self.max_source_length , 'right' ) SCREAMING_SNAKE_CASE = encode_line(_a , _a , self.max_target_length , 'right' ) SCREAMING_SNAKE_CASE = source_inputs["""input_ids"""].squeeze() SCREAMING_SNAKE_CASE = target_inputs["""input_ids"""].squeeze() SCREAMING_SNAKE_CASE = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCamelCase ( snake_case__ : int ): """simple docstring""" return [len(_a ) for x in Path(_a ).open().readlines()] def UpperCamelCase ( self : Optional[int] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.stack([x['input_ids'] for x in batch] ) SCREAMING_SNAKE_CASE = torch.stack([x['attention_mask'] for x in batch] ) SCREAMING_SNAKE_CASE = torch.stack([x['decoder_input_ids'] for x in batch] ) SCREAMING_SNAKE_CASE = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _a ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _a ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE = trim_batch(_a , _a ) SCREAMING_SNAKE_CASE = trim_batch(_a , _a , attention_mask=_a ) SCREAMING_SNAKE_CASE = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch a_ : str = getLogger(__name__) def __lowerCAmelCase ( _UpperCamelCase : List[List] ) -> Any: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCamelCase ) ) def __lowerCAmelCase ( _UpperCamelCase : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = get_git_info() save_json(_UpperCamelCase , os.path.join(_UpperCamelCase , 'git_log.json' ) ) def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=4 , **_UpperCamelCase : List[str] ) -> Any: '''simple docstring''' with open(_UpperCamelCase , 'w' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase , indent=_UpperCamelCase , **_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : Any ) -> List[Any]: '''simple docstring''' with open(_UpperCamelCase ) as f: return json.load(_UpperCamelCase ) def __lowerCAmelCase ( ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = git.Repo(search_parent_directories=_UpperCamelCase ) SCREAMING_SNAKE_CASE = { """repo_id""": str(_UpperCamelCase ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def __lowerCAmelCase ( _UpperCamelCase : Callable , _UpperCamelCase : Iterable ) -> Tuple: '''simple docstring''' return list(map(_UpperCamelCase , _UpperCamelCase ) ) def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCamelCase , 'wb' ) as f: return pickle.dump(_UpperCamelCase , _UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : List[str] ) -> str: '''simple docstring''' def remove_articles(_UpperCamelCase : Any ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCamelCase ) def white_space_fix(_UpperCamelCase : List[Any] ): return " ".join(text.split() ) def remove_punc(_UpperCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCamelCase : List[str] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCamelCase ) ) ) ) def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = normalize_answer(_UpperCamelCase ).split() SCREAMING_SNAKE_CASE = normalize_answer(_UpperCamelCase ).split() SCREAMING_SNAKE_CASE = Counter(_UpperCamelCase ) & Counter(_UpperCamelCase ) SCREAMING_SNAKE_CASE = sum(common.values() ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE = 1.0 * num_same / len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 1.0 * num_same / len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = (2 * precision * recall) / (precision + recall) return fa def __lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : Any ) -> Dict: '''simple docstring''' return normalize_answer(_UpperCamelCase ) == normalize_answer(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : List[str] ) -> Any: '''simple docstring''' assert len(_UpperCamelCase ) == len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 for hypo, pred in zip(_UpperCamelCase , _UpperCamelCase ): em += exact_match_score(_UpperCamelCase , _UpperCamelCase ) if len(_UpperCamelCase ) > 0: em /= len(_UpperCamelCase ) return {"em": em} def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' return model_prefix.startswith('rag' ) def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead SCREAMING_SNAKE_CASE = """dropout_rate""" for p in extra_params: if getattr(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if not hasattr(_UpperCamelCase , _UpperCamelCase ) and not hasattr(_UpperCamelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCamelCase ) ) delattr(_UpperCamelCase , _UpperCamelCase ) continue SCREAMING_SNAKE_CASE = p if hasattr(_UpperCamelCase , _UpperCamelCase ) else equivalent_param[p] setattr(_UpperCamelCase , _UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) delattr(_UpperCamelCase , _UpperCamelCase ) return hparams, config
705
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =AudioLDMPipeline __UpperCamelCase =TEXT_TO_AUDIO_PARAMS __UpperCamelCase =TEXT_TO_AUDIO_BATCH_PARAMS __UpperCamelCase =frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(3_2, 6_4) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=snake_case__ , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) SCREAMING_SNAKE_CASE = ClapTextModelWithProjection(snake_case__ ) SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=7_7 ) SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=snake_case__ , ) SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def UpperCamelCase ( self : Optional[int] , snake_case__ : int , snake_case__ : int=0 ): """simple docstring""" if str(snake_case__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(snake_case__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) SCREAMING_SNAKE_CASE = prompt_embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE = negative_prompt SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = [] for p in [prompt, negative_prompt]: SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = text_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) embeds.append(snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 'egg cracking' SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ , negative_prompt=snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config.sampling_rate SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.016 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.016 SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.032 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.032 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = ['hey'] SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape assert audio_shape == (1, 2_5_6) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config config.model_in_dim *= 2 SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ).to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def UpperCamelCase ( self : Tuple ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=snake_case__ ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase ( self : Dict ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case__ ) @slow class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : int , snake_case__ : int , snake_case__ : Tuple="cpu" , snake_case__ : List[str]=torch.floataa , snake_case__ : Optional[Any]=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = np.random.RandomState(snake_case__ ).standard_normal((1, 8, 1_2_8, 1_6) ) SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 2_5 SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[7_7_2_3_0:7_7_2_4_0] SCREAMING_SNAKE_CASE = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[2_7_7_8_0:2_7_7_9_0] SCREAMING_SNAKE_CASE = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
673
0
import os import sys import transformers a_ : Tuple = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
706
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase : def __init__( self : Dict , snake_case__ : str , snake_case__ : str=1_3 , snake_case__ : Tuple=7 , snake_case__ : Tuple=True , snake_case__ : Tuple=True , snake_case__ : List[str]=False , snake_case__ : Any=True , snake_case__ : Union[str, Any]=9_9 , snake_case__ : Dict=3_2 , snake_case__ : Optional[Any]=5 , snake_case__ : Optional[Any]=4 , snake_case__ : Union[str, Any]=3_7 , snake_case__ : Tuple="gelu" , snake_case__ : Dict=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : int=4 , snake_case__ : List[str]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Dict ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , use_stable_embedding=snake_case__ , ) def UpperCamelCase ( self : int , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : str , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : str , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , ) SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Tuple , ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : int , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Union[str, Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , use_cache=snake_case__ , ) SCREAMING_SNAKE_CASE = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCamelCase =(OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCamelCase =( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'single_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'multi_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase ( self : str , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = ids_tensor([1, 1_0] , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) )
673
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : int = { "configuration_nllb_moe": [ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[Any] = [ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeTop2Router", "NllbMoeSparseMLP", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys a_ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
707
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="openai/whisper-base" __UpperCamelCase =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCamelCase ="transcriber" __UpperCamelCase =WhisperProcessor __UpperCamelCase =WhisperForConditionalGeneration __UpperCamelCase =["audio"] __UpperCamelCase =["text"] def UpperCamelCase ( self : Dict , snake_case__ : Tuple ): """simple docstring""" return self.pre_processor(snake_case__ , return_tensors='pt' ).input_features def UpperCamelCase ( self : Optional[int] , snake_case__ : Tuple ): """simple docstring""" return self.model.generate(inputs=snake_case__ ) def UpperCamelCase ( self : str , snake_case__ : Union[str, Any] ): """simple docstring""" return self.pre_processor.batch_decode(snake_case__ , skip_special_tokens=snake_case__ )[0]
673
0
def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> str: '''simple docstring''' return "\n".join( f"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
708
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version a_ : List[str] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize a_ : Dict = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" a_ : str = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" a_ : int = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def UpperCamelCase ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def UpperCamelCase ( self : Dict , snake_case__ : int ): """simple docstring""" import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : List[Any]=0.9 , snake_case__ : Optional[Any]=3 , snake_case__ : Any=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5' ): SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score( word_tokenize(snake_case__ ) , word_tokenize(snake_case__ ) , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] else: SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score(snake_case__ , snake_case__ , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] return {"meteor": np.mean(snake_case__ )}
673
0
import math import qiskit def __lowerCAmelCase ( _UpperCamelCase : int = 1 , _UpperCamelCase : int = 1 , _UpperCamelCase : int = 1 ) -> qiskit.result.counts.Counts: '''simple docstring''' if ( isinstance(_lowercase , _lowercase ) or isinstance(_lowercase , _lowercase ) or isinstance(_lowercase , _lowercase ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(_lowercase ) != input_a) or (math.floor(_lowercase ) != input_a) or (math.floor(_lowercase ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers SCREAMING_SNAKE_CASE = qiskit.QuantumRegister(4 , 'qr' ) SCREAMING_SNAKE_CASE = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries SCREAMING_SNAKE_CASE = [input_a, input_a, carry_in] SCREAMING_SNAKE_CASE = qiskit.QuantumCircuit(_lowercase , _lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(_lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(_lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(_lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , _lowercase ) # measure the last two qbits SCREAMING_SNAKE_CASE = qiskit.Aer.get_backend('aer_simulator' ) SCREAMING_SNAKE_CASE = qiskit.execute(_lowercase , _lowercase , shots=10_00 ) return job.result().get_counts(_lowercase ) if __name__ == "__main__": print(F"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
709
import numpy as np def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
673
0
from math import isclose, sqrt def __lowerCAmelCase ( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = point_y / 4 / point_x SCREAMING_SNAKE_CASE = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) SCREAMING_SNAKE_CASE = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) SCREAMING_SNAKE_CASE = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 SCREAMING_SNAKE_CASE = outgoing_gradient**2 + 4 SCREAMING_SNAKE_CASE = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) SCREAMING_SNAKE_CASE = (point_y - outgoing_gradient * point_x) ** 2 - 1_00 SCREAMING_SNAKE_CASE = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) SCREAMING_SNAKE_CASE = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point SCREAMING_SNAKE_CASE = x_minus if isclose(UpperCAmelCase__ , UpperCAmelCase__ ) else x_plus SCREAMING_SNAKE_CASE = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def __lowerCAmelCase ( _UpperCamelCase : float = 1.4 , _UpperCamelCase : float = -9.6 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = first_x_coord SCREAMING_SNAKE_CASE = first_y_coord SCREAMING_SNAKE_CASE = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = next_point(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
710
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ : Any = logging.get_logger(__name__) a_ : Dict = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="van" def __init__( self : Optional[Any] , snake_case__ : Tuple=2_2_4 , snake_case__ : Dict=3 , snake_case__ : Union[str, Any]=[7, 3, 3, 3] , snake_case__ : str=[4, 2, 2, 2] , snake_case__ : Optional[Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , snake_case__ : Optional[Any]=[3, 3, 1_2, 3] , snake_case__ : Tuple=[8, 8, 4, 4] , snake_case__ : Any="gelu" , snake_case__ : Dict=0.02 , snake_case__ : List[str]=1E-6 , snake_case__ : int=1E-2 , snake_case__ : Any=0.0 , snake_case__ : Tuple=0.0 , **snake_case__ : Any , ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_sizes SCREAMING_SNAKE_CASE = strides SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = mlp_ratios SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = dropout_rate
673
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCamelCase ( __UpperCAmelCase ): def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase_ , 'width_multiplier' ) ) class UpperCamelCase : def __init__( self : int , snake_case__ : Optional[Any] , snake_case__ : Tuple=1_3 , snake_case__ : Dict=6_4 , snake_case__ : Dict=2 , snake_case__ : int=3 , snake_case__ : Any="swish" , snake_case__ : str=3 , snake_case__ : Union[str, Any]=3_2 , snake_case__ : Any=0.1 , snake_case__ : Optional[int]=0.02 , snake_case__ : List[Any]=True , snake_case__ : Tuple=True , snake_case__ : Tuple=1_0 , snake_case__ : Optional[Any]=None , snake_case__ : Any=0.25 , snake_case__ : Tuple=0.0 , snake_case__ : Union[str, Any]=0.0 , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = make_divisible(5_1_2 * width_multiplier , divisor=8 ) SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = conv_kernel_size SCREAMING_SNAKE_CASE = output_stride SCREAMING_SNAKE_CASE = classifier_dropout_prob SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = width_multiplier SCREAMING_SNAKE_CASE = ffn_dropout SCREAMING_SNAKE_CASE = attn_dropout def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase ( self : str ): """simple docstring""" return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = MobileViTVaModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase ( self : Tuple , snake_case__ : Any , snake_case__ : Any , snake_case__ : int , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = MobileViTVaForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : str , snake_case__ : str , snake_case__ : int , snake_case__ : str , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = MobileViTVaForSemanticSegmentation(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __UpperCamelCase =( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCamelCase =( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = MobileViTVaModelTester(self ) SCREAMING_SNAKE_CASE = MobileViTVaConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def UpperCamelCase ( self : Any ): """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def UpperCamelCase ( self : Any ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def UpperCamelCase ( self : Dict ): """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase ( self : int ): """simple docstring""" pass def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self : str ): """simple docstring""" def check_hidden_states_output(snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Any ): SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = 5 self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE = 2 for i in range(len(UpperCAmelCase_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self : Dict ): """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = MobileViTVaModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def UpperCamelCase ( self : int ): """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**UpperCAmelCase_ ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) SCREAMING_SNAKE_CASE = model.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = outputs.logits # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=UpperCAmelCase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) SCREAMING_SNAKE_CASE = model.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase_ , target_sizes=[(5_0, 6_0)] ) SCREAMING_SNAKE_CASE = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase_ )
711
def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : int ) -> list[str]: '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(_UpperCamelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
673
0
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCamelCase ( UpperCamelCase_ ): def __init__( self : str , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = dataset SCREAMING_SNAKE_CASE = process SCREAMING_SNAKE_CASE = params def __len__( self : Tuple ): """simple docstring""" return len(self.dataset ) def __getitem__( self : List[str] , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.dataset[i] SCREAMING_SNAKE_CASE = self.process(UpperCamelCase__ , **self.params ) return processed class UpperCamelCase ( UpperCamelCase_ ): def __init__( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : List[Any]=None ): """simple docstring""" SCREAMING_SNAKE_CASE = loader SCREAMING_SNAKE_CASE = infer SCREAMING_SNAKE_CASE = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = loader_batch_size # Internal bookkeeping SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None def __len__( self : int ): """simple docstring""" return len(self.loader ) def __iter__( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = iter(self.loader ) return self def UpperCamelCase ( self : List[str] ): """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice SCREAMING_SNAKE_CASE = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) SCREAMING_SNAKE_CASE = {} for k, element in self._loader_batch_data.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # Convert ModelOutput to tuple first SCREAMING_SNAKE_CASE = element.to_tuple() if isinstance(element[0] , torch.Tensor ): SCREAMING_SNAKE_CASE = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): SCREAMING_SNAKE_CASE = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCamelCase__ , UpperCamelCase__ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): SCREAMING_SNAKE_CASE = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): SCREAMING_SNAKE_CASE = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around SCREAMING_SNAKE_CASE = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers SCREAMING_SNAKE_CASE = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers SCREAMING_SNAKE_CASE = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. SCREAMING_SNAKE_CASE = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 SCREAMING_SNAKE_CASE = self._loader_batch_data.__class__(UpperCamelCase__ ) self._loader_batch_index += 1 return result def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch SCREAMING_SNAKE_CASE = next(self.iterator ) SCREAMING_SNAKE_CASE = self.infer(UpperCamelCase__ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCamelCase__ , torch.Tensor ): SCREAMING_SNAKE_CASE = processed else: SCREAMING_SNAKE_CASE = list(processed.keys() )[0] SCREAMING_SNAKE_CASE = processed[key] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE = len(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. SCREAMING_SNAKE_CASE = observed_batch_size # Setting internal index to unwrap the batch SCREAMING_SNAKE_CASE = processed SCREAMING_SNAKE_CASE = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCamelCase ( UpperCamelCase_ ): def __init__( self : str , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any]=None ): """simple docstring""" super().__init__(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __iter__( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = iter(self.loader ) SCREAMING_SNAKE_CASE = None return self def UpperCamelCase ( self : List[str] ): """simple docstring""" if self.subiterator is None: SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item SCREAMING_SNAKE_CASE = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) SCREAMING_SNAKE_CASE = next(self.subiterator ) return processed class UpperCamelCase ( UpperCamelCase_ ): def __iter__( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = iter(self.loader ) return self def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: SCREAMING_SNAKE_CASE = self.loader_batch_item() SCREAMING_SNAKE_CASE = item.pop('is_last' ) accumulator.append(UpperCamelCase__ ) if is_last: return accumulator while not is_last: SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(UpperCamelCase__ , torch.Tensor ): SCREAMING_SNAKE_CASE = processed else: SCREAMING_SNAKE_CASE = list(processed.keys() )[0] SCREAMING_SNAKE_CASE = processed[key] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE = len(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. SCREAMING_SNAKE_CASE = observed_batch_size SCREAMING_SNAKE_CASE = processed SCREAMING_SNAKE_CASE = 0 while self._loader_batch_index < self.loader_batch_size: SCREAMING_SNAKE_CASE = self.loader_batch_item() SCREAMING_SNAKE_CASE = item.pop('is_last' ) accumulator.append(UpperCamelCase__ ) if is_last: return accumulator else: SCREAMING_SNAKE_CASE = processed SCREAMING_SNAKE_CASE = item.pop('is_last' ) accumulator.append(UpperCamelCase__ ) return accumulator class UpperCamelCase ( UpperCamelCase_ ): def __init__( self : Optional[Any] , snake_case__ : Dataset , snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE = dataset SCREAMING_SNAKE_CASE = key def __len__( self : Optional[int] ): """simple docstring""" return len(self.dataset ) def __getitem__( self : Dict , snake_case__ : Tuple ): """simple docstring""" return self.dataset[i][self.key] class UpperCamelCase ( UpperCamelCase_ ): def __init__( self : List[Any] , snake_case__ : Dataset , snake_case__ : str , snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE = dataset SCREAMING_SNAKE_CASE = keya SCREAMING_SNAKE_CASE = keya def __len__( self : List[str] ): """simple docstring""" return len(self.dataset ) def __getitem__( self : Union[str, Any] , snake_case__ : Any ): """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
712
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING a_ : Dict = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : Any , **snake_case__ : Optional[int] ): """simple docstring""" super().__init__(**snake_case__ ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , 'vision' ) self.check_model_type(snake_case__ ) def __call__( self : List[Any] , snake_case__ : Union[str, "Image.Image", List[Dict[str, Any]]] , snake_case__ : Union[str, List[str]] = None , **snake_case__ : Union[str, Any] , ): """simple docstring""" if "text_queries" in kwargs: SCREAMING_SNAKE_CASE = kwargs.pop('text_queries' ) if isinstance(snake_case__ , (str, Image.Image) ): SCREAMING_SNAKE_CASE = {'image': image, 'candidate_labels': candidate_labels} else: SCREAMING_SNAKE_CASE = image SCREAMING_SNAKE_CASE = super().__call__(snake_case__ , **snake_case__ ) return results def UpperCamelCase ( self : Union[str, Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = {} if "threshold" in kwargs: SCREAMING_SNAKE_CASE = kwargs['threshold'] if "top_k" in kwargs: SCREAMING_SNAKE_CASE = kwargs['top_k'] return {}, {}, postprocess_params def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = load_image(inputs['image'] ) SCREAMING_SNAKE_CASE = inputs['candidate_labels'] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = candidate_labels.split(',' ) SCREAMING_SNAKE_CASE = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE = self.tokenizer(snake_case__ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE = self.image_processor(snake_case__ , return_tensors=self.framework ) yield { "is_last": i == len(snake_case__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def UpperCamelCase ( self : Any , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = model_inputs.pop('target_size' ) SCREAMING_SNAKE_CASE = model_inputs.pop('candidate_label' ) SCREAMING_SNAKE_CASE = model_inputs.pop('is_last' ) SCREAMING_SNAKE_CASE = self.model(**snake_case__ ) SCREAMING_SNAKE_CASE = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : str=0.1 , snake_case__ : Union[str, Any]=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: SCREAMING_SNAKE_CASE = model_output['candidate_label'] SCREAMING_SNAKE_CASE = BaseModelOutput(snake_case__ ) SCREAMING_SNAKE_CASE = self.image_processor.post_process_object_detection( outputs=snake_case__ , threshold=snake_case__ , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): SCREAMING_SNAKE_CASE = outputs['scores'][index].item() SCREAMING_SNAKE_CASE = self._get_bounding_box(outputs['boxes'][index][0] ) SCREAMING_SNAKE_CASE = {'score': score, 'label': label, 'box': box} results.append(snake_case__ ) SCREAMING_SNAKE_CASE = sorted(snake_case__ , key=lambda snake_case__ : x["score"] , reverse=snake_case__ ) if top_k: SCREAMING_SNAKE_CASE = results[:top_k] return results def UpperCamelCase ( self : List[Any] , snake_case__ : "torch.Tensor" ): """simple docstring""" if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = box.int().tolist() SCREAMING_SNAKE_CASE = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
673
0
from __future__ import annotations def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] ) -> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
713
def __lowerCAmelCase ( _UpperCamelCase : int = 10_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 2**power SCREAMING_SNAKE_CASE = str(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 for i in list_num: sum_of_num += int(_UpperCamelCase ) return sum_of_num if __name__ == "__main__": a_ : List[str] = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) a_ : int = solution(power) print("Sum of the digits is: ", result)
673
0
from scipy.stats import spearmanr import datasets a_ : Any = "\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n" a_ : int = "\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {'spearmanr': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results['spearmanr'])\n -0.7\n >>> print(round(results['spearmanr_pvalue'], 2))\n 0.19\n" a_ : Tuple = R"\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def UpperCamelCase ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def UpperCamelCase ( self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Dict=False ): """simple docstring""" SCREAMING_SNAKE_CASE = spearmanr(snake_case__ , snake_case__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
714
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="facebook/bart-large-mnli" __UpperCamelCase =( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) __UpperCamelCase ="text_classifier" __UpperCamelCase =AutoTokenizer __UpperCamelCase =AutoModelForSequenceClassification __UpperCamelCase =["text", ["text"]] __UpperCamelCase =["text"] def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): SCREAMING_SNAKE_CASE = int(snake_case__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[str] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(snake_case__ ) , [F"""This example is {label}""" for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
673
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer a_ : Optional[int] = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} a_ : Optional[Any] = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } a_ : Dict = { "google/realm-cc-news-pretrained-embedder": 512, "google/realm-cc-news-pretrained-encoder": 512, "google/realm-cc-news-pretrained-scorer": 512, "google/realm-cc-news-pretrained-openqa": 512, "google/realm-orqa-nq-openqa": 512, "google/realm-orqa-nq-reader": 512, "google/realm-orqa-wq-openqa": 512, "google/realm-orqa-wq-reader": 512, } a_ : str = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class UpperCamelCase ( lowercase__ ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_INIT_CONFIGURATION __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =RealmTokenizer def __init__( self : List[Any] , snake_case__ : Union[str, Any]=None , snake_case__ : Dict=None , snake_case__ : List[Any]=True , snake_case__ : List[str]="[UNK]" , snake_case__ : int="[SEP]" , snake_case__ : int="[PAD]" , snake_case__ : List[str]="[CLS]" , snake_case__ : Dict="[MASK]" , snake_case__ : List[Any]=True , snake_case__ : Union[str, Any]=None , **snake_case__ : Tuple , ): """simple docstring""" super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , __lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __lowercase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE = getattr(__lowercase , normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = strip_accents SCREAMING_SNAKE_CASE = tokenize_chinese_chars SCREAMING_SNAKE_CASE = normalizer_class(**__lowercase ) SCREAMING_SNAKE_CASE = do_lower_case def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Dict , **snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = PaddingStrategy.MAX_LENGTH SCREAMING_SNAKE_CASE = text SCREAMING_SNAKE_CASE = kwargs.pop('text_pair' , __lowercase ) SCREAMING_SNAKE_CASE = kwargs.pop('return_tensors' , __lowercase ) SCREAMING_SNAKE_CASE = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(__lowercase ): if batch_text_pair is not None: SCREAMING_SNAKE_CASE = batch_text_pair[idx] else: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = super().__call__(__lowercase , __lowercase , return_tensors=__lowercase , **__lowercase ) SCREAMING_SNAKE_CASE = encoded_candidates.get('input_ids' ) SCREAMING_SNAKE_CASE = encoded_candidates.get('attention_mask' ) SCREAMING_SNAKE_CASE = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(__lowercase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(__lowercase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(__lowercase ) SCREAMING_SNAKE_CASE = {key: item for key, item in output_data.items() if len(__lowercase ) != 0} return BatchEncoding(__lowercase , tensor_type=__lowercase ) def UpperCamelCase ( self : List[Any] , snake_case__ : Any , snake_case__ : List[str]=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self : List[str] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase )
715
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a_ : str = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a_ : int = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.1_5}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names a_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a_ : List[Any] = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a_ : Any = "allenai" def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = dict((re.sub(R'@@$' , '' , _UpperCamelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , _UpperCamelCase ), v) for k, v in d.items() ) SCREAMING_SNAKE_CASE = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] SCREAMING_SNAKE_CASE = d[k] # restore return da def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : List[str] ) -> Dict: '''simple docstring''' assert os.path.exists(_UpperCamelCase ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel SCREAMING_SNAKE_CASE = cls.hub_models() SCREAMING_SNAKE_CASE = {'bpe': 'fastbpe', 'tokenizer': 'moses'} SCREAMING_SNAKE_CASE = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"""using checkpoint {checkpoint_file}""" ) SCREAMING_SNAKE_CASE = hub_utils.from_pretrained( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , archive_map=_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = vars(chkpt['args']['model'] ) SCREAMING_SNAKE_CASE = args['source_lang'] SCREAMING_SNAKE_CASE = args['target_lang'] SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) # dicts SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{src_lang}.txt""" ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{tgt_lang}.txt""" ) SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(src_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-src.json' ) print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab SCREAMING_SNAKE_CASE = True for k in src_vocab.keys(): if not k.islower(): SCREAMING_SNAKE_CASE = False break SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(tgt_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-tgt.json' ) print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # merges_file (bpecodes) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.exists(_UpperCamelCase ): break with open(_UpperCamelCase , encoding='utf-8' ) as fin: SCREAMING_SNAKE_CASE = fin.read() SCREAMING_SNAKE_CASE = re.sub(R' \d+$' , '' , _UpperCamelCase , 0 , re.M ) # remove frequency number print(f"""Generating {merges_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_UpperCamelCase ) # model config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args['bpe']}""" assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args['tokenizer']}""" SCREAMING_SNAKE_CASE = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with SCREAMING_SNAKE_CASE = 5 SCREAMING_SNAKE_CASE = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: SCREAMING_SNAKE_CASE = best_score_hparams[model_dir]['length_penalty'] else: SCREAMING_SNAKE_CASE = 1.0 print(f"""Generating {fsmt_model_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # tokenizer config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = { 'langs': [src_lang, tgt_lang], 'model_max_length': 10_24, 'do_lower_case': do_lower_case, } print(f"""Generating {fsmt_tokenizer_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # model SCREAMING_SNAKE_CASE = chkpt['models'][0] SCREAMING_SNAKE_CASE = model.state_dict() # rename keys to start with 'model.' SCREAMING_SNAKE_CASE = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys SCREAMING_SNAKE_CASE = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTConfig.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTForConditionalGeneration(_UpperCamelCase ) # check that it loads ok model_new.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) # save SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(_UpperCamelCase , _UpperCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f"""cd {data_root}""" ) print(f"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a_ : int = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
673
0
def __lowerCAmelCase ( _UpperCamelCase : List[str] ) -> int: '''simple docstring''' if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('only integers accepted as input' ) else: SCREAMING_SNAKE_CASE = str(abs(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE = [list(_lowerCAmelCase ) for char in range(len(_lowerCAmelCase ) )] for index in range(len(_lowerCAmelCase ) ): num_transpositions[index].pop(_lowerCAmelCase ) return max( int(''.join(list(_lowerCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
716
import random def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : float , _UpperCamelCase : bool = False ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE = {i: [] for i in range(_UpperCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_UpperCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_UpperCamelCase ): for j in range(i + 1 , _UpperCamelCase ): if random.random() < probability: graph[i].append(_UpperCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_UpperCamelCase ) return graph def __lowerCAmelCase ( _UpperCamelCase : int ) -> dict: '''simple docstring''' return { i: [j for j in range(_UpperCamelCase ) if i != j] for i in range(_UpperCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
673
0
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel a_ : List[str] = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_8000, '''sample_size''': 6_5536, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_8000, '''sample_size''': 6_5536, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_8000, '''sample_size''': 13_1072, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_6000, '''sample_size''': 6_5536, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_6000, '''sample_size''': 6_5536, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_6000, '''sample_size''': 6_5536, }, } def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] ) -> Tuple: '''simple docstring''' return torch.atana(_UpperCamelCase , _UpperCamelCase ) / math.pi * 2 def __lowerCAmelCase ( _UpperCamelCase : List[str] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = torch.sin(t * math.pi / 2 ) ** 2 SCREAMING_SNAKE_CASE = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(_UpperCamelCase , _UpperCamelCase ) class UpperCamelCase ( UpperCamelCase__ ): pass class UpperCamelCase ( nn.Module ): def __init__( self : Any , snake_case__ : Any ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE = DiffusionAttnUnetaD(snake_case__ , n_attn_layers=4 ) SCREAMING_SNAKE_CASE = deepcopy(self.diffusion ) SCREAMING_SNAKE_CASE = torch.quasirandom.SobolEngine(1 , scramble=snake_case__ ) def __lowerCAmelCase ( _UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]['url'] os.system(f"""wget {url} ./""" ) return f"""./{model_name}.ckpt""" a_ : List[Any] = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } a_ : List[str] = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } a_ : List[Any] = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } a_ : Optional[int] = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } a_ : List[Any] = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } a_ : Tuple = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] ) -> str: '''simple docstring''' if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(f"""ResConvBlock error with {name}""" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __lowerCAmelCase ( _UpperCamelCase : str ) -> Any: '''simple docstring''' for key, value in ATTN_MAP.items(): if name.startswith(_UpperCamelCase ) and not isinstance(_UpperCamelCase , _UpperCamelCase ): return name.replace(_UpperCamelCase , _UpperCamelCase ) elif name.startswith(_UpperCamelCase ): return [name.replace(_UpperCamelCase , _UpperCamelCase ) for v in value] raise ValueError(f"""Attn error with {name}""" ) def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int]=13 ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) SCREAMING_SNAKE_CASE = 0 if string.startswith('net.3.' ): depth += 1 SCREAMING_SNAKE_CASE = string[6:] elif string.startswith('net.' ): SCREAMING_SNAKE_CASE = string[4:] while string.startswith('main.7.' ): depth += 1 SCREAMING_SNAKE_CASE = string[7:] if string.startswith('main.' ): SCREAMING_SNAKE_CASE = string[5:] # mid block if string[:2].isdigit(): SCREAMING_SNAKE_CASE = string[:2] SCREAMING_SNAKE_CASE = string[2:] else: SCREAMING_SNAKE_CASE = string[0] SCREAMING_SNAKE_CASE = string[1:] if depth == max_depth: SCREAMING_SNAKE_CASE = MID_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE = 'mid_block' elif depth > 0 and int(_UpperCamelCase ) < 7: SCREAMING_SNAKE_CASE = DOWN_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE = f"""down_blocks.{depth}""" elif depth > 0 and int(_UpperCamelCase ) > 7: SCREAMING_SNAKE_CASE = UP_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE = f"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: SCREAMING_SNAKE_CASE = DEPTH_0_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE = f"""up_blocks.{max_depth - 1}""" if int(_UpperCamelCase ) > 3 else 'down_blocks.0' if not string_left.startswith('.' ): raise ValueError(f"""Naming error with {input_string} and string_left: {string_left}.""" ) SCREAMING_SNAKE_CASE = string_left[1:] if "resnets" in new_layer: SCREAMING_SNAKE_CASE = convert_resconv_naming(_UpperCamelCase ) elif "attentions" in new_layer: SCREAMING_SNAKE_CASE = convert_attn_naming(_UpperCamelCase ) SCREAMING_SNAKE_CASE = new_string_left if not isinstance(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = prefix + '.' + new_layer + '.' + string_left else: SCREAMING_SNAKE_CASE = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = {} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue SCREAMING_SNAKE_CASE = rename(_UpperCamelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = transform_conv_attns(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE = v return new_state_dict def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : int , _UpperCamelCase : int ) -> Tuple: '''simple docstring''' if len(_UpperCamelCase ) == 1: if len(v.shape ) == 3: # weight SCREAMING_SNAKE_CASE = v[:, :, 0] else: # bias SCREAMING_SNAKE_CASE = v else: # qkv matrices SCREAMING_SNAKE_CASE = v.shape[0] SCREAMING_SNAKE_CASE = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: SCREAMING_SNAKE_CASE = v[i * single_shape : (i + 1) * single_shape, :, 0] else: SCREAMING_SNAKE_CASE = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __lowerCAmelCase ( _UpperCamelCase : Dict ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) SCREAMING_SNAKE_CASE = args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" SCREAMING_SNAKE_CASE = download(_UpperCamelCase ) SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]['sample_rate'] SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]['sample_size'] SCREAMING_SNAKE_CASE = Object() SCREAMING_SNAKE_CASE = sample_size SCREAMING_SNAKE_CASE = sample_rate SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = UNetaDModel(sample_size=_UpperCamelCase , sample_rate=_UpperCamelCase ) SCREAMING_SNAKE_CASE = diffusers_model.state_dict() SCREAMING_SNAKE_CASE = DiffusionUncond(_UpperCamelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=_UpperCamelCase )['state_dict'] ) SCREAMING_SNAKE_CASE = orig_model.diffusion_ema.eval() SCREAMING_SNAKE_CASE = orig_model.state_dict() SCREAMING_SNAKE_CASE = rename_orig_weights(_UpperCamelCase ) SCREAMING_SNAKE_CASE = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) SCREAMING_SNAKE_CASE = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(_UpperCamelCase ) == 0, f"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith('kernel' ) for k in list(_UpperCamelCase ) ), f"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f"""Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": SCREAMING_SNAKE_CASE = value.squeeze() SCREAMING_SNAKE_CASE = value diffusers_model.load_state_dict(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 1_00 SCREAMING_SNAKE_CASE = 33 SCREAMING_SNAKE_CASE = IPNDMScheduler(num_train_timesteps=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.manual_seed(_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.randn([1, 2, config.sample_size] , generator=_UpperCamelCase ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.linspace(1 , 0 , steps + 1 , device=_UpperCamelCase )[:-1] SCREAMING_SNAKE_CASE = get_crash_schedule(_UpperCamelCase ) SCREAMING_SNAKE_CASE = DanceDiffusionPipeline(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE = pipe(num_inference_steps=_UpperCamelCase , generator=_UpperCamelCase ).audios SCREAMING_SNAKE_CASE = sampling.iplms_sample(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , {} ) SCREAMING_SNAKE_CASE = generated.clamp(-1 , 1 ) SCREAMING_SNAKE_CASE = (generated - audio).abs().sum() SCREAMING_SNAKE_CASE = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , _UpperCamelCase ) print('Diff max' , _UpperCamelCase ) assert diff_max < 1e-3, f"""Diff max: {diff_max} is too much :-/""" print(f"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") a_ : Any = parser.parse_args() main(args)
717
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : def __init__( self : List[str] , snake_case__ : Dict , snake_case__ : Optional[Any]=1_3 , snake_case__ : Union[str, Any]=7 , snake_case__ : List[str]=True , snake_case__ : Any=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=9_9 , snake_case__ : str=3_2 , snake_case__ : Dict=5 , snake_case__ : str=4 , snake_case__ : int=3_7 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Any=0.1 , snake_case__ : Dict=0.1 , snake_case__ : Optional[Any]=5_1_2 , snake_case__ : List[Any]=1_6 , snake_case__ : str=2 , snake_case__ : int=0.02 , snake_case__ : List[str]=3 , snake_case__ : Dict=4 , snake_case__ : str=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def UpperCamelCase ( self : List[str] , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : List[Any] , snake_case__ : str , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : int , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : int , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = NystromformerForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase =( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def UpperCamelCase ( self : List[str] ): """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(snake_case__ )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.4_532, -0.0_936, 0.5_137], [-0.2_676, 0.0_628, 0.6_186], [-0.3_629, -0.1_726, 0.4_716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1E-4 ) ) @slow def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = 'the [MASK] of Belgium is Brussels' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = tokenizer(snake_case__ , return_tensors='pt' ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(encoding.input_ids ).logits SCREAMING_SNAKE_CASE = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case__ ) , 'capital' )
673
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed a_ = logging.getLogger(__name__) def __lowerCAmelCase ( _UpperCamelCase : str=2 , _UpperCamelCase : Any=3 , _UpperCamelCase : Optional[int]=16 , _UpperCamelCase : Optional[Any] = 10 , _UpperCamelCase : Tuple = 2 ) -> Any: '''simple docstring''' def get_dataset(_UpperCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__lowerCAmelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) SCREAMING_SNAKE_CASE = get_dataset(__lowerCAmelCase ) SCREAMING_SNAKE_CASE = get_dataset(__lowerCAmelCase ) SCREAMING_SNAKE_CASE = DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , batch_size=__lowerCAmelCase , num_workers=4 ) SCREAMING_SNAKE_CASE = DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , batch_size=__lowerCAmelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def __lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : Union[str, Any]=None ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for epoch in range(__lowerCAmelCase ): # Train quickly model.train() for batch in dataloader: SCREAMING_SNAKE_CASE = batch SCREAMING_SNAKE_CASE = model(__lowerCAmelCase ) SCREAMING_SNAKE_CASE = torch.nn.functional.mse_loss(__lowerCAmelCase , __lowerCAmelCase ) accelerator.backward(__lowerCAmelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class UpperCamelCase ( nn.Module ): def __init__( self : Union[str, Any] ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE = nn.Parameter(torch.randn(1 ) ) SCREAMING_SNAKE_CASE = nn.Parameter(torch.randn(1 ) ) def UpperCamelCase ( self : str , snake_case__ : Optional[int] ): """simple docstring""" return x * self.a + self.b class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Any ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) SCREAMING_SNAKE_CASE = DummyModel() SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) SCREAMING_SNAKE_CASE = dummy_dataloaders() SCREAMING_SNAKE_CASE = ProjectConfiguration(total_limit=1 , project_dir=lowerCamelCase__ , automatic_checkpoint_naming=lowerCamelCase__ ) # Train baseline SCREAMING_SNAKE_CASE = Accelerator(project_config=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def UpperCamelCase ( self : Any ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) SCREAMING_SNAKE_CASE = DummyModel() SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) SCREAMING_SNAKE_CASE = dummy_dataloaders() # Train baseline SCREAMING_SNAKE_CASE = Accelerator() SCREAMING_SNAKE_CASE = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase__ , 'initial' ) accelerator.save_state(lowerCamelCase__ ) (SCREAMING_SNAKE_CASE) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE = optimizer.state_dict() SCREAMING_SNAKE_CASE = train(3 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) (SCREAMING_SNAKE_CASE) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE = optimizer.state_dict() # Train partially set_seed(4_2 ) SCREAMING_SNAKE_CASE = DummyModel() SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) SCREAMING_SNAKE_CASE = dummy_dataloaders() SCREAMING_SNAKE_CASE = Accelerator() SCREAMING_SNAKE_CASE = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) accelerator.load_state(lowerCamelCase__ ) (SCREAMING_SNAKE_CASE) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE = optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) SCREAMING_SNAKE_CASE = train(2 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save everything SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase__ , 'checkpoint' ) accelerator.save_state(lowerCamelCase__ ) # Load everything back in and make sure all states work accelerator.load_state(lowerCamelCase__ ) test_rands += train(1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) (SCREAMING_SNAKE_CASE) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE = optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) SCREAMING_SNAKE_CASE = DummyModel() SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) SCREAMING_SNAKE_CASE = dummy_dataloaders() SCREAMING_SNAKE_CASE = ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase__ ) # Train baseline SCREAMING_SNAKE_CASE = Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial accelerator.save_state() (SCREAMING_SNAKE_CASE) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE = optimizer.state_dict() SCREAMING_SNAKE_CASE = train(3 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) (SCREAMING_SNAKE_CASE) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE = optimizer.state_dict() # Train partially set_seed(4_2 ) SCREAMING_SNAKE_CASE = DummyModel() SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) SCREAMING_SNAKE_CASE = dummy_dataloaders() SCREAMING_SNAKE_CASE = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) accelerator.load_state(os.path.join(lowerCamelCase__ , 'checkpoints' , 'checkpoint_0' ) ) (SCREAMING_SNAKE_CASE) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE = optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) SCREAMING_SNAKE_CASE = train(2 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCamelCase__ , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) (SCREAMING_SNAKE_CASE) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE = optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.tensor([1, 2, 3] ) SCREAMING_SNAKE_CASE = torch.tensor([2, 3, 4] ) SCREAMING_SNAKE_CASE = DummyModel() SCREAMING_SNAKE_CASE = torch.optim.Adam(net.parameters() ) SCREAMING_SNAKE_CASE = Accelerator() with self.assertRaises(lowerCamelCase__ ) as ve: accelerator.register_for_checkpointing(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) SCREAMING_SNAKE_CASE = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def UpperCamelCase ( self : List[str] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) SCREAMING_SNAKE_CASE = DummyModel() SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) SCREAMING_SNAKE_CASE = torch.optim.lr_scheduler.StepLR(lowerCamelCase__ , step_size=1 , gamma=0.99 ) SCREAMING_SNAKE_CASE = dummy_dataloaders() SCREAMING_SNAKE_CASE = ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase__ ) # Train baseline SCREAMING_SNAKE_CASE = Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial accelerator.save_state() SCREAMING_SNAKE_CASE = scheduler.state_dict() train(3 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) self.assertNotEqual(lowerCamelCase__ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCamelCase__ , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(lowerCamelCase__ , scheduler.state_dict() ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) SCREAMING_SNAKE_CASE = DummyModel() SCREAMING_SNAKE_CASE = ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase__ , total_limit=2 ) # Train baseline SCREAMING_SNAKE_CASE = Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = accelerator.prepare(lowerCamelCase__ ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(lowerCamelCase__ , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase__ , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase__ , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = ["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) if __name__ == "__main__": a_ = "/tmp/accelerate/state_checkpointing" a_ = DummyModel() a_ = torch.optim.Adam(params=model.parameters(), lr=1e-3) a_ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) a_ , a_ = dummy_dataloaders() a_ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline a_ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) a_ , a_ , a_ , a_ , a_ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) a_ , a_ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: a_ = group["params"][0].device break assert param_device.type == accelerator.device.type a_ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: a_ = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: a_ = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
673
0
import logging import os import threading import time try: import warnings except ImportError: a_ : Tuple = None try: import msvcrt except ImportError: a_ : List[Any] = None try: import fcntl except ImportError: a_ : List[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: a_ : Union[str, Any] = OSError # Data # ------------------------------------------------ a_ : str = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] a_ : Any = "3.0.12" a_ : Union[str, Any] = None def __lowerCAmelCase ( ) -> Optional[Any]: '''simple docstring''' global _logger SCREAMING_SNAKE_CASE = _logger or logging.getLogger(__name__ ) return _logger class UpperCamelCase ( __a ): def __init__( self : Union[str, Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = lock_file return None def __str__( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class UpperCamelCase : def __init__( self : Optional[Any] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = lock return None def __enter__( self : int ): """simple docstring""" return self.lock def __exit__( self : int , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Tuple ): """simple docstring""" self.lock.release() return None class UpperCamelCase : def __init__( self : List[Any] , snake_case__ : List[Any] , snake_case__ : Dict=-1 , snake_case__ : int=None ): """simple docstring""" SCREAMING_SNAKE_CASE = max_filename_length if max_filename_length is not None else 2_5_5 # Hash the filename if it's too long SCREAMING_SNAKE_CASE = self.hash_filename_if_too_long(lowerCAmelCase_ , lowerCAmelCase_ ) # The path to the lock file. SCREAMING_SNAKE_CASE = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. SCREAMING_SNAKE_CASE = None # The default timeout value. SCREAMING_SNAKE_CASE = timeout # We use this lock primarily for the lock counter. SCREAMING_SNAKE_CASE = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. SCREAMING_SNAKE_CASE = 0 return None @property def UpperCamelCase ( self : Dict ): """simple docstring""" return self._lock_file @property def UpperCamelCase ( self : List[Any] ): """simple docstring""" return self._timeout @timeout.setter def UpperCamelCase ( self : str , snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE = float(lowerCAmelCase_ ) return None def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" raise NotImplementedError() def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" raise NotImplementedError() @property def UpperCamelCase ( self : Any ): """simple docstring""" return self._lock_file_fd is not None def UpperCamelCase ( self : str , snake_case__ : Dict=None , snake_case__ : Optional[int]=0.05 ): """simple docstring""" if timeout is None: SCREAMING_SNAKE_CASE = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 SCREAMING_SNAKE_CASE = id(self ) SCREAMING_SNAKE_CASE = self._lock_file SCREAMING_SNAKE_CASE = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(lowerCAmelCase_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: SCREAMING_SNAKE_CASE = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[int]=False ): """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: SCREAMING_SNAKE_CASE = id(self ) SCREAMING_SNAKE_CASE = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() SCREAMING_SNAKE_CASE = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self : List[Any] ): """simple docstring""" self.acquire() return self def __exit__( self : Union[str, Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Optional[Any] ): """simple docstring""" self.release() return None def __del__( self : int ): """simple docstring""" self.release(force=lowerCAmelCase_ ) return None def UpperCamelCase ( self : Tuple , snake_case__ : Dict , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = os.path.basename(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > max_length and max_length > 0: SCREAMING_SNAKE_CASE = os.path.dirname(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE = str(hash(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE = filename[: max_length - len(lowerCAmelCase_ ) - 8] + '...' + hashed_filename + '.lock' return os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) else: return path class UpperCamelCase ( __a ): def __init__( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Tuple=-1 , snake_case__ : int=None ): """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(lowerCAmelCase_ , timeout=lowerCAmelCase_ , max_filename_length=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE = '\\\\?\\' + relative_to_absolute_path(self.lock_file ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: SCREAMING_SNAKE_CASE = os.open(self._lock_file , lowerCAmelCase_ ) except OSError: pass else: try: msvcrt.locking(lowerCAmelCase_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(lowerCAmelCase_ ) else: SCREAMING_SNAKE_CASE = fd return None def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self._lock_file_fd SCREAMING_SNAKE_CASE = None msvcrt.locking(lowerCAmelCase_ , msvcrt.LK_UNLCK , 1 ) os.close(lowerCAmelCase_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class UpperCamelCase ( __a ): def __init__( self : Optional[int] , snake_case__ : Tuple , snake_case__ : List[Any]=-1 , snake_case__ : int=None ): """simple docstring""" SCREAMING_SNAKE_CASE = os.statvfs(os.path.dirname(lowerCAmelCase_ ) ).f_namemax super().__init__(lowerCAmelCase_ , timeout=lowerCAmelCase_ , max_filename_length=lowerCAmelCase_ ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = os.O_RDWR | os.O_CREAT | os.O_TRUNC SCREAMING_SNAKE_CASE = os.open(self._lock_file , lowerCAmelCase_ ) try: fcntl.flock(lowerCAmelCase_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowerCAmelCase_ ) else: SCREAMING_SNAKE_CASE = fd return None def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self._lock_file_fd SCREAMING_SNAKE_CASE = None fcntl.flock(lowerCAmelCase_ , fcntl.LOCK_UN ) os.close(lowerCAmelCase_ ) return None class UpperCamelCase ( __a ): def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: SCREAMING_SNAKE_CASE = os.open(self._lock_file , lowerCAmelCase_ ) except OSError: pass else: SCREAMING_SNAKE_CASE = fd return None def UpperCamelCase ( self : List[Any] ): """simple docstring""" os.close(self._lock_file_fd ) SCREAMING_SNAKE_CASE = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None a_ : Optional[int] = None if msvcrt: a_ : List[str] = WindowsFileLock elif fcntl: a_ : List[str] = UnixFileLock else: a_ : Tuple = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
719
import heapq import sys import numpy as np a_ : Optional[int] = tuple[int, int] class UpperCamelCase : def __init__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() def UpperCamelCase ( self : List[Any] ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf' ) def UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.elements ) == 0 def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(snake_case__ ) else: # update # print("update", item) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" if item in self.set: self.set.remove(snake_case__ ) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def UpperCamelCase ( self : str ): """simple docstring""" return self.elements[0][1] def UpperCamelCase ( self : Tuple ): """simple docstring""" ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) self.set.remove(snake_case__ ) return (priority, item) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) return np.linalg.norm(a - b ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Dict: '''simple docstring''' return consistent_heuristic(_UpperCamelCase , _UpperCamelCase ) // t def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[int]: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : int , _UpperCamelCase : TPos , _UpperCamelCase : dict[TPos, float] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = g_function[start] + Wa * heuristics[i](_UpperCamelCase , _UpperCamelCase ) return ans def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = np.chararray((n, n) ) for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = '*' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE = '#' SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = x # print(x) SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[x] SCREAMING_SNAKE_CASE = '-' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: print(_UpperCamelCase , end=' ' ) SCREAMING_SNAKE_CASE = back_pointer[x] print(_UpperCamelCase ) sys.exit() def __lowerCAmelCase ( _UpperCamelCase : TPos ) -> Any: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , ) -> List[Any]: '''simple docstring''' for itera in range(_UpperCamelCase ): open_list[itera].remove_element(_UpperCamelCase ) # print("s", s) # print("j", j) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = s SCREAMING_SNAKE_CASE = (x - 1, y) SCREAMING_SNAKE_CASE = (x + 1, y) SCREAMING_SNAKE_CASE = (x, y + 1) SCREAMING_SNAKE_CASE = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = float('inf' ) if valid(_UpperCamelCase ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE = g_function[s] + 1 SCREAMING_SNAKE_CASE = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCamelCase , key(_UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , _UpperCamelCase ): if key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) <= Wa * key( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ): open_list[j].put( _UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a_ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a_ : List[str] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a_ : Union[str, Any] = make_common_ground() a_ : Tuple = blocks_blk # hyper parameters a_ : Any = 1 a_ : List[str] = 1 a_ : Union[str, Any] = 20 a_ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a_ : int = (0, 0) a_ : Optional[int] = (n - 1, n - 1) a_ : Union[str, Any] = 1 def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos , _UpperCamelCase : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {start: 0, goal: float('inf' )} SCREAMING_SNAKE_CASE = {start: -1, goal: -1} SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() for i in range(_UpperCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , _UpperCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = open_list[i].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_inad.append(_UpperCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE = open_list[0].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_anchor.append(_UpperCamelCase ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_UpperCamelCase ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
673
0
def __lowerCAmelCase ( _UpperCamelCase : int = 10 ) -> str: '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or n < 0: raise ValueError('Invalid input' ) SCREAMING_SNAKE_CASE = 10**n SCREAMING_SNAKE_CASE = 2_84_33 * (pow(2 , 7_83_04_57 , UpperCamelCase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
720
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a_ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : str = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Any=8 ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=5_12 , _UpperCamelCase : Union[str, Any]=5_12 ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) SCREAMING_SNAKE_CASE = np.array(pil_image.convert('RGB' ) ) SCREAMING_SNAKE_CASE = arr.astype(np.floataa ) / 1_27.5 - 1 SCREAMING_SNAKE_CASE = np.transpose(_UpperCamelCase , [2, 0, 1] ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : int , snake_case__ : UNetaDConditionModel , snake_case__ : DDPMScheduler , snake_case__ : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , ) SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase ( self : Any , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = min(int(num_inference_steps * strength ) , snake_case__ ) SCREAMING_SNAKE_CASE = max(num_inference_steps - init_timestep , 0 ) SCREAMING_SNAKE_CASE = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase ( self : List[str] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : str=None ): """simple docstring""" if not isinstance(snake_case__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case__ )}""" ) SCREAMING_SNAKE_CASE = image.to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = batch_size * num_images_per_prompt if image.shape[1] == 4: SCREAMING_SNAKE_CASE = image else: if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case__ ) ] SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) else: SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ ).latent_dist.sample(snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.config.scaling_factor * init_latents SCREAMING_SNAKE_CASE = torch.cat([init_latents] , dim=0 ) SCREAMING_SNAKE_CASE = init_latents.shape SCREAMING_SNAKE_CASE = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) # get latents SCREAMING_SNAKE_CASE = self.scheduler.add_noise(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = init_latents return latents def UpperCamelCase ( self : int , snake_case__ : List[str]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) SCREAMING_SNAKE_CASE = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[int]=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=snake_case__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase ( self : Dict ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case__ ) def __call__( self : str , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : int = 5_1_2 , snake_case__ : int = 5_1_2 , snake_case__ : int = 1_0_0 , snake_case__ : float = 4.0 , snake_case__ : float = 0.3 , snake_case__ : int = 1 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , ): """simple docstring""" SCREAMING_SNAKE_CASE = self._execution_device SCREAMING_SNAKE_CASE = guidance_scale > 1.0 if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = image_embeds.shape[0] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [image] if not all(isinstance(snake_case__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(snake_case__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) SCREAMING_SNAKE_CASE = torch.cat([prepare_image(snake_case__ , snake_case__ , snake_case__ ) for i in image] , dim=0 ) SCREAMING_SNAKE_CASE = image.to(dtype=image_embeds.dtype , device=snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ )['latents'] SCREAMING_SNAKE_CASE = latents.repeat_interleave(snake_case__ , dim=0 ) self.scheduler.set_timesteps(snake_case__ , device=snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_timesteps(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = timesteps[:1].repeat(batch_size * num_images_per_prompt ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = downscale_height_and_width(snake_case__ , snake_case__ , self.movq_scale_factor ) SCREAMING_SNAKE_CASE = self.prepare_latents( snake_case__ , snake_case__ , snake_case__ , snake_case__ , image_embeds.dtype , snake_case__ , snake_case__ ) for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE = {'image_embeds': image_embeds} SCREAMING_SNAKE_CASE = self.unet( sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , )[0] # post-processing SCREAMING_SNAKE_CASE = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
673
0
from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 for i in range(len(_UpperCamelCase ) ): if lista[i] != lista[i]: count += 1 SCREAMING_SNAKE_CASE = '_' if count > 1: return False else: return "".join(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : list[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] while True: SCREAMING_SNAKE_CASE = ['$'] * len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = [] for i in range(len(_UpperCamelCase ) ): for j in range(i + 1 , len(_UpperCamelCase ) ): SCREAMING_SNAKE_CASE = compare_string(binary[i] , binary[j] ) if k is False: SCREAMING_SNAKE_CASE = '*' SCREAMING_SNAKE_CASE = '*' temp.append('X' ) for i in range(len(_UpperCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_UpperCamelCase ) == 0: return pi SCREAMING_SNAKE_CASE = list(set(_UpperCamelCase ) ) def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : Sequence[float] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for minterm in minterms: SCREAMING_SNAKE_CASE = '' for _ in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = str(minterm % 2 ) + string minterm //= 2 temp.append(_UpperCamelCase ) return temp def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 for i in range(len(_UpperCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCAmelCase ( _UpperCamelCase : list[list[int]] , _UpperCamelCase : list[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [0] * len(_UpperCamelCase ) for i in range(len(chart[0] ) ): SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = -1 for j in range(len(_UpperCamelCase ) ): if chart[j][i] == 1: count += 1 SCREAMING_SNAKE_CASE = j if count == 1: SCREAMING_SNAKE_CASE = 1 for i in range(len(_UpperCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_UpperCamelCase ) ): SCREAMING_SNAKE_CASE = 0 temp.append(prime_implicants[i] ) while True: SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = 0 for i in range(len(_UpperCamelCase ) ): SCREAMING_SNAKE_CASE = chart[i].count(1 ) if count_n > max_n: SCREAMING_SNAKE_CASE = count_n SCREAMING_SNAKE_CASE = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_UpperCamelCase ) ): SCREAMING_SNAKE_CASE = 0 def __lowerCAmelCase ( _UpperCamelCase : list[str] , _UpperCamelCase : list[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = [[0 for x in range(len(_UpperCamelCase ) )] for x in range(len(_UpperCamelCase ) )] for i in range(len(_UpperCamelCase ) ): SCREAMING_SNAKE_CASE = prime_implicants[i].count('_' ) for j in range(len(_UpperCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _UpperCamelCase ): SCREAMING_SNAKE_CASE = 1 return chart def __lowerCAmelCase ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = int(input('Enter the no. of variables\n' ) ) SCREAMING_SNAKE_CASE = [ float(_UpperCamelCase ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] SCREAMING_SNAKE_CASE = decimal_to_binary(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = check(_UpperCamelCase ) print('Prime Implicants are:' ) print(_UpperCamelCase ) SCREAMING_SNAKE_CASE = prime_implicant_chart(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = selection(_UpperCamelCase , _UpperCamelCase ) print('Essential Prime Implicants are:' ) print(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
721
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() a_ : List[Any] = logging.get_logger("transformers.models.speecht5") def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Dict: '''simple docstring''' hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Any=None , _UpperCamelCase : List[str]=None , ) -> Tuple: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig.from_pretrained(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE = SpeechTaHifiGan(_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = np.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() model.save_pretrained(_UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) a_ : Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
673
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) a_ : Any = logging.getLogger(__name__) @dataclass class UpperCamelCase : __UpperCamelCase =field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __UpperCamelCase =field( default=__a , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCamelCase =field( default=__a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __UpperCamelCase =field( default=__a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCamelCase =field(default=__a , metadata={"help": "Whether tp freeze the encoder."} ) __UpperCamelCase =field(default=__a , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class UpperCamelCase : __UpperCamelCase =field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) __UpperCamelCase =field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) __UpperCamelCase =field( default=10_24 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCamelCase =field( default=1_28 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCamelCase =field( default=1_42 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) __UpperCamelCase =field( default=1_42 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCamelCase =field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) __UpperCamelCase =field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) __UpperCamelCase =field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) __UpperCamelCase =field(default=__a , metadata={"help": "Source language id for translation."} ) __UpperCamelCase =field(default=__a , metadata={"help": "Target language id for translation."} ) __UpperCamelCase =field(default=__a , metadata={"help": "# num_beams to use for evaluation."} ) __UpperCamelCase =field( default=__a , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(_UpperCamelCase , os.path.join(_UpperCamelCase , f"""{split}_results.json""" ) ) def __lowerCAmelCase ( ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() check_output_dir(_UpperCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , _UpperCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): assert hasattr(_UpperCamelCase , _UpperCamelCase ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(_UpperCamelCase , _UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=_UpperCamelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_UpperCamelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: SCREAMING_SNAKE_CASE = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_UpperCamelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = tokenizer.lang_code_to_id[data_args.tgt_lang] else: SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_UpperCamelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) SCREAMING_SNAKE_CASE = SeqaSeqDataset # Get datasets SCREAMING_SNAKE_CASE = ( dataset_class( _UpperCamelCase , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) SCREAMING_SNAKE_CASE = ( dataset_class( _UpperCamelCase , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) SCREAMING_SNAKE_CASE = ( dataset_class( _UpperCamelCase , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer SCREAMING_SNAKE_CASE = ( build_compute_metrics_fn(data_args.task , _UpperCamelCase ) if training_args.predict_with_generate else None ) SCREAMING_SNAKE_CASE = SeqaSeqTrainer( model=_UpperCamelCase , args=_UpperCamelCase , data_args=_UpperCamelCase , train_dataset=_UpperCamelCase , eval_dataset=_UpperCamelCase , data_collator=SeqaSeqDataCollator( _UpperCamelCase , _UpperCamelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , ) SCREAMING_SNAKE_CASE = {} # Training if training_args.do_train: logger.info('*** Train ***' ) SCREAMING_SNAKE_CASE = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) SCREAMING_SNAKE_CASE = train_result.metrics SCREAMING_SNAKE_CASE = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , _UpperCamelCase , training_args.output_dir ) all_metrics.update(_UpperCamelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) SCREAMING_SNAKE_CASE = trainer.evaluate(metric_key_prefix='val' ) SCREAMING_SNAKE_CASE = data_args.n_val SCREAMING_SNAKE_CASE = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , _UpperCamelCase , training_args.output_dir ) all_metrics.update(_UpperCamelCase ) if training_args.do_predict: logger.info('*** Predict ***' ) SCREAMING_SNAKE_CASE = trainer.predict(test_dataset=_UpperCamelCase , metric_key_prefix='test' ) SCREAMING_SNAKE_CASE = test_output.metrics SCREAMING_SNAKE_CASE = data_args.n_test if trainer.is_world_process_zero(): SCREAMING_SNAKE_CASE = round(metrics['test_loss'] , 4 ) handle_metrics('test' , _UpperCamelCase , training_args.output_dir ) all_metrics.update(_UpperCamelCase ) if training_args.predict_with_generate: SCREAMING_SNAKE_CASE = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) SCREAMING_SNAKE_CASE = lmap(str.strip , _UpperCamelCase ) write_txt_file(_UpperCamelCase , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(_UpperCamelCase , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def __lowerCAmelCase ( _UpperCamelCase : List[str] ) -> List[str]: '''simple docstring''' main() if __name__ == "__main__": main()
700
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a_ : Optional[int] = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } a_ : List[Any] = { "allenai/led-base-16384": 1_6384, } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =LEDTokenizer __UpperCamelCase =["input_ids", "attention_mask"] def __init__( self : Tuple , snake_case__ : List[Any]=None , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : Dict="replace" , snake_case__ : Tuple="<s>" , snake_case__ : Optional[Any]="</s>" , snake_case__ : int="</s>" , snake_case__ : Dict="<s>" , snake_case__ : Union[str, Any]="<unk>" , snake_case__ : Optional[int]="<pad>" , snake_case__ : List[str]="<mask>" , snake_case__ : List[Any]=False , snake_case__ : int=True , **snake_case__ : Dict , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(snake_case__ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**snake_case__ ) SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE = 'post_processor' SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state['cls'] ) SCREAMING_SNAKE_CASE = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(snake_case__ , state.pop('type' ) ) SCREAMING_SNAKE_CASE = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase ( self : List[Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value SCREAMING_SNAKE_CASE = value def UpperCamelCase ( self : Dict , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[str] , *snake_case__ : List[Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Tuple=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self : Optional[Any] , snake_case__ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case__ : Optional[int] = None , snake_case__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , ): """simple docstring""" SCREAMING_SNAKE_CASE = super()._pad( encoded_inputs=snake_case__ , max_length=snake_case__ , padding_strategy=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE = len(encoded_inputs['global_attention_mask'] ) != len(snake_case__ ) if needs_to_be_padded: SCREAMING_SNAKE_CASE = len(snake_case__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
673
0
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =['image_processor', 'tokenizer'] __UpperCamelCase ='OwlViTImageProcessor' __UpperCamelCase =('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Optional[int] , snake_case__ : Union[str, Any]=None , snake_case__ : Dict=None , **snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , snake_case__ , ) SCREAMING_SNAKE_CASE = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(snake_case__ , snake_case__ ) def __call__( self : Tuple , snake_case__ : Tuple=None , snake_case__ : Any=None , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]="max_length" , snake_case__ : int="np" , **snake_case__ : Tuple ): """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(snake_case__ , snake_case__ ) or (isinstance(snake_case__ , snake_case__ ) and not isinstance(text[0] , snake_case__ )): SCREAMING_SNAKE_CASE = [self.tokenizer(snake_case__ , padding=snake_case__ , return_tensors=snake_case__ , **snake_case__ )] elif isinstance(snake_case__ , snake_case__ ) and isinstance(text[0] , snake_case__ ): SCREAMING_SNAKE_CASE = [] # Maximum number of queries across batch SCREAMING_SNAKE_CASE = max([len(snake_case__ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(snake_case__ ) != max_num_queries: SCREAMING_SNAKE_CASE = t + [' '] * (max_num_queries - len(snake_case__ )) SCREAMING_SNAKE_CASE = self.tokenizer(snake_case__ , padding=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) encodings.append(snake_case__ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": SCREAMING_SNAKE_CASE = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp SCREAMING_SNAKE_CASE = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch SCREAMING_SNAKE_CASE = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) SCREAMING_SNAKE_CASE = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) SCREAMING_SNAKE_CASE = BatchEncoding() SCREAMING_SNAKE_CASE = input_ids SCREAMING_SNAKE_CASE = attention_mask if query_images is not None: SCREAMING_SNAKE_CASE = BatchEncoding() SCREAMING_SNAKE_CASE = self.image_processor( snake_case__ , return_tensors=snake_case__ , **snake_case__ ).pixel_values SCREAMING_SNAKE_CASE = query_pixel_values if images is not None: SCREAMING_SNAKE_CASE = self.image_processor(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if text is not None and images is not None: SCREAMING_SNAKE_CASE = image_features.pixel_values return encoding elif query_images is not None and images is not None: SCREAMING_SNAKE_CASE = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**snake_case__ ) , tensor_type=snake_case__ ) def UpperCamelCase ( self : Any , *snake_case__ : Optional[int] , **snake_case__ : List[Any] ): """simple docstring""" return self.image_processor.post_process(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Any , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): """simple docstring""" return self.image_processor.post_process_object_detection(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Any , *snake_case__ : List[str] , **snake_case__ : Any ): """simple docstring""" return self.image_processor.post_process_image_guided_detection(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Dict , *snake_case__ : List[Any] , **snake_case__ : Union[str, Any] ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Optional[int] , *snake_case__ : Optional[int] , **snake_case__ : Tuple ): """simple docstring""" return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property def UpperCamelCase ( self : Any ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , snake_case__ , ) return self.image_processor_class @property def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , snake_case__ , ) return self.image_processor
701
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __lowerCAmelCase ( *_UpperCamelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(_UpperCamelCase , 'r' ) as fh: fcntl.flock(_UpperCamelCase , fcntl.LOCK_EX ) try: print(*_UpperCamelCase ) finally: fcntl.flock(_UpperCamelCase , fcntl.LOCK_UN ) a_ : int = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) a_ : str = torch.device("cuda", local_rank) a_ : Optional[int] = socket.gethostname() a_ : Union[str, Any] = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank a_ : Dict = dist.get_rank() a_ : Any = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
673
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ : Optional[Any] = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = ["YolosFeatureExtractor"] a_ : Dict = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys a_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
702
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a_ : Optional[Any] = logging.get_logger(__name__) a_ : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } a_ : Union[str, Any] = {"allegro/herbert-base-cased": 514} a_ : List[Any] = {} class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_INIT_CONFIGURATION __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =HerbertTokenizer def __init__( self : Tuple , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : Optional[int]=None , snake_case__ : str="<s>" , snake_case__ : Tuple="<unk>" , snake_case__ : List[str]="<pad>" , snake_case__ : Tuple="<mask>" , snake_case__ : Dict="</s>" , **snake_case__ : List[str] , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sep_token=snake_case__ , **snake_case__ , ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
673
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class UpperCamelCase ( a__ ): __UpperCamelCase =42 __UpperCamelCase =42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.26.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(">=", "0.0.12") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class UpperCamelCase ( a__ ): __UpperCamelCase =42 __UpperCamelCase =42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
703
def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 while n > 0: res += n % 10 n //= 10 return res def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return sum(int(_UpperCamelCase ) for c in str(abs(_UpperCamelCase ) ) ) def __lowerCAmelCase ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_UpperCamelCase : Callable , _UpperCamelCase : int ) -> None: SCREAMING_SNAKE_CASE = f"""{func.__name__}({value})""" SCREAMING_SNAKE_CASE = timeit(f"""__main__.{call}""" , setup='import __main__' ) print(f"""{call:56} = {func(_UpperCamelCase )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_UpperCamelCase , _UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
673
0
import random def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = num - 1 SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): SCREAMING_SNAKE_CASE = random.randrange(2 , num - 1 ) SCREAMING_SNAKE_CASE = pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if v != 1: SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: SCREAMING_SNAKE_CASE = i + 1 SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCAmelCase ( _UpperCamelCase : int ) -> Optional[Any]: '''simple docstring''' if num < 2: return False SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( _UpperCamelCase : int = 10_24 ) -> List[Any]: '''simple docstring''' while True: SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE__ ): return num if __name__ == "__main__": a_ : int = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
704
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
673
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : Dict = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ "SEW_PRETRAINED_MODEL_ARCHIVE_LIST", "SEWForCTC", "SEWForSequenceClassification", "SEWModel", "SEWPreTrainedModel", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys a_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
705
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =AudioLDMPipeline __UpperCamelCase =TEXT_TO_AUDIO_PARAMS __UpperCamelCase =TEXT_TO_AUDIO_BATCH_PARAMS __UpperCamelCase =frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(3_2, 6_4) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=snake_case__ , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) SCREAMING_SNAKE_CASE = ClapTextModelWithProjection(snake_case__ ) SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=7_7 ) SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=snake_case__ , ) SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def UpperCamelCase ( self : Optional[int] , snake_case__ : int , snake_case__ : int=0 ): """simple docstring""" if str(snake_case__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(snake_case__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) SCREAMING_SNAKE_CASE = prompt_embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE = negative_prompt SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = [] for p in [prompt, negative_prompt]: SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = text_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) embeds.append(snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 'egg cracking' SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ , negative_prompt=snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config.sampling_rate SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.016 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.016 SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.032 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.032 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = ['hey'] SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape assert audio_shape == (1, 2_5_6) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config config.model_in_dim *= 2 SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ).to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def UpperCamelCase ( self : Tuple ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=snake_case__ ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase ( self : Dict ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case__ ) @slow class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : int , snake_case__ : int , snake_case__ : Tuple="cpu" , snake_case__ : List[str]=torch.floataa , snake_case__ : Optional[Any]=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = np.random.RandomState(snake_case__ ).standard_normal((1, 8, 1_2_8, 1_6) ) SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 2_5 SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[7_7_2_3_0:7_7_2_4_0] SCREAMING_SNAKE_CASE = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[2_7_7_8_0:2_7_7_9_0] SCREAMING_SNAKE_CASE = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
673
0
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = mock.Mock() SCREAMING_SNAKE_CASE = 5_0_0 SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = HTTPError SCREAMING_SNAKE_CASE = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=snake_case__ ) as mock_head: SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = mock.Mock() SCREAMING_SNAKE_CASE = 5_0_0 SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = HTTPError SCREAMING_SNAKE_CASE = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=snake_case__ ) as mock_head: SCREAMING_SNAKE_CASE = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase ( self : str ): """simple docstring""" try: SCREAMING_SNAKE_CASE = tempfile.mktemp() with open(snake_case__ , 'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , snake_case__ ) SCREAMING_SNAKE_CASE = AlbertTokenizer.from_pretrained(snake_case__ ) finally: os.remove(snake_case__ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , snake_case__ ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_0_0_0 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class UpperCamelCase ( unittest.TestCase ): __UpperCamelCase =["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def UpperCamelCase ( cls : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def UpperCamelCase ( cls : Optional[Any] ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE = os.path.join(snake_case__ , 'vocab.txt' ) with open(snake_case__ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE = BertTokenizer(snake_case__ ) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ , repo_id='test-tokenizer' , push_to_hub=snake_case__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE = os.path.join(snake_case__ , 'vocab.txt' ) with open(snake_case__ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE = BertTokenizer(snake_case__ ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( snake_case__ , repo_id='valid_org/test-tokenizer-org' , push_to_hub=snake_case__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def UpperCamelCase ( self : int ): """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE = os.path.join(snake_case__ , 'vocab.txt' ) with open(snake_case__ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE = CustomTokenizer(snake_case__ ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE = os.path.join(snake_case__ , 'vocab.txt' ) with open(snake_case__ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained(snake_case__ ) bert_tokenizer.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = CustomTokenizerFast.from_pretrained(snake_case__ ) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( F"""{USER}/test-dynamic-tokenizer""" , use_fast=snake_case__ , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = Trie() SCREAMING_SNAKE_CASE = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(snake_case__ , ['AB', 'C'] )
706
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase : def __init__( self : Dict , snake_case__ : str , snake_case__ : str=1_3 , snake_case__ : Tuple=7 , snake_case__ : Tuple=True , snake_case__ : Tuple=True , snake_case__ : List[str]=False , snake_case__ : Any=True , snake_case__ : Union[str, Any]=9_9 , snake_case__ : Dict=3_2 , snake_case__ : Optional[Any]=5 , snake_case__ : Optional[Any]=4 , snake_case__ : Union[str, Any]=3_7 , snake_case__ : Tuple="gelu" , snake_case__ : Dict=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : int=4 , snake_case__ : List[str]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Dict ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , use_stable_embedding=snake_case__ , ) def UpperCamelCase ( self : int , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : str , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : str , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , ) SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Tuple , ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : int , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Union[str, Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , use_cache=snake_case__ , ) SCREAMING_SNAKE_CASE = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCamelCase =(OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCamelCase =( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'single_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'multi_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase ( self : str , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = ids_tensor([1, 1_0] , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) )
673
0
import argparse import json from tqdm import tqdm def __lowerCAmelCase ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=lowercase_ , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=lowercase_ , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=lowercase_ , help='where to store parsed gold_data_path file' , ) SCREAMING_SNAKE_CASE = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: SCREAMING_SNAKE_CASE = json.load(lowercase_ ) for dpr_record in tqdm(lowercase_ ): SCREAMING_SNAKE_CASE = dpr_record["question"] SCREAMING_SNAKE_CASE = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + '\n' ) gold_file.write('\t'.join(lowercase_ ) + '\n' ) if __name__ == "__main__": main()
707
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="openai/whisper-base" __UpperCamelCase =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCamelCase ="transcriber" __UpperCamelCase =WhisperProcessor __UpperCamelCase =WhisperForConditionalGeneration __UpperCamelCase =["audio"] __UpperCamelCase =["text"] def UpperCamelCase ( self : Dict , snake_case__ : Tuple ): """simple docstring""" return self.pre_processor(snake_case__ , return_tensors='pt' ).input_features def UpperCamelCase ( self : Optional[int] , snake_case__ : Tuple ): """simple docstring""" return self.model.generate(inputs=snake_case__ ) def UpperCamelCase ( self : str , snake_case__ : Union[str, Any] ): """simple docstring""" return self.pre_processor.batch_decode(snake_case__ , skip_special_tokens=snake_case__ )[0]
673
0
import math def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowerCAmelCase ( _UpperCamelCase : Tuple = 0.1 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__UpperCamelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
708
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version a_ : List[str] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize a_ : Dict = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" a_ : str = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" a_ : int = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def UpperCamelCase ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def UpperCamelCase ( self : Dict , snake_case__ : int ): """simple docstring""" import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : List[Any]=0.9 , snake_case__ : Optional[Any]=3 , snake_case__ : Any=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5' ): SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score( word_tokenize(snake_case__ ) , word_tokenize(snake_case__ ) , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] else: SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score(snake_case__ , snake_case__ , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] return {"meteor": np.mean(snake_case__ )}
673
0
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser a_ : Union[str, Any] = logging.getLogger(__name__) torch.set_grad_enabled(False) a_ : List[Any] = """cuda""" if torch.cuda.is_available() else """cpu""" def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any]=1_00 , _UpperCamelCase : str=" " ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = text.split(_UpperCamelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase )] def __lowerCAmelCase ( _UpperCamelCase : Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], [] for title, text in zip(documents['title'] , documents['text'] ): if text is not None: for passage in split_text(_UpperCamelCase ): titles.append(title if title is not None else '' ) texts.append(_UpperCamelCase ) return {"title": titles, "text": texts} def __lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = ctx_tokenizer( documents['title'] , documents['text'] , truncation=_UpperCamelCase , padding='longest' , return_tensors='pt' )['input_ids'] SCREAMING_SNAKE_CASE = ctx_encoder(input_ids.to(device=_UpperCamelCase ) , return_dict=_UpperCamelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : str , _UpperCamelCase : Union[str, Any] , ) -> Dict: '''simple docstring''' logger.info('Step 1 - Create the dataset' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way SCREAMING_SNAKE_CASE = load_dataset( 'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words SCREAMING_SNAKE_CASE = dataset.map(_UpperCamelCase , batched=_UpperCamelCase , num_proc=processing_args.num_proc ) # And compute the embeddings SCREAMING_SNAKE_CASE = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_UpperCamelCase ) SCREAMING_SNAKE_CASE = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) SCREAMING_SNAKE_CASE = Features( {'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space SCREAMING_SNAKE_CASE = dataset.map( partial(_UpperCamelCase , ctx_encoder=_UpperCamelCase , ctx_tokenizer=_UpperCamelCase ) , batched=_UpperCamelCase , batch_size=processing_args.batch_size , features=_UpperCamelCase , ) # And finally save your dataset SCREAMING_SNAKE_CASE = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' ) dataset.save_to_disk(_UpperCamelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search SCREAMING_SNAKE_CASE = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('embeddings' , custom_index=_UpperCamelCase ) # And save the index SCREAMING_SNAKE_CASE = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' ) dataset.get_index('embeddings' ).save(_UpperCamelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class UpperCamelCase : __UpperCamelCase =field( default=str(Path(_lowerCAmelCase ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns \'title\' and \'text\'"} , ) __UpperCamelCase =field( default=_lowerCAmelCase , metadata={"help": "Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'."} , ) __UpperCamelCase =field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\'"} , ) __UpperCamelCase =field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or" " \'facebook/dpr-ctx_encoder-multiset-base\'" ) } , ) __UpperCamelCase =field( default=str(Path(_lowerCAmelCase ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class UpperCamelCase : __UpperCamelCase =field( default=_lowerCAmelCase , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) __UpperCamelCase =field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class UpperCamelCase : __UpperCamelCase =field( default=7_68 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) __UpperCamelCase =field( default=1_28 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) a_ : str = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) a_ : Optional[Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: a_ : str = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
709
import numpy as np def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
673
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ : Any = logging.get_logger(__name__) a_ : Tuple = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class UpperCamelCase ( UpperCamelCase__ ): __UpperCamelCase ="xmod" def __init__( self : Optional[Any] , snake_case__ : Optional[int]=3_0_5_2_2 , snake_case__ : int=7_6_8 , snake_case__ : str=1_2 , snake_case__ : Dict=1_2 , snake_case__ : List[str]=3_0_7_2 , snake_case__ : List[str]="gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Any=5_1_2 , snake_case__ : int=2 , snake_case__ : str=0.02 , snake_case__ : Optional[int]=1E-12 , snake_case__ : int=1 , snake_case__ : Any=0 , snake_case__ : List[Any]=2 , snake_case__ : Union[str, Any]="absolute" , snake_case__ : List[Any]=True , snake_case__ : int=None , snake_case__ : Optional[Any]=False , snake_case__ : List[str]=2 , snake_case__ : Tuple=False , snake_case__ : int=True , snake_case__ : Optional[Any]=True , snake_case__ : int=("en_XX",) , snake_case__ : Dict=None , **snake_case__ : Any , ): """simple docstring""" super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = pre_norm SCREAMING_SNAKE_CASE = adapter_reduction_factor SCREAMING_SNAKE_CASE = adapter_layer_norm SCREAMING_SNAKE_CASE = adapter_reuse_layer_norm SCREAMING_SNAKE_CASE = ln_before_adapter SCREAMING_SNAKE_CASE = list(_a ) SCREAMING_SNAKE_CASE = default_language class UpperCamelCase ( UpperCamelCase__ ): @property def UpperCamelCase ( self : Optional[int] ): """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
710
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ : Any = logging.get_logger(__name__) a_ : Dict = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="van" def __init__( self : Optional[Any] , snake_case__ : Tuple=2_2_4 , snake_case__ : Dict=3 , snake_case__ : Union[str, Any]=[7, 3, 3, 3] , snake_case__ : str=[4, 2, 2, 2] , snake_case__ : Optional[Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , snake_case__ : Optional[Any]=[3, 3, 1_2, 3] , snake_case__ : Tuple=[8, 8, 4, 4] , snake_case__ : Any="gelu" , snake_case__ : Dict=0.02 , snake_case__ : List[str]=1E-6 , snake_case__ : int=1E-2 , snake_case__ : Any=0.0 , snake_case__ : Tuple=0.0 , **snake_case__ : Any , ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_sizes SCREAMING_SNAKE_CASE = strides SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = mlp_ratios SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = dropout_rate
673
0
a_ : Any = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a_ : Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a_ : List[Any] = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) -> str: '''simple docstring''' assert len(str(__UpperCamelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: SCREAMING_SNAKE_CASE = year // 1_00 SCREAMING_SNAKE_CASE = (5 * (century % 4) + 2) % 7 SCREAMING_SNAKE_CASE = year % 1_00 SCREAMING_SNAKE_CASE = centurian % 12 SCREAMING_SNAKE_CASE = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 SCREAMING_SNAKE_CASE = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) SCREAMING_SNAKE_CASE = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
711
def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : int ) -> list[str]: '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(_UpperCamelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
673
0
from __future__ import annotations from random import choice def __lowerCAmelCase ( _UpperCamelCase : str ) -> List[str]: '''simple docstring''' return choice(lowerCamelCase_ ) def __lowerCAmelCase ( _UpperCamelCase : list[int] , _UpperCamelCase : int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = random_pivot(lowerCamelCase_ ) # partition based on pivot # linear time SCREAMING_SNAKE_CASE = [e for e in lst if e < pivot] SCREAMING_SNAKE_CASE = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(lowerCamelCase_ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(lowerCamelCase_ ) < k - 1: return kth_number(lowerCamelCase_ , k - len(lowerCamelCase_ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
712
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING a_ : Dict = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : Any , **snake_case__ : Optional[int] ): """simple docstring""" super().__init__(**snake_case__ ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , 'vision' ) self.check_model_type(snake_case__ ) def __call__( self : List[Any] , snake_case__ : Union[str, "Image.Image", List[Dict[str, Any]]] , snake_case__ : Union[str, List[str]] = None , **snake_case__ : Union[str, Any] , ): """simple docstring""" if "text_queries" in kwargs: SCREAMING_SNAKE_CASE = kwargs.pop('text_queries' ) if isinstance(snake_case__ , (str, Image.Image) ): SCREAMING_SNAKE_CASE = {'image': image, 'candidate_labels': candidate_labels} else: SCREAMING_SNAKE_CASE = image SCREAMING_SNAKE_CASE = super().__call__(snake_case__ , **snake_case__ ) return results def UpperCamelCase ( self : Union[str, Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = {} if "threshold" in kwargs: SCREAMING_SNAKE_CASE = kwargs['threshold'] if "top_k" in kwargs: SCREAMING_SNAKE_CASE = kwargs['top_k'] return {}, {}, postprocess_params def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = load_image(inputs['image'] ) SCREAMING_SNAKE_CASE = inputs['candidate_labels'] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = candidate_labels.split(',' ) SCREAMING_SNAKE_CASE = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE = self.tokenizer(snake_case__ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE = self.image_processor(snake_case__ , return_tensors=self.framework ) yield { "is_last": i == len(snake_case__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def UpperCamelCase ( self : Any , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = model_inputs.pop('target_size' ) SCREAMING_SNAKE_CASE = model_inputs.pop('candidate_label' ) SCREAMING_SNAKE_CASE = model_inputs.pop('is_last' ) SCREAMING_SNAKE_CASE = self.model(**snake_case__ ) SCREAMING_SNAKE_CASE = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : str=0.1 , snake_case__ : Union[str, Any]=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: SCREAMING_SNAKE_CASE = model_output['candidate_label'] SCREAMING_SNAKE_CASE = BaseModelOutput(snake_case__ ) SCREAMING_SNAKE_CASE = self.image_processor.post_process_object_detection( outputs=snake_case__ , threshold=snake_case__ , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): SCREAMING_SNAKE_CASE = outputs['scores'][index].item() SCREAMING_SNAKE_CASE = self._get_bounding_box(outputs['boxes'][index][0] ) SCREAMING_SNAKE_CASE = {'score': score, 'label': label, 'box': box} results.append(snake_case__ ) SCREAMING_SNAKE_CASE = sorted(snake_case__ , key=lambda snake_case__ : x["score"] , reverse=snake_case__ ) if top_k: SCREAMING_SNAKE_CASE = results[:top_k] return results def UpperCamelCase ( self : List[Any] , snake_case__ : "torch.Tensor" ): """simple docstring""" if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = box.int().tolist() SCREAMING_SNAKE_CASE = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
673
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __lowerCAmelCase ( _UpperCamelCase : str ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = analyze_text(__snake_case ) SCREAMING_SNAKE_CASE = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. SCREAMING_SNAKE_CASE = sum(single_char_strings.values() ) # one length string SCREAMING_SNAKE_CASE = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: SCREAMING_SNAKE_CASE = single_char_strings[ch] SCREAMING_SNAKE_CASE = my_str / all_sum my_fir_sum += prob * math.loga(__snake_case ) # entropy formula. # print entropy print(f"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string SCREAMING_SNAKE_CASE = sum(two_char_strings.values() ) SCREAMING_SNAKE_CASE = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: SCREAMING_SNAKE_CASE = cha + cha if sequence in two_char_strings: SCREAMING_SNAKE_CASE = two_char_strings[sequence] SCREAMING_SNAKE_CASE = int(__snake_case ) / all_sum my_sec_sum += prob * math.loga(__snake_case ) # print second entropy print(f"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(f"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def __lowerCAmelCase ( _UpperCamelCase : str ) -> tuple[dict, dict]: '''simple docstring''' SCREAMING_SNAKE_CASE = Counter() # type: ignore SCREAMING_SNAKE_CASE = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__snake_case ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __lowerCAmelCase ( ) -> str: '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
713
def __lowerCAmelCase ( _UpperCamelCase : int = 10_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 2**power SCREAMING_SNAKE_CASE = str(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 for i in list_num: sum_of_num += int(_UpperCamelCase ) return sum_of_num if __name__ == "__main__": a_ : List[str] = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) a_ : int = solution(power) print("Sum of the digits is: ", result)
673
0
import os a_ : Union[str, Any] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} def __lowerCAmelCase ( _UpperCamelCase : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 while index < len(a__ ) - 1: SCREAMING_SNAKE_CASE = SYMBOLS[numerals[index]] SCREAMING_SNAKE_CASE = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __lowerCAmelCase ( _UpperCamelCase : Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = num // 10_00 numerals += m_count * "M" num %= 10_00 SCREAMING_SNAKE_CASE = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 SCREAMING_SNAKE_CASE = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __lowerCAmelCase ( _UpperCamelCase : List[str] = "/p089_roman.txt" ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 with open(os.path.dirname(a__ ) + roman_numerals_filename ) as filea: SCREAMING_SNAKE_CASE = filea.readlines() for line in lines: SCREAMING_SNAKE_CASE = line.strip() SCREAMING_SNAKE_CASE = parse_roman_numerals(a__ ) SCREAMING_SNAKE_CASE = generate_roman_numerals(a__ ) savings += len(a__ ) - len(a__ ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
714
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="facebook/bart-large-mnli" __UpperCamelCase =( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) __UpperCamelCase ="text_classifier" __UpperCamelCase =AutoTokenizer __UpperCamelCase =AutoModelForSequenceClassification __UpperCamelCase =["text", ["text"]] __UpperCamelCase =["text"] def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): SCREAMING_SNAKE_CASE = int(snake_case__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[str] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(snake_case__ ) , [F"""This example is {label}""" for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
673
0
import itertools import string from collections.abc import Generator, Iterable def __lowerCAmelCase ( _UpperCamelCase : Iterable[str] , _UpperCamelCase : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = iter(UpperCamelCase__ ) while True: SCREAMING_SNAKE_CASE = tuple(itertools.islice(UpperCamelCase__ , UpperCamelCase__ ) ) if not chunk: return yield chunk def __lowerCAmelCase ( _UpperCamelCase : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) SCREAMING_SNAKE_CASE = '' if len(UpperCamelCase__ ) < 2: return dirty for i in range(len(UpperCamelCase__ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(UpperCamelCase__ ) & 1: clean += "X" return clean def __lowerCAmelCase ( _UpperCamelCase : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler SCREAMING_SNAKE_CASE = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(UpperCamelCase__ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(UpperCamelCase__ ) return table def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = generate_table(UpperCamelCase__ ) SCREAMING_SNAKE_CASE = prepare_input(UpperCamelCase__ ) SCREAMING_SNAKE_CASE = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCamelCase__ , 2 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = divmod(table.index(UpperCamelCase__ ) , 5 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = divmod(table.index(UpperCamelCase__ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = generate_table(UpperCamelCase__ ) SCREAMING_SNAKE_CASE = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCamelCase__ , 2 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = divmod(table.index(UpperCamelCase__ ) , 5 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = divmod(table.index(UpperCamelCase__ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
715
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a_ : str = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a_ : int = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.1_5}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names a_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a_ : List[Any] = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a_ : Any = "allenai" def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = dict((re.sub(R'@@$' , '' , _UpperCamelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , _UpperCamelCase ), v) for k, v in d.items() ) SCREAMING_SNAKE_CASE = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] SCREAMING_SNAKE_CASE = d[k] # restore return da def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : List[str] ) -> Dict: '''simple docstring''' assert os.path.exists(_UpperCamelCase ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel SCREAMING_SNAKE_CASE = cls.hub_models() SCREAMING_SNAKE_CASE = {'bpe': 'fastbpe', 'tokenizer': 'moses'} SCREAMING_SNAKE_CASE = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"""using checkpoint {checkpoint_file}""" ) SCREAMING_SNAKE_CASE = hub_utils.from_pretrained( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , archive_map=_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = vars(chkpt['args']['model'] ) SCREAMING_SNAKE_CASE = args['source_lang'] SCREAMING_SNAKE_CASE = args['target_lang'] SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) # dicts SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{src_lang}.txt""" ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{tgt_lang}.txt""" ) SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(src_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-src.json' ) print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab SCREAMING_SNAKE_CASE = True for k in src_vocab.keys(): if not k.islower(): SCREAMING_SNAKE_CASE = False break SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(tgt_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-tgt.json' ) print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # merges_file (bpecodes) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.exists(_UpperCamelCase ): break with open(_UpperCamelCase , encoding='utf-8' ) as fin: SCREAMING_SNAKE_CASE = fin.read() SCREAMING_SNAKE_CASE = re.sub(R' \d+$' , '' , _UpperCamelCase , 0 , re.M ) # remove frequency number print(f"""Generating {merges_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_UpperCamelCase ) # model config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args['bpe']}""" assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args['tokenizer']}""" SCREAMING_SNAKE_CASE = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with SCREAMING_SNAKE_CASE = 5 SCREAMING_SNAKE_CASE = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: SCREAMING_SNAKE_CASE = best_score_hparams[model_dir]['length_penalty'] else: SCREAMING_SNAKE_CASE = 1.0 print(f"""Generating {fsmt_model_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # tokenizer config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = { 'langs': [src_lang, tgt_lang], 'model_max_length': 10_24, 'do_lower_case': do_lower_case, } print(f"""Generating {fsmt_tokenizer_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # model SCREAMING_SNAKE_CASE = chkpt['models'][0] SCREAMING_SNAKE_CASE = model.state_dict() # rename keys to start with 'model.' SCREAMING_SNAKE_CASE = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys SCREAMING_SNAKE_CASE = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTConfig.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTForConditionalGeneration(_UpperCamelCase ) # check that it loads ok model_new.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) # save SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(_UpperCamelCase , _UpperCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f"""cd {data_root}""" ) print(f"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a_ : int = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
673
0
import heapq import sys import numpy as np a_ : List[Any] = tuple[int, int] class UpperCamelCase : def __init__( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() def UpperCamelCase ( self : int ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf' ) def UpperCamelCase ( self : str ): """simple docstring""" return len(self.elements ) == 0 def UpperCamelCase ( self : Dict , snake_case__ : Tuple , snake_case__ : Any ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__SCREAMING_SNAKE_CASE ) else: # update # print("update", item) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def UpperCamelCase ( self : List[Any] , snake_case__ : int ): """simple docstring""" if item in self.set: self.set.remove(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def UpperCamelCase ( self : str ): """simple docstring""" return self.elements[0][1] def UpperCamelCase ( self : Tuple ): """simple docstring""" ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) self.set.remove(__SCREAMING_SNAKE_CASE ) return (priority, item) def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.array(_UpperCAmelCase ) SCREAMING_SNAKE_CASE = np.array(_UpperCAmelCase ) return np.linalg.norm(a - b ) def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : List[str] ) -> Optional[Any]: '''simple docstring''' return consistent_heuristic(_UpperCAmelCase , _UpperCAmelCase ) // t def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : str ) -> int: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = g_function[start] + Wa * heuristics[i](_UpperCAmelCase , _UpperCAmelCase ) return ans def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any , _UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = np.chararray((n, n) ) for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): SCREAMING_SNAKE_CASE = '*' for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE = '#' SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = x # print(x) SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[x] SCREAMING_SNAKE_CASE = '-' for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: print(_UpperCAmelCase , end=' ' ) SCREAMING_SNAKE_CASE = back_pointer[x] print(_UpperCAmelCase ) sys.exit() def __lowerCAmelCase ( _UpperCamelCase : str ) -> int: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , ) -> int: '''simple docstring''' for itera in range(_UpperCAmelCase ): open_list[itera].remove_element(_UpperCAmelCase ) # print("s", s) # print("j", j) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = s SCREAMING_SNAKE_CASE = (x - 1, y) SCREAMING_SNAKE_CASE = (x + 1, y) SCREAMING_SNAKE_CASE = (x, y + 1) SCREAMING_SNAKE_CASE = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCAmelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCAmelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = float('inf' ) if valid(_UpperCAmelCase ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE = g_function[s] + 1 SCREAMING_SNAKE_CASE = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCAmelCase , key(_UpperCAmelCase , 0 , _UpperCAmelCase , _UpperCAmelCase ) ) if neighbours not in close_list_inad: for var in range(1 , _UpperCAmelCase ): if key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) <= Wa * key( _UpperCAmelCase , 0 , _UpperCAmelCase , _UpperCAmelCase ): open_list[j].put( _UpperCAmelCase , key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) def __lowerCAmelCase ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a_ : List[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a_ : str = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a_ : Union[str, Any] = make_common_ground() a_ : Any = blocks_blk # hyper parameters a_ : Union[str, Any] = 1 a_ : List[Any] = 1 a_ : List[Any] = 20 a_ : List[Any] = 3 # one consistent and two other inconsistent # start and end destination a_ : Union[str, Any] = (0, 0) a_ : Tuple = (n - 1, n - 1) a_ : Optional[int] = 1 def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = {start: 0, goal: float('inf' )} SCREAMING_SNAKE_CASE = {start: -1, goal: -1} SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() for i in range(_UpperCAmelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCAmelCase , key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , _UpperCAmelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = open_list[i].top_show() visited.add(_UpperCAmelCase ) expand_state( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) close_list_inad.append(_UpperCAmelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: SCREAMING_SNAKE_CASE = open_list[0].top_show() visited.add(_UpperCAmelCase ) expand_state( _UpperCAmelCase , 0 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) close_list_anchor.append(_UpperCAmelCase ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_UpperCAmelCase ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
716
import random def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : float , _UpperCamelCase : bool = False ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE = {i: [] for i in range(_UpperCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_UpperCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_UpperCamelCase ): for j in range(i + 1 , _UpperCamelCase ): if random.random() < probability: graph[i].append(_UpperCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_UpperCamelCase ) return graph def __lowerCAmelCase ( _UpperCamelCase : int ) -> dict: '''simple docstring''' return { i: [j for j in range(_UpperCamelCase ) if i != j] for i in range(_UpperCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
673
0
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging a_ : Optional[Any] = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class UpperCamelCase ( UpperCamelCase_ ): def __init__( self : int , snake_case__ : Dict = 1_0_1 ): """simple docstring""" SCREAMING_SNAKE_CASE = length def __len__( self : List[Any] ): """simple docstring""" return self.length def __getitem__( self : Union[str, Any] , snake_case__ : Tuple ): """simple docstring""" return i class UpperCamelCase : def __call__( self : Dict , snake_case__ : List[str] ): """simple docstring""" return {"input_ids": torch.tensor(__a ), "labels": torch.tensor(__a )} class UpperCamelCase ( nn.Module ): def __init__( self : Any ): """simple docstring""" super().__init__() # Add some (unused) params otherwise DDP will complain. SCREAMING_SNAKE_CASE = nn.Linear(1_2_0 , 8_0 ) def UpperCamelCase ( self : int , snake_case__ : int , snake_case__ : Union[str, Any]=None ): """simple docstring""" if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class UpperCamelCase ( UpperCamelCase_ ): @require_torch_neuroncore def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = F"""--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = F"""--output_dir {output_dir}""".split() SCREAMING_SNAKE_CASE = ['torchrun'] + distributed_args + args execute_subprocess_async(__a , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class UpperCamelCase ( UpperCamelCase_ ): @require_torch_multi_gpu def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = F"""--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = F"""--output_dir {output_dir}""".split() SCREAMING_SNAKE_CASE = ['torchrun'] + distributed_args + args execute_subprocess_async(__a , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py a_ : Optional[int] = HfArgumentParser((TrainingArguments,)) a_ : Union[str, Any] = parser.parse_args_into_dataclasses()[0] logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: a_ : Dict = DummyDataset(dataset_length) def __lowerCAmelCase ( _UpperCamelCase : EvalPrediction ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = list(range(len(_UpperCamelCase ) ) ) SCREAMING_SNAKE_CASE = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' f"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} a_ : Any = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) a_ : Any = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) a_ : List[Any] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) a_ : List[Any] = 2 a_ : Tuple = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) a_ : List[str] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) a_ : Optional[Any] = None
717
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : def __init__( self : List[str] , snake_case__ : Dict , snake_case__ : Optional[Any]=1_3 , snake_case__ : Union[str, Any]=7 , snake_case__ : List[str]=True , snake_case__ : Any=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=9_9 , snake_case__ : str=3_2 , snake_case__ : Dict=5 , snake_case__ : str=4 , snake_case__ : int=3_7 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Any=0.1 , snake_case__ : Dict=0.1 , snake_case__ : Optional[Any]=5_1_2 , snake_case__ : List[Any]=1_6 , snake_case__ : str=2 , snake_case__ : int=0.02 , snake_case__ : List[str]=3 , snake_case__ : Dict=4 , snake_case__ : str=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def UpperCamelCase ( self : List[str] , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : List[Any] , snake_case__ : str , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : int , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : int , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = NystromformerForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase =( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def UpperCamelCase ( self : List[str] ): """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(snake_case__ )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.4_532, -0.0_936, 0.5_137], [-0.2_676, 0.0_628, 0.6_186], [-0.3_629, -0.1_726, 0.4_716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1E-4 ) ) @slow def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = 'the [MASK] of Belgium is Brussels' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = tokenizer(snake_case__ , return_tensors='pt' ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(encoding.input_ids ).logits SCREAMING_SNAKE_CASE = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case__ ) , 'capital' )
673
0
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def __lowerCAmelCase ( _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = fname.split(os.path.sep )[-1] return re.search(R'^(.*)_\d+\.jpg$' , _lowercase ).groups()[0] class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : int , snake_case__ : Optional[int] , snake_case__ : Tuple=None , snake_case__ : List[str]=None ): """simple docstring""" SCREAMING_SNAKE_CASE = file_names SCREAMING_SNAKE_CASE = image_transform SCREAMING_SNAKE_CASE = label_to_id def __len__( self : Dict ): """simple docstring""" return len(self.file_names ) def __getitem__( self : Union[str, Any] , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.file_names[idx] SCREAMING_SNAKE_CASE = PIL.Image.open(__A ) SCREAMING_SNAKE_CASE = raw_image.convert('RGB' ) if self.image_transform is not None: SCREAMING_SNAKE_CASE = self.image_transform(__A ) SCREAMING_SNAKE_CASE = extract_label(__A ) if self.label_to_id is not None: SCREAMING_SNAKE_CASE = self.label_to_id[label] return {"image": image, "label": label} def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] ) -> List[Any]: '''simple docstring''' if args.with_tracking: SCREAMING_SNAKE_CASE = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: SCREAMING_SNAKE_CASE = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE = config['lr'] SCREAMING_SNAKE_CASE = int(config['num_epochs'] ) SCREAMING_SNAKE_CASE = int(config['seed'] ) SCREAMING_SNAKE_CASE = int(config['batch_size'] ) SCREAMING_SNAKE_CASE = config['image_size'] if not isinstance(_lowercase , (list, tuple) ): SCREAMING_SNAKE_CASE = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": SCREAMING_SNAKE_CASE = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): SCREAMING_SNAKE_CASE = int(args.checkpointing_steps ) else: raise ValueError( f"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: SCREAMING_SNAKE_CASE = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: SCREAMING_SNAKE_CASE = os.path.split(_lowercase )[-1].split('.' )[0] accelerator.init_trackers(_lowercase , _lowercase ) # Grab all the image filenames SCREAMING_SNAKE_CASE = [os.path.join(args.data_dir , _lowercase ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences SCREAMING_SNAKE_CASE = [extract_label(_lowercase ) for fname in file_names] SCREAMING_SNAKE_CASE = list(set(_lowercase ) ) id_to_label.sort() SCREAMING_SNAKE_CASE = {lbl: i for i, lbl in enumerate(_lowercase )} # Set the seed before splitting the data. np.random.seed(_lowercase ) torch.manual_seed(_lowercase ) torch.cuda.manual_seed_all(_lowercase ) # Split our filenames between train and validation SCREAMING_SNAKE_CASE = np.random.permutation(len(_lowercase ) ) SCREAMING_SNAKE_CASE = int(0.8 * len(_lowercase ) ) SCREAMING_SNAKE_CASE = random_perm[:cut] SCREAMING_SNAKE_CASE = random_perm[cut:] # For training we use a simple RandomResizedCrop SCREAMING_SNAKE_CASE = Compose([RandomResizedCrop(_lowercase , scale=(0.5, 1.0) ), ToTensor()] ) SCREAMING_SNAKE_CASE = PetsDataset( [file_names[i] for i in train_split] , image_transform=_lowercase , label_to_id=_lowercase ) # For evaluation, we use a deterministic Resize SCREAMING_SNAKE_CASE = Compose([Resize(_lowercase ), ToTensor()] ) SCREAMING_SNAKE_CASE = PetsDataset([file_names[i] for i in eval_split] , image_transform=_lowercase , label_to_id=_lowercase ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 ) SCREAMING_SNAKE_CASE = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE = create_model('resnet50d' , pretrained=_lowercase , num_classes=len(_lowercase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): SCREAMING_SNAKE_CASE = False for param in model.get_classifier().parameters(): SCREAMING_SNAKE_CASE = True # We normalize the batches of images to be a bit faster. SCREAMING_SNAKE_CASE = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) SCREAMING_SNAKE_CASE = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler SCREAMING_SNAKE_CASE = OneCycleLR(optimizer=_lowercase , max_lr=_lowercase , epochs=_lowercase , steps_per_epoch=len(_lowercase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # We need to keep track of how many total steps we have iterated over SCREAMING_SNAKE_CASE = 0 # We also need to keep track of the starting epoch so files are named properly SCREAMING_SNAKE_CASE = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) SCREAMING_SNAKE_CASE = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint SCREAMING_SNAKE_CASE = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) SCREAMING_SNAKE_CASE = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` SCREAMING_SNAKE_CASE = os.path.splitext(_lowercase )[0] if "epoch" in training_difference: SCREAMING_SNAKE_CASE = int(training_difference.replace('epoch_' , '' ) ) + 1 SCREAMING_SNAKE_CASE = None else: SCREAMING_SNAKE_CASE = int(training_difference.replace('step_' , '' ) ) SCREAMING_SNAKE_CASE = resume_step // len(_lowercase ) resume_step -= starting_epoch * len(_lowercase ) # Now we train the model for epoch in range(_lowercase , _lowercase ): model.train() if args.with_tracking: SCREAMING_SNAKE_CASE = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step SCREAMING_SNAKE_CASE = accelerator.skip_first_batches(_lowercase , _lowercase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader SCREAMING_SNAKE_CASE = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. SCREAMING_SNAKE_CASE = {k: v.to(accelerator.device ) for k, v in batch.items()} SCREAMING_SNAKE_CASE = (batch['image'] - mean) / std SCREAMING_SNAKE_CASE = model(_lowercase ) SCREAMING_SNAKE_CASE = torch.nn.functional.cross_entropy(_lowercase , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(_lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE = f"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: SCREAMING_SNAKE_CASE = os.path.join(args.output_dir , _lowercase ) accelerator.save_state(_lowercase ) model.eval() SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. SCREAMING_SNAKE_CASE = {k: v.to(accelerator.device ) for k, v in batch.items()} SCREAMING_SNAKE_CASE = (batch['image'] - mean) / std with torch.no_grad(): SCREAMING_SNAKE_CASE = model(_lowercase ) SCREAMING_SNAKE_CASE = outputs.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((predictions, batch['label']) ) SCREAMING_SNAKE_CASE = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() SCREAMING_SNAKE_CASE = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}: {1_00 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { 'accuracy': 1_00 * eval_metric, 'train_loss': total_loss.item() / len(_lowercase ), 'epoch': epoch, } , step=_lowercase , ) if checkpointing_steps == "epoch": SCREAMING_SNAKE_CASE = f"""epoch_{epoch}""" if args.output_dir is not None: SCREAMING_SNAKE_CASE = os.path.join(args.output_dir , _lowercase ) accelerator.save_state(_lowercase ) if args.with_tracking: accelerator.end_training() def __lowerCAmelCase ( ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=_lowercase , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=_lowercase , default=_lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=_lowercase , default=_lowercase , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=_lowercase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=_lowercase , default=_lowercase , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=_lowercase , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) SCREAMING_SNAKE_CASE = parser.parse_args() SCREAMING_SNAKE_CASE = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 2_24} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
673
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( __snake_case , unittest.TestCase ): __UpperCamelCase =LDMTextToImagePipeline __UpperCamelCase =TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } __UpperCamelCase =PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } __UpperCamelCase =TEXT_TO_IMAGE_BATCH_PARAMS __UpperCamelCase =False def UpperCamelCase ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=(3_2, 6_4) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) SCREAMING_SNAKE_CASE = CLIPTextModel(_lowercase ) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase ( self : Any , snake_case__ : List[str] , snake_case__ : List[str]=0 ): """simple docstring""" if str(_lowercase ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(_lowercase ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = LDMTextToImagePipeline(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(_lowercase ) SCREAMING_SNAKE_CASE = pipe(**_lowercase ).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 1_6, 1_6, 3) SCREAMING_SNAKE_CASE = np.array([0.6_101, 0.6_156, 0.5_622, 0.4_895, 0.6_661, 0.3_804, 0.5_748, 0.6_136, 0.5_014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Optional[int]=torch.floataa , snake_case__ : int=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.manual_seed(_lowercase ) SCREAMING_SNAKE_CASE = np.random.RandomState(_lowercase ).standard_normal((1, 4, 3_2, 3_2) ) SCREAMING_SNAKE_CASE = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE = self.get_inputs(_lowercase ) SCREAMING_SNAKE_CASE = pipe(**_lowercase ).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 2_5_6, 2_5_6, 3) SCREAMING_SNAKE_CASE = np.array([0.51_825, 0.52_850, 0.52_543, 0.54_258, 0.52_304, 0.52_569, 0.54_363, 0.55_276, 0.56_878] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : List[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : Optional[int] , snake_case__ : Any , snake_case__ : Dict=torch.floataa , snake_case__ : Union[str, Any]=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.manual_seed(_lowercase ) SCREAMING_SNAKE_CASE = np.random.RandomState(_lowercase ).standard_normal((1, 4, 3_2, 3_2) ) SCREAMING_SNAKE_CASE = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 5_0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE = self.get_inputs(_lowercase ) SCREAMING_SNAKE_CASE = pipe(**_lowercase ).images[0] SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) SCREAMING_SNAKE_CASE = np.abs(expected_image - image ).max() assert max_diff < 1E-3
719
import heapq import sys import numpy as np a_ : Optional[int] = tuple[int, int] class UpperCamelCase : def __init__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() def UpperCamelCase ( self : List[Any] ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf' ) def UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.elements ) == 0 def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(snake_case__ ) else: # update # print("update", item) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" if item in self.set: self.set.remove(snake_case__ ) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def UpperCamelCase ( self : str ): """simple docstring""" return self.elements[0][1] def UpperCamelCase ( self : Tuple ): """simple docstring""" ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) self.set.remove(snake_case__ ) return (priority, item) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) return np.linalg.norm(a - b ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Dict: '''simple docstring''' return consistent_heuristic(_UpperCamelCase , _UpperCamelCase ) // t def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[int]: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : int , _UpperCamelCase : TPos , _UpperCamelCase : dict[TPos, float] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = g_function[start] + Wa * heuristics[i](_UpperCamelCase , _UpperCamelCase ) return ans def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = np.chararray((n, n) ) for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = '*' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE = '#' SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = x # print(x) SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[x] SCREAMING_SNAKE_CASE = '-' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: print(_UpperCamelCase , end=' ' ) SCREAMING_SNAKE_CASE = back_pointer[x] print(_UpperCamelCase ) sys.exit() def __lowerCAmelCase ( _UpperCamelCase : TPos ) -> Any: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , ) -> List[Any]: '''simple docstring''' for itera in range(_UpperCamelCase ): open_list[itera].remove_element(_UpperCamelCase ) # print("s", s) # print("j", j) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = s SCREAMING_SNAKE_CASE = (x - 1, y) SCREAMING_SNAKE_CASE = (x + 1, y) SCREAMING_SNAKE_CASE = (x, y + 1) SCREAMING_SNAKE_CASE = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = float('inf' ) if valid(_UpperCamelCase ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE = g_function[s] + 1 SCREAMING_SNAKE_CASE = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCamelCase , key(_UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , _UpperCamelCase ): if key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) <= Wa * key( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ): open_list[j].put( _UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a_ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a_ : List[str] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a_ : Union[str, Any] = make_common_ground() a_ : Tuple = blocks_blk # hyper parameters a_ : Any = 1 a_ : List[str] = 1 a_ : Union[str, Any] = 20 a_ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a_ : int = (0, 0) a_ : Optional[int] = (n - 1, n - 1) a_ : Union[str, Any] = 1 def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos , _UpperCamelCase : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {start: 0, goal: float('inf' )} SCREAMING_SNAKE_CASE = {start: -1, goal: -1} SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() for i in range(_UpperCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , _UpperCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = open_list[i].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_inad.append(_UpperCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE = open_list[0].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_anchor.append(_UpperCamelCase ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_UpperCamelCase ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
673
0
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a_ : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =PegasusTokenizer __UpperCamelCase =PegasusTokenizerFast __UpperCamelCase =True __UpperCamelCase =True def UpperCamelCase ( self : int ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE = PegasusTokenizer(A__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase ( self : List[str] ): """simple docstring""" return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def UpperCamelCase ( self : List[str] , **snake_case__ : Tuple ): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **A__ ) def UpperCamelCase ( self : int , snake_case__ : List[Any] ): """simple docstring""" return ("This is a test", "This is a test") def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = """</s>""" SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A__ ) , A__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A__ ) , A__ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(A__ ) , 1_1_0_3 ) def UpperCamelCase ( self : Any ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) SCREAMING_SNAKE_CASE = rust_tokenizer([raw_input_str] , return_tensors=A__ , add_special_tokens=A__ ).input_ids[0] SCREAMING_SNAKE_CASE = py_tokenizer([raw_input_str] , return_tensors=A__ , add_special_tokens=A__ ).input_ids[0] self.assertListEqual(A__ , A__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word SCREAMING_SNAKE_CASE = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" SCREAMING_SNAKE_CASE = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] SCREAMING_SNAKE_CASE = tokenizer([raw_input_str] , return_tensors=A__ ).input_ids[0] self.assertListEqual(A__ , A__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 SCREAMING_SNAKE_CASE = """To ensure a smooth flow of bank resolutions.""" SCREAMING_SNAKE_CASE = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] SCREAMING_SNAKE_CASE = tokenizer([raw_input_str] , return_tensors=A__ ).input_ids[0] self.assertListEqual(A__ , A__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = ["""This is going to be way too long.""" * 1_5_0, """short example"""] SCREAMING_SNAKE_CASE = ["""not super long but more than 5 tokens""", """tiny"""] SCREAMING_SNAKE_CASE = self._large_tokenizer(A__ , padding=A__ , truncation=A__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE = self._large_tokenizer( text_target=A__ , max_length=5 , padding=A__ , truncation=A__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(A__ ) == 2 # input_ids, attention_mask. @slow def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = {"""input_ids""": [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =PegasusTokenizer __UpperCamelCase =PegasusTokenizerFast __UpperCamelCase =True __UpperCamelCase =True def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE = PegasusTokenizer(A__ , offset=0 , mask_token_sent=A__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def UpperCamelCase ( self : str , **snake_case__ : Optional[Any] ): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **A__ ) def UpperCamelCase ( self : str , snake_case__ : Optional[Any] ): """simple docstring""" return ("This is a test", "This is a test") def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) SCREAMING_SNAKE_CASE = rust_tokenizer([raw_input_str] , return_tensors=A__ , add_special_tokens=A__ ).input_ids[0] SCREAMING_SNAKE_CASE = py_tokenizer([raw_input_str] , return_tensors=A__ , add_special_tokens=A__ ).input_ids[0] self.assertListEqual(A__ , A__ ) @require_torch def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = ["""This is going to be way too long.""" * 1_0_0_0, """short example"""] SCREAMING_SNAKE_CASE = ["""not super long but more than 5 tokens""", """tiny"""] SCREAMING_SNAKE_CASE = self._large_tokenizer(A__ , padding=A__ , truncation=A__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE = self._large_tokenizer( text_target=A__ , max_length=5 , padding=A__ , truncation=A__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(A__ ) == 2 # input_ids, attention_mask. def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) SCREAMING_SNAKE_CASE = self._large_tokenizer(A__ ).input_ids self.assertListEqual( A__ , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
720
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a_ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : str = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Any=8 ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=5_12 , _UpperCamelCase : Union[str, Any]=5_12 ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) SCREAMING_SNAKE_CASE = np.array(pil_image.convert('RGB' ) ) SCREAMING_SNAKE_CASE = arr.astype(np.floataa ) / 1_27.5 - 1 SCREAMING_SNAKE_CASE = np.transpose(_UpperCamelCase , [2, 0, 1] ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : int , snake_case__ : UNetaDConditionModel , snake_case__ : DDPMScheduler , snake_case__ : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , ) SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase ( self : Any , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = min(int(num_inference_steps * strength ) , snake_case__ ) SCREAMING_SNAKE_CASE = max(num_inference_steps - init_timestep , 0 ) SCREAMING_SNAKE_CASE = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase ( self : List[str] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : str=None ): """simple docstring""" if not isinstance(snake_case__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case__ )}""" ) SCREAMING_SNAKE_CASE = image.to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = batch_size * num_images_per_prompt if image.shape[1] == 4: SCREAMING_SNAKE_CASE = image else: if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case__ ) ] SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) else: SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ ).latent_dist.sample(snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.config.scaling_factor * init_latents SCREAMING_SNAKE_CASE = torch.cat([init_latents] , dim=0 ) SCREAMING_SNAKE_CASE = init_latents.shape SCREAMING_SNAKE_CASE = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) # get latents SCREAMING_SNAKE_CASE = self.scheduler.add_noise(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = init_latents return latents def UpperCamelCase ( self : int , snake_case__ : List[str]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) SCREAMING_SNAKE_CASE = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[int]=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=snake_case__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase ( self : Dict ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case__ ) def __call__( self : str , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : int = 5_1_2 , snake_case__ : int = 5_1_2 , snake_case__ : int = 1_0_0 , snake_case__ : float = 4.0 , snake_case__ : float = 0.3 , snake_case__ : int = 1 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , ): """simple docstring""" SCREAMING_SNAKE_CASE = self._execution_device SCREAMING_SNAKE_CASE = guidance_scale > 1.0 if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = image_embeds.shape[0] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [image] if not all(isinstance(snake_case__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(snake_case__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) SCREAMING_SNAKE_CASE = torch.cat([prepare_image(snake_case__ , snake_case__ , snake_case__ ) for i in image] , dim=0 ) SCREAMING_SNAKE_CASE = image.to(dtype=image_embeds.dtype , device=snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ )['latents'] SCREAMING_SNAKE_CASE = latents.repeat_interleave(snake_case__ , dim=0 ) self.scheduler.set_timesteps(snake_case__ , device=snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_timesteps(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = timesteps[:1].repeat(batch_size * num_images_per_prompt ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = downscale_height_and_width(snake_case__ , snake_case__ , self.movq_scale_factor ) SCREAMING_SNAKE_CASE = self.prepare_latents( snake_case__ , snake_case__ , snake_case__ , snake_case__ , image_embeds.dtype , snake_case__ , snake_case__ ) for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE = {'image_embeds': image_embeds} SCREAMING_SNAKE_CASE = self.unet( sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , )[0] # post-processing SCREAMING_SNAKE_CASE = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
673
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): __UpperCamelCase =field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) __UpperCamelCase =Features({"text": Value("string" )} ) __UpperCamelCase =Features({"labels": ClassLabel} ) __UpperCamelCase ="text" __UpperCamelCase ="labels" def UpperCamelCase ( self : Dict , snake_case__ : Optional[Any] ): """simple docstring""" if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , _a ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) SCREAMING_SNAKE_CASE = copy.deepcopy(self ) SCREAMING_SNAKE_CASE = self.label_schema.copy() SCREAMING_SNAKE_CASE = features[self.label_column] SCREAMING_SNAKE_CASE = label_schema return task_template @property def UpperCamelCase ( self : Dict ): """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
721
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() a_ : List[Any] = logging.get_logger("transformers.models.speecht5") def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Dict: '''simple docstring''' hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Any=None , _UpperCamelCase : List[str]=None , ) -> Tuple: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig.from_pretrained(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE = SpeechTaHifiGan(_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = np.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() model.save_pretrained(_UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) a_ : Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
673
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class UpperCamelCase ( unittest.TestCase ): def __init__( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Any=7 , snake_case__ : int=3 , snake_case__ : Any=3_0 , snake_case__ : int=4_0_0 , snake_case__ : int=True , snake_case__ : Optional[int]=None , snake_case__ : List[Any]=True , snake_case__ : int=1 / 2_5_5 , snake_case__ : Tuple=True , snake_case__ : Any=[0.5, 0.5, 0.5] , snake_case__ : str=[0.5, 0.5, 0.5] , snake_case__ : Tuple=True , ): """simple docstring""" SCREAMING_SNAKE_CASE = size if size is not None else {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_rescale SCREAMING_SNAKE_CASE = rescale_factor SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std SCREAMING_SNAKE_CASE = do_pad def UpperCamelCase ( self : Dict ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def UpperCamelCase ( self : int , snake_case__ : List[str] , snake_case__ : int=False ): """simple docstring""" if not batched: SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(UpperCamelCase__ , Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image.size else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE = int(self.size['shortest_edge'] * h / w ) SCREAMING_SNAKE_CASE = self.size['shortest_edge'] elif w > h: SCREAMING_SNAKE_CASE = self.size['shortest_edge'] SCREAMING_SNAKE_CASE = int(self.size['shortest_edge'] * w / h ) else: SCREAMING_SNAKE_CASE = self.size['shortest_edge'] SCREAMING_SNAKE_CASE = self.size['shortest_edge'] else: SCREAMING_SNAKE_CASE = [] for image in image_inputs: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE = max(UpperCamelCase__ , key=lambda snake_case__ : item[0] )[0] SCREAMING_SNAKE_CASE = max(UpperCamelCase__ , key=lambda snake_case__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =DetrImageProcessor if is_vision_available() else None def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = DetrImageProcessingTester(self ) @property def UpperCamelCase ( self : Optional[int] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'do_rescale' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'rescale_factor' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'do_pad' ) ) def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , UpperCamelCase__ ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=UpperCamelCase__ ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2, 'longest_edge': 8_4} ) self.assertEqual(image_processor.do_pad , UpperCamelCase__ ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" pass def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) SCREAMING_SNAKE_CASE = image_processing(UpperCamelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(UpperCamelCase__ , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(UpperCamelCase__ , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: SCREAMING_SNAKE_CASE = json.loads(f.read() ) SCREAMING_SNAKE_CASE = {'image_id': 3_9_7_6_9, 'annotations': target} # encode them SCREAMING_SNAKE_CASE = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) SCREAMING_SNAKE_CASE = image_processing(images=UpperCamelCase__ , annotations=UpperCamelCase__ , return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , UpperCamelCase__ ) SCREAMING_SNAKE_CASE = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , UpperCamelCase__ , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , UpperCamelCase__ ) ) # verify boxes SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , UpperCamelCase__ ) SCREAMING_SNAKE_CASE = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , UpperCamelCase__ , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , UpperCamelCase__ ) ) # verify is_crowd SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , UpperCamelCase__ ) ) # verify class_labels SCREAMING_SNAKE_CASE = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , UpperCamelCase__ ) ) # verify orig_size SCREAMING_SNAKE_CASE = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , UpperCamelCase__ ) ) # verify size SCREAMING_SNAKE_CASE = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , UpperCamelCase__ ) ) @slow def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: SCREAMING_SNAKE_CASE = json.loads(f.read() ) SCREAMING_SNAKE_CASE = {'file_name': '000000039769.png', 'image_id': 3_9_7_6_9, 'segments_info': target} SCREAMING_SNAKE_CASE = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them SCREAMING_SNAKE_CASE = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) SCREAMING_SNAKE_CASE = image_processing(images=UpperCamelCase__ , annotations=UpperCamelCase__ , masks_path=UpperCamelCase__ , return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , UpperCamelCase__ ) SCREAMING_SNAKE_CASE = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , UpperCamelCase__ , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , UpperCamelCase__ ) ) # verify boxes SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , UpperCamelCase__ ) SCREAMING_SNAKE_CASE = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , UpperCamelCase__ , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , UpperCamelCase__ ) ) # verify is_crowd SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , UpperCamelCase__ ) ) # verify class_labels SCREAMING_SNAKE_CASE = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , UpperCamelCase__ ) ) # verify masks SCREAMING_SNAKE_CASE = 8_2_2_8_7_3 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , UpperCamelCase__ ) # verify orig_size SCREAMING_SNAKE_CASE = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , UpperCamelCase__ ) ) # verify size SCREAMING_SNAKE_CASE = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , UpperCamelCase__ ) )
700
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a_ : Optional[int] = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } a_ : List[Any] = { "allenai/led-base-16384": 1_6384, } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =LEDTokenizer __UpperCamelCase =["input_ids", "attention_mask"] def __init__( self : Tuple , snake_case__ : List[Any]=None , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : Dict="replace" , snake_case__ : Tuple="<s>" , snake_case__ : Optional[Any]="</s>" , snake_case__ : int="</s>" , snake_case__ : Dict="<s>" , snake_case__ : Union[str, Any]="<unk>" , snake_case__ : Optional[int]="<pad>" , snake_case__ : List[str]="<mask>" , snake_case__ : List[Any]=False , snake_case__ : int=True , **snake_case__ : Dict , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(snake_case__ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**snake_case__ ) SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE = 'post_processor' SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state['cls'] ) SCREAMING_SNAKE_CASE = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(snake_case__ , state.pop('type' ) ) SCREAMING_SNAKE_CASE = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase ( self : List[Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value SCREAMING_SNAKE_CASE = value def UpperCamelCase ( self : Dict , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[str] , *snake_case__ : List[Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Tuple=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self : Optional[Any] , snake_case__ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case__ : Optional[int] = None , snake_case__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , ): """simple docstring""" SCREAMING_SNAKE_CASE = super()._pad( encoded_inputs=snake_case__ , max_length=snake_case__ , padding_strategy=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE = len(encoded_inputs['global_attention_mask'] ) != len(snake_case__ ) if needs_to_be_padded: SCREAMING_SNAKE_CASE = len(snake_case__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
673
0
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCamelCase : def __init__( self : Dict , snake_case__ : Optional[int] , snake_case__ : str=2 , snake_case__ : Dict=3 , snake_case__ : Optional[int]=4 , snake_case__ : Optional[Any]=2 , snake_case__ : Optional[int]=7 , snake_case__ : Optional[int]=True , snake_case__ : str=True , snake_case__ : Dict=True , snake_case__ : int=True , snake_case__ : Optional[int]=9_9 , snake_case__ : str=3_6 , snake_case__ : Any=2 , snake_case__ : int=4 , snake_case__ : str=3_7 , snake_case__ : Any="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : Dict=0.1 , snake_case__ : List[Any]=5_1_2 , snake_case__ : Tuple=1_6 , snake_case__ : Any=2 , snake_case__ : List[str]=0.02 , snake_case__ : Union[str, Any]=6 , snake_case__ : str=6 , snake_case__ : Union[str, Any]=3 , snake_case__ : int=4 , snake_case__ : Optional[Any]=None , snake_case__ : List[str]=1_0_0_0 , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = coordinate_size SCREAMING_SNAKE_CASE = shape_size SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) SCREAMING_SNAKE_CASE = text_seq_length SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 + 1 SCREAMING_SNAKE_CASE = self.text_seq_length + self.image_seq_length def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) SCREAMING_SNAKE_CASE = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE = bbox[i, j, 3] SCREAMING_SNAKE_CASE = bbox[i, j, 1] SCREAMING_SNAKE_CASE = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE = bbox[i, j, 2] SCREAMING_SNAKE_CASE = bbox[i, j, 0] SCREAMING_SNAKE_CASE = tmp_coordinate SCREAMING_SNAKE_CASE = tf.constant(snake_case__ ) SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.text_seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase ( self : Dict , snake_case__ : Any , snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFLayoutLMvaModel(config=snake_case__ ) # text + image SCREAMING_SNAKE_CASE = model(snake_case__ , pixel_values=snake_case__ , training=snake_case__ ) SCREAMING_SNAKE_CASE = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , training=snake_case__ , ) SCREAMING_SNAKE_CASE = model(snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only SCREAMING_SNAKE_CASE = model(snake_case__ , training=snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only SCREAMING_SNAKE_CASE = model({'pixel_values': pixel_values} , training=snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase ( self : str , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = TFLayoutLMvaForSequenceClassification(config=snake_case__ ) SCREAMING_SNAKE_CASE = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , training=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : int , snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = TFLayoutLMvaForTokenClassification(config=snake_case__ ) SCREAMING_SNAKE_CASE = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , training=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase ( self : int , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : int , snake_case__ : int , snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = TFLayoutLMvaForQuestionAnswering(config=snake_case__ ) SCREAMING_SNAKE_CASE = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , training=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = config_and_inputs SCREAMING_SNAKE_CASE = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): __UpperCamelCase =( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) __UpperCamelCase =( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : str , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Tuple ): """simple docstring""" return True def UpperCamelCase ( self : int , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Dict=False ): """simple docstring""" SCREAMING_SNAKE_CASE = copy.deepcopy(snake_case__ ) if model_class in get_values(snake_case__ ): SCREAMING_SNAKE_CASE = { k: tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(snake_case__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(snake_case__ ): SCREAMING_SNAKE_CASE = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(snake_case__ ): SCREAMING_SNAKE_CASE = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) SCREAMING_SNAKE_CASE = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(snake_case__ ): SCREAMING_SNAKE_CASE = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(snake_case__ ): SCREAMING_SNAKE_CASE = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = TFLayoutLMvaModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : str ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(snake_case__ ) if getattr(snake_case__ , 'hf_compute_loss' , snake_case__ ): # The number of elements in the loss should be the same as the number of elements in the label SCREAMING_SNAKE_CASE = self._prepare_for_class(inputs_dict.copy() , snake_case__ , return_labels=snake_case__ ) SCREAMING_SNAKE_CASE = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=snake_case__ )[0] ] SCREAMING_SNAKE_CASE = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs SCREAMING_SNAKE_CASE = self._prepare_for_class(inputs_dict.copy() , snake_case__ , return_labels=snake_case__ ) SCREAMING_SNAKE_CASE = prepared_for_class.pop('input_ids' ) SCREAMING_SNAKE_CASE = model(snake_case__ , **snake_case__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions SCREAMING_SNAKE_CASE = self._prepare_for_class(inputs_dict.copy() , snake_case__ , return_labels=snake_case__ ) SCREAMING_SNAKE_CASE = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: SCREAMING_SNAKE_CASE = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: SCREAMING_SNAKE_CASE = -1_0_0 SCREAMING_SNAKE_CASE = tf.convert_to_tensor(snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , **snake_case__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict SCREAMING_SNAKE_CASE = self._prepare_for_class(inputs_dict.copy() , snake_case__ , return_labels=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple SCREAMING_SNAKE_CASE = self._prepare_for_class(inputs_dict.copy() , snake_case__ , return_labels=snake_case__ ) # Get keys that were added with the _prepare_for_class function SCREAMING_SNAKE_CASE = prepared_for_class.keys() - inputs_dict.keys() SCREAMING_SNAKE_CASE = inspect.signature(model.call ).parameters SCREAMING_SNAKE_CASE = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple SCREAMING_SNAKE_CASE = {0: 'input_ids'} for label_key in label_keys: SCREAMING_SNAKE_CASE = signature_names.index(snake_case__ ) SCREAMING_SNAKE_CASE = label_key SCREAMING_SNAKE_CASE = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple SCREAMING_SNAKE_CASE = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: SCREAMING_SNAKE_CASE = prepared_for_class[value] SCREAMING_SNAKE_CASE = tuple(snake_case__ ) # Send to model SCREAMING_SNAKE_CASE = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) @slow def UpperCamelCase ( self : Any ): """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TFLayoutLMvaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __lowerCAmelCase ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class UpperCamelCase ( unittest.TestCase ): @cached_property def UpperCamelCase ( self : Tuple ): """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) if is_vision_available() else None @slow def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=snake_case__ , return_tensors='tf' ).pixel_values SCREAMING_SNAKE_CASE = tf.constant([[1, 2]] ) SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass SCREAMING_SNAKE_CASE = model(input_ids=snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , training=snake_case__ ) # verify the logits SCREAMING_SNAKE_CASE = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape , snake_case__ ) SCREAMING_SNAKE_CASE = tf.constant( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case__ , atol=1E-4 ) )
701
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __lowerCAmelCase ( *_UpperCamelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(_UpperCamelCase , 'r' ) as fh: fcntl.flock(_UpperCamelCase , fcntl.LOCK_EX ) try: print(*_UpperCamelCase ) finally: fcntl.flock(_UpperCamelCase , fcntl.LOCK_UN ) a_ : int = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) a_ : str = torch.device("cuda", local_rank) a_ : Optional[int] = socket.gethostname() a_ : Union[str, Any] = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank a_ : Dict = dist.get_rank() a_ : Any = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
673
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging a_ : Optional[int] = logging.get_logger(__name__) a_ : Dict = "▁" a_ : str = {"vocab_file": "sentencepiece.bpe.model"} a_ : Optional[Any] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } a_ : str = { "facebook/nllb-200-distilled-600M": 1024, } # fmt: off a_ : Dict = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class UpperCamelCase ( _UpperCAmelCase ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =["input_ids", "attention_mask"] __UpperCamelCase =[] __UpperCamelCase =[] def __init__( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : str="<s>" , snake_case__ : Any="</s>" , snake_case__ : Any="</s>" , snake_case__ : int="<s>" , snake_case__ : Union[str, Any]="<unk>" , snake_case__ : str="<pad>" , snake_case__ : List[Any]="<mask>" , snake_case__ : str=None , snake_case__ : List[str]=None , snake_case__ : Any=None , snake_case__ : Optional[int] = None , snake_case__ : int=None , snake_case__ : str=False , **snake_case__ : Optional[Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , tokenizer_file=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowercase__ , **lowercase__ , ) SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase__ ) ) SCREAMING_SNAKE_CASE = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = len(self.sp_model ) SCREAMING_SNAKE_CASE = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowercase__ ) } SCREAMING_SNAKE_CASE = {v: k for k, v in self.lang_code_to_id.items()} SCREAMING_SNAKE_CASE = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()} SCREAMING_SNAKE_CASE = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else "eng_Latn" SCREAMING_SNAKE_CASE = self.lang_code_to_id[self._src_lang] SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[str] , snake_case__ : int ): """simple docstring""" SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def UpperCamelCase ( self : Any ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return self._src_lang @src_lang.setter def UpperCamelCase ( self : Tuple , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Tuple = None , snake_case__ : Optional[Any] = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ ) SCREAMING_SNAKE_CASE = [1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase__ )) + suffix_ones return prefix_ones + ([0] * len(lowercase__ )) + ([0] * len(lowercase__ )) + suffix_ones def UpperCamelCase ( self : Any , snake_case__ : List[str] , snake_case__ : Tuple = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self : int , snake_case__ : List[Any] , snake_case__ : Optional[int] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , **snake_case__ : int ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) SCREAMING_SNAKE_CASE = src_lang SCREAMING_SNAKE_CASE = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(lowercase__ ) SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" return self.sp_model.encode(lowercase__ , out_type=lowercase__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : int ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE = self.sp_model.PieceToId(lowercase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase ( self : List[str] , snake_case__ : str ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = "".join(lowercase__ ).replace(lowercase__ , ' ' ).strip() return out_string def UpperCamelCase ( self : Any , snake_case__ : Tuple , snake_case__ : List[Any] = None ): """simple docstring""" if not os.path.isdir(lowercase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE = os.path.join( lowercase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ , 'wb' ) as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,) def UpperCamelCase ( self : Any , snake_case__ : List[Any] , snake_case__ : Optional[int] = "eng_Latn" , snake_case__ : Dict = None , snake_case__ : Union[str, Any] = "fra_Latn" , **snake_case__ : List[Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE = src_lang SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def UpperCamelCase ( self : List[str] ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self : Any ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self : List[Any] , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.lang_code_to_id[src_lang] if self.legacy_behaviour: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE = [self.cur_lang_code] SCREAMING_SNAKE_CASE = [self.eos_token_id] def UpperCamelCase ( self : Optional[Any] , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.lang_code_to_id[lang] if self.legacy_behaviour: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE = [self.cur_lang_code] SCREAMING_SNAKE_CASE = [self.eos_token_id]
702
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a_ : Optional[Any] = logging.get_logger(__name__) a_ : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } a_ : Union[str, Any] = {"allegro/herbert-base-cased": 514} a_ : List[Any] = {} class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_INIT_CONFIGURATION __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =HerbertTokenizer def __init__( self : Tuple , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : Optional[int]=None , snake_case__ : str="<s>" , snake_case__ : Tuple="<unk>" , snake_case__ : List[str]="<pad>" , snake_case__ : Tuple="<mask>" , snake_case__ : Dict="</s>" , **snake_case__ : List[str] , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sep_token=snake_case__ , **snake_case__ , ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
673
0
def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): SCREAMING_SNAKE_CASE = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): SCREAMING_SNAKE_CASE = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: SCREAMING_SNAKE_CASE = subset[i - 1][j] if arr[i - 1] <= j: SCREAMING_SNAKE_CASE = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
703
def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 while n > 0: res += n % 10 n //= 10 return res def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return sum(int(_UpperCamelCase ) for c in str(abs(_UpperCamelCase ) ) ) def __lowerCAmelCase ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_UpperCamelCase : Callable , _UpperCamelCase : int ) -> None: SCREAMING_SNAKE_CASE = f"""{func.__name__}({value})""" SCREAMING_SNAKE_CASE = timeit(f"""__main__.{call}""" , setup='import __main__' ) print(f"""{call:56} = {func(_UpperCamelCase )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_UpperCamelCase , _UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
673
0
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase : @staticmethod def UpperCamelCase ( *snake_case__ : List[str] , **snake_case__ : Tuple ): """simple docstring""" pass @is_pipeline_test @require_vision class UpperCamelCase ( unittest.TestCase ): @require_torch def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE = image_classifier(snake_case__ , candidate_labels=['a', 'b', 'c'] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(snake_case__ ) , [ [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'b'}, {'score': 0.333, 'label': 'c'}], [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'c'}, {'score': 0.333, 'label': 'b'}], ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(snake_case__ ) , [ [ {'score': 0.333, 'label': ANY(snake_case__ )}, {'score': 0.333, 'label': ANY(snake_case__ )}, {'score': 0.333, 'label': ANY(snake_case__ )}, ], [ {'score': 0.333, 'label': ANY(snake_case__ )}, {'score': 0.333, 'label': ANY(snake_case__ )}, {'score': 0.333, 'label': ANY(snake_case__ )}, ], [ {'score': 0.333, 'label': ANY(snake_case__ )}, {'score': 0.333, 'label': ANY(snake_case__ )}, {'score': 0.333, 'label': ANY(snake_case__ )}, ], [ {'score': 0.333, 'label': ANY(snake_case__ )}, {'score': 0.333, 'label': ANY(snake_case__ )}, {'score': 0.333, 'label': ANY(snake_case__ )}, ], [ {'score': 0.333, 'label': ANY(snake_case__ )}, {'score': 0.333, 'label': ANY(snake_case__ )}, {'score': 0.333, 'label': ANY(snake_case__ )}, ], ] , ) @require_tf def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf' ) SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE = image_classifier(snake_case__ , candidate_labels=['a', 'b', 'c'] ) self.assertEqual( nested_simplify(snake_case__ ) , [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'b'}, {'score': 0.333, 'label': 'c'}] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(snake_case__ ) , [ [ {'score': 0.333, 'label': ANY(snake_case__ )}, {'score': 0.333, 'label': ANY(snake_case__ )}, {'score': 0.333, 'label': ANY(snake_case__ )}, ], [ {'score': 0.333, 'label': ANY(snake_case__ )}, {'score': 0.333, 'label': ANY(snake_case__ )}, {'score': 0.333, 'label': ANY(snake_case__ )}, ], [ {'score': 0.333, 'label': ANY(snake_case__ )}, {'score': 0.333, 'label': ANY(snake_case__ )}, {'score': 0.333, 'label': ANY(snake_case__ )}, ], [ {'score': 0.333, 'label': ANY(snake_case__ )}, {'score': 0.333, 'label': ANY(snake_case__ )}, {'score': 0.333, 'label': ANY(snake_case__ )}, ], [ {'score': 0.333, 'label': ANY(snake_case__ )}, {'score': 0.333, 'label': ANY(snake_case__ )}, {'score': 0.333, 'label': ANY(snake_case__ )}, ], ] , ) @slow @require_torch def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE = image_classifier(snake_case__ , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(snake_case__ ) , [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(snake_case__ ) , [ [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf' ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE = image_classifier(snake_case__ , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(snake_case__ ) , [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(snake_case__ ) , [ [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ] * 5 , )
704
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
673
0
from torch import nn def __lowerCAmelCase ( _UpperCamelCase : str ) -> Union[str, Any]: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"""Unsupported activation function: {act_fn}""" )
705
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =AudioLDMPipeline __UpperCamelCase =TEXT_TO_AUDIO_PARAMS __UpperCamelCase =TEXT_TO_AUDIO_BATCH_PARAMS __UpperCamelCase =frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(3_2, 6_4) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=snake_case__ , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) SCREAMING_SNAKE_CASE = ClapTextModelWithProjection(snake_case__ ) SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=7_7 ) SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=snake_case__ , ) SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def UpperCamelCase ( self : Optional[int] , snake_case__ : int , snake_case__ : int=0 ): """simple docstring""" if str(snake_case__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(snake_case__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) SCREAMING_SNAKE_CASE = prompt_embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE = negative_prompt SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = [] for p in [prompt, negative_prompt]: SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = text_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) embeds.append(snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 'egg cracking' SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ , negative_prompt=snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config.sampling_rate SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.016 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.016 SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.032 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.032 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = ['hey'] SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape assert audio_shape == (1, 2_5_6) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config config.model_in_dim *= 2 SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ).to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def UpperCamelCase ( self : Tuple ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=snake_case__ ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase ( self : Dict ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case__ ) @slow class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : int , snake_case__ : int , snake_case__ : Tuple="cpu" , snake_case__ : List[str]=torch.floataa , snake_case__ : Optional[Any]=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = np.random.RandomState(snake_case__ ).standard_normal((1, 8, 1_2_8, 1_6) ) SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 2_5 SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[7_7_2_3_0:7_7_2_4_0] SCREAMING_SNAKE_CASE = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[2_7_7_8_0:2_7_7_9_0] SCREAMING_SNAKE_CASE = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
673
0