code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow a_ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) a_ = logging.getLogger() def __lowerCAmelCase ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('-f' ) SCREAMING_SNAKE_CASE = parser.parse_args() return args.f def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : Dict="eval" ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""{split}_results.json""" ) if os.path.exists(_UpperCamelCase ): with open(_UpperCamelCase , 'r' ) as f: return json.load(_UpperCamelCase ) raise ValueError(f"""can't find {path}""" ) a_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(snake_case__ , 'argv' , snake_case__ ): run_flax_glue.main() SCREAMING_SNAKE_CASE = get_results(snake_case__ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(snake_case__ , 'argv' , snake_case__ ): run_clm_flax.main() SCREAMING_SNAKE_CASE = get_results(snake_case__ ) self.assertLess(result['eval_perplexity'] , 1_0_0 ) @slow def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(snake_case__ , 'argv' , snake_case__ ): run_summarization_flax.main() SCREAMING_SNAKE_CASE = get_results(snake_case__ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 1_0 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(snake_case__ , 'argv' , snake_case__ ): run_mlm_flax.main() SCREAMING_SNAKE_CASE = get_results(snake_case__ ) self.assertLess(result['eval_perplexity'] , 4_2 ) @slow def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(snake_case__ , 'argv' , snake_case__ ): run_ta_mlm_flax.main() SCREAMING_SNAKE_CASE = get_results(snake_case__ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = 7 if get_gpu_count() > 1 else 2 SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(snake_case__ , 'argv' , snake_case__ ): run_flax_ner.main() SCREAMING_SNAKE_CASE = get_results(snake_case__ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(snake_case__ , 'argv' , snake_case__ ): run_qa.main() SCREAMING_SNAKE_CASE = get_results(snake_case__ ) self.assertGreaterEqual(result['eval_f1'] , 3_0 ) self.assertGreaterEqual(result['eval_exact'] , 3_0 )
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
673
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable a_ : int = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = ["DPTFeatureExtractor"] a_ : Optional[int] = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys a_ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
719
import heapq import sys import numpy as np a_ : Optional[int] = tuple[int, int] class UpperCamelCase : def __init__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() def UpperCamelCase ( self : List[Any] ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf' ) def UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.elements ) == 0 def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(snake_case__ ) else: # update # print("update", item) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" if item in self.set: self.set.remove(snake_case__ ) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def UpperCamelCase ( self : str ): """simple docstring""" return self.elements[0][1] def UpperCamelCase ( self : Tuple ): """simple docstring""" ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) self.set.remove(snake_case__ ) return (priority, item) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) return np.linalg.norm(a - b ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Dict: '''simple docstring''' return consistent_heuristic(_UpperCamelCase , _UpperCamelCase ) // t def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[int]: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : int , _UpperCamelCase : TPos , _UpperCamelCase : dict[TPos, float] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = g_function[start] + Wa * heuristics[i](_UpperCamelCase , _UpperCamelCase ) return ans def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = np.chararray((n, n) ) for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = '*' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE = '#' SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = x # print(x) SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[x] SCREAMING_SNAKE_CASE = '-' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: print(_UpperCamelCase , end=' ' ) SCREAMING_SNAKE_CASE = back_pointer[x] print(_UpperCamelCase ) sys.exit() def __lowerCAmelCase ( _UpperCamelCase : TPos ) -> Any: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , ) -> List[Any]: '''simple docstring''' for itera in range(_UpperCamelCase ): open_list[itera].remove_element(_UpperCamelCase ) # print("s", s) # print("j", j) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = s SCREAMING_SNAKE_CASE = (x - 1, y) SCREAMING_SNAKE_CASE = (x + 1, y) SCREAMING_SNAKE_CASE = (x, y + 1) SCREAMING_SNAKE_CASE = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = float('inf' ) if valid(_UpperCamelCase ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE = g_function[s] + 1 SCREAMING_SNAKE_CASE = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCamelCase , key(_UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , _UpperCamelCase ): if key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) <= Wa * key( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ): open_list[j].put( _UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a_ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a_ : List[str] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a_ : Union[str, Any] = make_common_ground() a_ : Tuple = blocks_blk # hyper parameters a_ : Any = 1 a_ : List[str] = 1 a_ : Union[str, Any] = 20 a_ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a_ : int = (0, 0) a_ : Optional[int] = (n - 1, n - 1) a_ : Union[str, Any] = 1 def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos , _UpperCamelCase : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {start: 0, goal: float('inf' )} SCREAMING_SNAKE_CASE = {start: -1, goal: -1} SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() for i in range(_UpperCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , _UpperCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = open_list[i].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_inad.append(_UpperCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE = open_list[0].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_anchor.append(_UpperCamelCase ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_UpperCamelCase ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
673
0
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml a_ : List[str] = NewType("DataClass", Any) a_ : Optional[Any] = NewType("DataClassType", Any) def __lowerCAmelCase ( _UpperCamelCase : Tuple ) -> Tuple: '''simple docstring''' if isinstance(_UpperCamelCase , _UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def __lowerCAmelCase ( _UpperCamelCase : list ) -> Callable[[str], Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {str(_UpperCamelCase ): choice for choice in choices} return lambda _UpperCamelCase : str_to_choice.get(_UpperCamelCase , _UpperCamelCase ) def __lowerCAmelCase ( *, _UpperCamelCase : Union[str, List[str]] = None , _UpperCamelCase : str = None , _UpperCamelCase : Any = dataclasses.MISSING , _UpperCamelCase : Callable[[], Any] = dataclasses.MISSING , _UpperCamelCase : dict = None , **_UpperCamelCase : Optional[int] , ) -> dataclasses.Field: '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls SCREAMING_SNAKE_CASE = {} if aliases is not None: SCREAMING_SNAKE_CASE = aliases if help is not None: SCREAMING_SNAKE_CASE = help return dataclasses.field(metadata=_UpperCamelCase , default=_UpperCamelCase , default_factory=_UpperCamelCase , **_UpperCamelCase ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =42 def __init__( self : List[Any] , snake_case__ : Union[DataClassType, Iterable[DataClassType]] , **snake_case__ : str ): """simple docstring""" if "formatter_class" not in kwargs: SCREAMING_SNAKE_CASE = ArgumentDefaultsHelpFormatter super().__init__(**snake_case__ ) if dataclasses.is_dataclass(snake_case__ ): SCREAMING_SNAKE_CASE = [dataclass_types] SCREAMING_SNAKE_CASE = list(snake_case__ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(snake_case__ ) @staticmethod def UpperCamelCase ( snake_case__ : ArgumentParser , snake_case__ : dataclasses.Field ): """simple docstring""" SCREAMING_SNAKE_CASE = F"""--{field.name}""" SCREAMING_SNAKE_CASE = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , snake_case__ ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) SCREAMING_SNAKE_CASE = kwargs.pop('aliases' , [] ) if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [aliases] SCREAMING_SNAKE_CASE = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(snake_case__ , 'UnionType' ) and isinstance(snake_case__ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(snake_case__ ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F""" Problem encountered in field '{field.name}'.""" ) if type(snake_case__ ) not in field.type.__args__: # filter `str` in Union SCREAMING_SNAKE_CASE = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] SCREAMING_SNAKE_CASE = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) SCREAMING_SNAKE_CASE = ( field.type.__args__[0] if isinstance(snake_case__ , field.type.__args__[1] ) else field.type.__args__[1] ) SCREAMING_SNAKE_CASE = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) SCREAMING_SNAKE_CASE = {} if origin_type is Literal or (isinstance(field.type , snake_case__ ) and issubclass(field.type , snake_case__ )): if origin_type is Literal: SCREAMING_SNAKE_CASE = field.type.__args__ else: SCREAMING_SNAKE_CASE = [x.value for x in field.type] SCREAMING_SNAKE_CASE = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE = field.default else: SCREAMING_SNAKE_CASE = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument SCREAMING_SNAKE_CASE = copy(snake_case__ ) # Hack because type=bool in argparse does not behave as we want. SCREAMING_SNAKE_CASE = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. SCREAMING_SNAKE_CASE = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way SCREAMING_SNAKE_CASE = default # This tells argparse we accept 0 or 1 value after --field_name SCREAMING_SNAKE_CASE = '?' # This is the value that will get picked if we do --field_name (without value) SCREAMING_SNAKE_CASE = True elif isclass(snake_case__ ) and issubclass(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = field.type.__args__[0] SCREAMING_SNAKE_CASE = '+' if field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE = field.default_factory() elif field.default is dataclasses.MISSING: SCREAMING_SNAKE_CASE = True else: SCREAMING_SNAKE_CASE = field.type if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE = field.default elif field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE = field.default_factory() else: SCREAMING_SNAKE_CASE = True parser.add_argument(snake_case__ , *snake_case__ , **snake_case__ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): SCREAMING_SNAKE_CASE = False parser.add_argument(F"""--no_{field.name}""" , action='store_false' , dest=field.name , **snake_case__ ) def UpperCamelCase ( self : Any , snake_case__ : DataClassType ): """simple docstring""" if hasattr(snake_case__ , '_argument_group_name' ): SCREAMING_SNAKE_CASE = self.add_argument_group(dtype._argument_group_name ) else: SCREAMING_SNAKE_CASE = self try: SCREAMING_SNAKE_CASE = get_type_hints(snake_case__ ) except NameError: raise RuntimeError( F"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(snake_case__ ): SCREAMING_SNAKE_CASE = '.'.join(map(snake_case__ , sys.version_info[:3] ) ) raise RuntimeError( F"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(snake_case__ ): if not field.init: continue SCREAMING_SNAKE_CASE = type_hints[field.name] self._parse_dataclass_field(snake_case__ , snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Union[str, Any]=None , snake_case__ : str=False , snake_case__ : Dict=True , snake_case__ : Optional[int]=None , snake_case__ : str=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): SCREAMING_SNAKE_CASE = [] if args_filename: args_files.append(Path(snake_case__ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values SCREAMING_SNAKE_CASE = ArgumentParser() args_file_parser.add_argument(snake_case__ , type=snake_case__ , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = args_file_parser.parse_known_args(args=snake_case__ ) SCREAMING_SNAKE_CASE = vars(snake_case__ ).get(args_file_flag.lstrip('-' ) , snake_case__ ) if cmd_args_file_paths: args_files.extend([Path(snake_case__ ) for p in cmd_args_file_paths] ) SCREAMING_SNAKE_CASE = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last SCREAMING_SNAKE_CASE = file_args + args if args is not None else file_args + sys.argv[1:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.parse_known_args(args=snake_case__ ) SCREAMING_SNAKE_CASE = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE = {f.name for f in dataclasses.fields(snake_case__ ) if f.init} SCREAMING_SNAKE_CASE = {k: v for k, v in vars(snake_case__ ).items() if k in keys} for k in keys: delattr(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = dtype(**snake_case__ ) outputs.append(snake_case__ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(snake_case__ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def UpperCamelCase ( self : int , snake_case__ : Dict[str, Any] , snake_case__ : bool = False ): """simple docstring""" SCREAMING_SNAKE_CASE = set(args.keys() ) SCREAMING_SNAKE_CASE = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE = {f.name for f in dataclasses.fields(snake_case__ ) if f.init} SCREAMING_SNAKE_CASE = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) SCREAMING_SNAKE_CASE = dtype(**snake_case__ ) outputs.append(snake_case__ ) if not allow_extra_keys and unused_keys: raise ValueError(F"""Some keys are not used by the HfArgumentParser: {sorted(snake_case__ )}""" ) return tuple(snake_case__ ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : str , snake_case__ : bool = False ): """simple docstring""" with open(Path(snake_case__ ) , encoding='utf-8' ) as open_json_file: SCREAMING_SNAKE_CASE = json.loads(open_json_file.read() ) SCREAMING_SNAKE_CASE = self.parse_dict(snake_case__ , allow_extra_keys=snake_case__ ) return tuple(snake_case__ ) def UpperCamelCase ( self : int , snake_case__ : str , snake_case__ : bool = False ): """simple docstring""" SCREAMING_SNAKE_CASE = self.parse_dict(yaml.safe_load(Path(snake_case__ ).read_text() ) , allow_extra_keys=snake_case__ ) return tuple(snake_case__ )
720
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a_ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : str = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Any=8 ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=5_12 , _UpperCamelCase : Union[str, Any]=5_12 ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) SCREAMING_SNAKE_CASE = np.array(pil_image.convert('RGB' ) ) SCREAMING_SNAKE_CASE = arr.astype(np.floataa ) / 1_27.5 - 1 SCREAMING_SNAKE_CASE = np.transpose(_UpperCamelCase , [2, 0, 1] ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : int , snake_case__ : UNetaDConditionModel , snake_case__ : DDPMScheduler , snake_case__ : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , ) SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase ( self : Any , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = min(int(num_inference_steps * strength ) , snake_case__ ) SCREAMING_SNAKE_CASE = max(num_inference_steps - init_timestep , 0 ) SCREAMING_SNAKE_CASE = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase ( self : List[str] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : str=None ): """simple docstring""" if not isinstance(snake_case__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case__ )}""" ) SCREAMING_SNAKE_CASE = image.to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = batch_size * num_images_per_prompt if image.shape[1] == 4: SCREAMING_SNAKE_CASE = image else: if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case__ ) ] SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) else: SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ ).latent_dist.sample(snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.config.scaling_factor * init_latents SCREAMING_SNAKE_CASE = torch.cat([init_latents] , dim=0 ) SCREAMING_SNAKE_CASE = init_latents.shape SCREAMING_SNAKE_CASE = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) # get latents SCREAMING_SNAKE_CASE = self.scheduler.add_noise(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = init_latents return latents def UpperCamelCase ( self : int , snake_case__ : List[str]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) SCREAMING_SNAKE_CASE = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[int]=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=snake_case__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase ( self : Dict ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case__ ) def __call__( self : str , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : int = 5_1_2 , snake_case__ : int = 5_1_2 , snake_case__ : int = 1_0_0 , snake_case__ : float = 4.0 , snake_case__ : float = 0.3 , snake_case__ : int = 1 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , ): """simple docstring""" SCREAMING_SNAKE_CASE = self._execution_device SCREAMING_SNAKE_CASE = guidance_scale > 1.0 if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = image_embeds.shape[0] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [image] if not all(isinstance(snake_case__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(snake_case__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) SCREAMING_SNAKE_CASE = torch.cat([prepare_image(snake_case__ , snake_case__ , snake_case__ ) for i in image] , dim=0 ) SCREAMING_SNAKE_CASE = image.to(dtype=image_embeds.dtype , device=snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ )['latents'] SCREAMING_SNAKE_CASE = latents.repeat_interleave(snake_case__ , dim=0 ) self.scheduler.set_timesteps(snake_case__ , device=snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_timesteps(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = timesteps[:1].repeat(batch_size * num_images_per_prompt ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = downscale_height_and_width(snake_case__ , snake_case__ , self.movq_scale_factor ) SCREAMING_SNAKE_CASE = self.prepare_latents( snake_case__ , snake_case__ , snake_case__ , snake_case__ , image_embeds.dtype , snake_case__ , snake_case__ ) for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE = {'image_embeds': image_embeds} SCREAMING_SNAKE_CASE = self.unet( sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , )[0] # post-processing SCREAMING_SNAKE_CASE = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
673
0
import heapq import sys import numpy as np a_ : Optional[int] = tuple[int, int] class UpperCamelCase : def __init__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() def UpperCamelCase ( self : List[Any] ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf' ) def UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.elements ) == 0 def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(snake_case__ ) else: # update # print("update", item) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" if item in self.set: self.set.remove(snake_case__ ) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def UpperCamelCase ( self : str ): """simple docstring""" return self.elements[0][1] def UpperCamelCase ( self : Tuple ): """simple docstring""" ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) self.set.remove(snake_case__ ) return (priority, item) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) return np.linalg.norm(a - b ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Dict: '''simple docstring''' return consistent_heuristic(_UpperCamelCase , _UpperCamelCase ) // t def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[int]: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : int , _UpperCamelCase : TPos , _UpperCamelCase : dict[TPos, float] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = g_function[start] + Wa * heuristics[i](_UpperCamelCase , _UpperCamelCase ) return ans def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = np.chararray((n, n) ) for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = '*' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE = '#' SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = x # print(x) SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[x] SCREAMING_SNAKE_CASE = '-' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: print(_UpperCamelCase , end=' ' ) SCREAMING_SNAKE_CASE = back_pointer[x] print(_UpperCamelCase ) sys.exit() def __lowerCAmelCase ( _UpperCamelCase : TPos ) -> Any: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , ) -> List[Any]: '''simple docstring''' for itera in range(_UpperCamelCase ): open_list[itera].remove_element(_UpperCamelCase ) # print("s", s) # print("j", j) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = s SCREAMING_SNAKE_CASE = (x - 1, y) SCREAMING_SNAKE_CASE = (x + 1, y) SCREAMING_SNAKE_CASE = (x, y + 1) SCREAMING_SNAKE_CASE = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = float('inf' ) if valid(_UpperCamelCase ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE = g_function[s] + 1 SCREAMING_SNAKE_CASE = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCamelCase , key(_UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , _UpperCamelCase ): if key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) <= Wa * key( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ): open_list[j].put( _UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a_ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a_ : List[str] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a_ : Union[str, Any] = make_common_ground() a_ : Tuple = blocks_blk # hyper parameters a_ : Any = 1 a_ : List[str] = 1 a_ : Union[str, Any] = 20 a_ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a_ : int = (0, 0) a_ : Optional[int] = (n - 1, n - 1) a_ : Union[str, Any] = 1 def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos , _UpperCamelCase : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {start: 0, goal: float('inf' )} SCREAMING_SNAKE_CASE = {start: -1, goal: -1} SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() for i in range(_UpperCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , _UpperCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = open_list[i].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_inad.append(_UpperCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE = open_list[0].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_anchor.append(_UpperCamelCase ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_UpperCamelCase ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
721
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() a_ : List[Any] = logging.get_logger("transformers.models.speecht5") def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Dict: '''simple docstring''' hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Any=None , _UpperCamelCase : List[str]=None , ) -> Tuple: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig.from_pretrained(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE = SpeechTaHifiGan(_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = np.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() model.save_pretrained(_UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the ๐Ÿค— hub." ) a_ : Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
673
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ : Tuple = { "configuration_poolformer": [ "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PoolFormerConfig", "PoolFormerOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = ["PoolFormerFeatureExtractor"] a_ : Tuple = ["PoolFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = [ "POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "PoolFormerForImageClassification", "PoolFormerModel", "PoolFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys a_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure)
700
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a_ : Optional[int] = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } a_ : List[Any] = { "allenai/led-base-16384": 1_6384, } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =LEDTokenizer __UpperCamelCase =["input_ids", "attention_mask"] def __init__( self : Tuple , snake_case__ : List[Any]=None , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : Dict="replace" , snake_case__ : Tuple="<s>" , snake_case__ : Optional[Any]="</s>" , snake_case__ : int="</s>" , snake_case__ : Dict="<s>" , snake_case__ : Union[str, Any]="<unk>" , snake_case__ : Optional[int]="<pad>" , snake_case__ : List[str]="<mask>" , snake_case__ : List[Any]=False , snake_case__ : int=True , **snake_case__ : Dict , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(snake_case__ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**snake_case__ ) SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE = 'post_processor' SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state['cls'] ) SCREAMING_SNAKE_CASE = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(snake_case__ , state.pop('type' ) ) SCREAMING_SNAKE_CASE = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase ( self : List[Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value SCREAMING_SNAKE_CASE = value def UpperCamelCase ( self : Dict , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[str] , *snake_case__ : List[Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Tuple=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self : Optional[Any] , snake_case__ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case__ : Optional[int] = None , snake_case__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , ): """simple docstring""" SCREAMING_SNAKE_CASE = super()._pad( encoded_inputs=snake_case__ , max_length=snake_case__ , padding_strategy=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE = len(encoded_inputs['global_attention_mask'] ) != len(snake_case__ ) if needs_to_be_padded: SCREAMING_SNAKE_CASE = len(snake_case__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
673
0
'''simple docstring''' from __future__ import annotations a_ : Optional[Any] = list[list[int]] # assigning initial values to the grid a_ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution a_ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def __lowerCAmelCase ( _UpperCamelCase : Matrix , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) -> bool: '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def __lowerCAmelCase ( _UpperCamelCase : Matrix ) -> tuple[int, int] | None: '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def __lowerCAmelCase ( _UpperCamelCase : Matrix ) -> Matrix | None: '''simple docstring''' if location := find_empty_location(_UpperCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = digit if sudoku(_UpperCamelCase ) is not None: return grid SCREAMING_SNAKE_CASE = 0 return None def __lowerCAmelCase ( _UpperCamelCase : Matrix ) -> None: '''simple docstring''' for row in grid: for cell in row: print(_UpperCamelCase , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") a_ : Union[str, Any] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
701
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __lowerCAmelCase ( *_UpperCamelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(_UpperCamelCase , 'r' ) as fh: fcntl.flock(_UpperCamelCase , fcntl.LOCK_EX ) try: print(*_UpperCamelCase ) finally: fcntl.flock(_UpperCamelCase , fcntl.LOCK_UN ) a_ : int = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) a_ : str = torch.device("cuda", local_rank) a_ : Optional[int] = socket.gethostname() a_ : Union[str, Any] = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank a_ : Dict = dist.get_rank() a_ : Any = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
673
0
from __future__ import annotations from cmath import sqrt def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) -> tuple[complex, complex]: '''simple docstring''' if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) SCREAMING_SNAKE_CASE = b * b - 4 * a * c SCREAMING_SNAKE_CASE = (-b + sqrt(_UpperCamelCase )) / (2 * a) SCREAMING_SNAKE_CASE = (-b - sqrt(_UpperCamelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __lowerCAmelCase ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 ) print(f"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
702
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a_ : Optional[Any] = logging.get_logger(__name__) a_ : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } a_ : Union[str, Any] = {"allegro/herbert-base-cased": 514} a_ : List[Any] = {} class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_INIT_CONFIGURATION __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =HerbertTokenizer def __init__( self : Tuple , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : Optional[int]=None , snake_case__ : str="<s>" , snake_case__ : Tuple="<unk>" , snake_case__ : List[str]="<pad>" , snake_case__ : Tuple="<mask>" , snake_case__ : Dict="</s>" , **snake_case__ : List[str] , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sep_token=snake_case__ , **snake_case__ , ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
673
0
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() a_ : Optional[int] = logging.get_logger(__name__) def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = UniSpeechSatForSequenceClassification.from_pretrained(_UpperCamelCase , config=_UpperCamelCase ) SCREAMING_SNAKE_CASE = downstream_dict['projector.weight'] SCREAMING_SNAKE_CASE = downstream_dict['projector.bias'] SCREAMING_SNAKE_CASE = downstream_dict['model.post_net.linear.weight'] SCREAMING_SNAKE_CASE = downstream_dict['model.post_net.linear.bias'] return model def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = UniSpeechSatForAudioFrameClassification.from_pretrained(_UpperCamelCase , config=_UpperCamelCase ) SCREAMING_SNAKE_CASE = downstream_dict['model.linear.weight'] SCREAMING_SNAKE_CASE = downstream_dict['model.linear.bias'] return model def __lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = UniSpeechSatForXVector.from_pretrained(_UpperCamelCase , config=_UpperCamelCase ) SCREAMING_SNAKE_CASE = downstream_dict['connector.weight'] SCREAMING_SNAKE_CASE = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): SCREAMING_SNAKE_CASE = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] SCREAMING_SNAKE_CASE = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] SCREAMING_SNAKE_CASE = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] SCREAMING_SNAKE_CASE = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] SCREAMING_SNAKE_CASE = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] SCREAMING_SNAKE_CASE = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] SCREAMING_SNAKE_CASE = downstream_dict['objective.W'] return model @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : str , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase , map_location='cpu' ) SCREAMING_SNAKE_CASE = checkpoint['Downstream'] SCREAMING_SNAKE_CASE = UniSpeechSatConfig.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( _UpperCamelCase , return_attention_mask=_UpperCamelCase , do_normalize=_UpperCamelCase ) SCREAMING_SNAKE_CASE = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): SCREAMING_SNAKE_CASE = convert_classification(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) elif arch.endswith('ForAudioFrameClassification' ): SCREAMING_SNAKE_CASE = convert_diarization(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) elif arch.endswith('ForXVector' ): SCREAMING_SNAKE_CASE = convert_xvector(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: SCREAMING_SNAKE_CASE = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(_UpperCamelCase ) hf_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") a_ : str = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
703
def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 while n > 0: res += n % 10 n //= 10 return res def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return sum(int(_UpperCamelCase ) for c in str(abs(_UpperCamelCase ) ) ) def __lowerCAmelCase ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_UpperCamelCase : Callable , _UpperCamelCase : int ) -> None: SCREAMING_SNAKE_CASE = f"""{func.__name__}({value})""" SCREAMING_SNAKE_CASE = timeit(f"""__main__.{call}""" , setup='import __main__' ) print(f"""{call:56} = {func(_UpperCamelCase )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_UpperCamelCase , _UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
673
0
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __lowerCAmelCase ( *_UpperCamelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(_UpperCamelCase , 'r' ) as fh: fcntl.flock(_UpperCamelCase , fcntl.LOCK_EX ) try: print(*_UpperCamelCase ) finally: fcntl.flock(_UpperCamelCase , fcntl.LOCK_UN ) a_ : int = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) a_ : str = torch.device("cuda", local_rank) a_ : Optional[int] = socket.gethostname() a_ : Union[str, Any] = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank a_ : Dict = dist.get_rank() a_ : Any = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
704
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
673
0
def __lowerCAmelCase ( _UpperCamelCase : int = 2_00_00_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = [0 for i in range(n + 1 )] SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , _UpperCamelCase ): SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 0 for i in range(_UpperCamelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
705
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =AudioLDMPipeline __UpperCamelCase =TEXT_TO_AUDIO_PARAMS __UpperCamelCase =TEXT_TO_AUDIO_BATCH_PARAMS __UpperCamelCase =frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(3_2, 6_4) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=snake_case__ , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) SCREAMING_SNAKE_CASE = ClapTextModelWithProjection(snake_case__ ) SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=7_7 ) SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=snake_case__ , ) SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def UpperCamelCase ( self : Optional[int] , snake_case__ : int , snake_case__ : int=0 ): """simple docstring""" if str(snake_case__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(snake_case__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) SCREAMING_SNAKE_CASE = prompt_embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE = negative_prompt SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = [] for p in [prompt, negative_prompt]: SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = text_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) embeds.append(snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 'egg cracking' SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ , negative_prompt=snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config.sampling_rate SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.016 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.016 SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.032 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.032 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = ['hey'] SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape assert audio_shape == (1, 2_5_6) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config config.model_in_dim *= 2 SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ).to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def UpperCamelCase ( self : Tuple ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=snake_case__ ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase ( self : Dict ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case__ ) @slow class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : int , snake_case__ : int , snake_case__ : Tuple="cpu" , snake_case__ : List[str]=torch.floataa , snake_case__ : Optional[Any]=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = np.random.RandomState(snake_case__ ).standard_normal((1, 8, 1_2_8, 1_6) ) SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 2_5 SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[7_7_2_3_0:7_7_2_4_0] SCREAMING_SNAKE_CASE = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[2_7_7_8_0:2_7_7_9_0] SCREAMING_SNAKE_CASE = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
673
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCamelCase ( unittest.TestCase ): def __init__( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple=7 , snake_case__ : List[Any]=3 , snake_case__ : str=1_8 , snake_case__ : Dict=3_0 , snake_case__ : Tuple=4_0_0 , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=None , snake_case__ : int=True , snake_case__ : List[Any]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = size if size is not None else {'shortest_edge': 2_0} SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_center_crop SCREAMING_SNAKE_CASE = crop_size def UpperCamelCase ( self : List[Any] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = MobileNetVaImageProcessingTester(self ) @property def UpperCamelCase ( self : Any ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , 'do_resize' ) ) self.assertTrue(hasattr(snake_case__ , 'size' ) ) self.assertTrue(hasattr(snake_case__ , 'do_center_crop' ) ) self.assertTrue(hasattr(snake_case__ , 'crop_size' ) ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def UpperCamelCase ( self : Tuple ): """simple docstring""" pass def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(snake_case__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(snake_case__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(snake_case__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
706
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase : def __init__( self : Dict , snake_case__ : str , snake_case__ : str=1_3 , snake_case__ : Tuple=7 , snake_case__ : Tuple=True , snake_case__ : Tuple=True , snake_case__ : List[str]=False , snake_case__ : Any=True , snake_case__ : Union[str, Any]=9_9 , snake_case__ : Dict=3_2 , snake_case__ : Optional[Any]=5 , snake_case__ : Optional[Any]=4 , snake_case__ : Union[str, Any]=3_7 , snake_case__ : Tuple="gelu" , snake_case__ : Dict=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : int=4 , snake_case__ : List[str]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Dict ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , use_stable_embedding=snake_case__ , ) def UpperCamelCase ( self : int , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : str , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : str , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , ) SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Tuple , ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : int , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Union[str, Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , use_cache=snake_case__ , ) SCREAMING_SNAKE_CASE = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCamelCase =(OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCamelCase =( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'single_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'multi_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase ( self : str , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = ids_tensor([1, 1_0] , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) )
673
0
def __lowerCAmelCase ( _UpperCamelCase : int ) -> bool: '''simple docstring''' if num < 0: return False SCREAMING_SNAKE_CASE = num SCREAMING_SNAKE_CASE = 0 while num > 0: SCREAMING_SNAKE_CASE = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
707
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="openai/whisper-base" __UpperCamelCase =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCamelCase ="transcriber" __UpperCamelCase =WhisperProcessor __UpperCamelCase =WhisperForConditionalGeneration __UpperCamelCase =["audio"] __UpperCamelCase =["text"] def UpperCamelCase ( self : Dict , snake_case__ : Tuple ): """simple docstring""" return self.pre_processor(snake_case__ , return_tensors='pt' ).input_features def UpperCamelCase ( self : Optional[int] , snake_case__ : Tuple ): """simple docstring""" return self.model.generate(inputs=snake_case__ ) def UpperCamelCase ( self : str , snake_case__ : Union[str, Any] ): """simple docstring""" return self.pre_processor.batch_decode(snake_case__ , skip_special_tokens=snake_case__ )[0]
673
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. a_ : Dict = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. a_ : int = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. a_ : Dict = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> tuple[str, float]: '''simple docstring''' SCREAMING_SNAKE_CASE = len([g for position, g in enumerate(_UpperCamelCase ) if g == main_target[position]] ) return (item, float(_UpperCamelCase )) def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> tuple[str, str]: '''simple docstring''' SCREAMING_SNAKE_CASE = random.randint(0 , len(_UpperCamelCase ) - 1 ) SCREAMING_SNAKE_CASE = parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : list[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE = random.choice(_UpperCamelCase ) return "".join(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : tuple[str, float] , _UpperCamelCase : list[tuple[str, float]] , _UpperCamelCase : list[str] , ) -> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE = int(parent_a[1] * 1_00 ) + 1 SCREAMING_SNAKE_CASE = 10 if child_n >= 10 else child_n for _ in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = population_score[random.randint(0 , _UpperCamelCase )][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = crossover(parent_a[0] , _UpperCamelCase ) # Append new string to the population list. pop.append(mutate(_UpperCamelCase , _UpperCamelCase ) ) pop.append(mutate(_UpperCamelCase , _UpperCamelCase ) ) return pop def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : list[str] , _UpperCamelCase : bool = True ) -> tuple[int, int, str]: '''simple docstring''' if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(_UpperCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE = sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(_UpperCamelCase ) # Generate random starting population. SCREAMING_SNAKE_CASE = [] for _ in range(_UpperCamelCase ): population.append(''.join([random.choice(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE = [evaluate(_UpperCamelCase , _UpperCamelCase ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE = sorted(_UpperCamelCase , key=lambda _UpperCamelCase : x[1] , reverse=_UpperCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCamelCase ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE = [ (item, score / len(_UpperCamelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCamelCase ): population.extend(select(population_score[int(_UpperCamelCase )] , _UpperCamelCase , _UpperCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCamelCase ) > N_POPULATION: break if __name__ == "__main__": a_ : Union[str, Any] = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) a_ : Optional[int] = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'รจรฉรฒร โ‚ฌรน=)(&%$ยฃ/\\" ) a_ : List[str] = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
708
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version a_ : List[str] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize a_ : Dict = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" a_ : str = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" a_ : int = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def UpperCamelCase ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def UpperCamelCase ( self : Dict , snake_case__ : int ): """simple docstring""" import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : List[Any]=0.9 , snake_case__ : Optional[Any]=3 , snake_case__ : Any=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5' ): SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score( word_tokenize(snake_case__ ) , word_tokenize(snake_case__ ) , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] else: SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score(snake_case__ , snake_case__ , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] return {"meteor": np.mean(snake_case__ )}
673
0
import os from collections import deque import torch from torch.utils.data import Dataset class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : Tuple , snake_case__ : Any="" , snake_case__ : Tuple="train" ): """simple docstring""" assert os.path.isdir(snake_case__ ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = os.listdir(snake_case__ ) for story_filename in story_filenames_list: if "summary" in story_filename: continue SCREAMING_SNAKE_CASE = os.path.join(snake_case__ , snake_case__ ) if not os.path.isfile(snake_case__ ): continue self.documents.append(snake_case__ ) def __len__( self : Optional[Any] ): """simple docstring""" return len(self.documents ) def __getitem__( self : int , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.documents[idx] SCREAMING_SNAKE_CASE = document_path.split('/' )[-1] with open(snake_case__ , encoding='utf-8' ) as source: SCREAMING_SNAKE_CASE = source.read() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = process_story(snake_case__ ) return document_name, story_lines, summary_lines def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = list(filter(lambda _UpperCamelCase : len(_UpperCamelCase ) != 0 , [line.strip() for line in raw_story.split('\n' )] ) ) # for some unknown reason some lines miss a period, add it SCREAMING_SNAKE_CASE = [_add_missing_period(_UpperCamelCase ) for line in nonempty_lines] # gather article lines SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = deque(_UpperCamelCase ) while True: try: SCREAMING_SNAKE_CASE = lines.popleft() if element.startswith('@highlight' ): break story_lines.append(_UpperCamelCase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines SCREAMING_SNAKE_CASE = list(filter(lambda _UpperCamelCase : not t.startswith('@highlight' ) , _UpperCamelCase ) ) return story_lines, summary_lines def __lowerCAmelCase ( _UpperCamelCase : Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = ['.', '!', '?', '...', '\'', '`', '"', '\u2019', '\u2019', ')'] if line.startswith('@highlight' ): return line if line[-1] in END_TOKENS: return line return line + "." def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : str ) -> Tuple: '''simple docstring''' if len(_UpperCamelCase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(_UpperCamelCase )) ) return sequence def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = torch.ones_like(_UpperCamelCase ) SCREAMING_SNAKE_CASE = sequence == pad_token_id SCREAMING_SNAKE_CASE = 0 return mask def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [tokenizer.encode(_UpperCamelCase ) for line in story_lines] SCREAMING_SNAKE_CASE = [token for sentence in story_lines_token_ids for token in sentence] SCREAMING_SNAKE_CASE = [tokenizer.encode(_UpperCamelCase ) for line in summary_lines] SCREAMING_SNAKE_CASE = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for sequence in batch: SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(_UpperCamelCase ) return torch.tensor(_UpperCamelCase )
709
import numpy as np def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
673
0
a_ : Union[str, Any] = "Tobias Carryer" from time import time class UpperCamelCase : def __init__( self : Optional[Any] , snake_case__ : int , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Optional[int]=int(time() ) ): # noqa: B008 """simple docstring""" SCREAMING_SNAKE_CASE = multiplier SCREAMING_SNAKE_CASE = increment SCREAMING_SNAKE_CASE = modulo SCREAMING_SNAKE_CASE = seed def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. a_ : List[Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
710
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ : Any = logging.get_logger(__name__) a_ : Dict = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="van" def __init__( self : Optional[Any] , snake_case__ : Tuple=2_2_4 , snake_case__ : Dict=3 , snake_case__ : Union[str, Any]=[7, 3, 3, 3] , snake_case__ : str=[4, 2, 2, 2] , snake_case__ : Optional[Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , snake_case__ : Optional[Any]=[3, 3, 1_2, 3] , snake_case__ : Tuple=[8, 8, 4, 4] , snake_case__ : Any="gelu" , snake_case__ : Dict=0.02 , snake_case__ : List[str]=1E-6 , snake_case__ : int=1E-2 , snake_case__ : Any=0.0 , snake_case__ : Tuple=0.0 , **snake_case__ : Any , ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_sizes SCREAMING_SNAKE_CASE = strides SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = mlp_ratios SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = dropout_rate
673
0
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCamelCase : def __init__( self : Dict , snake_case__ : Tuple=2 , snake_case__ : int=3 , snake_case__ : Any=6_4 , snake_case__ : Tuple=None ): """simple docstring""" SCREAMING_SNAKE_CASE = np.random.default_rng(snake_case__ ) SCREAMING_SNAKE_CASE = length SCREAMING_SNAKE_CASE = rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : str ): """simple docstring""" return self.length def __getitem__( self : Dict , snake_case__ : int ): """simple docstring""" return {"x": self.x[i], "y": self.y[i]} class UpperCamelCase ( torch.nn.Module ): def __init__( self : Union[str, Any] , snake_case__ : List[Any]=0 , snake_case__ : Any=0 , snake_case__ : Union[str, Any]=False ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE = True def UpperCamelCase ( self : List[Any] , snake_case__ : Tuple=None ): """simple docstring""" if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) SCREAMING_SNAKE_CASE = False return x * self.a[0] + self.b[0] class UpperCamelCase ( torch.nn.Module ): def __init__( self : Union[str, Any] , snake_case__ : Tuple=0 , snake_case__ : int=0 , snake_case__ : Union[str, Any]=False ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) SCREAMING_SNAKE_CASE = True def UpperCamelCase ( self : Tuple , snake_case__ : Any=None ): """simple docstring""" if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) SCREAMING_SNAKE_CASE = False return x * self.a + self.b def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : int = 16 ) -> Any: '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} SCREAMING_SNAKE_CASE = load_dataset('csv' , data_files=_UpperCamelCase ) SCREAMING_SNAKE_CASE = datasets['train'].unique('label' ) SCREAMING_SNAKE_CASE = {v: i for i, v in enumerate(_UpperCamelCase )} def tokenize_function(_UpperCamelCase : List[Any] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=_UpperCamelCase , max_length=_UpperCamelCase , padding='max_length' ) if "label" in examples: SCREAMING_SNAKE_CASE = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE = datasets.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(_UpperCamelCase : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_UpperCamelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(_UpperCamelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE = DataLoader(tokenized_datasets['train'] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=2 ) SCREAMING_SNAKE_CASE = DataLoader(tokenized_datasets['validation'] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=1 ) return train_dataloader, eval_dataloader
711
def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : int ) -> list[str]: '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(_UpperCamelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
673
0
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration a_ : Optional[int] = pytest.mark.integration a_ : Optional[int] = {"comet"} a_ : List[str] = importlib.util.find_spec("fairseq") is not None a_ : Tuple = {"code_eval"} a_ : List[Any] = os.name == "nt" a_ : Dict = {"bertscore", "frugalscore", "perplexity"} a_ : Union[str, Any] = importlib.util.find_spec("transformers") is not None def __lowerCAmelCase ( _UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' @wraps(_UpperCamelCase ) def wrapper(self : List[str] , _UpperCamelCase : int ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('"test requires Fairseq"' ) else: test_case(self , _UpperCamelCase ) return wrapper def __lowerCAmelCase ( _UpperCamelCase : List[str] ) -> List[str]: '''simple docstring''' @wraps(_UpperCamelCase ) def wrapper(self : str , _UpperCamelCase : List[str] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('"test requires transformers"' ) else: test_case(self , _UpperCamelCase ) return wrapper def __lowerCAmelCase ( _UpperCamelCase : int ) -> str: '''simple docstring''' @wraps(_UpperCamelCase ) def wrapper(self : Union[str, Any] , _UpperCamelCase : Any ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('"test not supported on Windows"' ) else: test_case(self , _UpperCamelCase ) return wrapper def __lowerCAmelCase ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @local class UpperCamelCase ( parameterized.TestCase ): __UpperCamelCase ={} __UpperCamelCase =None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' ) def UpperCamelCase ( self : Optional[int] , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = '[...]' SCREAMING_SNAKE_CASE = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , snake_case__ ) ).module_path ) SCREAMING_SNAKE_CASE = datasets.load.import_main_class(metric_module.__name__ , dataset=snake_case__ ) # check parameters SCREAMING_SNAKE_CASE = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(snake_case__ , metric_module.__name__ ): with self.use_local_metrics(): try: SCREAMING_SNAKE_CASE = doctest.testmod(snake_case__ , verbose=snake_case__ , raise_on_error=snake_case__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def UpperCamelCase ( self : str , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = '[...]' SCREAMING_SNAKE_CASE = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , snake_case__ ) ).module_path ) # run doctest with self.use_local_metrics(): SCREAMING_SNAKE_CASE = doctest.testmod(snake_case__ , verbose=snake_case__ , raise_on_error=snake_case__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def UpperCamelCase ( self : int , snake_case__ : Optional[Any] , snake_case__ : str ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](snake_case__ ): yield else: yield @contextmanager def UpperCamelCase ( self : Any ): """simple docstring""" def load_local_metric(snake_case__ : Tuple , *snake_case__ : int , **snake_case__ : List[str] ): return load_metric(os.path.join('metrics' , snake_case__ ) , *snake_case__ , **snake_case__ ) with patch('datasets.load_metric' ) as mock_load_metric: SCREAMING_SNAKE_CASE = load_local_metric yield @classmethod def UpperCamelCase ( cls : Any , snake_case__ : Any ): """simple docstring""" def wrapper(snake_case__ : Any ): SCREAMING_SNAKE_CASE = contextmanager(snake_case__ ) SCREAMING_SNAKE_CASE = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def __lowerCAmelCase ( _UpperCamelCase : Any ) -> Dict: '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def UpperCamelCase ( self : str , snake_case__ : Optional[Any] ): """simple docstring""" assert len(input_dict['input_ids'] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: SCREAMING_SNAKE_CASE = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] ) -> str: '''simple docstring''' import torch def bert_cos_score_idf(_UpperCamelCase : List[Any] , _UpperCamelCase : Any , *_UpperCamelCase : Dict , **_UpperCamelCase : str ): return torch.tensor([[1.0, 1.0, 1.0]] * len(_UpperCamelCase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: SCREAMING_SNAKE_CASE = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def __lowerCAmelCase ( _UpperCamelCase : Dict ) -> List[Any]: '''simple docstring''' def load_from_checkpoint(_UpperCamelCase : Any ): class UpperCamelCase : def UpperCamelCase ( self : str , snake_case__ : Any , *snake_case__ : List[Any] , **snake_case__ : Dict ): """simple docstring""" assert len(snake_case__ ) == 2 SCREAMING_SNAKE_CASE = [0.19, 0.92] return scores, sum(snake_case__ ) / len(snake_case__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: SCREAMING_SNAKE_CASE = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: SCREAMING_SNAKE_CASE = load_from_checkpoint yield def __lowerCAmelCase ( ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = load_metric(os.path.join('metrics' , 'seqeval' ) ) SCREAMING_SNAKE_CASE = 'ERROR' SCREAMING_SNAKE_CASE = f"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(_UpperCamelCase , match=re.escape(_UpperCamelCase ) ): metric.compute(predictions=[] , references=[] , scheme=_UpperCamelCase )
712
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING a_ : Dict = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : Any , **snake_case__ : Optional[int] ): """simple docstring""" super().__init__(**snake_case__ ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , 'vision' ) self.check_model_type(snake_case__ ) def __call__( self : List[Any] , snake_case__ : Union[str, "Image.Image", List[Dict[str, Any]]] , snake_case__ : Union[str, List[str]] = None , **snake_case__ : Union[str, Any] , ): """simple docstring""" if "text_queries" in kwargs: SCREAMING_SNAKE_CASE = kwargs.pop('text_queries' ) if isinstance(snake_case__ , (str, Image.Image) ): SCREAMING_SNAKE_CASE = {'image': image, 'candidate_labels': candidate_labels} else: SCREAMING_SNAKE_CASE = image SCREAMING_SNAKE_CASE = super().__call__(snake_case__ , **snake_case__ ) return results def UpperCamelCase ( self : Union[str, Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = {} if "threshold" in kwargs: SCREAMING_SNAKE_CASE = kwargs['threshold'] if "top_k" in kwargs: SCREAMING_SNAKE_CASE = kwargs['top_k'] return {}, {}, postprocess_params def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = load_image(inputs['image'] ) SCREAMING_SNAKE_CASE = inputs['candidate_labels'] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = candidate_labels.split(',' ) SCREAMING_SNAKE_CASE = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE = self.tokenizer(snake_case__ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE = self.image_processor(snake_case__ , return_tensors=self.framework ) yield { "is_last": i == len(snake_case__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def UpperCamelCase ( self : Any , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = model_inputs.pop('target_size' ) SCREAMING_SNAKE_CASE = model_inputs.pop('candidate_label' ) SCREAMING_SNAKE_CASE = model_inputs.pop('is_last' ) SCREAMING_SNAKE_CASE = self.model(**snake_case__ ) SCREAMING_SNAKE_CASE = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : str=0.1 , snake_case__ : Union[str, Any]=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: SCREAMING_SNAKE_CASE = model_output['candidate_label'] SCREAMING_SNAKE_CASE = BaseModelOutput(snake_case__ ) SCREAMING_SNAKE_CASE = self.image_processor.post_process_object_detection( outputs=snake_case__ , threshold=snake_case__ , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): SCREAMING_SNAKE_CASE = outputs['scores'][index].item() SCREAMING_SNAKE_CASE = self._get_bounding_box(outputs['boxes'][index][0] ) SCREAMING_SNAKE_CASE = {'score': score, 'label': label, 'box': box} results.append(snake_case__ ) SCREAMING_SNAKE_CASE = sorted(snake_case__ , key=lambda snake_case__ : x["score"] , reverse=snake_case__ ) if top_k: SCREAMING_SNAKE_CASE = results[:top_k] return results def UpperCamelCase ( self : List[Any] , snake_case__ : "torch.Tensor" ): """simple docstring""" if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = box.int().tolist() SCREAMING_SNAKE_CASE = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
673
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Dict = logging.get_logger(__name__) a_ : Tuple = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="open-llama" def __init__( self : Dict , snake_case__ : List[str]=1_0_0_0_0_0 , snake_case__ : Dict=4_0_9_6 , snake_case__ : Dict=1_1_0_0_8 , snake_case__ : Optional[int]=3_2 , snake_case__ : Union[str, Any]=3_2 , snake_case__ : Any="silu" , snake_case__ : Optional[int]=2_0_4_8 , snake_case__ : Tuple=0.02 , snake_case__ : List[str]=1E-6 , snake_case__ : Dict=True , snake_case__ : List[str]=0 , snake_case__ : Optional[int]=1 , snake_case__ : int=2 , snake_case__ : Any=False , snake_case__ : Dict=True , snake_case__ : Dict=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Union[str, Any]=True , snake_case__ : Dict=True , snake_case__ : Dict=None , **snake_case__ : Optional[int] , ): """simple docstring""" SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = rms_norm_eps SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_dropout_prob SCREAMING_SNAKE_CASE = use_stable_embedding SCREAMING_SNAKE_CASE = shared_input_output_embedding SCREAMING_SNAKE_CASE = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F"""got {self.rope_scaling}""" ) SCREAMING_SNAKE_CASE = self.rope_scaling.get('type' , snake_case__ ) SCREAMING_SNAKE_CASE = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
713
def __lowerCAmelCase ( _UpperCamelCase : int = 10_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 2**power SCREAMING_SNAKE_CASE = str(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 for i in list_num: sum_of_num += int(_UpperCamelCase ) return sum_of_num if __name__ == "__main__": a_ : List[str] = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) a_ : int = solution(power) print("Sum of the digits is: ", result)
673
0
import random def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = a[left_index] SCREAMING_SNAKE_CASE = left_index + 1 for j in range(left_index + 1 , _UpperCamelCase ): if a[j] < pivot: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = a[i], a[j] i += 1 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = a[i - 1], a[left_index] return i - 1 def __lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : int , _UpperCamelCase : str ) -> str: '''simple docstring''' if left < right: SCREAMING_SNAKE_CASE = random.randint(_UpperCamelCase , right - 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ( a[left], a[pivot], ) # switches the pivot with the left most bound SCREAMING_SNAKE_CASE = partition(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) quick_sort_random( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # recursive quicksort to the left of the pivot point quick_sort_random( _UpperCamelCase , pivot_index + 1 , _UpperCamelCase ) # recursive quicksort to the right of the pivot point def __lowerCAmelCase ( ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = input('Enter numbers separated by a comma:\n' ).strip() SCREAMING_SNAKE_CASE = [int(_UpperCamelCase ) for item in user_input.split(',' )] quick_sort_random(_UpperCamelCase , 0 , len(_UpperCamelCase ) ) print(_UpperCamelCase ) if __name__ == "__main__": main()
714
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="facebook/bart-large-mnli" __UpperCamelCase =( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) __UpperCamelCase ="text_classifier" __UpperCamelCase =AutoTokenizer __UpperCamelCase =AutoModelForSequenceClassification __UpperCamelCase =["text", ["text"]] __UpperCamelCase =["text"] def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): SCREAMING_SNAKE_CASE = int(snake_case__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[str] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(snake_case__ ) , [F"""This example is {label}""" for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
673
0
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a_ : str = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp a_ : int = 5 a_ : Union[str, Any] = 10 @require_sentencepiece @require_tokenizers class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =SpeechaTextTokenizer __UpperCamelCase =False __UpperCamelCase =True def UpperCamelCase ( self : List[str] ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE = sp.SentencePieceProcessor() spm_model.Load(snake_case__ ) SCREAMING_SNAKE_CASE = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(snake_case__ ) )] SCREAMING_SNAKE_CASE = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE = Path(self.tmpdirname ) save_json(snake_case__ , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case__ , save_dir / VOCAB_FILES_NAMES['spm_file'] ) SCREAMING_SNAKE_CASE = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = '<pad>' SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 1_0_0_1 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_1 ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['โ–This', 'โ–is', 'โ–a', 'โ–t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [2_8_9, 5_0, 1_4, 1_7_4, 3_8_6] , ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('I was born in 92000, and this is falsรฉ.' ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'รฉ', '.'] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual(snake_case__ , [1_2, 2_5, 8_8, 5_9, 2_8, 2_3, 1_1, 4, 6_0_6, 3_5_1, 3_5_1, 3_5_1, 7, 1_6, 7_0, 5_0, 7_6, 8_4, 1_0, 4, 8] ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = {'input_ids': [[3_7_9_1, 7_9_7, 3_1, 1_1, 6_4, 7_9_7, 3_1, 2_4_2_9, 4_3_3, 1_2, 1_1_7_6, 1_2, 2_0, 7_8_6, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 3_2_3_8, 7_9_7, 3_1, 1_1, 3_5, 9_3, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_7, 6_1_0, 4_0, 6_2, 4_5_5, 6_5_7, 1_0_4_2, 1_2_3, 7_8_0, 1_7_7, 3_7, 3_0_9, 2_4_1, 1_2_9_8, 5_1_4, 2_0, 2_9_2, 2_7_3_7, 1_1_4, 2_4_6_9, 2_4_1, 8_5, 6_4, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 4, 5_0_9, 4_0_6, 4_2_3, 3_7, 6_0_1, 4, 7_7_7, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 2_8_4, 4, 3_3_8_8, 5_1_1, 4_5_9, 4, 3_5_5_5, 4_0, 3_2_1, 3_0_2, 7_0_5, 4, 3_3_8_8, 5_1_1, 5_8_3, 3_2_6, 5, 5, 5, 6_2, 3_3_1_0, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 3_2, 3_1, 8_5_3, 4_1_8, 6_4, 5_8_3, 5_1_1, 1_6_0_5, 6_2, 3_5, 9_3, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 1_5_2_1, 6_4, 5_8_3, 5_1_1, 5_1_9, 6_2, 2_0, 1_5_1_5, 7_6_4, 2_0, 1_4_9, 2_6_1, 5_6_2_5, 7_9_7_2, 2_0, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_9_2_5, 1_6_7_5, 1_1, 1_5, 8_0_2, 7_9_7_2, 5_7_6, 2_1_7, 1_5_0_8, 1_1, 3_5, 9_3, 1_2_5_3, 2_4_4_1, 1_5, 2_8_9, 6_5_2, 3_1, 4_1_6, 3_2_1, 3_8_4_2, 1_1_5, 4_0, 9_1_1, 8, 4_7_6, 6_1_9, 4, 3_8_0, 1_4_2, 4_2_3, 3_3_5, 2_4_0, 3_5, 9_3, 2_6_4, 8, 1_1, 3_3_5, 5_6_9, 4_2_0, 1_6_3, 5, 2], [2_6_0, 5_4_8, 5_2_8, 4_2_3, 2_0, 4_5_1, 2_0, 2_6_8_1, 1_1_5_3, 3_4_3_4, 2_0, 5_5_4_0, 3_7, 5_6_7, 1_2_6, 1_2_5_3, 2_4_4_1, 3_3_7_6, 4_4_9, 2_1_0, 4_3_1, 1_5_6_3, 1_7_7, 7_6_7, 5_5_4_0, 1_1, 1_2_0_3, 4_7_2, 1_1, 2_9_5_3, 6_8_5, 2_8_5, 3_6_4, 7_0_6, 1_1_5_3, 2_0, 6_7_9_9, 2_0, 2_8_6_9, 2_0, 4_4_6_4, 1_2_6, 4_0, 2_4_2_9, 2_0, 1_0_4_0, 8_6_6, 2_6_6_4, 4_1_8, 2_0, 3_1_8, 2_0, 1_7_2_6, 1_8_6, 2_0, 2_6_5, 5_2_2, 3_5, 9_3, 2_1_9_1, 4_6_3_4, 2_0, 1_0_4_0, 1_2, 6_7_9_9, 1_5, 2_2_8, 2_3_5_6, 1_4_2, 3_1, 1_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_7_5, 2_6_6_6, 6_8_4, 1_5_8_2, 1_1_7_6, 1_2, 6_2_7, 1_4_9, 6_1_9, 2_0, 4_9_0_2, 5_6_3, 1_1, 2_0, 1_4_9, 2_6_1, 3_4_2_0, 2_3_5_6, 1_7_4, 1_4_2, 4_7_1_4, 1_3_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class UpperCamelCase ( unittest.TestCase ): __UpperCamelCase ="valhalla/s2t_mustc_multilinguial_medium" __UpperCamelCase ="C'est trop cool" __UpperCamelCase ="Esto es genial" @classmethod def UpperCamelCase ( cls : int ): """simple docstring""" SCREAMING_SNAKE_CASE = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def UpperCamelCase ( self : str ): """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 1_1 ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 1_0_0_0_0 ) def UpperCamelCase ( self : Dict ): """simple docstring""" self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE = [ES_CODE, 4, 1_6_0_1, 4_7, 7_6_4_7, 2] SCREAMING_SNAKE_CASE = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) SCREAMING_SNAKE_CASE = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'fr' SCREAMING_SNAKE_CASE = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , snake_case__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) SCREAMING_SNAKE_CASE = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
715
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a_ : str = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a_ : int = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.1_5}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names a_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a_ : List[Any] = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a_ : Any = "allenai" def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = dict((re.sub(R'@@$' , '' , _UpperCamelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , _UpperCamelCase ), v) for k, v in d.items() ) SCREAMING_SNAKE_CASE = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] SCREAMING_SNAKE_CASE = d[k] # restore return da def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : List[str] ) -> Dict: '''simple docstring''' assert os.path.exists(_UpperCamelCase ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel SCREAMING_SNAKE_CASE = cls.hub_models() SCREAMING_SNAKE_CASE = {'bpe': 'fastbpe', 'tokenizer': 'moses'} SCREAMING_SNAKE_CASE = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"""using checkpoint {checkpoint_file}""" ) SCREAMING_SNAKE_CASE = hub_utils.from_pretrained( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , archive_map=_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = vars(chkpt['args']['model'] ) SCREAMING_SNAKE_CASE = args['source_lang'] SCREAMING_SNAKE_CASE = args['target_lang'] SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) # dicts SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{src_lang}.txt""" ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{tgt_lang}.txt""" ) SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(src_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-src.json' ) print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab SCREAMING_SNAKE_CASE = True for k in src_vocab.keys(): if not k.islower(): SCREAMING_SNAKE_CASE = False break SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(tgt_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-tgt.json' ) print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # merges_file (bpecodes) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.exists(_UpperCamelCase ): break with open(_UpperCamelCase , encoding='utf-8' ) as fin: SCREAMING_SNAKE_CASE = fin.read() SCREAMING_SNAKE_CASE = re.sub(R' \d+$' , '' , _UpperCamelCase , 0 , re.M ) # remove frequency number print(f"""Generating {merges_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_UpperCamelCase ) # model config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args['bpe']}""" assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args['tokenizer']}""" SCREAMING_SNAKE_CASE = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with SCREAMING_SNAKE_CASE = 5 SCREAMING_SNAKE_CASE = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: SCREAMING_SNAKE_CASE = best_score_hparams[model_dir]['length_penalty'] else: SCREAMING_SNAKE_CASE = 1.0 print(f"""Generating {fsmt_model_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # tokenizer config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = { 'langs': [src_lang, tgt_lang], 'model_max_length': 10_24, 'do_lower_case': do_lower_case, } print(f"""Generating {fsmt_tokenizer_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # model SCREAMING_SNAKE_CASE = chkpt['models'][0] SCREAMING_SNAKE_CASE = model.state_dict() # rename keys to start with 'model.' SCREAMING_SNAKE_CASE = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys SCREAMING_SNAKE_CASE = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTConfig.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTForConditionalGeneration(_UpperCamelCase ) # check that it loads ok model_new.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) # save SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(_UpperCamelCase , _UpperCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f"""cd {data_root}""" ) print(f"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a_ : int = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
673
0
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging a_ : Union[str, Any] = logging.get_logger(__name__) def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : str=False ) -> Tuple: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise if not is_sharded: SCREAMING_SNAKE_CASE = os.path.abspath(_UpperCamelCase ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase , map_location='cpu' ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) SCREAMING_SNAKE_CASE = convert_pytorch_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files SCREAMING_SNAKE_CASE = convert_pytorch_sharded_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) return flax_state_dict def __lowerCAmelCase ( _UpperCamelCase : Tuple[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, jnp.ndarray] , _UpperCamelCase : str , ) -> (Tuple[str], np.ndarray): '''simple docstring''' def is_key_or_prefix_key_in_dict(_UpperCamelCase : Tuple[str] ) -> bool: return len(set(_UpperCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ('scale',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ('mean',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ('var',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ('embedding',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): SCREAMING_SNAKE_CASE = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): SCREAMING_SNAKE_CASE = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 SCREAMING_SNAKE_CASE = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): SCREAMING_SNAKE_CASE = pt_tuple_key[-2] + '_g' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): SCREAMING_SNAKE_CASE = pt_tuple_key[-2] + '_v' if name is not None: SCREAMING_SNAKE_CASE = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = {k: v.numpy() for k, v in pt_state_dict.items()} SCREAMING_SNAKE_CASE = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: SCREAMING_SNAKE_CASE = flax_model.params['params'] else: SCREAMING_SNAKE_CASE = flax_model.params SCREAMING_SNAKE_CASE = flatten_dict(_UpperCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: SCREAMING_SNAKE_CASE = flatten_dict(flax_model.params['batch_stats'] ) random_flax_state_dict.update(_UpperCamelCase ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) SCREAMING_SNAKE_CASE = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): SCREAMING_SNAKE_CASE = tuple(pt_key.split('.' ) ) # remove base model prefix if necessary SCREAMING_SNAKE_CASE = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: SCREAMING_SNAKE_CASE = pt_tuple_key[1:] # Correctly rename weight parameters SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary SCREAMING_SNAKE_CASE = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: SCREAMING_SNAKE_CASE = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: SCREAMING_SNAKE_CASE = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown SCREAMING_SNAKE_CASE = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown SCREAMING_SNAKE_CASE = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] ) -> str: '''simple docstring''' import torch # Load the index SCREAMING_SNAKE_CASE = {} for shard_file in shard_filenames: # load using msgpack utils SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = {k: v.numpy() for k, v in pt_state_dict.items()} SCREAMING_SNAKE_CASE = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: SCREAMING_SNAKE_CASE = flax_model.params['params'] SCREAMING_SNAKE_CASE = flatten_dict(_UpperCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['batch_stats'] ) ) else: SCREAMING_SNAKE_CASE = flax_model.params SCREAMING_SNAKE_CASE = flatten_dict(_UpperCamelCase ) SCREAMING_SNAKE_CASE = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) SCREAMING_SNAKE_CASE = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): SCREAMING_SNAKE_CASE = tuple(pt_key.split('.' ) ) # remove base model prefix if necessary SCREAMING_SNAKE_CASE = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: SCREAMING_SNAKE_CASE = pt_tuple_key[1:] # Correctly rename weight parameters SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary SCREAMING_SNAKE_CASE = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: SCREAMING_SNAKE_CASE = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: SCREAMING_SNAKE_CASE = jnp.asarray(_UpperCamelCase ) continue if "var" in flax_key[-1]: SCREAMING_SNAKE_CASE = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown SCREAMING_SNAKE_CASE = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown SCREAMING_SNAKE_CASE = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = os.path.abspath(_UpperCamelCase ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class SCREAMING_SNAKE_CASE = getattr(_UpperCamelCase , 'Flax' + model.__class__.__name__ ) # load flax weight dict with open(_UpperCamelCase , 'rb' ) as state_f: try: SCREAMING_SNAKE_CASE = from_bytes(_UpperCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(_UpperCamelCase , _UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int] ) -> Any: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights SCREAMING_SNAKE_CASE = flatten_dict(jax.tree_util.tree_map(lambda _UpperCamelCase : x.dtype == jnp.bfloataa , _UpperCamelCase ) ).values() if any(_UpperCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) SCREAMING_SNAKE_CASE = jax.tree_util.tree_map( lambda _UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _UpperCamelCase ) SCREAMING_SNAKE_CASE = flatten_dict(_UpperCamelCase ) SCREAMING_SNAKE_CASE = pt_model.state_dict() SCREAMING_SNAKE_CASE = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('.' )[0] for k in pt_model_dict.keys()} ) SCREAMING_SNAKE_CASE = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('.' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): SCREAMING_SNAKE_CASE = flax_key_tuple[0] == pt_model.base_model_prefix SCREAMING_SNAKE_CASE = '.'.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: SCREAMING_SNAKE_CASE = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: SCREAMING_SNAKE_CASE = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_UpperCamelCase ) not in pt_model_dict: # conv layer SCREAMING_SNAKE_CASE = flax_key_tuple[:-1] + ('weight',) SCREAMING_SNAKE_CASE = jnp.transpose(_UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCamelCase ) not in pt_model_dict: # linear layer SCREAMING_SNAKE_CASE = flax_key_tuple[:-1] + ('weight',) SCREAMING_SNAKE_CASE = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: SCREAMING_SNAKE_CASE = flax_key_tuple[:-1] + ('weight',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: SCREAMING_SNAKE_CASE = flax_key_tuple[:-1] + ('running_mean',) elif "var" in flax_key_tuple[-1]: SCREAMING_SNAKE_CASE = flax_key_tuple[:-1] + ('running_var',) if "batch_stats" in flax_state: SCREAMING_SNAKE_CASE = '.'.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: SCREAMING_SNAKE_CASE = '.'.join(_UpperCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. SCREAMING_SNAKE_CASE = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: SCREAMING_SNAKE_CASE = key.split('.' ) SCREAMING_SNAKE_CASE = None if key_components[-3::2] == ["parametrizations", "original0"]: SCREAMING_SNAKE_CASE = key_components[-2] + '_g' elif key_components[-3::2] == ["parametrizations", "original1"]: SCREAMING_SNAKE_CASE = key_components[-2] + '_v' if name is not None: SCREAMING_SNAKE_CASE = key_components[:-3] + [name] SCREAMING_SNAKE_CASE = '.'.join(_UpperCamelCase ) SCREAMING_SNAKE_CASE = key if flax_key in special_pt_names: SCREAMING_SNAKE_CASE = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict SCREAMING_SNAKE_CASE = np.asarray(_UpperCamelCase ) if not isinstance(_UpperCamelCase , np.ndarray ) else flax_tensor SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ) # remove from missing keys missing_keys.remove(_UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_UpperCamelCase ) pt_model.load_state_dict(_UpperCamelCase ) # re-transform missing_keys to list SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(_UpperCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ' use it for predictions and inference.' ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" 'If your task is similar to the task the model of the checkpoint was trained on, ' f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
716
import random def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : float , _UpperCamelCase : bool = False ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE = {i: [] for i in range(_UpperCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_UpperCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_UpperCamelCase ): for j in range(i + 1 , _UpperCamelCase ): if random.random() < probability: graph[i].append(_UpperCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_UpperCamelCase ) return graph def __lowerCAmelCase ( _UpperCamelCase : int ) -> dict: '''simple docstring''' return { i: [j for j in range(_UpperCamelCase ) if i != j] for i in range(_UpperCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
673
0
from __future__ import annotations import os from typing import Any import requests a_ : Any = "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user a_ : List[Any] = BASE_URL + "/user" # https://github.com/settings/tokens a_ : Any = os.environ.get("USER_TOKEN", "") def __lowerCAmelCase ( _UpperCamelCase : str ) -> dict[Any, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = { 'Authorization': f"""token {auth_token}""", 'Accept': 'application/vnd.github.v3+json', } return requests.get(_UpperCamelCase , headers=_UpperCamelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F"""{key}: {value}""") else: raise ValueError("'USER_TOKEN' field cannot be empty.")
717
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : def __init__( self : List[str] , snake_case__ : Dict , snake_case__ : Optional[Any]=1_3 , snake_case__ : Union[str, Any]=7 , snake_case__ : List[str]=True , snake_case__ : Any=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=9_9 , snake_case__ : str=3_2 , snake_case__ : Dict=5 , snake_case__ : str=4 , snake_case__ : int=3_7 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Any=0.1 , snake_case__ : Dict=0.1 , snake_case__ : Optional[Any]=5_1_2 , snake_case__ : List[Any]=1_6 , snake_case__ : str=2 , snake_case__ : int=0.02 , snake_case__ : List[str]=3 , snake_case__ : Dict=4 , snake_case__ : str=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def UpperCamelCase ( self : List[str] , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : List[Any] , snake_case__ : str , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : int , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : int , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = NystromformerForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase =( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def UpperCamelCase ( self : List[str] ): """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(snake_case__ )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.4_532, -0.0_936, 0.5_137], [-0.2_676, 0.0_628, 0.6_186], [-0.3_629, -0.1_726, 0.4_716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1E-4 ) ) @slow def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = 'the [MASK] of Belgium is Brussels' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = tokenizer(snake_case__ , return_tensors='pt' ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(encoding.input_ids ).logits SCREAMING_SNAKE_CASE = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case__ ) , 'capital' )
673
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input a_ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def __lowerCAmelCase ( ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: SCREAMING_SNAKE_CASE = get_sagemaker_input() else: SCREAMING_SNAKE_CASE = get_cluster_input() return config def __lowerCAmelCase ( _UpperCamelCase : Any=None ) -> Dict: '''simple docstring''' if subparsers is not None: SCREAMING_SNAKE_CASE = subparsers.add_parser('config' , description=_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = argparse.ArgumentParser('Accelerate config command' , description=_UpperCamelCase ) parser.add_argument( '--config_file' , default=_UpperCamelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_UpperCamelCase ) return parser def __lowerCAmelCase ( _UpperCamelCase : str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = get_user_input() if args.config_file is not None: SCREAMING_SNAKE_CASE = args.config_file else: if not os.path.isdir(_UpperCamelCase ): os.makedirs(_UpperCamelCase ) SCREAMING_SNAKE_CASE = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(_UpperCamelCase ) else: config.to_yaml_file(_UpperCamelCase ) print(f"""accelerate configuration saved at {config_file}""" ) def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = config_command_parser() SCREAMING_SNAKE_CASE = parser.parse_args() config_command(_UpperCamelCase ) if __name__ == "__main__": main()
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
673
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Optional[Any] = logging.get_logger(__name__) a_ : List[Any] = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="wav2vec2" def __init__( self : Dict , snake_case__ : Union[str, Any]=3_2 , snake_case__ : Tuple=7_6_8 , snake_case__ : str=1_2 , snake_case__ : List[str]=1_2 , snake_case__ : Dict=3_0_7_2 , snake_case__ : Any="gelu" , snake_case__ : int=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : str=0.1 , snake_case__ : Optional[int]=0.0 , snake_case__ : Optional[Any]=0.0 , snake_case__ : Any=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : List[str]=0.02 , snake_case__ : Tuple=1E-5 , snake_case__ : Optional[int]="group" , snake_case__ : int="gelu" , snake_case__ : Any=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case__ : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , snake_case__ : Optional[Any]=(1_0, 3, 3, 3, 3, 2, 2) , snake_case__ : Any=False , snake_case__ : Union[str, Any]=1_2_8 , snake_case__ : Optional[Any]=1_6 , snake_case__ : Optional[Any]=False , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=0.05 , snake_case__ : Dict=1_0 , snake_case__ : List[str]=2 , snake_case__ : Any=0.0 , snake_case__ : int=1_0 , snake_case__ : int=0 , snake_case__ : Optional[int]=3_2_0 , snake_case__ : Optional[Any]=2 , snake_case__ : Optional[int]=0.1 , snake_case__ : List[str]=1_0_0 , snake_case__ : Any=2_5_6 , snake_case__ : List[Any]=2_5_6 , snake_case__ : str=0.1 , snake_case__ : Optional[int]="sum" , snake_case__ : Any=False , snake_case__ : Optional[Any]=False , snake_case__ : str=2_5_6 , snake_case__ : int=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , snake_case__ : Dict=(5, 3, 3, 1, 1) , snake_case__ : Optional[int]=(1, 2, 3, 1, 1) , snake_case__ : List[Any]=5_1_2 , snake_case__ : Optional[int]=0 , snake_case__ : int=1 , snake_case__ : Optional[Any]=2 , snake_case__ : List[Any]=False , snake_case__ : Any=3 , snake_case__ : Tuple=2 , snake_case__ : str=3 , snake_case__ : Any=None , snake_case__ : Dict=None , **snake_case__ : Dict , ): """simple docstring""" super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = feat_extract_norm SCREAMING_SNAKE_CASE = feat_extract_activation SCREAMING_SNAKE_CASE = list(snake_case__ ) SCREAMING_SNAKE_CASE = list(snake_case__ ) SCREAMING_SNAKE_CASE = list(snake_case__ ) SCREAMING_SNAKE_CASE = conv_bias SCREAMING_SNAKE_CASE = num_conv_pos_embeddings SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE = len(self.conv_dim ) SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = feat_proj_dropout SCREAMING_SNAKE_CASE = final_dropout SCREAMING_SNAKE_CASE = layerdrop SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = do_stable_layer_norm SCREAMING_SNAKE_CASE = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE = apply_spec_augment SCREAMING_SNAKE_CASE = mask_time_prob SCREAMING_SNAKE_CASE = mask_time_length SCREAMING_SNAKE_CASE = mask_time_min_masks SCREAMING_SNAKE_CASE = mask_feature_prob SCREAMING_SNAKE_CASE = mask_feature_length SCREAMING_SNAKE_CASE = mask_feature_min_masks # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE = num_codevectors_per_group SCREAMING_SNAKE_CASE = num_codevector_groups SCREAMING_SNAKE_CASE = contrastive_logits_temperature SCREAMING_SNAKE_CASE = feat_quantizer_dropout SCREAMING_SNAKE_CASE = num_negatives SCREAMING_SNAKE_CASE = codevector_dim SCREAMING_SNAKE_CASE = proj_codevector_dim SCREAMING_SNAKE_CASE = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE = ctc_loss_reduction SCREAMING_SNAKE_CASE = ctc_zero_infinity # adapter SCREAMING_SNAKE_CASE = add_adapter SCREAMING_SNAKE_CASE = adapter_kernel_size SCREAMING_SNAKE_CASE = adapter_stride SCREAMING_SNAKE_CASE = num_adapter_layers SCREAMING_SNAKE_CASE = output_hidden_size or hidden_size SCREAMING_SNAKE_CASE = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE = list(snake_case__ ) SCREAMING_SNAKE_CASE = list(snake_case__ ) SCREAMING_SNAKE_CASE = list(snake_case__ ) SCREAMING_SNAKE_CASE = xvector_output_dim @property def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
719
import heapq import sys import numpy as np a_ : Optional[int] = tuple[int, int] class UpperCamelCase : def __init__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() def UpperCamelCase ( self : List[Any] ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf' ) def UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.elements ) == 0 def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(snake_case__ ) else: # update # print("update", item) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" if item in self.set: self.set.remove(snake_case__ ) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def UpperCamelCase ( self : str ): """simple docstring""" return self.elements[0][1] def UpperCamelCase ( self : Tuple ): """simple docstring""" ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) self.set.remove(snake_case__ ) return (priority, item) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) return np.linalg.norm(a - b ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Dict: '''simple docstring''' return consistent_heuristic(_UpperCamelCase , _UpperCamelCase ) // t def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[int]: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : int , _UpperCamelCase : TPos , _UpperCamelCase : dict[TPos, float] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = g_function[start] + Wa * heuristics[i](_UpperCamelCase , _UpperCamelCase ) return ans def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = np.chararray((n, n) ) for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = '*' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE = '#' SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = x # print(x) SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[x] SCREAMING_SNAKE_CASE = '-' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: print(_UpperCamelCase , end=' ' ) SCREAMING_SNAKE_CASE = back_pointer[x] print(_UpperCamelCase ) sys.exit() def __lowerCAmelCase ( _UpperCamelCase : TPos ) -> Any: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , ) -> List[Any]: '''simple docstring''' for itera in range(_UpperCamelCase ): open_list[itera].remove_element(_UpperCamelCase ) # print("s", s) # print("j", j) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = s SCREAMING_SNAKE_CASE = (x - 1, y) SCREAMING_SNAKE_CASE = (x + 1, y) SCREAMING_SNAKE_CASE = (x, y + 1) SCREAMING_SNAKE_CASE = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = float('inf' ) if valid(_UpperCamelCase ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE = g_function[s] + 1 SCREAMING_SNAKE_CASE = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCamelCase , key(_UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , _UpperCamelCase ): if key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) <= Wa * key( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ): open_list[j].put( _UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a_ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a_ : List[str] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a_ : Union[str, Any] = make_common_ground() a_ : Tuple = blocks_blk # hyper parameters a_ : Any = 1 a_ : List[str] = 1 a_ : Union[str, Any] = 20 a_ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a_ : int = (0, 0) a_ : Optional[int] = (n - 1, n - 1) a_ : Union[str, Any] = 1 def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos , _UpperCamelCase : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {start: 0, goal: float('inf' )} SCREAMING_SNAKE_CASE = {start: -1, goal: -1} SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() for i in range(_UpperCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , _UpperCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = open_list[i].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_inad.append(_UpperCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE = open_list[0].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_anchor.append(_UpperCamelCase ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_UpperCamelCase ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
673
0
def __lowerCAmelCase ( _UpperCamelCase : int ) -> list: '''simple docstring''' SCREAMING_SNAKE_CASE = int(_UpperCamelCase ) if n_element < 1: SCREAMING_SNAKE_CASE = ValueError('a should be a positive number' ) raise my_error SCREAMING_SNAKE_CASE = [1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = (0, 0, 0) SCREAMING_SNAKE_CASE = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": a_ : Dict = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") a_ : Any = hamming(int(n)) print("-----------------------------------------------------") print(F"""The list with nth numbers is: {hamming_numbers}""") print("-----------------------------------------------------")
720
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a_ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : str = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Any=8 ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=5_12 , _UpperCamelCase : Union[str, Any]=5_12 ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) SCREAMING_SNAKE_CASE = np.array(pil_image.convert('RGB' ) ) SCREAMING_SNAKE_CASE = arr.astype(np.floataa ) / 1_27.5 - 1 SCREAMING_SNAKE_CASE = np.transpose(_UpperCamelCase , [2, 0, 1] ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : int , snake_case__ : UNetaDConditionModel , snake_case__ : DDPMScheduler , snake_case__ : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , ) SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase ( self : Any , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = min(int(num_inference_steps * strength ) , snake_case__ ) SCREAMING_SNAKE_CASE = max(num_inference_steps - init_timestep , 0 ) SCREAMING_SNAKE_CASE = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase ( self : List[str] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : str=None ): """simple docstring""" if not isinstance(snake_case__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case__ )}""" ) SCREAMING_SNAKE_CASE = image.to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = batch_size * num_images_per_prompt if image.shape[1] == 4: SCREAMING_SNAKE_CASE = image else: if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case__ ) ] SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) else: SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ ).latent_dist.sample(snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.config.scaling_factor * init_latents SCREAMING_SNAKE_CASE = torch.cat([init_latents] , dim=0 ) SCREAMING_SNAKE_CASE = init_latents.shape SCREAMING_SNAKE_CASE = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) # get latents SCREAMING_SNAKE_CASE = self.scheduler.add_noise(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = init_latents return latents def UpperCamelCase ( self : int , snake_case__ : List[str]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) SCREAMING_SNAKE_CASE = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[int]=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=snake_case__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase ( self : Dict ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case__ ) def __call__( self : str , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : int = 5_1_2 , snake_case__ : int = 5_1_2 , snake_case__ : int = 1_0_0 , snake_case__ : float = 4.0 , snake_case__ : float = 0.3 , snake_case__ : int = 1 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , ): """simple docstring""" SCREAMING_SNAKE_CASE = self._execution_device SCREAMING_SNAKE_CASE = guidance_scale > 1.0 if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = image_embeds.shape[0] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [image] if not all(isinstance(snake_case__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(snake_case__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) SCREAMING_SNAKE_CASE = torch.cat([prepare_image(snake_case__ , snake_case__ , snake_case__ ) for i in image] , dim=0 ) SCREAMING_SNAKE_CASE = image.to(dtype=image_embeds.dtype , device=snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ )['latents'] SCREAMING_SNAKE_CASE = latents.repeat_interleave(snake_case__ , dim=0 ) self.scheduler.set_timesteps(snake_case__ , device=snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_timesteps(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = timesteps[:1].repeat(batch_size * num_images_per_prompt ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = downscale_height_and_width(snake_case__ , snake_case__ , self.movq_scale_factor ) SCREAMING_SNAKE_CASE = self.prepare_latents( snake_case__ , snake_case__ , snake_case__ , snake_case__ , image_embeds.dtype , snake_case__ , snake_case__ ) for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE = {'image_embeds': image_embeds} SCREAMING_SNAKE_CASE = self.unet( sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , )[0] # post-processing SCREAMING_SNAKE_CASE = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
673
0
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class UpperCamelCase ( unittest.TestCase ): __UpperCamelCase =inspect.getfile(accelerate.test_utils ) __UpperCamelCase =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_cli.py"] ) __UpperCamelCase =["accelerate", "launch"] __UpperCamelCase =Path.home() / ".cache/huggingface/accelerate" __UpperCamelCase ="default_config.yaml" __UpperCamelCase =config_folder / config_file __UpperCamelCase =config_folder / "_default_config.yaml" __UpperCamelCase =Path("tests/test_configs" ) @classmethod def UpperCamelCase ( cls : str ): """simple docstring""" if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def UpperCamelCase ( cls : Optional[int] ): """simple docstring""" if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def UpperCamelCase ( self : Tuple ): """simple docstring""" for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=snake_case__ ): execute_subprocess_async( self.base_cmd + ['--config_file', str(snake_case__ ), self.test_file_path] , env=os.environ.copy() ) def UpperCamelCase ( self : str ): """simple docstring""" execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() ) class UpperCamelCase ( unittest.TestCase ): __UpperCamelCase ="test-tpu" __UpperCamelCase ="us-central1-a" __UpperCamelCase ="ls" __UpperCamelCase =["accelerate", "tpu-config"] __UpperCamelCase ="cd /usr/share" __UpperCamelCase ="tests/test_samples/test_command_file.sh" __UpperCamelCase ="Running gcloud compute tpus tpu-vm ssh" def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=snake_case__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , snake_case__ , ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=snake_case__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , snake_case__ , ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=snake_case__ ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , snake_case__ , ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=snake_case__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , snake_case__ , ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=snake_case__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , snake_case__ , ) def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=snake_case__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , snake_case__ , ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=snake_case__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , snake_case__ , ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=snake_case__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , snake_case__ , ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=snake_case__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , snake_case__ , )
721
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() a_ : List[Any] = logging.get_logger("transformers.models.speecht5") def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Dict: '''simple docstring''' hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Any=None , _UpperCamelCase : List[str]=None , ) -> Tuple: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig.from_pretrained(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE = SpeechTaHifiGan(_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = np.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() model.save_pretrained(_UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the ๐Ÿค— hub." ) a_ : Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
673
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a_ : List[Any] = "src/diffusers" a_ : Any = "." # This is to make sure the diffusers module imported is the one in the repo. a_ : Union[str, Any] = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) a_ : Union[str, Any] = spec.loader.load_module() def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' return line.startswith(_UpperCamelCase ) or len(_UpperCamelCase ) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , _UpperCamelCase ) is not None def __lowerCAmelCase ( _UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = object_name.split('.' ) SCREAMING_SNAKE_CASE = 0 # First let's find the module where our object lives. SCREAMING_SNAKE_CASE = parts[i] while i < len(_UpperCamelCase ) and not os.path.isfile(os.path.join(_UpperCamelCase , f"""{module}.py""" ) ): i += 1 if i < len(_UpperCamelCase ): SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , parts[i] ) if i >= len(_UpperCamelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(_UpperCamelCase , f"""{module}.py""" ) , 'r' , encoding='utf-8' , newline='\n' ) as f: SCREAMING_SNAKE_CASE = f.readlines() # Now let's find the class / func in the code! SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = 0 for name in parts[i + 1 :]: while ( line_index < len(_UpperCamelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_UpperCamelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). SCREAMING_SNAKE_CASE = line_index while line_index < len(_UpperCamelCase ) and _should_continue(lines[line_index] , _UpperCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 SCREAMING_SNAKE_CASE = lines[start_index:line_index] return "".join(_UpperCamelCase ) a_ : Optional[int] = re.compile(R"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") a_ : Union[str, Any] = re.compile(R"^\s*(\S+)->(\S+)(\s+.*|$)") a_ : Optional[Any] = re.compile(R"<FILL\s+[^>]*>") def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = code.split('\n' ) SCREAMING_SNAKE_CASE = 0 while idx < len(_UpperCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_UpperCamelCase ): return re.search(R'^(\s*)\S' , lines[idx] ).groups()[0] return "" def __lowerCAmelCase ( _UpperCamelCase : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = len(get_indent(_UpperCamelCase ) ) > 0 if has_indent: SCREAMING_SNAKE_CASE = f"""class Bla:\n{code}""" SCREAMING_SNAKE_CASE = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=_UpperCamelCase ) SCREAMING_SNAKE_CASE = black.format_str(_UpperCamelCase , mode=_UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = style_docstrings_in_code(_UpperCamelCase ) return result[len('class Bla:\n' ) :] if has_indent else result def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' with open(_UpperCamelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: SCREAMING_SNAKE_CASE = f.readlines() SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_UpperCamelCase ): SCREAMING_SNAKE_CASE = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = search.groups() SCREAMING_SNAKE_CASE = find_code_in_diffusers(_UpperCamelCase ) SCREAMING_SNAKE_CASE = get_indent(_UpperCamelCase ) SCREAMING_SNAKE_CASE = line_index + 1 if indent == theoretical_indent else line_index + 2 SCREAMING_SNAKE_CASE = theoretical_indent SCREAMING_SNAKE_CASE = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. SCREAMING_SNAKE_CASE = True while line_index < len(_UpperCamelCase ) and should_continue: line_index += 1 if line_index >= len(_UpperCamelCase ): break SCREAMING_SNAKE_CASE = lines[line_index] SCREAMING_SNAKE_CASE = _should_continue(_UpperCamelCase , _UpperCamelCase ) and re.search(f"""^{indent}# End copy""" , _UpperCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 SCREAMING_SNAKE_CASE = lines[start_index:line_index] SCREAMING_SNAKE_CASE = ''.join(_UpperCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies SCREAMING_SNAKE_CASE = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(_UpperCamelCase ) is None] SCREAMING_SNAKE_CASE = '\n'.join(_UpperCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(_UpperCamelCase ) > 0: SCREAMING_SNAKE_CASE = replace_pattern.replace('with' , '' ).split(',' ) SCREAMING_SNAKE_CASE = [_re_replace_pattern.search(_UpperCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = pattern.groups() SCREAMING_SNAKE_CASE = re.sub(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if option.strip() == "all-casing": SCREAMING_SNAKE_CASE = re.sub(obja.lower() , obja.lower() , _UpperCamelCase ) SCREAMING_SNAKE_CASE = re.sub(obja.upper() , obja.upper() , _UpperCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line SCREAMING_SNAKE_CASE = blackify(lines[start_index - 1] + theoretical_code ) SCREAMING_SNAKE_CASE = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: SCREAMING_SNAKE_CASE = lines[:start_index] + [theoretical_code] + lines[line_index:] SCREAMING_SNAKE_CASE = start_index + 1 if overwrite and len(_UpperCamelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_UpperCamelCase ) return diffs def __lowerCAmelCase ( _UpperCamelCase : bool = False ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = glob.glob(os.path.join(_UpperCamelCase , '**/*.py' ) , recursive=_UpperCamelCase ) SCREAMING_SNAKE_CASE = [] for filename in all_files: SCREAMING_SNAKE_CASE = is_copy_consistent(_UpperCamelCase , _UpperCamelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(_UpperCamelCase ) > 0: SCREAMING_SNAKE_CASE = '\n'.join(_UpperCamelCase ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") a_ : Optional[Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
700
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a_ : Optional[int] = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } a_ : List[Any] = { "allenai/led-base-16384": 1_6384, } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =LEDTokenizer __UpperCamelCase =["input_ids", "attention_mask"] def __init__( self : Tuple , snake_case__ : List[Any]=None , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : Dict="replace" , snake_case__ : Tuple="<s>" , snake_case__ : Optional[Any]="</s>" , snake_case__ : int="</s>" , snake_case__ : Dict="<s>" , snake_case__ : Union[str, Any]="<unk>" , snake_case__ : Optional[int]="<pad>" , snake_case__ : List[str]="<mask>" , snake_case__ : List[Any]=False , snake_case__ : int=True , **snake_case__ : Dict , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(snake_case__ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**snake_case__ ) SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE = 'post_processor' SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state['cls'] ) SCREAMING_SNAKE_CASE = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(snake_case__ , state.pop('type' ) ) SCREAMING_SNAKE_CASE = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase ( self : List[Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value SCREAMING_SNAKE_CASE = value def UpperCamelCase ( self : Dict , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[str] , *snake_case__ : List[Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Tuple=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self : Optional[Any] , snake_case__ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case__ : Optional[int] = None , snake_case__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , ): """simple docstring""" SCREAMING_SNAKE_CASE = super()._pad( encoded_inputs=snake_case__ , max_length=snake_case__ , padding_strategy=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE = len(encoded_inputs['global_attention_mask'] ) != len(snake_case__ ) if needs_to_be_padded: SCREAMING_SNAKE_CASE = len(snake_case__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
673
0
'''simple docstring''' import sys a_ : Tuple = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def __lowerCAmelCase ( _UpperCamelCase : str ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 1 for digit in s: product *= int(_UpperCamelCase ) return product def __lowerCAmelCase ( _UpperCamelCase : str = N ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = -sys.maxsize - 1 SCREAMING_SNAKE_CASE = n[:13] SCREAMING_SNAKE_CASE = 13 while cur_index < len(_UpperCamelCase ) - 13: if int(n[cur_index] ) >= int(substr[0] ): SCREAMING_SNAKE_CASE = substr[1:] + n[cur_index] cur_index += 1 else: SCREAMING_SNAKE_CASE = max(_UpperCamelCase , str_eval(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
701
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __lowerCAmelCase ( *_UpperCamelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(_UpperCamelCase , 'r' ) as fh: fcntl.flock(_UpperCamelCase , fcntl.LOCK_EX ) try: print(*_UpperCamelCase ) finally: fcntl.flock(_UpperCamelCase , fcntl.LOCK_UN ) a_ : int = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) a_ : str = torch.device("cuda", local_rank) a_ : Optional[int] = socket.gethostname() a_ : Union[str, Any] = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank a_ : Dict = dist.get_rank() a_ : Any = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
673
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a_ : Optional[Any] = logging.get_logger(__name__) a_ : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : List[Any] ) -> List[Any]: '''simple docstring''' for attribute in key.split('.' ): SCREAMING_SNAKE_CASE = getattr(_UpperCamelCase , _UpperCamelCase ) if weight_type is not None: SCREAMING_SNAKE_CASE = getattr(_UpperCamelCase , _UpperCamelCase ).shape else: SCREAMING_SNAKE_CASE = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE = value elif weight_type == "bias": SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = fairseq_model.state_dict() SCREAMING_SNAKE_CASE = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == 'group' , ) SCREAMING_SNAKE_CASE = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): SCREAMING_SNAKE_CASE = True if "*" in mapped_key: SCREAMING_SNAKE_CASE = name.split(_UpperCamelCase )[0].split('.' )[-2] SCREAMING_SNAKE_CASE = mapped_key.replace('*' , _UpperCamelCase ) if "weight_g" in name: SCREAMING_SNAKE_CASE = 'weight_g' elif "weight_v" in name: SCREAMING_SNAKE_CASE = 'weight_v' elif "weight" in name: SCREAMING_SNAKE_CASE = 'weight' elif "bias" in name: SCREAMING_SNAKE_CASE = 'bias' else: SCREAMING_SNAKE_CASE = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : int ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = full_name.split('conv_layers.' )[-1] SCREAMING_SNAKE_CASE = name.split('.' ) SCREAMING_SNAKE_CASE = int(items[0] ) SCREAMING_SNAKE_CASE = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Tuple=None , _UpperCamelCase : Any=True ) -> Tuple: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE = HubertConfig.from_pretrained(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = HubertConfig() if is_finetuned: if dict_path: SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE = target_dict.pad_index SCREAMING_SNAKE_CASE = target_dict.bos_index SCREAMING_SNAKE_CASE = target_dict.eos_index SCREAMING_SNAKE_CASE = len(target_dict.symbols ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab.json' ) if not os.path.isdir(_UpperCamelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_UpperCamelCase ) ) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , _UpperCamelCase ) SCREAMING_SNAKE_CASE = WavaVecaCTCTokenizer( _UpperCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_UpperCamelCase , ) SCREAMING_SNAKE_CASE = True if config.feat_extract_norm == 'layer' else False SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) SCREAMING_SNAKE_CASE = WavaVecaProcessor(feature_extractor=_UpperCamelCase , tokenizer=_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = HubertForCTC(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = HubertModel(_UpperCamelCase ) if is_finetuned: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) SCREAMING_SNAKE_CASE = model[0].eval() recursively_load_weights(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) hf_wavavec.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) a_ : Optional[Any] = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
702
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a_ : Optional[Any] = logging.get_logger(__name__) a_ : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } a_ : Union[str, Any] = {"allegro/herbert-base-cased": 514} a_ : List[Any] = {} class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_INIT_CONFIGURATION __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =HerbertTokenizer def __init__( self : Tuple , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : Optional[int]=None , snake_case__ : str="<s>" , snake_case__ : Tuple="<unk>" , snake_case__ : List[str]="<pad>" , snake_case__ : Tuple="<mask>" , snake_case__ : Dict="</s>" , **snake_case__ : List[str] , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sep_token=snake_case__ , **snake_case__ , ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
673
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Optional[int] = logging.get_logger(__name__) a_ : Any = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="audio-spectrogram-transformer" def __init__( self : Tuple , snake_case__ : str=7_6_8 , snake_case__ : int=1_2 , snake_case__ : List[str]=1_2 , snake_case__ : Tuple=3_0_7_2 , snake_case__ : List[Any]="gelu" , snake_case__ : Any=0.0 , snake_case__ : Optional[int]=0.0 , snake_case__ : List[str]=0.02 , snake_case__ : Optional[Any]=1E-12 , snake_case__ : List[Any]=1_6 , snake_case__ : Optional[Any]=True , snake_case__ : Tuple=1_0 , snake_case__ : Any=1_0 , snake_case__ : Optional[int]=1_0_2_4 , snake_case__ : Dict=1_2_8 , **snake_case__ : str , ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = qkv_bias SCREAMING_SNAKE_CASE = frequency_stride SCREAMING_SNAKE_CASE = time_stride SCREAMING_SNAKE_CASE = max_length SCREAMING_SNAKE_CASE = num_mel_bins
703
def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 while n > 0: res += n % 10 n //= 10 return res def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return sum(int(_UpperCamelCase ) for c in str(abs(_UpperCamelCase ) ) ) def __lowerCAmelCase ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_UpperCamelCase : Callable , _UpperCamelCase : int ) -> None: SCREAMING_SNAKE_CASE = f"""{func.__name__}({value})""" SCREAMING_SNAKE_CASE = timeit(f"""__main__.{call}""" , setup='import __main__' ) print(f"""{call:56} = {func(_UpperCamelCase )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_UpperCamelCase , _UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
673
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : Any = "โ–" a_ : List[str] = {"vocab_file": "spiece.model"} a_ : List[Any] = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } a_ : Any = { "google/pegasus-xsum": 512, } a_ : Optional[int] = logging.get_logger(__name__) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =["input_ids", "attention_mask"] def __init__( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[str]="<pad>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : int="<unk>" , snake_case__ : str="<mask_2>" , snake_case__ : Tuple="<mask_1>" , snake_case__ : Tuple=None , snake_case__ : Dict=1_0_3 , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Dict , ): """simple docstring""" SCREAMING_SNAKE_CASE = offset if additional_special_tokens is not None: if not isinstance(snake_case__ , snake_case__ ): raise TypeError( F"""additional_special_tokens should be of type {type(snake_case__ )}, but is""" F""" {type(snake_case__ )}""" ) SCREAMING_SNAKE_CASE = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(snake_case__ ) , self.offset - 1 ) ] if len(set(snake_case__ ) ) != len(snake_case__ ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) SCREAMING_SNAKE_CASE = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case__ , unk_token=snake_case__ , mask_token=snake_case__ , pad_token=snake_case__ , mask_token_sent=snake_case__ , offset=snake_case__ , additional_special_tokens=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) SCREAMING_SNAKE_CASE = mask_token_sent SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) # add special tokens to encoder dict SCREAMING_SNAKE_CASE = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} @property def UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.sp_model ) + self.offset def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self : str , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase ( self : Any , snake_case__ : str ): """simple docstring""" return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str ): """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] SCREAMING_SNAKE_CASE = self.sp_model.piece_to_id(snake_case__ ) return sp_id + self.offset def UpperCamelCase ( self : Optional[int] , snake_case__ : int ): """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: SCREAMING_SNAKE_CASE = self.sp_model.IdToPiece(index - self.offset ) return token def UpperCamelCase ( self : Tuple , snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case__ ) + token SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(snake_case__ ) out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def UpperCamelCase ( self : Any , snake_case__ : Any=False ): """simple docstring""" return 1 def UpperCamelCase ( self : List[Any] , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def UpperCamelCase ( self : Union[str, Any] , snake_case__ : List , snake_case__ : Optional[List] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return self._special_token_mask(snake_case__ ) elif token_ids_a is None: return self._special_token_mask(snake_case__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def UpperCamelCase ( self : int , snake_case__ : Tuple , snake_case__ : Optional[int]=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , 'wb' ) as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
704
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
673
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __lowerCAmelCase ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=_UpperCamelCase , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=_UpperCamelCase , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=_UpperCamelCase ) return parser.parse_args() def __lowerCAmelCase ( ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = parse_args() # Import training_script as a module. SCREAMING_SNAKE_CASE = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) SCREAMING_SNAKE_CASE = script_fpath.stem SCREAMING_SNAKE_CASE = importlib.import_module(_UpperCamelCase ) # Patch sys.argv SCREAMING_SNAKE_CASE = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
705
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =AudioLDMPipeline __UpperCamelCase =TEXT_TO_AUDIO_PARAMS __UpperCamelCase =TEXT_TO_AUDIO_BATCH_PARAMS __UpperCamelCase =frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(3_2, 6_4) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=snake_case__ , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) SCREAMING_SNAKE_CASE = ClapTextModelWithProjection(snake_case__ ) SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=7_7 ) SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=snake_case__ , ) SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def UpperCamelCase ( self : Optional[int] , snake_case__ : int , snake_case__ : int=0 ): """simple docstring""" if str(snake_case__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(snake_case__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) SCREAMING_SNAKE_CASE = prompt_embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE = negative_prompt SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = [] for p in [prompt, negative_prompt]: SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = text_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) embeds.append(snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 'egg cracking' SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ , negative_prompt=snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config.sampling_rate SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.016 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.016 SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.032 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.032 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = ['hey'] SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape assert audio_shape == (1, 2_5_6) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config config.model_in_dim *= 2 SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ).to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def UpperCamelCase ( self : Tuple ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=snake_case__ ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase ( self : Dict ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case__ ) @slow class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : int , snake_case__ : int , snake_case__ : Tuple="cpu" , snake_case__ : List[str]=torch.floataa , snake_case__ : Optional[Any]=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = np.random.RandomState(snake_case__ ).standard_normal((1, 8, 1_2_8, 1_6) ) SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 2_5 SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[7_7_2_3_0:7_7_2_4_0] SCREAMING_SNAKE_CASE = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[2_7_7_8_0:2_7_7_9_0] SCREAMING_SNAKE_CASE = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
673
0
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase =1 @register_to_config def __init__( self : int , snake_case__ : int = 1_0_0_0 , snake_case__ : Optional[Union[np.ndarray, List[float]]] = None ): """simple docstring""" self.set_timesteps(snake_case__ ) # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. SCREAMING_SNAKE_CASE = 4 # running values SCREAMING_SNAKE_CASE = [] def UpperCamelCase ( self : int , snake_case__ : int , snake_case__ : Union[str, torch.device] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = num_inference_steps SCREAMING_SNAKE_CASE = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] SCREAMING_SNAKE_CASE = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: SCREAMING_SNAKE_CASE = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: SCREAMING_SNAKE_CASE = torch.sin(steps * math.pi / 2 ) ** 2 SCREAMING_SNAKE_CASE = (1.0 - self.betas**2) ** 0.5 SCREAMING_SNAKE_CASE = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] SCREAMING_SNAKE_CASE = timesteps.to(snake_case__ ) SCREAMING_SNAKE_CASE = [] def UpperCamelCase ( self : List[str] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : bool = True , ): """simple docstring""" if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) SCREAMING_SNAKE_CASE = (self.timesteps == timestep).nonzero().item() SCREAMING_SNAKE_CASE = timestep_index + 1 SCREAMING_SNAKE_CASE = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(snake_case__ ) if len(self.ets ) == 1: SCREAMING_SNAKE_CASE = self.ets[-1] elif len(self.ets ) == 2: SCREAMING_SNAKE_CASE = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: SCREAMING_SNAKE_CASE = (2_3 * self.ets[-1] - 1_6 * self.ets[-2] + 5 * self.ets[-3]) / 1_2 else: SCREAMING_SNAKE_CASE = (1 / 2_4) * (5_5 * self.ets[-1] - 5_9 * self.ets[-2] + 3_7 * self.ets[-3] - 9 * self.ets[-4]) SCREAMING_SNAKE_CASE = self._get_prev_sample(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case__ ) def UpperCamelCase ( self : int , snake_case__ : torch.FloatTensor , *snake_case__ : List[Any] , **snake_case__ : int ): """simple docstring""" return sample def UpperCamelCase ( self : Dict , snake_case__ : str , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.alphas[timestep_index] SCREAMING_SNAKE_CASE = self.betas[timestep_index] SCREAMING_SNAKE_CASE = self.alphas[prev_timestep_index] SCREAMING_SNAKE_CASE = self.betas[prev_timestep_index] SCREAMING_SNAKE_CASE = (sample - sigma * ets) / max(snake_case__ , 1E-8 ) SCREAMING_SNAKE_CASE = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : Any ): """simple docstring""" return self.config.num_train_timesteps
706
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase : def __init__( self : Dict , snake_case__ : str , snake_case__ : str=1_3 , snake_case__ : Tuple=7 , snake_case__ : Tuple=True , snake_case__ : Tuple=True , snake_case__ : List[str]=False , snake_case__ : Any=True , snake_case__ : Union[str, Any]=9_9 , snake_case__ : Dict=3_2 , snake_case__ : Optional[Any]=5 , snake_case__ : Optional[Any]=4 , snake_case__ : Union[str, Any]=3_7 , snake_case__ : Tuple="gelu" , snake_case__ : Dict=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : int=4 , snake_case__ : List[str]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Dict ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , use_stable_embedding=snake_case__ , ) def UpperCamelCase ( self : int , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : str , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : str , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , ) SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Tuple , ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : int , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Union[str, Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , use_cache=snake_case__ , ) SCREAMING_SNAKE_CASE = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCamelCase =(OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCamelCase =( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = OpenLlamaModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'single_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 'multi_label_classification' SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase ( self : str , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = ids_tensor([1, 1_0] , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = original_model(snake_case__ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE = OpenLlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) )
673
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a_ : Dict = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys a_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
707
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="openai/whisper-base" __UpperCamelCase =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCamelCase ="transcriber" __UpperCamelCase =WhisperProcessor __UpperCamelCase =WhisperForConditionalGeneration __UpperCamelCase =["audio"] __UpperCamelCase =["text"] def UpperCamelCase ( self : Dict , snake_case__ : Tuple ): """simple docstring""" return self.pre_processor(snake_case__ , return_tensors='pt' ).input_features def UpperCamelCase ( self : Optional[int] , snake_case__ : Tuple ): """simple docstring""" return self.model.generate(inputs=snake_case__ ) def UpperCamelCase ( self : str , snake_case__ : Union[str, Any] ): """simple docstring""" return self.pre_processor.batch_decode(snake_case__ , skip_special_tokens=snake_case__ )[0]
673
0
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class UpperCamelCase ( yaml.SafeLoader ): def UpperCamelCase ( self : List[str] , snake_case__ : int ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE = [tuple(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else key for key in keys] SCREAMING_SNAKE_CASE = Counter(snake_case__ ) SCREAMING_SNAKE_CASE = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"""Got duplicate yaml keys: {duplicate_keys}""" ) def UpperCamelCase ( self : str , snake_case__ : str , snake_case__ : Any=False ): """simple docstring""" SCREAMING_SNAKE_CASE = super().construct_mapping(snake_case__ , deep=snake_case__ ) self._check_no_duplicates_on_constructed_node(snake_case__ ) return mapping def __lowerCAmelCase ( _UpperCamelCase : str ) -> Tuple[Optional[str], str]: '''simple docstring''' SCREAMING_SNAKE_CASE = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE = full_content[1:].index('---' ) + 1 SCREAMING_SNAKE_CASE = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(_UpperCamelCase ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): # class attributes __UpperCamelCase ={"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def UpperCamelCase ( cls : Union[str, Any] , snake_case__ : Path ): """simple docstring""" with open(snake_case__ , encoding='utf-8' ) as readme_file: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(snake_case__ ) else: return cls() def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Path ): """simple docstring""" if path.exists(): with open(snake_case__ , encoding='utf-8' ) as readme_file: SCREAMING_SNAKE_CASE = readme_file.read() else: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = self._to_readme(snake_case__ ) with open(snake_case__ , 'w' , encoding='utf-8' ) as readme_file: readme_file.write(snake_case__ ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : Optional[str] = None ): """simple docstring""" if readme_content is not None: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = _split_yaml_from_readme(snake_case__ ) SCREAMING_SNAKE_CASE = '---\n' + self.to_yaml_string() + '---\n' + content else: SCREAMING_SNAKE_CASE = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def UpperCamelCase ( cls : Dict , snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE = yaml.load(snake_case__ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE = { (key.replace('-' , '_' ) if key.replace('-' , '_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**snake_case__ ) def UpperCamelCase ( self : str ): """simple docstring""" return yaml.safe_dump( { (key.replace('_' , '-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=snake_case__ , allow_unicode=snake_case__ , encoding='utf-8' , ).decode('utf-8' ) a_ : int = { "image-classification": [], "translation": [], "image-segmentation": [], "fill-mask": [], "automatic-speech-recognition": [], "token-classification": [], "sentence-similarity": [], "audio-classification": [], "question-answering": [], "summarization": [], "zero-shot-classification": [], "table-to-text": [], "feature-extraction": [], "other": [], "multiple-choice": [], "text-classification": [], "text-to-image": [], "text2text-generation": [], "zero-shot-image-classification": [], "tabular-classification": [], "tabular-regression": [], "image-to-image": [], "tabular-to-text": [], "unconditional-image-generation": [], "text-retrieval": [], "text-to-speech": [], "object-detection": [], "audio-to-audio": [], "text-generation": [], "conversational": [], "table-question-answering": [], "visual-question-answering": [], "image-to-text": [], "reinforcement-learning": [], "voice-activity-detection": [], "time-series-forecasting": [], "document-question-answering": [], } if __name__ == "__main__": from argparse import ArgumentParser a_ : int = ArgumentParser(usage="Validate the yaml metadata block of a README.md file.") ap.add_argument("readme_filepath") a_ : Optional[int] = ap.parse_args() a_ : List[str] = Path(args.readme_filepath) a_ : str = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
708
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version a_ : List[str] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize a_ : Dict = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" a_ : str = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" a_ : int = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def UpperCamelCase ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def UpperCamelCase ( self : Dict , snake_case__ : int ): """simple docstring""" import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : List[Any]=0.9 , snake_case__ : Optional[Any]=3 , snake_case__ : Any=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5' ): SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score( word_tokenize(snake_case__ ) , word_tokenize(snake_case__ ) , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] else: SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score(snake_case__ , snake_case__ , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] return {"meteor": np.mean(snake_case__ )}
673
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a_ : Tuple = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
709
import numpy as np def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
673
0
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class UpperCamelCase : def __init__( self : Any , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : bool = True , snake_case__ : bool = False ): """simple docstring""" SCREAMING_SNAKE_CASE = scheduler SCREAMING_SNAKE_CASE = optimizers if isinstance(snake_case__ , (list, tuple) ) else [optimizers] SCREAMING_SNAKE_CASE = split_batches SCREAMING_SNAKE_CASE = step_with_optimizer SCREAMING_SNAKE_CASE = GradientState() def UpperCamelCase ( self : List[Any] , *snake_case__ : List[str] , **snake_case__ : Any ): """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*snake_case__ , **snake_case__ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*snake_case__ , **snake_case__ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE = AcceleratorState().num_processes for _ in range(snake_case__ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*snake_case__ , **snake_case__ ) else: self.scheduler.step(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Dict ): """simple docstring""" return self.scheduler.get_last_lr() def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return self.scheduler.state_dict() def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[int] ): """simple docstring""" self.scheduler.load_state_dict(snake_case__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" return self.scheduler.get_lr() def UpperCamelCase ( self : Optional[Any] , *snake_case__ : Union[str, Any] , **snake_case__ : List[str] ): """simple docstring""" return self.scheduler.print_lr(*snake_case__ , **snake_case__ )
710
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ : Any = logging.get_logger(__name__) a_ : Dict = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="van" def __init__( self : Optional[Any] , snake_case__ : Tuple=2_2_4 , snake_case__ : Dict=3 , snake_case__ : Union[str, Any]=[7, 3, 3, 3] , snake_case__ : str=[4, 2, 2, 2] , snake_case__ : Optional[Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , snake_case__ : Optional[Any]=[3, 3, 1_2, 3] , snake_case__ : Tuple=[8, 8, 4, 4] , snake_case__ : Any="gelu" , snake_case__ : Dict=0.02 , snake_case__ : List[str]=1E-6 , snake_case__ : int=1E-2 , snake_case__ : Any=0.0 , snake_case__ : Tuple=0.0 , **snake_case__ : Any , ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_sizes SCREAMING_SNAKE_CASE = strides SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = mlp_ratios SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = dropout_rate
673
0
def __lowerCAmelCase ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] SCREAMING_SNAKE_CASE = 6 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 19_01 SCREAMING_SNAKE_CASE = 0 while year < 20_01: day += 7 if (year % 4 == 0 and year % 1_00 != 0) or (year % 4_00 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 SCREAMING_SNAKE_CASE = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 SCREAMING_SNAKE_CASE = day - 29 else: if day > days_per_month[month - 1]: month += 1 SCREAMING_SNAKE_CASE = day - days_per_month[month - 2] if month > 12: year += 1 SCREAMING_SNAKE_CASE = 1 if year < 20_01 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
711
def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : int ) -> list[str]: '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(_UpperCamelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
673
0
def __lowerCAmelCase ( _UpperCamelCase : list[list[int | float]] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = len(matrix[0] ) SCREAMING_SNAKE_CASE = min(_UpperCamelCase , _UpperCamelCase ) for row in range(_UpperCamelCase ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , _UpperCamelCase ): SCREAMING_SNAKE_CASE = matrix[col][row] / matrix[row][row] for i in range(_UpperCamelCase , _UpperCamelCase ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows SCREAMING_SNAKE_CASE = True for i in range(row + 1 , _UpperCamelCase ): if matrix[i][row] != 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = matrix[i], matrix[row] SCREAMING_SNAKE_CASE = False break if reduce: rank -= 1 for i in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
712
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING a_ : Dict = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : Any , **snake_case__ : Optional[int] ): """simple docstring""" super().__init__(**snake_case__ ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , 'vision' ) self.check_model_type(snake_case__ ) def __call__( self : List[Any] , snake_case__ : Union[str, "Image.Image", List[Dict[str, Any]]] , snake_case__ : Union[str, List[str]] = None , **snake_case__ : Union[str, Any] , ): """simple docstring""" if "text_queries" in kwargs: SCREAMING_SNAKE_CASE = kwargs.pop('text_queries' ) if isinstance(snake_case__ , (str, Image.Image) ): SCREAMING_SNAKE_CASE = {'image': image, 'candidate_labels': candidate_labels} else: SCREAMING_SNAKE_CASE = image SCREAMING_SNAKE_CASE = super().__call__(snake_case__ , **snake_case__ ) return results def UpperCamelCase ( self : Union[str, Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = {} if "threshold" in kwargs: SCREAMING_SNAKE_CASE = kwargs['threshold'] if "top_k" in kwargs: SCREAMING_SNAKE_CASE = kwargs['top_k'] return {}, {}, postprocess_params def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = load_image(inputs['image'] ) SCREAMING_SNAKE_CASE = inputs['candidate_labels'] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = candidate_labels.split(',' ) SCREAMING_SNAKE_CASE = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE = self.tokenizer(snake_case__ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE = self.image_processor(snake_case__ , return_tensors=self.framework ) yield { "is_last": i == len(snake_case__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def UpperCamelCase ( self : Any , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = model_inputs.pop('target_size' ) SCREAMING_SNAKE_CASE = model_inputs.pop('candidate_label' ) SCREAMING_SNAKE_CASE = model_inputs.pop('is_last' ) SCREAMING_SNAKE_CASE = self.model(**snake_case__ ) SCREAMING_SNAKE_CASE = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : str=0.1 , snake_case__ : Union[str, Any]=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: SCREAMING_SNAKE_CASE = model_output['candidate_label'] SCREAMING_SNAKE_CASE = BaseModelOutput(snake_case__ ) SCREAMING_SNAKE_CASE = self.image_processor.post_process_object_detection( outputs=snake_case__ , threshold=snake_case__ , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): SCREAMING_SNAKE_CASE = outputs['scores'][index].item() SCREAMING_SNAKE_CASE = self._get_bounding_box(outputs['boxes'][index][0] ) SCREAMING_SNAKE_CASE = {'score': score, 'label': label, 'box': box} results.append(snake_case__ ) SCREAMING_SNAKE_CASE = sorted(snake_case__ , key=lambda snake_case__ : x["score"] , reverse=snake_case__ ) if top_k: SCREAMING_SNAKE_CASE = results[:top_k] return results def UpperCamelCase ( self : List[Any] , snake_case__ : "torch.Tensor" ): """simple docstring""" if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = box.int().tolist() SCREAMING_SNAKE_CASE = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
673
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a_ : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =XLMRobertaTokenizer __UpperCamelCase =XLMRobertaTokenizerFast __UpperCamelCase =True __UpperCamelCase =True def UpperCamelCase ( self : Optional[int] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = '<pad>' SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case__ ) , 1_0_0_2 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_2 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(snake_case__ , keep_accents=snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['โ–This', 'โ–is', 'โ–a', 'โ–t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('I was born in 92000, and this is falsรฉ.' ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'รฉ', '.', ] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def UpperCamelCase ( self : Any ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(snake_case__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) @cached_property def UpperCamelCase ( self : Optional[int] ): """simple docstring""" return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def UpperCamelCase ( self : int ): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(snake_case__ , f.name ) SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(f.name , keep_accents=snake_case__ ) SCREAMING_SNAKE_CASE = pickle.dumps(snake_case__ ) pickle.loads(snake_case__ ) def UpperCamelCase ( self : Dict ): """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = 'I was born in 92000, and this is falsรฉ.' SCREAMING_SNAKE_CASE = tokenizer.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(snake_case__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) @slow def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'Hello World!' SCREAMING_SNAKE_CASE = [0, 3_5_3_7_8, 6_6_6_1, 3_8, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) SCREAMING_SNAKE_CASE = [ 0, 3_2_9_3, 8_3, 1_0, 4_5_5_2, 4_9_8_9, 7_9_8_6, 6_7_8, 1_0, 5_9_1_5, 1_1_1, 1_7_9_4_5_9, 1_2_4_8_5_0, 4, 6_0_4_4, 2_3_7, 1_2, 6, 5, 6, 4, 6_7_8_0, 7_0_5, 1_5, 1_3_8_8, 4_4, 3_7_8, 1_0_1_1_4, 7_1_1, 1_5_2, 2_0, 6, 5, 2_2_3_7_6, 6_4_2, 1_2_2_1, 1_5_1_9_0, 3_4_1_5_3, 4_5_0, 5_6_0_8, 9_5_9, 1_1_1_9, 5_7_7_0_2, 1_3_6, 1_8_6, 4_7, 1_0_9_8, 2_9_3_6_7, 4_7, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_0_4_4, 2_3_7, 6_2_8_4, 5_0_9_0_1, 5_2_8, 3_1, 9_0, 3_4, 9_2_7, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = {'input_ids': [[0, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [0, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
713
def __lowerCAmelCase ( _UpperCamelCase : int = 10_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 2**power SCREAMING_SNAKE_CASE = str(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 for i in list_num: sum_of_num += int(_UpperCamelCase ) return sum_of_num if __name__ == "__main__": a_ : List[str] = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) a_ : int = solution(power) print("Sum of the digits is: ", result)
673
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : Dict = logging.get_logger(__name__) a_ : Optional[int] = "โ–" a_ : Optional[Any] = {"vocab_file": "spiece.model"} a_ : Dict = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } a_ : Optional[int] = { "google/reformer-crime-and-punishment": 52_4288, } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =["input_ids", "attention_mask"] def __init__( self : List[str] , snake_case__ : List[Any] , snake_case__ : Optional[int]="</s>" , snake_case__ : Dict="<unk>" , snake_case__ : List[Any]=[] , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case__ , unk_token=snake_case__ , additional_special_tokens=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) @property def UpperCamelCase ( self : Tuple ): """simple docstring""" return self.sp_model.get_piece_size() def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self : int , snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str ): """simple docstring""" return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : Tuple ): """simple docstring""" return self.sp_model.piece_to_id(snake_case__ ) def UpperCamelCase ( self : Any , snake_case__ : str ): """simple docstring""" if index < self.sp_model.get_piece_size(): SCREAMING_SNAKE_CASE = self.sp_model.IdToPiece(snake_case__ ) return token def UpperCamelCase ( self : int , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case__ ) + token SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(snake_case__ ) out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def UpperCamelCase ( self : List[Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , 'wb' ) as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
714
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="facebook/bart-large-mnli" __UpperCamelCase =( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) __UpperCamelCase ="text_classifier" __UpperCamelCase =AutoTokenizer __UpperCamelCase =AutoModelForSequenceClassification __UpperCamelCase =["text", ["text"]] __UpperCamelCase =["text"] def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): SCREAMING_SNAKE_CASE = int(snake_case__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[str] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(snake_case__ ) , [F"""This example is {label}""" for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
673
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer a_ : Any = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} a_ : Union[str, Any] = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } a_ : Tuple = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } a_ : Any = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } a_ : str = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } a_ : int = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } a_ : Optional[Any] = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } a_ : Any = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } a_ : Optional[int] = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } a_ : int = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __UpperCamelCase =DPRContextEncoderTokenizer class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __UpperCamelCase =DPRQuestionEncoderTokenizer a_ : Tuple = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) a_ : Any = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) a_ : int = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(SCREAMING_SNAKE_CASE ) class UpperCamelCase : def __call__( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , snake_case__ : Union[bool, str] = False , snake_case__ : Union[bool, str] = False , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Optional[bool] = None , **snake_case__ : str , ): """simple docstring""" if titles is None and texts is None: return super().__call__( snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , return_tensors=snake_case__ , return_attention_mask=snake_case__ , **snake_case__ , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE = titles if texts is None else texts return super().__call__( snake_case__ , snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , return_tensors=snake_case__ , return_attention_mask=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = titles if not isinstance(snake_case__ , snake_case__ ) else [titles] SCREAMING_SNAKE_CASE = texts if not isinstance(snake_case__ , snake_case__ ) else [texts] SCREAMING_SNAKE_CASE = len(snake_case__ ) SCREAMING_SNAKE_CASE = questions if not isinstance(snake_case__ , snake_case__ ) else [questions] * n_passages assert len(snake_case__ ) == len( snake_case__ ), F"""There should be as many titles than texts but got {len(snake_case__ )} titles and {len(snake_case__ )} texts.""" SCREAMING_SNAKE_CASE = super().__call__(snake_case__ , snake_case__ , padding=snake_case__ , truncation=snake_case__ )['input_ids'] SCREAMING_SNAKE_CASE = super().__call__(snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ )['input_ids'] SCREAMING_SNAKE_CASE = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(snake_case__ , snake_case__ ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE = attention_mask return self.pad(snake_case__ , padding=snake_case__ , max_length=snake_case__ , return_tensors=snake_case__ ) def UpperCamelCase ( self : Tuple , snake_case__ : BatchEncoding , snake_case__ : DPRReaderOutput , snake_case__ : int = 1_6 , snake_case__ : int = 6_4 , snake_case__ : int = 4 , ): """simple docstring""" SCREAMING_SNAKE_CASE = reader_input['input_ids'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = reader_output[:3] SCREAMING_SNAKE_CASE = len(snake_case__ ) SCREAMING_SNAKE_CASE = sorted(range(snake_case__ ) , reverse=snake_case__ , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE = len(snake_case__ ) SCREAMING_SNAKE_CASE = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=snake_case__ , top_spans=snake_case__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=snake_case__ , start_index=snake_case__ , end_index=snake_case__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(snake_case__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : List[int] , snake_case__ : int , snake_case__ : int , ): """simple docstring""" SCREAMING_SNAKE_CASE = [] for start_index, start_score in enumerate(snake_case__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE = sorted(snake_case__ , key=lambda snake_case__ : x[1] , reverse=snake_case__ ) SCREAMING_SNAKE_CASE = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" SCREAMING_SNAKE_CASE = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(snake_case__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(SCREAMING_SNAKE_CASE ) class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =READER_PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =READER_PRETRAINED_INIT_CONFIGURATION __UpperCamelCase =["input_ids", "attention_mask"] __UpperCamelCase =DPRReaderTokenizer
715
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a_ : str = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a_ : int = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.1_5}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names a_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a_ : List[Any] = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a_ : Any = "allenai" def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = dict((re.sub(R'@@$' , '' , _UpperCamelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , _UpperCamelCase ), v) for k, v in d.items() ) SCREAMING_SNAKE_CASE = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] SCREAMING_SNAKE_CASE = d[k] # restore return da def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : List[str] ) -> Dict: '''simple docstring''' assert os.path.exists(_UpperCamelCase ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel SCREAMING_SNAKE_CASE = cls.hub_models() SCREAMING_SNAKE_CASE = {'bpe': 'fastbpe', 'tokenizer': 'moses'} SCREAMING_SNAKE_CASE = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"""using checkpoint {checkpoint_file}""" ) SCREAMING_SNAKE_CASE = hub_utils.from_pretrained( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , archive_map=_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = vars(chkpt['args']['model'] ) SCREAMING_SNAKE_CASE = args['source_lang'] SCREAMING_SNAKE_CASE = args['target_lang'] SCREAMING_SNAKE_CASE = dirname(_UpperCamelCase ) SCREAMING_SNAKE_CASE = basename(_UpperCamelCase ) # dicts SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{src_lang}.txt""" ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , f"""dict.{tgt_lang}.txt""" ) SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(src_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-src.json' ) print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab SCREAMING_SNAKE_CASE = True for k in src_vocab.keys(): if not k.islower(): SCREAMING_SNAKE_CASE = False break SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rewrite_dict_keys(tgt_dict.indices ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'vocab-tgt.json' ) print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # merges_file (bpecodes) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.exists(_UpperCamelCase ): break with open(_UpperCamelCase , encoding='utf-8' ) as fin: SCREAMING_SNAKE_CASE = fin.read() SCREAMING_SNAKE_CASE = re.sub(R' \d+$' , '' , _UpperCamelCase , 0 , re.M ) # remove frequency number print(f"""Generating {merges_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_UpperCamelCase ) # model config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args['bpe']}""" assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args['tokenizer']}""" SCREAMING_SNAKE_CASE = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with SCREAMING_SNAKE_CASE = 5 SCREAMING_SNAKE_CASE = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: SCREAMING_SNAKE_CASE = best_score_hparams[model_dir]['length_penalty'] else: SCREAMING_SNAKE_CASE = 1.0 print(f"""Generating {fsmt_model_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # tokenizer config SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = { 'langs': [src_lang, tgt_lang], 'model_max_length': 10_24, 'do_lower_case': do_lower_case, } print(f"""Generating {fsmt_tokenizer_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # model SCREAMING_SNAKE_CASE = chkpt['models'][0] SCREAMING_SNAKE_CASE = model.state_dict() # rename keys to start with 'model.' SCREAMING_SNAKE_CASE = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys SCREAMING_SNAKE_CASE = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTConfig.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = FSMTForConditionalGeneration(_UpperCamelCase ) # check that it loads ok model_new.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) # save SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(_UpperCamelCase , _UpperCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f"""cd {data_root}""" ) print(f"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a_ : int = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
673
0
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class UpperCamelCase : __UpperCamelCase =BlenderbotSmallConfig __UpperCamelCase ={} __UpperCamelCase ="gelu" def __init__( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : List[Any]=1_3 , snake_case__ : List[Any]=7 , snake_case__ : str=True , snake_case__ : Optional[Any]=False , snake_case__ : Union[str, Any]=9_9 , snake_case__ : Optional[int]=3_2 , snake_case__ : str=2 , snake_case__ : str=4 , snake_case__ : Dict=3_7 , snake_case__ : Dict=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Optional[int]=2_0 , snake_case__ : int=2 , snake_case__ : str=1 , snake_case__ : Union[str, Any]=0 , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = pad_token_id SCREAMING_SNAKE_CASE = bos_token_id def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) SCREAMING_SNAKE_CASE = prepare_blenderbot_small_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, inputs_dict def UpperCamelCase ( self : Any , snake_case__ : Tuple , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFBlenderbotSmallModel(config=snake_case__ ).get_decoder() SCREAMING_SNAKE_CASE = inputs_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids[:1, :] SCREAMING_SNAKE_CASE = inputs_dict['attention_mask'][:1, :] SCREAMING_SNAKE_CASE = inputs_dict['head_mask'] SCREAMING_SNAKE_CASE = 1 # first forward pass SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ )[0] SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1E-3 ) def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Tuple=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , ) -> Union[str, Any]: '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(_UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __UpperCamelCase =(TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase =( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFBlenderbotSmallModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) @require_tokenizers @require_tf class UpperCamelCase ( unittest.TestCase ): __UpperCamelCase =[ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] __UpperCamelCase ="facebook/blenderbot_small-90M" @cached_property def UpperCamelCase ( self : List[str] ): """simple docstring""" return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) @cached_property def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , return_tensors='tf' ) SCREAMING_SNAKE_CASE = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=snake_case__ , ) SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
716
import random def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : float , _UpperCamelCase : bool = False ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE = {i: [] for i in range(_UpperCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_UpperCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_UpperCamelCase ): for j in range(i + 1 , _UpperCamelCase ): if random.random() < probability: graph[i].append(_UpperCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_UpperCamelCase ) return graph def __lowerCAmelCase ( _UpperCamelCase : int ) -> dict: '''simple docstring''' return { i: [j for j in range(_UpperCamelCase ) if i != j] for i in range(_UpperCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
673
0
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class UpperCamelCase ( unittest.TestCase ): __UpperCamelCase =MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCamelCase =TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def UpperCamelCase ( self : str , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = TextaTextGenerationPipeline(model=snake_case__ , tokenizer=snake_case__ ) return generator, ["Something to write", "Something else"] def UpperCamelCase ( self : Dict , snake_case__ : int , snake_case__ : int ): """simple docstring""" SCREAMING_SNAKE_CASE = generator('Something there' ) self.assertEqual(snake_case__ , [{'generated_text': ANY(snake_case__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) SCREAMING_SNAKE_CASE = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=snake_case__ ) self.assertEqual( snake_case__ , [ [{'generated_text': ANY(snake_case__ )}, {'generated_text': ANY(snake_case__ )}], [{'generated_text': ANY(snake_case__ )}, {'generated_text': ANY(snake_case__ )}], ] , ) SCREAMING_SNAKE_CASE = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case__ ) self.assertEqual( snake_case__ , [ [{'generated_text': ANY(snake_case__ )}, {'generated_text': ANY(snake_case__ )}], [{'generated_text': ANY(snake_case__ )}, {'generated_text': ANY(snake_case__ )}], ] , ) with self.assertRaises(snake_case__ ): generator(4 ) @require_torch def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=snake_case__ ) self.assertEqual(snake_case__ , [{'generated_text': ''}] ) SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = generator( 'Something there' , num_return_sequences=snake_case__ , num_beams=snake_case__ , ) SCREAMING_SNAKE_CASE = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = generator('This is a test' , do_sample=snake_case__ , num_return_sequences=2 , return_tensors=snake_case__ ) self.assertEqual( snake_case__ , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) SCREAMING_SNAKE_CASE = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE = '<pad>' SCREAMING_SNAKE_CASE = generator( ['This is a test', 'This is a second test'] , do_sample=snake_case__ , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case__ , ) self.assertEqual( snake_case__ , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=snake_case__ ) self.assertEqual(snake_case__ , [{'generated_text': ''}] )
717
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : def __init__( self : List[str] , snake_case__ : Dict , snake_case__ : Optional[Any]=1_3 , snake_case__ : Union[str, Any]=7 , snake_case__ : List[str]=True , snake_case__ : Any=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=9_9 , snake_case__ : str=3_2 , snake_case__ : Dict=5 , snake_case__ : str=4 , snake_case__ : int=3_7 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Any=0.1 , snake_case__ : Dict=0.1 , snake_case__ : Optional[Any]=5_1_2 , snake_case__ : List[Any]=1_6 , snake_case__ : str=2 , snake_case__ : int=0.02 , snake_case__ : List[str]=3 , snake_case__ : Dict=4 , snake_case__ : str=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def UpperCamelCase ( self : List[str] , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ , token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : List[Any] , snake_case__ : str , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : int , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = NystromformerForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : int , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = NystromformerForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase =( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def UpperCamelCase ( self : List[str] ): """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(snake_case__ )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.4_532, -0.0_936, 0.5_137], [-0.2_676, 0.0_628, 0.6_186], [-0.3_629, -0.1_726, 0.4_716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1E-4 ) ) @slow def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = 'the [MASK] of Belgium is Brussels' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE = tokenizer(snake_case__ , return_tensors='pt' ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(encoding.input_ids ).logits SCREAMING_SNAKE_CASE = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case__ ) , 'capital' )
673
0
def __lowerCAmelCase ( ) -> int: '''simple docstring''' return [ a * b * (10_00 - a - b) for a in range(1 , 9_99 ) for b in range(_UpperCamelCase , 9_99 ) if (a * a + b * b == (10_00 - a - b) ** 2) ][0] if __name__ == "__main__": print(F"""{solution() = }""")
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
673
0
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =FlaxAutoencoderKL @property def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = (3_2, 3_2) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE = jax.random.uniform(snake_case__ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = { 'block_out_channels': [3_2, 6_4], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } SCREAMING_SNAKE_CASE = self.dummy_input return init_dict, inputs_dict
719
import heapq import sys import numpy as np a_ : Optional[int] = tuple[int, int] class UpperCamelCase : def __init__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() def UpperCamelCase ( self : List[Any] ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf' ) def UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.elements ) == 0 def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(snake_case__ ) else: # update # print("update", item) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" if item in self.set: self.set.remove(snake_case__ ) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def UpperCamelCase ( self : str ): """simple docstring""" return self.elements[0][1] def UpperCamelCase ( self : Tuple ): """simple docstring""" ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) self.set.remove(snake_case__ ) return (priority, item) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) return np.linalg.norm(a - b ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Dict: '''simple docstring''' return consistent_heuristic(_UpperCamelCase , _UpperCamelCase ) // t def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[int]: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : int , _UpperCamelCase : TPos , _UpperCamelCase : dict[TPos, float] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = g_function[start] + Wa * heuristics[i](_UpperCamelCase , _UpperCamelCase ) return ans def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = np.chararray((n, n) ) for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = '*' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE = '#' SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = x # print(x) SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[x] SCREAMING_SNAKE_CASE = '-' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: print(_UpperCamelCase , end=' ' ) SCREAMING_SNAKE_CASE = back_pointer[x] print(_UpperCamelCase ) sys.exit() def __lowerCAmelCase ( _UpperCamelCase : TPos ) -> Any: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , ) -> List[Any]: '''simple docstring''' for itera in range(_UpperCamelCase ): open_list[itera].remove_element(_UpperCamelCase ) # print("s", s) # print("j", j) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = s SCREAMING_SNAKE_CASE = (x - 1, y) SCREAMING_SNAKE_CASE = (x + 1, y) SCREAMING_SNAKE_CASE = (x, y + 1) SCREAMING_SNAKE_CASE = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = float('inf' ) if valid(_UpperCamelCase ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE = g_function[s] + 1 SCREAMING_SNAKE_CASE = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCamelCase , key(_UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , _UpperCamelCase ): if key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) <= Wa * key( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ): open_list[j].put( _UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a_ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a_ : List[str] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a_ : Union[str, Any] = make_common_ground() a_ : Tuple = blocks_blk # hyper parameters a_ : Any = 1 a_ : List[str] = 1 a_ : Union[str, Any] = 20 a_ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a_ : int = (0, 0) a_ : Optional[int] = (n - 1, n - 1) a_ : Union[str, Any] = 1 def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos , _UpperCamelCase : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {start: 0, goal: float('inf' )} SCREAMING_SNAKE_CASE = {start: -1, goal: -1} SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() for i in range(_UpperCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , _UpperCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = open_list[i].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_inad.append(_UpperCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE = open_list[0].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_anchor.append(_UpperCamelCase ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_UpperCamelCase ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
673
0
def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> int: '''simple docstring''' while a != 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = b % a, a return b def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> int: '''simple docstring''' if gcd(_UpperCamelCase , _UpperCamelCase ) != 1: SCREAMING_SNAKE_CASE = f"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(_UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1, 0, a SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0, 1, m while va != 0: SCREAMING_SNAKE_CASE = ua // va SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
720
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a_ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : str = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Any=8 ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=5_12 , _UpperCamelCase : Union[str, Any]=5_12 ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) SCREAMING_SNAKE_CASE = np.array(pil_image.convert('RGB' ) ) SCREAMING_SNAKE_CASE = arr.astype(np.floataa ) / 1_27.5 - 1 SCREAMING_SNAKE_CASE = np.transpose(_UpperCamelCase , [2, 0, 1] ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : int , snake_case__ : UNetaDConditionModel , snake_case__ : DDPMScheduler , snake_case__ : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , ) SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase ( self : Any , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = min(int(num_inference_steps * strength ) , snake_case__ ) SCREAMING_SNAKE_CASE = max(num_inference_steps - init_timestep , 0 ) SCREAMING_SNAKE_CASE = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase ( self : List[str] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : str=None ): """simple docstring""" if not isinstance(snake_case__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case__ )}""" ) SCREAMING_SNAKE_CASE = image.to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = batch_size * num_images_per_prompt if image.shape[1] == 4: SCREAMING_SNAKE_CASE = image else: if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case__ ) ] SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) else: SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ ).latent_dist.sample(snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.config.scaling_factor * init_latents SCREAMING_SNAKE_CASE = torch.cat([init_latents] , dim=0 ) SCREAMING_SNAKE_CASE = init_latents.shape SCREAMING_SNAKE_CASE = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) # get latents SCREAMING_SNAKE_CASE = self.scheduler.add_noise(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = init_latents return latents def UpperCamelCase ( self : int , snake_case__ : List[str]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) SCREAMING_SNAKE_CASE = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[int]=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) SCREAMING_SNAKE_CASE = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=snake_case__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase ( self : Dict ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case__ ) def __call__( self : str , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : int = 5_1_2 , snake_case__ : int = 5_1_2 , snake_case__ : int = 1_0_0 , snake_case__ : float = 4.0 , snake_case__ : float = 0.3 , snake_case__ : int = 1 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , ): """simple docstring""" SCREAMING_SNAKE_CASE = self._execution_device SCREAMING_SNAKE_CASE = guidance_scale > 1.0 if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = image_embeds.shape[0] if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = torch.cat(snake_case__ , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 ) SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = [image] if not all(isinstance(snake_case__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(snake_case__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) SCREAMING_SNAKE_CASE = torch.cat([prepare_image(snake_case__ , snake_case__ , snake_case__ ) for i in image] , dim=0 ) SCREAMING_SNAKE_CASE = image.to(dtype=image_embeds.dtype , device=snake_case__ ) SCREAMING_SNAKE_CASE = self.movq.encode(snake_case__ )['latents'] SCREAMING_SNAKE_CASE = latents.repeat_interleave(snake_case__ , dim=0 ) self.scheduler.set_timesteps(snake_case__ , device=snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_timesteps(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = timesteps[:1].repeat(batch_size * num_images_per_prompt ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = downscale_height_and_width(snake_case__ , snake_case__ , self.movq_scale_factor ) SCREAMING_SNAKE_CASE = self.prepare_latents( snake_case__ , snake_case__ , snake_case__ , snake_case__ , image_embeds.dtype , snake_case__ , snake_case__ ) for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE = {'image_embeds': image_embeds} SCREAMING_SNAKE_CASE = self.unet( sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , )[0] # post-processing SCREAMING_SNAKE_CASE = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
673
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available a_ : Optional[Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : str = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys a_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
721
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() a_ : List[Any] = logging.get_logger("transformers.models.speecht5") def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Dict: '''simple docstring''' hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Any=None , _UpperCamelCase : List[str]=None , ) -> Tuple: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig.from_pretrained(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE = SpeechTaHifiGan(_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = np.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCamelCase ).float() model.save_pretrained(_UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the ๐Ÿค— hub." ) a_ : Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
673
0
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger("transformers.models.speecht5") __lowerCAmelCase : List[Any] = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } __lowerCAmelCase : Optional[int] = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } __lowerCAmelCase : List[Any] = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } __lowerCAmelCase : Optional[int] = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } __lowerCAmelCase : int = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } __lowerCAmelCase : Any = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } __lowerCAmelCase : Dict = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } __lowerCAmelCase : List[Any] = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } __lowerCAmelCase : List[str] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __lowerCAmelCase : int = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __lowerCAmelCase : Optional[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __lowerCAmelCase : List[Any] = [] __lowerCAmelCase : Dict = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] __lowerCAmelCase : Tuple = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] __lowerCAmelCase : Union[str, Any] = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] __lowerCAmelCase : Dict = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" for attribute in key.split(""".""" ): lowerCAmelCase__ = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: lowerCAmelCase__ = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: lowerCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase__ = value elif weight_type == "weight_g": lowerCAmelCase__ = value elif weight_type == "weight_v": lowerCAmelCase__ = value elif weight_type == "bias": lowerCAmelCase__ = value elif weight_type == "running_mean": lowerCAmelCase__ = value elif weight_type == "running_var": lowerCAmelCase__ = value elif weight_type == "num_batches_tracked": lowerCAmelCase__ = value else: lowerCAmelCase__ = value logger.info(f"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCAmelCase__ , lowerCAmelCase__ = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [] if task == "s2t": lowerCAmelCase__ = hf_model.speechta.encoder.prenet.feature_encoder lowerCAmelCase__ = MAPPING_S2T lowerCAmelCase__ = IGNORE_KEYS_S2T elif task == "t2s": lowerCAmelCase__ = None lowerCAmelCase__ = MAPPING_T2S lowerCAmelCase__ = IGNORE_KEYS_T2S elif task == "s2s": lowerCAmelCase__ = hf_model.speechta.encoder.prenet.feature_encoder lowerCAmelCase__ = MAPPING_S2S lowerCAmelCase__ = IGNORE_KEYS_S2S else: raise ValueError(f"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(lowerCamelCase__ , lowerCamelCase__ ): logger.info(f"""{name} was ignored""" ) continue lowerCAmelCase__ = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == """group""" , ) lowerCAmelCase__ = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: lowerCAmelCase__ , lowerCAmelCase__ = key.split(""".*.""" ) if prefix in name and suffix in name: lowerCAmelCase__ = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: lowerCAmelCase__ = True if "*" in mapped_key: lowerCAmelCase__ = name.split(lowerCamelCase__ )[0].split(""".""" )[-2] lowerCAmelCase__ = mapped_key.replace("""*""" , lowerCamelCase__ ) if "weight_g" in name: lowerCAmelCase__ = """weight_g""" elif "weight_v" in name: lowerCAmelCase__ = """weight_v""" elif "bias" in name: lowerCAmelCase__ = """bias""" elif "weight" in name: lowerCAmelCase__ = """weight""" elif "running_mean" in name: lowerCAmelCase__ = """running_mean""" elif "running_var" in name: lowerCAmelCase__ = """running_var""" elif "num_batches_tracked" in name: lowerCAmelCase__ = """num_batches_tracked""" else: lowerCAmelCase__ = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = full_name.split("""conv_layers.""" )[-1] lowerCAmelCase__ = name.split(""".""" ) lowerCAmelCase__ = int(items[0] ) lowerCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCamelCase__ ) @torch.no_grad() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , ): """simple docstring""" if config_path is not None: lowerCAmelCase__ = SpeechTaConfig.from_pretrained(lowerCamelCase__ ) else: lowerCAmelCase__ = SpeechTaConfig() if task == "s2t": lowerCAmelCase__ = config.max_text_positions lowerCAmelCase__ = SpeechTaForSpeechToText(lowerCamelCase__ ) elif task == "t2s": lowerCAmelCase__ = 1876 lowerCAmelCase__ = 600 lowerCAmelCase__ = config.max_speech_positions lowerCAmelCase__ = SpeechTaForTextToSpeech(lowerCamelCase__ ) elif task == "s2s": lowerCAmelCase__ = 1876 lowerCAmelCase__ = config.max_speech_positions lowerCAmelCase__ = SpeechTaForSpeechToSpeech(lowerCamelCase__ ) else: raise ValueError(f"""Unknown task name: {task}""" ) if vocab_path: lowerCAmelCase__ = SpeechTaTokenizer(lowerCamelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it lowerCAmelCase__ = AddedToken("""<mask>""" , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) lowerCAmelCase__ = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) lowerCAmelCase__ = SpeechTaFeatureExtractor() lowerCAmelCase__ = SpeechTaProcessor(tokenizer=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) lowerCAmelCase__ = torch.load(lowerCamelCase__ ) recursively_load_weights(fairseq_checkpoint["""model"""] , lowerCamelCase__ , lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the ๐Ÿค— hub." ) __lowerCAmelCase : Any = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
674
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Tuple = PegasusTokenizer UpperCamelCase_ : Any = PegasusTokenizerFast UpperCamelCase_ : int = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : Optional[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any] ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = """</s>""" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(snake_case__ ) , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowerCAmelCase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase__ = """To ensure a smooth flow of bank resolutions.""" lowerCAmelCase__ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def _SCREAMING_SNAKE_CASE ( self : str ): # fmt: off lowerCAmelCase__ = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = PegasusTokenizer UpperCamelCase_ : Optional[int] = PegasusTokenizerFast UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Optional[int] = True def _SCREAMING_SNAKE_CASE ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ): return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : List[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Dict ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowerCAmelCase__ = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
674
1
"""simple docstring""" import numpy as np def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1e-12 , lowerCamelCase__ = 100 , ): """simple docstring""" assert np.shape(lowerCamelCase__ )[0] == np.shape(lowerCamelCase__ )[1] # Ensure proper dimensionality. assert np.shape(lowerCamelCase__ )[0] == np.shape(lowerCamelCase__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCamelCase__ ) == np.iscomplexobj(lowerCamelCase__ ) lowerCAmelCase__ = np.iscomplexobj(lowerCamelCase__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCamelCase__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. lowerCAmelCase__ = False lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 1e12 while not convergence: # Multiple matrix by the vector. lowerCAmelCase__ = np.dot(lowerCamelCase__ , lowerCamelCase__ ) # Normalize the resulting output vector. lowerCAmelCase__ = w / np.linalg.norm(lowerCamelCase__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) lowerCAmelCase__ = vector.conj().T if is_complex else vector.T lowerCAmelCase__ = np.dot(lowerCamelCase__ , np.dot(lowerCamelCase__ , lowerCamelCase__ ) ) # Check convergence. lowerCAmelCase__ = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: lowerCAmelCase__ = True lowerCAmelCase__ = lambda_ if is_complex: lowerCAmelCase__ = np.real(lambda_ ) return lambda_, vector def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) lowerCAmelCase__ = np.array([41, 4, 20] ) lowerCAmelCase__ = real_input_matrix.astype(np.complexaaa ) lowerCAmelCase__ = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T lowerCAmelCase__ = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": lowerCAmelCase__ = real_input_matrix lowerCAmelCase__ = real_vector elif problem_type == "complex": lowerCAmelCase__ = complex_input_matrix lowerCAmelCase__ = complex_vector # Our implementation. lowerCAmelCase__ , lowerCAmelCase__ = power_iteration(lowerCamelCase__ , lowerCamelCase__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). lowerCAmelCase__ , lowerCAmelCase__ = np.linalg.eigh(lowerCamelCase__ ) # Last eigenvalue is the maximum one. lowerCAmelCase__ = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. lowerCAmelCase__ = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCamelCase__ ) - np.abs(lowerCamelCase__ ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
674
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case__ , ) assert hasattr(self , """env""" ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] ): # configuration for running training on smdistributed Model Parallel lowerCAmelCase__ = { """enabled""": True, """processes_per_host""": 8, } lowerCAmelCase__ = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowerCAmelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowerCAmelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="""py36""" , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str ): TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] ): # create estimator lowerCAmelCase__ = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case__ )
674
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Dict = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = "โ–" __lowerCAmelCase : Dict = {"vocab_file": "sentencepiece.bpe.model"} __lowerCAmelCase : Dict = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } __lowerCAmelCase : Optional[int] = { "facebook/mbart-large-50-one-to-many-mmt": 10_24, } # fmt: off __lowerCAmelCase : str = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class a_ ( __UpperCamelCase ): UpperCamelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Optional[int] = ["input_ids", "attention_mask"] UpperCamelCase_ : List[int] = [] UpperCamelCase_ : List[int] = [] def __init__( self : List[str] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=None , snake_case__ : Union[str, Any]=None , snake_case__ : Union[str, Any]="</s>" , snake_case__ : List[str]="</s>" , snake_case__ : str="<s>" , snake_case__ : Any="<unk>" , snake_case__ : Optional[int]="<pad>" , snake_case__ : Optional[int]="<mask>" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[str] , ): # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase__ = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case__ , tgt_lang=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) lowerCAmelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | 'โ–' | 's' | 'โ–de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | 'โ–' | 's' | 'โ–de' | '-' | 'โ–a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase__ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase__ = 1 lowerCAmelCase__ = len(self.sp_model ) lowerCAmelCase__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(snake_case__ ) } lowerCAmelCase__ = {v: k for k, v in self.lang_code_to_id.items()} lowerCAmelCase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCAmelCase__ = src_lang if src_lang is not None else """en_XX""" lowerCAmelCase__ = self.lang_code_to_id[self._src_lang] lowerCAmelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _SCREAMING_SNAKE_CASE ( self : str ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return self._src_lang @src_lang.setter def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : str ): lowerCAmelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Optional[Any] ): lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None return state def __setstate__( self : Tuple , snake_case__ : Dict ): lowerCAmelCase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase__ = {} lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : str ): return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : str ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase__ = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : int ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Optional[int] ): lowerCAmelCase__ = [] lowerCAmelCase__ = """""" lowerCAmelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case__ ) + token lowerCAmelCase__ = True lowerCAmelCase__ = [] else: current_sub_tokens.append(snake_case__ ) lowerCAmelCase__ = False out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): if not os.path.isdir(snake_case__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ = os.path.join( snake_case__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , """wb""" ) as fi: lowerCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) lowerCAmelCase__ = [1] * len(self.prefix_tokens ) lowerCAmelCase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case__ )) + suffix_ones return prefix_ones + ([0] * len(snake_case__ )) + ([0] * len(snake_case__ )) + suffix_ones def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Dict , snake_case__ : str , snake_case__ : Optional[str] , snake_case__ : Optional[str] , **snake_case__ : int ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) lowerCAmelCase__ = src_lang lowerCAmelCase__ = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) lowerCAmelCase__ = self.convert_tokens_to_ids(snake_case__ ) lowerCAmelCase__ = tgt_lang_id return inputs def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] , snake_case__ : str = "en_XX" , snake_case__ : Optional[List[str]] = None , snake_case__ : str = "ro_RO" , **snake_case__ : Tuple , ): lowerCAmelCase__ = src_lang lowerCAmelCase__ = tgt_lang return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): return self.set_src_lang_special_tokens(self.src_lang ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : str ): lowerCAmelCase__ = self.lang_code_to_id[src_lang] lowerCAmelCase__ = [self.cur_lang_code_id] lowerCAmelCase__ = [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : str ): lowerCAmelCase__ = self.lang_code_to_id[tgt_lang] lowerCAmelCase__ = [self.cur_lang_code_id] lowerCAmelCase__ = [self.eos_token_id]
674
"""simple docstring""" from math import pi, sqrt def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if num <= 0: raise ValueError("""math domain error""" ) if num > 1_71.5: raise OverflowError("""math range error""" ) elif num - int(lowerCamelCase__ ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(lowerCamelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _UpperCAmelCase ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(lowerCamelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __lowerCAmelCase : Dict = 1.0 while num: __lowerCAmelCase : Any = float(input("Gamma of: ")) print(F"gamma({num}) = {gamma(num)}") print("\nEnter 0 to exit...")
674
1
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) lowerCAmelCase__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = weights[0][0][0] lowerCAmelCase__ = np.asarray(layer_norm_a[0] ) lowerCAmelCase__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # lsh weights + output lowerCAmelCase__ = weights[0][1] if len(lowerCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) else: set_layer_weights_in_torch_local(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) # intermediate weighs lowerCAmelCase__ = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase__ ) == 4: lowerCAmelCase__ = intermediate_weights[2] # layernorm 2 lowerCAmelCase__ = np.asarray(intermediate_weights[0][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # intermediate dense lowerCAmelCase__ = np.asarray(intermediate_weights[1][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) # intermediate out lowerCAmelCase__ = np.asarray(intermediate_weights[4][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = torch_model.reformer # word embeds lowerCAmelCase__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase__ ) , ) if isinstance(weights[3] , lowerCamelCase__ ): lowerCAmelCase__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCAmelCase__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" lowerCAmelCase__ = nn.Parameter(torch.tensor(lowerCamelCase__ ) ) lowerCAmelCase__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCAmelCase__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # output layer norm lowerCAmelCase__ = np.asarray(weights[7][0] ) lowerCAmelCase__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # output embeddings lowerCAmelCase__ = np.asarray(weights[9][0] ) lowerCAmelCase__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = ReformerConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = ReformerModelWithLMHead(lowerCamelCase__ ) with open(lowerCamelCase__ , """rb""" ) as f: lowerCAmelCase__ = pickle.load(lowerCamelCase__ )["""weights"""] set_model_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
674
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : def __init__( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any=13 , snake_case__ : int=30 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : Dict=True , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=32 , snake_case__ : List[str]=2 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[int]=37 , snake_case__ : Tuple="gelu" , snake_case__ : str=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=10 , snake_case__ : Dict=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : str=None , snake_case__ : List[Any]=2 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = num_patches + 2 def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[Any] ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[str] ): lowerCAmelCase__ = TFDeiTModel(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict ): lowerCAmelCase__ = TFDeiTForMaskedImageModeling(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForMaskedImageModeling(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple ): lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase_ : Any = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : int = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = TFDeiTModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): pass def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Dense ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any]=False ): lowerCAmelCase__ = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _SCREAMING_SNAKE_CASE ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDeiTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Any ): return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors="""tf""" ) # forward pass lowerCAmelCase__ = model(**snake_case__ ) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase__ = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
674
1
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __lowerCAmelCase : List[Any] = 4 __lowerCAmelCase : Optional[Any] = 3 class a_ ( __UpperCamelCase ): pass def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" for shard in shards: for i in range(lowerCamelCase__ ): yield {"i": i, "shard": shard} def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = int(os.environ["""RANK"""] ) lowerCAmelCase__ = int(os.environ["""WORLD_SIZE"""] ) lowerCAmelCase__ = ArgumentParser() parser.add_argument("""--streaming""" , type=lowerCamelCase__ ) parser.add_argument("""--local_rank""" , type=lowerCamelCase__ ) parser.add_argument("""--num_workers""" , type=lowerCamelCase__ , default=0 ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = args.streaming lowerCAmelCase__ = args.num_workers lowerCAmelCase__ = {"""shards""": [f"""shard_{shard_idx}""" for shard_idx in range(lowerCamelCase__ )]} lowerCAmelCase__ = IterableDataset.from_generator(lowerCamelCase__ , gen_kwargs=lowerCamelCase__ ) if not streaming: lowerCAmelCase__ = Dataset.from_list(list(lowerCamelCase__ ) ) lowerCAmelCase__ = split_dataset_by_node(lowerCamelCase__ , rank=lowerCamelCase__ , world_size=lowerCamelCase__ ) lowerCAmelCase__ = torch.utils.data.DataLoader(lowerCamelCase__ , num_workers=lowerCamelCase__ ) lowerCAmelCase__ = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowerCAmelCase__ = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowerCAmelCase__ = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
674
"""simple docstring""" from __future__ import annotations from math import gcd def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 3 , ): """simple docstring""" if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: return (pow(lowerCamelCase__ , 2 ) + step) % modulus for _ in range(lowerCamelCase__ ): # These track the position within the cycle detection logic. lowerCAmelCase__ = seed lowerCAmelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCAmelCase__ = gcd(hare - tortoise , lowerCamelCase__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCAmelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : Dict = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"{args.num} is probably prime") else: __lowerCAmelCase : List[str] = args.num // divisor print(F"{args.num} = {divisor} * {quotient}")
674
1
"""simple docstring""" __lowerCAmelCase : Optional[int] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __lowerCAmelCase : List[Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __lowerCAmelCase : Tuple = { 0: "Sunday", 1: "Monday", 2: "Tuesday", 3: "Wednesday", 4: "Thursday", 5: "Friday", 6: "Saturday", } def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" assert len(str(lowerCamelCase__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: lowerCAmelCase__ = year // 100 lowerCAmelCase__ = (5 * (century % 4) + 2) % 7 lowerCAmelCase__ = year % 100 lowerCAmelCase__ = centurian % 12 lowerCAmelCase__ = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 lowerCAmelCase__ = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) lowerCAmelCase__ = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
674
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = TapasConfig.from_json_file(lowerCamelCase__ ) # set absolute/relative position embeddings parameter lowerCAmelCase__ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WTQ": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = True # hparam_utils.py hparams lowerCAmelCase__ = 0.66_46_94 lowerCAmelCase__ = 0.20_79_51 lowerCAmelCase__ = 0.12_11_94 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 0.0_35_25_13 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = False # hparam_utils.py hparams lowerCAmelCase__ = 36.45_19 lowerCAmelCase__ = 0.90_34_21 lowerCAmelCase__ = 2_22.0_88 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = 0.76_31_41 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "TABFACT": lowerCAmelCase__ = TapasForSequenceClassification(config=lowerCamelCase__ ) elif task == "MLM": lowerCAmelCase__ = TapasForMaskedLM(config=lowerCamelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": lowerCAmelCase__ = TapasModel(config=lowerCamelCase__ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase__ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) lowerCAmelCase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 ) tokenizer.save_pretrained(lowerCamelCase__ ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
674
1
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self : Optional[int] ): lowerCAmelCase__ = """""" lowerCAmelCase__ = """""" lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = 256 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = cva.imread(snake_case__ , 0 ) lowerCAmelCase__ = copy.deepcopy(self.img ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" ) lowerCAmelCase__ = np.sum(snake_case__ ) for i in range(len(snake_case__ ) ): lowerCAmelCase__ = x[i] / self.k self.sk += prk lowerCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase__ = int(last % last ) lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case__ ) lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase__ = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase__ = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": __lowerCAmelCase : Dict = os.path.join(os.path.basename(__file__), "image_data/input.jpg") __lowerCAmelCase : Optional[int] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
674
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ = 50 ): """simple docstring""" lowerCAmelCase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"{solution() = }")
674
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : def __init__( self : Dict , snake_case__ : Tuple , snake_case__ : str=13 , snake_case__ : List[str]=32 , snake_case__ : List[Any]=3 , snake_case__ : Tuple=4 , snake_case__ : Optional[Any]=[10, 20, 30, 40] , snake_case__ : int=[2, 2, 3, 2] , snake_case__ : Optional[int]=True , snake_case__ : Optional[Any]=True , snake_case__ : Optional[int]=37 , snake_case__ : Tuple="gelu" , snake_case__ : int=10 , snake_case__ : Optional[int]=0.02 , snake_case__ : int=["stage2", "stage3", "stage4"] , snake_case__ : Tuple=[2, 3, 4] , snake_case__ : List[Any]=None , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = num_stages lowerCAmelCase__ = hidden_sizes lowerCAmelCase__ = depths lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = num_labels lowerCAmelCase__ = initializer_range lowerCAmelCase__ = out_features lowerCAmelCase__ = out_indices lowerCAmelCase__ = scope def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Tuple ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Optional[int] ): lowerCAmelCase__ = ConvNextVaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : str , snake_case__ : int , snake_case__ : Optional[Any] ): lowerCAmelCase__ = ConvNextVaForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : List[str] ): lowerCAmelCase__ = ConvNextVaBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model(snake_case__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase__ = None lowerCAmelCase__ = ConvNextVaBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model(snake_case__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : List[str] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) UpperCamelCase_ : Any = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ : Tuple = False UpperCamelCase_ : str = False UpperCamelCase_ : Any = False UpperCamelCase_ : Tuple = False UpperCamelCase_ : Tuple = False def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = ConvNextVaModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass def _SCREAMING_SNAKE_CASE ( self : Dict ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase__ = True if model_class.__name__ in [ *get_values(snake_case__ ), *get_values(snake_case__ ), ]: continue lowerCAmelCase__ = model_class(snake_case__ ) model.to(snake_case__ ) model.train() lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) lowerCAmelCase__ = model(**snake_case__ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : Any ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase__ = False lowerCAmelCase__ = True if ( model_class.__name__ in [*get_values(snake_case__ ), *get_values(snake_case__ )] or not model_class.supports_gradient_checkpointing ): continue lowerCAmelCase__ = model_class(snake_case__ ) model.to(snake_case__ ) model.gradient_checkpointing_enable() model.train() lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) lowerCAmelCase__ = model(**snake_case__ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str ): def check_hidden_states_output(snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : List[str] ): lowerCAmelCase__ = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = ConvNextVaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(snake_case__ ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = preprocessor(images=snake_case__ , return_tensors="""pt""" ).to(snake_case__ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**snake_case__ ) # verify the logits lowerCAmelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase__ = torch.tensor([0.9996, 0.1966, -0.4386] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
674
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Any = "The Nymphenburg Palace is a beautiful palace in Munich!" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } lowerCAmelCase__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase__ = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCamelCase__ , output_all_encodings=lowerCamelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCamelCase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase__ = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab lowerCAmelCase__ = os.path.join(get_home_dir() , """models""" ) lowerCAmelCase__ = _load_vocab(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , cls=lowerCamelCase__ ) lowerCAmelCase__ = nlp.model.BERTModel( lowerCamelCase__ , len(lowerCamelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCamelCase__ , use_token_type_embed=lowerCamelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCamelCase__ , use_decoder=lowerCamelCase__ , ) original_bort.load_parameters(lowerCamelCase__ , cast_dtype=lowerCamelCase__ , ignore_extra=lowerCamelCase__ ) lowerCAmelCase__ = original_bort._collect_params_with_prefix() # Build our config ๐Ÿค— lowerCAmelCase__ = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(lowerCamelCase__ ), } lowerCAmelCase__ = BertConfig.from_dict(lowerCamelCase__ ) lowerCAmelCase__ = BertForMaskedLM(lowerCamelCase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCamelCase__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = hf_param.shape lowerCAmelCase__ = to_torch(params[gluon_param] ) lowerCAmelCase__ = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase__ = layer.attention.self lowerCAmelCase__ = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output lowerCAmelCase__ = layer.attention.output lowerCAmelCase__ = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) lowerCAmelCase__ = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate lowerCAmelCase__ = layer.intermediate lowerCAmelCase__ = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) lowerCAmelCase__ = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output lowerCAmelCase__ = layer.output lowerCAmelCase__ = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) lowerCAmelCase__ = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy ๐ŸŽ„ hf_bort_model.half() # Compare output of both models lowerCAmelCase__ = RobertaTokenizer.from_pretrained("""roberta-base""" ) lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ )["""input_ids"""] # Get gluon output lowerCAmelCase__ = mx.nd.array([input_ids] ) lowerCAmelCase__ = original_bort(inputs=lowerCamelCase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCamelCase__ ) lowerCAmelCase__ = BertModel.from_pretrained(lowerCamelCase__ ) hf_bort_model.eval() lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" ) lowerCAmelCase__ = hf_bort_model(**lowerCamelCase__ )[0] lowerCAmelCase__ = output_gluon[0].asnumpy() lowerCAmelCase__ = output_hf[0].detach().numpy() lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase__ = np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) if success: print("""โœ”๏ธ Both model do output the same tensors""" ) else: print("""โŒ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : str = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
674
1
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class a_ ( unittest.TestCase ): UpperCamelCase_ : List[Any] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[Any] ): lowerCAmelCase__ = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowerCAmelCase__ = VideoClassificationPipeline(model=snake_case__ , image_processor=snake_case__ , top_k=2 ) lowerCAmelCase__ = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Optional[int] , snake_case__ : str ): for example in examples: lowerCAmelCase__ = video_classifier(snake_case__ ) self.assertEqual( snake_case__ , [ {"""score""": ANY(snake_case__ ), """label""": ANY(snake_case__ )}, {"""score""": ANY(snake_case__ ), """label""": ANY(snake_case__ )}, ] , ) @require_torch def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" lowerCAmelCase__ = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) lowerCAmelCase__ = pipeline( """video-classification""" , model=snake_case__ , feature_extractor=snake_case__ , frame_sampling_rate=4 ) lowerCAmelCase__ = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowerCAmelCase__ = video_classifier(snake_case__ , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}] , ) lowerCAmelCase__ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : int ): pass
674
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self : Optional[int] ): lowerCAmelCase__ = """""" lowerCAmelCase__ = """""" lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = 256 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = cva.imread(snake_case__ , 0 ) lowerCAmelCase__ = copy.deepcopy(self.img ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" ) lowerCAmelCase__ = np.sum(snake_case__ ) for i in range(len(snake_case__ ) ): lowerCAmelCase__ = x[i] / self.k self.sk += prk lowerCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase__ = int(last % last ) lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case__ ) lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase__ = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase__ = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": __lowerCAmelCase : Dict = os.path.join(os.path.basename(__file__), "image_data/input.jpg") __lowerCAmelCase : Optional[int] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
674
1
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCAmelCase : Dict = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : str , snake_case__ : bool , snake_case__ : str = None , snake_case__ : list = None ): lowerCAmelCase__ = None lowerCAmelCase__ = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) ) lowerCAmelCase__ = os.path.abspath("""examples""" ) for item in os.listdir(snake_case__ ): if item not in EXCLUDE_EXAMPLES: lowerCAmelCase__ = os.path.join(snake_case__ , snake_case__ ) if os.path.isfile(snake_case__ ) and ".py" in item_path: with self.subTest( tested_script=snake_case__ , feature_script=snake_case__ , tested_section="""main()""" if parser_only else """training_function()""" , ): lowerCAmelCase__ = compare_against_test( os.path.join(snake_case__ , snake_case__ ) , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase__ = """\n""".join(snake_case__ ) if special_strings is not None: for string in special_strings: lowerCAmelCase__ = diff.replace(snake_case__ , """""" ) self.assertEqual(snake_case__ , """""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self.one_complete_example("""complete_nlp_example.py""" , snake_case__ ) self.one_complete_example("""complete_nlp_example.py""" , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) ) lowerCAmelCase__ = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , snake_case__ , snake_case__ , snake_case__ ) self.one_complete_example("""complete_cv_example.py""" , snake_case__ , snake_case__ , snake_case__ ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class a_ ( __UpperCamelCase ): UpperCamelCase_ : Optional[Any] = False @classmethod def _SCREAMING_SNAKE_CASE ( cls : Tuple ): super().setUpClass() lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = os.path.join(cls._tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) lowerCAmelCase__ = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = F""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = F""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() lowerCAmelCase__ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) ) def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() lowerCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=snake_case__ ) self.assertNotIn("""epoch 0:""" , snake_case__ ) self.assertIn("""epoch 1:""" , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() lowerCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=snake_case__ ) if torch.cuda.is_available(): lowerCAmelCase__ = torch.cuda.device_count() else: lowerCAmelCase__ = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , snake_case__ ) self.assertIn("""epoch 1:""" , snake_case__ ) else: self.assertIn("""epoch 0:""" , snake_case__ ) self.assertIn("""epoch 1:""" , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): lowerCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=snake_case__ ) lowerCAmelCase__ = re.findall("""({.+})""" , snake_case__ ) lowerCAmelCase__ = [r for r in results if """accuracy""" in r][-1] lowerCAmelCase__ = ast.literal_eval(snake_case__ ) self.assertGreaterEqual(results["""accuracy"""] , 0.75 ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _SCREAMING_SNAKE_CASE ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdir: lowerCAmelCase__ = F""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , """tracking""" ) ) ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs )
674
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class a_ ( __UpperCamelCase ): UpperCamelCase_ : List[str] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) UpperCamelCase_ : str = "CIDAS/clipseg-rd64-refined" UpperCamelCase_ : Any = "image_segmenter" UpperCamelCase_ : Optional[Any] = CLIPSegForImageSegmentation UpperCamelCase_ : List[str] = ["image", "text"] UpperCamelCase_ : int = ["image"] def __init__( self : Tuple , *snake_case__ : str , **snake_case__ : Optional[Any] ): requires_backends(self , ["""vision"""] ) super().__init__(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : "Image" , snake_case__ : str ): return self.pre_processor(text=[label] , images=[image] , padding=snake_case__ , return_tensors="""pt""" ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple ): with torch.no_grad(): lowerCAmelCase__ = self.model(**snake_case__ ).logits return logits def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] ): lowerCAmelCase__ = outputs.cpu().detach().numpy() lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
674
1
"""simple docstring""" from __future__ import annotations def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = str(lowerCamelCase__ ) return len(lowerCamelCase__ ) == 9 and set(lowerCamelCase__ ) == set("""123456789""" ) def _UpperCAmelCase ( ): """simple docstring""" for base_num in range(9999 , 4999 , -1 ): lowerCAmelCase__ = 10_0002 * base_num if is_9_pandigital(lowerCamelCase__ ): return candidate for base_num in range(333 , 99 , -1 ): lowerCAmelCase__ = 100_2003 * base_num if is_9_pandigital(lowerCamelCase__ ): return candidate return None if __name__ == "__main__": print(F"{solution() = }")
674
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = LayoutLMTokenizer UpperCamelCase_ : List[Any] = LayoutLMTokenizerFast UpperCamelCase_ : Dict = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() lowerCAmelCase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : Union[str, Any] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Tuple ): lowerCAmelCase__ = """UNwant\u00E9d,running""" lowerCAmelCase__ = """unwanted, running""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(snake_case__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): pass
674
1
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" _validate_point(lowerCamelCase__ ) _validate_point(lowerCamelCase__ ) if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(lowerCamelCase__ , lowerCamelCase__ ) ) ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if point: if isinstance(lowerCamelCase__ , lowerCamelCase__ ): for item in point: if not isinstance(lowerCamelCase__ , (int, float) ): lowerCAmelCase__ = ( """Expected a list of numbers as input, found """ f"""{type(lowerCamelCase__ ).__name__}""" ) raise TypeError(lowerCamelCase__ ) else: lowerCAmelCase__ = f"""Expected a list of numbers as input, found {type(lowerCamelCase__ ).__name__}""" raise TypeError(lowerCamelCase__ ) else: raise ValueError("""Missing an input""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" _validate_point(lowerCamelCase__ ) _validate_point(lowerCamelCase__ ) if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(lowerCamelCase__ , lowerCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
674
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __lowerCAmelCase : Any = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : def __init__( self : List[str] , snake_case__ : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) lowerCAmelCase__ = primes[group]["""prime"""] lowerCAmelCase__ = primes[group]["""generator"""] lowerCAmelCase__ = int(hexlify(urandom(32 ) ) , base=16 ) def _SCREAMING_SNAKE_CASE ( self : Any ): return hex(self.__private_key )[2:] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = pow(self.generator , self.__private_key , self.prime ) return hex(snake_case__ )[2:] def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(snake_case__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str ): lowerCAmelCase__ = int(snake_case__ , base=16 ) if not self.is_valid_public_key(snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , self.__private_key , self.prime ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : int , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(snake_case__ , (prime - 1) // 2 , snake_case__ ) == 1 ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : str , snake_case__ : str , snake_case__ : int = 14 ): lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(snake_case__ , snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , snake_case__ , snake_case__ ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
674
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : List[str] = { "configuration_xmod": [ "XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP", "XmodConfig", "XmodOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple = [ "XMOD_PRETRAINED_MODEL_ARCHIVE_LIST", "XmodForCausalLM", "XmodForMaskedLM", "XmodForMultipleChoice", "XmodForQuestionAnswering", "XmodForSequenceClassification", "XmodForTokenClassification", "XmodModel", "XmodPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys __lowerCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
674
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) lowerCAmelCase__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = weights[0][0][0] lowerCAmelCase__ = np.asarray(layer_norm_a[0] ) lowerCAmelCase__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # lsh weights + output lowerCAmelCase__ = weights[0][1] if len(lowerCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) else: set_layer_weights_in_torch_local(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) # intermediate weighs lowerCAmelCase__ = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase__ ) == 4: lowerCAmelCase__ = intermediate_weights[2] # layernorm 2 lowerCAmelCase__ = np.asarray(intermediate_weights[0][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # intermediate dense lowerCAmelCase__ = np.asarray(intermediate_weights[1][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) # intermediate out lowerCAmelCase__ = np.asarray(intermediate_weights[4][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = torch_model.reformer # word embeds lowerCAmelCase__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase__ ) , ) if isinstance(weights[3] , lowerCamelCase__ ): lowerCAmelCase__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCAmelCase__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" lowerCAmelCase__ = nn.Parameter(torch.tensor(lowerCamelCase__ ) ) lowerCAmelCase__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCAmelCase__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # output layer norm lowerCAmelCase__ = np.asarray(weights[7][0] ) lowerCAmelCase__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # output embeddings lowerCAmelCase__ = np.asarray(weights[9][0] ) lowerCAmelCase__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = ReformerConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = ReformerModelWithLMHead(lowerCamelCase__ ) with open(lowerCamelCase__ , """rb""" ) as f: lowerCAmelCase__ = pickle.load(lowerCamelCase__ )["""weights"""] set_model_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
674
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : str = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class a_ ( __UpperCamelCase ): UpperCamelCase_ : List[str] = "bert" def __init__( self : int , snake_case__ : Any=30522 , snake_case__ : Union[str, Any]=768 , snake_case__ : Any=12 , snake_case__ : Optional[int]=12 , snake_case__ : str=3072 , snake_case__ : int="gelu" , snake_case__ : List[Any]=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Optional[Any]=512 , snake_case__ : Dict=2 , snake_case__ : Optional[int]=0.02 , snake_case__ : str=1E-12 , snake_case__ : List[str]=0 , snake_case__ : int="absolute" , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=None , **snake_case__ : Optional[int] , ): super().__init__(pad_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = hidden_act lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = position_embedding_type lowerCAmelCase__ = use_cache lowerCAmelCase__ = classifier_dropout class a_ ( __UpperCamelCase ): @property def _SCREAMING_SNAKE_CASE ( self : Any ): if self.task == "multiple-choice": lowerCAmelCase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
674
"""simple docstring""" import os from math import logaa def _UpperCAmelCase ( lowerCamelCase__ = "base_exp.txt" ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) ): lowerCAmelCase__ , lowerCAmelCase__ = list(map(lowerCamelCase__ , line.split(""",""" ) ) ) if x * logaa(lowerCamelCase__ ) > largest: lowerCAmelCase__ = x * logaa(lowerCamelCase__ ) lowerCAmelCase__ = i + 1 return result if __name__ == "__main__": print(solution())
674
1
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class a_ : def __init__( self : int , snake_case__ : Any , snake_case__ : List[str]=13 , snake_case__ : int=32 , snake_case__ : Dict=2 , snake_case__ : Optional[Any]=3 , snake_case__ : Optional[Any]=16 , snake_case__ : Tuple=[1, 2, 1] , snake_case__ : Optional[int]=[2, 2, 4] , snake_case__ : Union[str, Any]=2 , snake_case__ : List[Any]=2.0 , snake_case__ : List[str]=True , snake_case__ : Optional[int]=0.0 , snake_case__ : Dict=0.0 , snake_case__ : Tuple=0.1 , snake_case__ : List[str]="gelu" , snake_case__ : int=False , snake_case__ : List[str]=True , snake_case__ : List[Any]=0.02 , snake_case__ : Tuple=1E-5 , snake_case__ : Union[str, Any]=True , snake_case__ : str=None , snake_case__ : List[Any]=True , snake_case__ : str=10 , snake_case__ : Dict=8 , snake_case__ : List[Any]=["stage1", "stage2", "stage3"] , snake_case__ : List[str]=[1, 2, 3] , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = embed_dim lowerCAmelCase__ = depths lowerCAmelCase__ = num_heads lowerCAmelCase__ = window_size lowerCAmelCase__ = mlp_ratio lowerCAmelCase__ = qkv_bias lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = drop_path_rate lowerCAmelCase__ = hidden_act lowerCAmelCase__ = use_absolute_embeddings lowerCAmelCase__ = patch_norm lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = initializer_range lowerCAmelCase__ = is_training lowerCAmelCase__ = scope lowerCAmelCase__ = use_labels lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = encoder_stride lowerCAmelCase__ = out_features lowerCAmelCase__ = out_indices def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : Any ): lowerCAmelCase__ = MaskFormerSwinModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model(snake_case__ ) lowerCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[int] ): lowerCAmelCase__ = MaskFormerSwinBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model(snake_case__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(snake_case__ ): lowerCAmelCase__ = ["""stem"""] lowerCAmelCase__ = MaskFormerSwinBackbone(config=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[int] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) UpperCamelCase_ : str = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : Dict = False def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = MaskFormerSwinModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): pass def _SCREAMING_SNAKE_CASE ( self : List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*snake_case__ ) @unittest.skip("""Swin does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass @unittest.skip("""Swin does not support feedforward chunking""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def _SCREAMING_SNAKE_CASE ( self : int ): pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): pass def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : Any ): lowerCAmelCase__ = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase__ = outputs.hidden_states lowerCAmelCase__ = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) # Swin has a different seq_length lowerCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase__ = True self.check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True self.check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = 3 lowerCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase__ = True self.check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True self.check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ): pass def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(snake_case__ : Union[str, Any] ): lowerCAmelCase__ = 0 return t def check_equivalence(snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Dict , snake_case__ : int={} ): with torch.no_grad(): lowerCAmelCase__ = model(**snake_case__ , return_dict=snake_case__ , **snake_case__ ) lowerCAmelCase__ = model(**snake_case__ , return_dict=snake_case__ , **snake_case__ ).to_tuple() def recursive_check(snake_case__ : Dict , snake_case__ : int ): if isinstance(snake_case__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(snake_case__ , snake_case__ ): recursive_check(snake_case__ , snake_case__ ) elif isinstance(snake_case__ , snake_case__ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(snake_case__ , snake_case__ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(snake_case__ ) , set_nan_tensor_to_zero(snake_case__ ) , atol=1E-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(snake_case__ ).any()} and `inf`: {torch.isinf(snake_case__ )}. Dict has""" F""" `nan`: {torch.isnan(snake_case__ ).any()} and `inf`: {torch.isinf(snake_case__ )}.""" ) , ) recursive_check(snake_case__ , snake_case__ ) for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ , {"""output_hidden_states""": True} ) lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ , {"""output_hidden_states""": True} ) @require_torch class a_ ( unittest.TestCase , __UpperCamelCase ): UpperCamelCase_ : Optional[int] = (MaskFormerSwinBackbone,) if is_torch_available() else () UpperCamelCase_ : Optional[Any] = MaskFormerSwinConfig def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = MaskFormerSwinModelTester(self ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: lowerCAmelCase__ = backbone_class(snake_case__ ) backbone.to(snake_case__ ) backbone.eval() lowerCAmelCase__ = backbone(**snake_case__ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , snake_case__ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowerCAmelCase__ = backbone(**snake_case__ , output_hidden_states=snake_case__ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowerCAmelCase__ = backbone(**snake_case__ , output_attentions=snake_case__ ) self.assertIsNotNone(outputs.attentions )
674
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" while b: lowerCAmelCase__ , lowerCAmelCase__ = b, a % b return a def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase__ , a % b ) def _UpperCAmelCase ( ): """simple docstring""" print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
674
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None ): """simple docstring""" if attention_mask is None: lowerCAmelCase__ = tf.cast(tf.math.not_equal(lowerCamelCase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class a_ : UpperCamelCase_ : Union[str, Any] = OPTConfig UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : str = "gelu" def __init__( self : Tuple , snake_case__ : Tuple , snake_case__ : Dict=13 , snake_case__ : Tuple=7 , snake_case__ : List[str]=True , snake_case__ : int=False , snake_case__ : str=99 , snake_case__ : List[str]=16 , snake_case__ : str=2 , snake_case__ : Optional[Any]=4 , snake_case__ : List[Any]=4 , snake_case__ : int="gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : int=0.1 , snake_case__ : List[str]=20 , snake_case__ : List[Any]=2 , snake_case__ : int=1 , snake_case__ : List[str]=0 , snake_case__ : Dict=16 , snake_case__ : str=16 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = eos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = embed_dim lowerCAmelCase__ = word_embed_proj_dim lowerCAmelCase__ = False def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase__ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase__ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=snake_case__ , **self.config_updates , ) lowerCAmelCase__ = prepare_opt_inputs_dict(snake_case__ , snake_case__ ) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Optional[int] , snake_case__ : Any ): lowerCAmelCase__ = TFOPTModel(config=snake_case__ ) lowerCAmelCase__ = inputs_dict["""input_ids"""] lowerCAmelCase__ = input_ids[:1, :] lowerCAmelCase__ = inputs_dict["""attention_mask"""][:1, :] lowerCAmelCase__ = 1 # first forward pass lowerCAmelCase__ = model(snake_case__ , attention_mask=snake_case__ , use_cache=snake_case__ ) lowerCAmelCase__ , lowerCAmelCase__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase__ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase__ = model(snake_case__ , attention_mask=snake_case__ )[0] lowerCAmelCase__ = model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase__ = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1E-3 ) @require_tf class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () UpperCamelCase_ : List[str] = (TFOPTForCausalLM,) if is_tf_available() else () UpperCamelCase_ : List[Any] = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : Dict = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Dict = 10 def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = TFOPTModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(snake_case__ : Tuple , snake_case__ : Tuple ): if hasattr(snake_case__ , """weight""" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(snake_case__ , """weight""" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings lowerCAmelCase__ = model_class(config=snake_case__ ) lowerCAmelCase__ = _get_word_embedding_weight(snake_case__ , model.get_input_embeddings() ) lowerCAmelCase__ = _get_word_embedding_weight(snake_case__ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(snake_case__ ) lowerCAmelCase__ = _get_word_embedding_weight(snake_case__ , model.get_input_embeddings() ) lowerCAmelCase__ = _get_word_embedding_weight(snake_case__ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCAmelCase__ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , snake_case__ ) # check that weights remain the same after resizing lowerCAmelCase__ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase__ = False self.assertTrue(snake_case__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , snake_case__ ) lowerCAmelCase__ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase__ = False self.assertTrue(snake_case__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return tf.constant(lowerCamelCase__ , dtype=tf.intaa ) @require_tf class a_ ( unittest.TestCase ): UpperCamelCase_ : Union[str, Any] = 99 def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCAmelCase__ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCAmelCase__ = input_ids.shape[0] lowerCAmelCase__ = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class a_ ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = TFOPTModel.from_pretrained("""facebook/opt-350m""" ) lowerCAmelCase__ = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) lowerCAmelCase__ = tf.not_equal(snake_case__ , model.config.pad_token_id ) with tf.GradientTape(): lowerCAmelCase__ = model(input_ids=snake_case__ , attention_mask=snake_case__ ).last_hidden_state lowerCAmelCase__ = (1, 11, 512) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase__ = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , snake_case__ , atol=4E-3 ) ) lowerCAmelCase__ = tf.function(snake_case__ , jit_compile=snake_case__ ) lowerCAmelCase__ = xla_generate(snake_case__ , snake_case__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , snake_case__ , atol=4E-2 ) ) @require_tf @slow class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setUp() lowerCAmelCase__ = """facebook/opt-350m""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCAmelCase__ = GPTaTokenizer.from_pretrained(self.path_model ) lowerCAmelCase__ = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""tf""" , padding=snake_case__ , add_special_tokens=snake_case__ ) lowerCAmelCase__ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCAmelCase__ = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1E-4 ) ) lowerCAmelCase__ = tf.function(snake_case__ , jit_compile=snake_case__ ) lowerCAmelCase__ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1E-4 ) ) @require_tf @slow class a_ ( unittest.TestCase ): @property def _SCREAMING_SNAKE_CASE ( self : int ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = """facebook/opt-125m""" lowerCAmelCase__ = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCAmelCase__ = [] lowerCAmelCase__ = GPTaTokenizer.from_pretrained(snake_case__ ) lowerCAmelCase__ = TFOPTForCausalLM.from_pretrained(snake_case__ ) for prompt in self.prompts: lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""tf""" ).input_ids lowerCAmelCase__ = model.generate(snake_case__ , max_length=10 ) lowerCAmelCase__ = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) predicted_outputs += generated_string self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = """facebook/opt-350m""" lowerCAmelCase__ = GPTaTokenizer.from_pretrained(snake_case__ ) lowerCAmelCase__ = TFOPTForCausalLM.from_pretrained(snake_case__ ) lowerCAmelCase__ = """left""" # use different length sentences to test batching lowerCAmelCase__ = [ """Hello, my dog is a little""", """Today, I""", ] lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""tf""" , padding=snake_case__ ) lowerCAmelCase__ = inputs["""input_ids"""] lowerCAmelCase__ = model.generate(input_ids=snake_case__ , attention_mask=inputs["""attention_mask"""] ) lowerCAmelCase__ = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids lowerCAmelCase__ = model.generate(input_ids=snake_case__ ) lowerCAmelCase__ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) ) lowerCAmelCase__ = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids lowerCAmelCase__ = model.generate(input_ids=snake_case__ , max_length=model.config.max_length - num_paddings ) lowerCAmelCase__ = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) lowerCAmelCase__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case__ ) lowerCAmelCase__ = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case__ ) lowerCAmelCase__ = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , [non_padded_sentence, padded_sentence] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = """facebook/opt-350m""" lowerCAmelCase__ = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCAmelCase__ = [] lowerCAmelCase__ = GPTaTokenizer.from_pretrained(snake_case__ ) lowerCAmelCase__ = TFOPTForCausalLM.from_pretrained(snake_case__ ) for prompt in self.prompts: lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""tf""" ).input_ids lowerCAmelCase__ = model.generate(snake_case__ , max_length=10 ) lowerCAmelCase__ = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) predicted_outputs += generated_string self.assertListEqual(snake_case__ , snake_case__ )
674
"""simple docstring""" import os def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = os.path.dirname(os.path.realpath(lowerCamelCase__ ) ) lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """triangle.txt""" ) with open(lowerCamelCase__ ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = [] for line in triangle: lowerCAmelCase__ = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(lowerCamelCase__ ) ) a.append(lowerCamelCase__ ) for i in range(1 , len(lowerCamelCase__ ) ): for j in range(len(a[i] ) ): lowerCAmelCase__ = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCAmelCase__ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCamelCase__ , lowerCamelCase__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
674
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : List[str] = StableUnCLIPImgaImgPipeline UpperCamelCase_ : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS UpperCamelCase_ : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase_ : Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase_ : Tuple = frozenset([] ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = 32 lowerCAmelCase__ = embedder_hidden_size # image encoding components lowerCAmelCase__ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=snake_case__ , projection_dim=snake_case__ , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) lowerCAmelCase__ = StableUnCLIPImageNormalizer(embedding_dim=snake_case__ ) lowerCAmelCase__ = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=snake_case__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=snake_case__ , layers_per_block=1 , upcast_attention=snake_case__ , use_linear_projection=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase__ = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=snake_case__ , steps_offset=1 , ) torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL() lowerCAmelCase__ = { # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : List[str] , snake_case__ : Union[str, Any]=0 , snake_case__ : Any=True ): if str(snake_case__ ).startswith("""mps""" ): lowerCAmelCase__ = torch.manual_seed(snake_case__ ) else: lowerCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if pil_image: lowerCAmelCase__ = input_image * 0.5 + 0.5 lowerCAmelCase__ = input_image.clamp(0 , 1 ) lowerCAmelCase__ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase__ = DiffusionPipeline.numpy_to_pil(snake_case__ )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = StableUnCLIPImgaImgPipeline(**snake_case__ ) lowerCAmelCase__ = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = self.get_dummy_inputs(snake_case__ ) inputs.update({"""image_embeds""": None} ) lowerCAmelCase__ = sd_pipe(**snake_case__ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=snake_case__ ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _SCREAMING_SNAKE_CASE ( self : Dict ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=snake_case__ ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) lowerCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""" ) lowerCAmelCase__ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase__ = pipe(snake_case__ , """anime turle""" , generator=snake_case__ , output_type="""np""" ) lowerCAmelCase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) lowerCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""" ) lowerCAmelCase__ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase__ = pipe(snake_case__ , """anime turle""" , generator=snake_case__ , output_type="""np""" ) lowerCAmelCase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase__ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) lowerCAmelCase__ = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase__ = pipe( snake_case__ , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , ) lowerCAmelCase__ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
674
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCAmelCase : Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __lowerCAmelCase : Optional[int] = json.load(f) @require_torch class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Dict ): return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ): lowerCAmelCase__ = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Any , snake_case__ : int ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowerCAmelCase__ = F"""facebook/wmt19-{pair}""" lowerCAmelCase__ = self.get_tokenizer(snake_case__ ) lowerCAmelCase__ = self.get_model(snake_case__ ) lowerCAmelCase__ = bleu_data[pair]["""src"""] lowerCAmelCase__ = bleu_data[pair]["""tgt"""] lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""pt""" , truncation=snake_case__ , padding="""longest""" ).to(snake_case__ ) lowerCAmelCase__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCAmelCase__ = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) lowerCAmelCase__ = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["""bleu"""] , snake_case__ )
674
1
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class a_ ( __UpperCamelCase ): def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case__ , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(snake_case__ , """num_attention_heads""" ) ) class a_ : def __init__( self : str , snake_case__ : Dict , snake_case__ : int=13 , snake_case__ : List[str]=64 , snake_case__ : List[Any]=3 , snake_case__ : Tuple=3 , snake_case__ : Any=2 , snake_case__ : Optional[Any]=1 , snake_case__ : Optional[int]=16 , snake_case__ : Optional[int]=[128, 256, 384] , snake_case__ : str=[4, 6, 8] , snake_case__ : Union[str, Any]=[2, 3, 4] , snake_case__ : str=[16, 16, 16] , snake_case__ : Dict=0 , snake_case__ : List[Any]=[2, 2, 2] , snake_case__ : List[Any]=[2, 2, 2] , snake_case__ : List[str]=0.02 , snake_case__ : List[str]=True , snake_case__ : Tuple=True , snake_case__ : Optional[int]=2 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = kernel_size lowerCAmelCase__ = stride lowerCAmelCase__ = padding lowerCAmelCase__ = hidden_sizes lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = depths lowerCAmelCase__ = key_dim lowerCAmelCase__ = drop_path_rate lowerCAmelCase__ = patch_size lowerCAmelCase__ = attention_ratio lowerCAmelCase__ = mlp_ratio lowerCAmelCase__ = initializer_range lowerCAmelCase__ = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = num_labels lowerCAmelCase__ = initializer_range def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : str ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Optional[int] ): lowerCAmelCase__ = LevitModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model(snake_case__ ) lowerCAmelCase__ = (self.image_size, self.image_size) lowerCAmelCase__ , lowerCAmelCase__ = image_size[0], image_size[1] for _ in range(4 ): lowerCAmelCase__ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) lowerCAmelCase__ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : Any ): lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = LevitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) UpperCamelCase_ : Union[str, Any] = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : Dict = False UpperCamelCase_ : str = False UpperCamelCase_ : List[str] = False UpperCamelCase_ : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = LevitModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : int ): return @unittest.skip(reason="""Levit does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass @unittest.skip(reason="""Levit does not support input and output embeddings""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): pass @unittest.skip(reason="""Levit does not output attentions""" ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): pass def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): def check_hidden_states_output(snake_case__ : str , snake_case__ : int , snake_case__ : Any ): lowerCAmelCase__ = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase__ = outputs.hidden_states lowerCAmelCase__ = len(self.model_tester.depths ) + 1 self.assertEqual(len(snake_case__ ) , snake_case__ ) lowerCAmelCase__ = (self.model_tester.image_size, self.model_tester.image_size) lowerCAmelCase__ , lowerCAmelCase__ = image_size[0], image_size[1] for _ in range(4 ): lowerCAmelCase__ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) lowerCAmelCase__ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _SCREAMING_SNAKE_CASE ( self : str ): pass def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : Union[str, Any]=False ): lowerCAmelCase__ = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): if not self.model_tester.is_training: return lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(snake_case__ ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowerCAmelCase__ = model_class(snake_case__ ) model.to(snake_case__ ) model.train() lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) lowerCAmelCase__ = model(**snake_case__ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowerCAmelCase__ = False lowerCAmelCase__ = True for model_class in self.all_model_classes: if model_class in get_values(snake_case__ ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowerCAmelCase__ = model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) lowerCAmelCase__ = model(**snake_case__ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(snake_case__ ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ): lowerCAmelCase__ = problem_type["""title"""] lowerCAmelCase__ = problem_type["""num_labels"""] lowerCAmelCase__ = model_class(snake_case__ ) model.to(snake_case__ ) model.train() lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if problem_type["num_labels"] > 1: lowerCAmelCase__ = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) lowerCAmelCase__ = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=snake_case__ ) as warning_list: lowerCAmelCase__ = model(**snake_case__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def _SCREAMING_SNAKE_CASE ( self : int ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = LevitModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( snake_case__ ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors="""pt""" ).to(snake_case__ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**snake_case__ ) # verify the logits lowerCAmelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase__ = torch.tensor([1.0448, -0.3745, -1.8317] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
674
"""simple docstring""" import pprint import requests __lowerCAmelCase : Union[str, Any] = "https://zenquotes.io/api" def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = random_quotes() pprint.pprint(response)
674
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _SCREAMING_SNAKE_CASE ( self : Any ): torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return model @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , cross_attention_dim=10 , ) return model @property def _SCREAMING_SNAKE_CASE ( self : int ): torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , ) lowerCAmelCase__ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return vqvae, unet @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowerCAmelCase__ = DDPMScheduler() lowerCAmelCase__ = AudioDiffusionPipeline(vqvae=snake_case__ , unet=self.dummy_unet , mel=snake_case__ , scheduler=snake_case__ ) lowerCAmelCase__ = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(42 ) lowerCAmelCase__ = pipe(generator=snake_case__ , steps=4 ) lowerCAmelCase__ = output.audios[0] lowerCAmelCase__ = output.images[0] lowerCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(42 ) lowerCAmelCase__ = pipe(generator=snake_case__ , steps=4 , return_dict=snake_case__ ) lowerCAmelCase__ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowerCAmelCase__ = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] lowerCAmelCase__ = np.frombuffer(image_from_tuple.tobytes() , dtype="""uint8""" )[:10] lowerCAmelCase__ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowerCAmelCase__ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowerCAmelCase__ = DDIMScheduler() lowerCAmelCase__ = self.dummy_vqvae_and_unet lowerCAmelCase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=snake_case__ , scheduler=snake_case__ ) lowerCAmelCase__ = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) np.random.seed(0 ) lowerCAmelCase__ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowerCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(42 ) lowerCAmelCase__ = pipe(raw_audio=snake_case__ , generator=snake_case__ , start_step=5 , steps=10 ) lowerCAmelCase__ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowerCAmelCase__ = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] lowerCAmelCase__ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowerCAmelCase__ = self.dummy_unet_condition lowerCAmelCase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=snake_case__ , mel=snake_case__ , scheduler=snake_case__ ) lowerCAmelCase__ = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) np.random.seed(0 ) lowerCAmelCase__ = torch.rand((1, 1, 10) ) lowerCAmelCase__ = pipe(generator=snake_case__ , encoding=snake_case__ ) lowerCAmelCase__ = output.images[0] lowerCAmelCase__ = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] lowerCAmelCase__ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = torch_device lowerCAmelCase__ = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) lowerCAmelCase__ = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(42 ) lowerCAmelCase__ = pipe(generator=snake_case__ ) lowerCAmelCase__ = output.audios[0] lowerCAmelCase__ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowerCAmelCase__ = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] lowerCAmelCase__ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
674
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = CLIPConfig() # Create a dummy config file with image_proceesor_type lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ).to_dict() config_dict.pop("""image_processor_type""" ) lowerCAmelCase__ = CLIPImageProcessor(**snake_case__ ) # save in new folder model_config.save_pretrained(snake_case__ ) config.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) # make sure private variable is not incorrectly saved lowerCAmelCase__ = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with self.assertRaisesRegex( snake_case__ , """clip-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""clip-base""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): with self.assertRaisesRegex( snake_case__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , revision="""aaaaaa""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): with self.assertRaisesRegex( snake_case__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , trust_remote_code=snake_case__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ): try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoImageProcessor.register(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = CustomImageProcessor.from_pretrained(snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self : List[str] ): class a_ ( __UpperCamelCase ): UpperCamelCase_ : Tuple = True try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # If remote code is not set, the default is to use local lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(snake_case__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
674
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a_ ( unittest.TestCase ): @property def _SCREAMING_SNAKE_CASE ( self : Tuple ): torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.dummy_uncond_unet lowerCAmelCase__ = ScoreSdeVeScheduler() lowerCAmelCase__ = ScoreSdeVePipeline(unet=snake_case__ , scheduler=snake_case__ ) sde_ve.to(snake_case__ ) sde_ve.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=snake_case__ ).images lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=snake_case__ , return_dict=snake_case__ )[ 0 ] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = """google/ncsnpp-church-256""" lowerCAmelCase__ = UNetaDModel.from_pretrained(snake_case__ ) lowerCAmelCase__ = ScoreSdeVeScheduler.from_pretrained(snake_case__ ) lowerCAmelCase__ = ScoreSdeVePipeline(unet=snake_case__ , scheduler=snake_case__ ) sde_ve.to(snake_case__ ) sde_ve.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = sde_ve(num_inference_steps=10 , output_type="""numpy""" , generator=snake_case__ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase__ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
674
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a_ : def __init__( self : Optional[int] , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=64 , snake_case__ : Any=None ): lowerCAmelCase__ = np.random.default_rng(snake_case__ ) lowerCAmelCase__ = length lowerCAmelCase__ = rng.normal(size=(length,) ).astype(np.floataa ) lowerCAmelCase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[Any] ): return self.length def __getitem__( self : List[str] , snake_case__ : Optional[int] ): return {"x": self.x[i], "y": self.y[i]} class a_ ( torch.nn.Module ): def __init__( self : List[str] , snake_case__ : str=0 , snake_case__ : Dict=0 , snake_case__ : Any=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Any=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a[0] + self.b[0] class a_ ( torch.nn.Module ): def __init__( self : Any , snake_case__ : Union[str, Any]=0 , snake_case__ : Union[str, Any]=0 , snake_case__ : List[Any]=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any]=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a + self.b def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase__ = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} lowerCAmelCase__ = load_dataset("""csv""" , data_files=lowerCamelCase__ ) lowerCAmelCase__ = datasets["""train"""].unique("""label""" ) lowerCAmelCase__ = {v: i for i, v in enumerate(lowerCamelCase__ )} def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" ) if "label" in examples: lowerCAmelCase__ = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase__ = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=2 ) lowerCAmelCase__ = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
674
1
"""simple docstring""" import os def _UpperCAmelCase ( lowerCamelCase__ = "matrix.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) as in_file: lowerCAmelCase__ = in_file.read() lowerCAmelCase__ = [[int(lowerCamelCase__ ) for cell in row.split(""",""" )] for row in data.strip().splitlines()] lowerCAmelCase__ = [[0 for cell in row] for row in grid] lowerCAmelCase__ = len(grid[0] ) lowerCAmelCase__ = [[0 for i in range(lowerCamelCase__ )] for j in range(lowerCamelCase__ )] lowerCAmelCase__ = grid[0][0] for i in range(1 , lowerCamelCase__ ): lowerCAmelCase__ = grid[0][i] + dp[0][i - 1] for i in range(1 , lowerCamelCase__ ): lowerCAmelCase__ = grid[i][0] + dp[i - 1][0] for i in range(1 , lowerCamelCase__ ): for j in range(1 , lowerCamelCase__ ): lowerCAmelCase__ = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"{solution() = }")
674
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = MobileBertConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = MobileBertForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint lowerCAmelCase__ = load_tf_weights_in_mobilebert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
674
1
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
674
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: lowerCAmelCase__ = f"""The input value of [n={number}] has to be > 0""" raise ValueError(lowerCamelCase__ ) else: lowerCAmelCase__ = sylvester(number - 1 ) lowerCAmelCase__ = num - 1 lowerCAmelCase__ = num return lower * upper + 1 if __name__ == "__main__": print(F"The 8th number in Sylvester's sequence: {sylvester(8)}")
674
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Any = KandinskyVaaControlnetImgaImgPipeline UpperCamelCase_ : Dict = ["image_embeds", "negative_image_embeds", "image", "hint"] UpperCamelCase_ : int = ["image_embeds", "negative_image_embeds", "image", "hint"] UpperCamelCase_ : Optional[Any] = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCamelCase_ : str = False @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): return 32 @property def _SCREAMING_SNAKE_CASE ( self : int ): return 32 @property def _SCREAMING_SNAKE_CASE ( self : Tuple ): return self.time_input_dim @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Dict ): return 100 @property def _SCREAMING_SNAKE_CASE ( self : Any ): torch.manual_seed(0 ) lowerCAmelCase__ = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowerCAmelCase__ = UNetaDConditionModel(**snake_case__ ) return model @property def _SCREAMING_SNAKE_CASE ( self : str ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) lowerCAmelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.dummy_unet lowerCAmelCase__ = self.dummy_movq lowerCAmelCase__ = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } lowerCAmelCase__ = DDIMScheduler(**snake_case__ ) lowerCAmelCase__ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Any , snake_case__ : Dict=0 ): lowerCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image lowerCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(snake_case__ ) ).convert("""RGB""" ).resize((256, 256) ) # create hint lowerCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith("""mps""" ): lowerCAmelCase__ = torch.manual_seed(snake_case__ ) else: lowerCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase__ = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = """cpu""" lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**snake_case__ ) lowerCAmelCase__ = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowerCAmelCase__ = output.images lowerCAmelCase__ = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array( [0.5498_5034, 0.5550_9365, 0.5256_1504, 0.557_0494, 0.559_3818, 0.526_3979, 0.5028_5643, 0.506_9846, 0.5119_6736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) lowerCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowerCAmelCase__ = init_image.resize((512, 512) ) lowerCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) lowerCAmelCase__ = torch.from_numpy(np.array(snake_case__ ) ).float() / 255.0 lowerCAmelCase__ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowerCAmelCase__ = """A robot, 4k photo""" lowerCAmelCase__ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowerCAmelCase__ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) lowerCAmelCase__ = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase__ , lowerCAmelCase__ = pipe_prior( snake_case__ , image=snake_case__ , strength=0.85 , generator=snake_case__ , negative_prompt="""""" , ).to_tuple() lowerCAmelCase__ = pipeline( image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , hint=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="""np""" , ) lowerCAmelCase__ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
674
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Tuple = PegasusTokenizer UpperCamelCase_ : Any = PegasusTokenizerFast UpperCamelCase_ : int = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : Optional[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any] ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = """</s>""" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(snake_case__ ) , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowerCAmelCase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase__ = """To ensure a smooth flow of bank resolutions.""" lowerCAmelCase__ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def _SCREAMING_SNAKE_CASE ( self : str ): # fmt: off lowerCAmelCase__ = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = PegasusTokenizer UpperCamelCase_ : Optional[int] = PegasusTokenizerFast UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Optional[int] = True def _SCREAMING_SNAKE_CASE ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ): return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : List[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Dict ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowerCAmelCase__ = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
674
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = emb.weight.shape lowerCAmelCase__ = nn.Linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ ) lowerCAmelCase__ = emb.weight.data return lin_layer def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__="facebook/mbart-large-en-ro" , lowerCamelCase__=False , lowerCamelCase__=False ): """simple docstring""" lowerCAmelCase__ = torch.load(lowerCamelCase__ , map_location="""cpu""" )["""model"""] remove_ignore_keys_(lowerCamelCase__ ) lowerCAmelCase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] lowerCAmelCase__ = MBartConfig.from_pretrained(lowerCamelCase__ , vocab_size=lowerCamelCase__ ) if mbart_aa and finetuned: lowerCAmelCase__ = """relu""" lowerCAmelCase__ = state_dict["""decoder.embed_tokens.weight"""] lowerCAmelCase__ = MBartForConditionalGeneration(lowerCamelCase__ ) model.model.load_state_dict(lowerCamelCase__ ) if finetuned: lowerCAmelCase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="facebook/mbart-large-cc25", type=str, help="Which huggingface architecture to use: mbart-large", ) parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") __lowerCAmelCase : Any = parser.parse_args() __lowerCAmelCase : int = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
674
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case__ , ) assert hasattr(self , """env""" ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] ): # configuration for running training on smdistributed Model Parallel lowerCAmelCase__ = { """enabled""": True, """processes_per_host""": 8, } lowerCAmelCase__ = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowerCAmelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowerCAmelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="""py36""" , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str ): TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] ): # create estimator lowerCAmelCase__ = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case__ )
674
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case__ , ) assert hasattr(self , """env""" ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] ): # configuration for running training on smdistributed Model Parallel lowerCAmelCase__ = { """enabled""": True, """processes_per_host""": 8, } lowerCAmelCase__ = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowerCAmelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowerCAmelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="""py36""" , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str ): TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] ): # create estimator lowerCAmelCase__ = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case__ )
674
"""simple docstring""" from math import pi, sqrt def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if num <= 0: raise ValueError("""math domain error""" ) if num > 1_71.5: raise OverflowError("""math range error""" ) elif num - int(lowerCamelCase__ ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(lowerCamelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _UpperCAmelCase ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(lowerCamelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __lowerCAmelCase : Dict = 1.0 while num: __lowerCAmelCase : Any = float(input("Gamma of: ")) print(F"gamma({num}) = {gamma(num)}") print("\nEnter 0 to exit...")
674
1
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = MobileBertConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = MobileBertForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint lowerCAmelCase__ = load_tf_weights_in_mobilebert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
674
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : def __init__( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any=13 , snake_case__ : int=30 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : Dict=True , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=32 , snake_case__ : List[str]=2 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[int]=37 , snake_case__ : Tuple="gelu" , snake_case__ : str=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=10 , snake_case__ : Dict=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : str=None , snake_case__ : List[Any]=2 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = num_patches + 2 def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[Any] ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[str] ): lowerCAmelCase__ = TFDeiTModel(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict ): lowerCAmelCase__ = TFDeiTForMaskedImageModeling(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForMaskedImageModeling(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple ): lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase_ : Any = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : int = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = TFDeiTModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): pass def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Dense ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any]=False ): lowerCAmelCase__ = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _SCREAMING_SNAKE_CASE ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDeiTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Any ): return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors="""tf""" ) # forward pass lowerCAmelCase__ = model(**snake_case__ ) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase__ = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
674
1
"""simple docstring""" import math import sys def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = """""" try: with open(lowerCamelCase__ , """rb""" ) as binary_file: lowerCAmelCase__ = binary_file.read() for dat in data: lowerCAmelCase__ = f"""{dat:08b}""" result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = {"""0""": """0""", """1""": """1"""} lowerCAmelCase__ , lowerCAmelCase__ = """""", """""" lowerCAmelCase__ = len(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowerCAmelCase__ = lexicon[curr_string] result += last_match_id lowerCAmelCase__ = last_match_id + """0""" if math.loga(lowerCamelCase__ ).is_integer(): lowerCAmelCase__ = {} for curr_key in list(lowerCamelCase__ ): lowerCAmelCase__ = lexicon.pop(lowerCamelCase__ ) lowerCAmelCase__ = new_lex lowerCAmelCase__ = last_match_id + """1""" index += 1 lowerCAmelCase__ = """""" return result def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = 8 try: with open(lowerCamelCase__ , """wb""" ) as opened_file: lowerCAmelCase__ = [ to_write[i : i + byte_length] for i in range(0 , len(lowerCamelCase__ ) , lowerCamelCase__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(lowerCamelCase__ , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowerCAmelCase__ = data_bits[counter:] lowerCAmelCase__ = data_bits[counter + 1 :] return data_bits def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = read_file_binary(lowerCamelCase__ ) lowerCAmelCase__ = remove_prefix(lowerCamelCase__ ) lowerCAmelCase__ = decompress_data(lowerCamelCase__ ) write_file_binary(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
674
"""simple docstring""" from __future__ import annotations from math import gcd def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 3 , ): """simple docstring""" if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: return (pow(lowerCamelCase__ , 2 ) + step) % modulus for _ in range(lowerCamelCase__ ): # These track the position within the cycle detection logic. lowerCAmelCase__ = seed lowerCAmelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCAmelCase__ = gcd(hare - tortoise , lowerCamelCase__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCAmelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : Dict = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"{args.num} is probably prime") else: __lowerCAmelCase : List[str] = args.num // divisor print(F"{args.num} = {divisor} * {quotient}")
674
1
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: lowerCAmelCase__ = f"""The input value of [n={number}] has to be > 0""" raise ValueError(lowerCamelCase__ ) else: lowerCAmelCase__ = sylvester(number - 1 ) lowerCAmelCase__ = num - 1 lowerCAmelCase__ = num return lower * upper + 1 if __name__ == "__main__": print(F"The 8th number in Sylvester's sequence: {sylvester(8)}")
674
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = TapasConfig.from_json_file(lowerCamelCase__ ) # set absolute/relative position embeddings parameter lowerCAmelCase__ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WTQ": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = True # hparam_utils.py hparams lowerCAmelCase__ = 0.66_46_94 lowerCAmelCase__ = 0.20_79_51 lowerCAmelCase__ = 0.12_11_94 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 0.0_35_25_13 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = False # hparam_utils.py hparams lowerCAmelCase__ = 36.45_19 lowerCAmelCase__ = 0.90_34_21 lowerCAmelCase__ = 2_22.0_88 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = 0.76_31_41 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "TABFACT": lowerCAmelCase__ = TapasForSequenceClassification(config=lowerCamelCase__ ) elif task == "MLM": lowerCAmelCase__ = TapasForMaskedLM(config=lowerCamelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": lowerCAmelCase__ = TapasModel(config=lowerCamelCase__ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase__ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) lowerCAmelCase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 ) tokenizer.save_pretrained(lowerCamelCase__ ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
674
1
"""simple docstring""" def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] lowerCAmelCase__ = 6 lowerCAmelCase__ = 1 lowerCAmelCase__ = 1901 lowerCAmelCase__ = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 lowerCAmelCase__ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 lowerCAmelCase__ = day - 29 else: if day > days_per_month[month - 1]: month += 1 lowerCAmelCase__ = day - days_per_month[month - 2] if month > 12: year += 1 lowerCAmelCase__ = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
674
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ = 50 ): """simple docstring""" lowerCAmelCase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"{solution() = }")
674
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : int = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class a_ ( __UpperCamelCase ): UpperCamelCase_ : Tuple = "openai-gpt" UpperCamelCase_ : str = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Dict , snake_case__ : Any=40478 , snake_case__ : List[str]=512 , snake_case__ : Any=768 , snake_case__ : List[Any]=12 , snake_case__ : List[Any]=12 , snake_case__ : Dict="gelu" , snake_case__ : Dict=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : str=0.1 , snake_case__ : Optional[int]=1E-5 , snake_case__ : Optional[int]=0.02 , snake_case__ : Tuple="cls_index" , snake_case__ : Union[str, Any]=True , snake_case__ : Dict=None , snake_case__ : int=True , snake_case__ : Optional[int]=0.1 , **snake_case__ : Tuple , ): lowerCAmelCase__ = vocab_size lowerCAmelCase__ = n_positions lowerCAmelCase__ = n_embd lowerCAmelCase__ = n_layer lowerCAmelCase__ = n_head lowerCAmelCase__ = afn lowerCAmelCase__ = resid_pdrop lowerCAmelCase__ = embd_pdrop lowerCAmelCase__ = attn_pdrop lowerCAmelCase__ = layer_norm_epsilon lowerCAmelCase__ = initializer_range lowerCAmelCase__ = summary_type lowerCAmelCase__ = summary_use_proj lowerCAmelCase__ = summary_activation lowerCAmelCase__ = summary_first_dropout lowerCAmelCase__ = summary_proj_to_labels super().__init__(**snake_case__ )
674
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Any = "The Nymphenburg Palace is a beautiful palace in Munich!" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } lowerCAmelCase__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase__ = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCamelCase__ , output_all_encodings=lowerCamelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCamelCase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase__ = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab lowerCAmelCase__ = os.path.join(get_home_dir() , """models""" ) lowerCAmelCase__ = _load_vocab(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , cls=lowerCamelCase__ ) lowerCAmelCase__ = nlp.model.BERTModel( lowerCamelCase__ , len(lowerCamelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCamelCase__ , use_token_type_embed=lowerCamelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCamelCase__ , use_decoder=lowerCamelCase__ , ) original_bort.load_parameters(lowerCamelCase__ , cast_dtype=lowerCamelCase__ , ignore_extra=lowerCamelCase__ ) lowerCAmelCase__ = original_bort._collect_params_with_prefix() # Build our config ๐Ÿค— lowerCAmelCase__ = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(lowerCamelCase__ ), } lowerCAmelCase__ = BertConfig.from_dict(lowerCamelCase__ ) lowerCAmelCase__ = BertForMaskedLM(lowerCamelCase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCamelCase__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = hf_param.shape lowerCAmelCase__ = to_torch(params[gluon_param] ) lowerCAmelCase__ = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase__ = layer.attention.self lowerCAmelCase__ = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output lowerCAmelCase__ = layer.attention.output lowerCAmelCase__ = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) lowerCAmelCase__ = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate lowerCAmelCase__ = layer.intermediate lowerCAmelCase__ = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) lowerCAmelCase__ = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output lowerCAmelCase__ = layer.output lowerCAmelCase__ = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) lowerCAmelCase__ = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy ๐ŸŽ„ hf_bort_model.half() # Compare output of both models lowerCAmelCase__ = RobertaTokenizer.from_pretrained("""roberta-base""" ) lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ )["""input_ids"""] # Get gluon output lowerCAmelCase__ = mx.nd.array([input_ids] ) lowerCAmelCase__ = original_bort(inputs=lowerCamelCase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCamelCase__ ) lowerCAmelCase__ = BertModel.from_pretrained(lowerCamelCase__ ) hf_bort_model.eval() lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" ) lowerCAmelCase__ = hf_bort_model(**lowerCamelCase__ )[0] lowerCAmelCase__ = output_gluon[0].asnumpy() lowerCAmelCase__ = output_hf[0].detach().numpy() lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase__ = np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) if success: print("""โœ”๏ธ Both model do output the same tensors""" ) else: print("""โŒ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : str = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
674
1
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class a_ ( __UpperCamelCase ): def __init__( self : str ): lowerCAmelCase__ = [] def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : Union[str, Any] , **snake_case__ : Any ): self.events.append("""on_init_end""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : List[Any] , **snake_case__ : str ): self.events.append("""on_train_begin""" ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Tuple , snake_case__ : str , snake_case__ : str , **snake_case__ : Any ): self.events.append("""on_train_end""" ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : str , snake_case__ : List[str] , snake_case__ : str , **snake_case__ : Dict ): self.events.append("""on_epoch_begin""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[str] , **snake_case__ : str ): self.events.append("""on_epoch_end""" ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[int] , **snake_case__ : str ): self.events.append("""on_step_begin""" ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Dict , **snake_case__ : int ): self.events.append("""on_step_end""" ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Optional[Any] , **snake_case__ : Any ): self.events.append("""on_evaluate""" ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : int , **snake_case__ : Optional[int] ): self.events.append("""on_predict""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Union[str, Any] , **snake_case__ : List[str] ): self.events.append("""on_save""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : int , **snake_case__ : List[Any] ): self.events.append("""on_log""" ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Any , **snake_case__ : List[Any] ): self.events.append("""on_prediction_step""" ) @require_torch class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = tempfile.mkdtemp() def _SCREAMING_SNAKE_CASE ( self : List[Any] ): shutil.rmtree(self.output_dir ) def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : Dict=0 , snake_case__ : List[str]=0 , snake_case__ : Any=64 , snake_case__ : Tuple=64 , snake_case__ : str=None , snake_case__ : int=False , **snake_case__ : List[str] ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowerCAmelCase__ = RegressionDataset(length=snake_case__ ) lowerCAmelCase__ = RegressionDataset(length=snake_case__ ) lowerCAmelCase__ = RegressionModelConfig(a=snake_case__ , b=snake_case__ ) lowerCAmelCase__ = RegressionPreTrainedModel(snake_case__ ) lowerCAmelCase__ = TrainingArguments(self.output_dir , disable_tqdm=snake_case__ , report_to=[] , **snake_case__ ) return Trainer( snake_case__ , snake_case__ , train_dataset=snake_case__ , eval_dataset=snake_case__ , callbacks=snake_case__ , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Union[str, Any] ): self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) # Order doesn't matter lowerCAmelCase__ = sorted(snake_case__ , key=lambda snake_case__ : cb.__name__ if isinstance(snake_case__ , snake_case__ ) else cb.__class__.__name__ ) lowerCAmelCase__ = sorted(snake_case__ , key=lambda snake_case__ : cb.__name__ if isinstance(snake_case__ , snake_case__ ) else cb.__class__.__name__ ) for cba, cba in zip(snake_case__ , snake_case__ ): if isinstance(snake_case__ , snake_case__ ) and isinstance(snake_case__ , snake_case__ ): self.assertEqual(snake_case__ , snake_case__ ) elif isinstance(snake_case__ , snake_case__ ) and not isinstance(snake_case__ , snake_case__ ): self.assertEqual(snake_case__ , cba.__class__ ) elif not isinstance(snake_case__ , snake_case__ ) and isinstance(snake_case__ , snake_case__ ): self.assertEqual(cba.__class__ , snake_case__ ) else: self.assertEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : List[str] ): lowerCAmelCase__ = ["""on_init_end""", """on_train_begin"""] lowerCAmelCase__ = 0 lowerCAmelCase__ = len(trainer.get_eval_dataloader() ) lowerCAmelCase__ = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(snake_case__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = self.get_trainer() lowerCAmelCase__ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case__ ) # Callbacks passed at init are added to the default callbacks lowerCAmelCase__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(snake_case__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowerCAmelCase__ = self.get_trainer(disable_tqdm=snake_case__ ) lowerCAmelCase__ = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowerCAmelCase__ = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(snake_case__ ) expected_callbacks.remove(snake_case__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case__ ) lowerCAmelCase__ = self.get_trainer() lowerCAmelCase__ = trainer.pop_callback(snake_case__ ) self.assertEqual(cb.__class__ , snake_case__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case__ ) trainer.add_callback(snake_case__ ) expected_callbacks.insert(0 , snake_case__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case__ ) # We can also add, pop, or remove by instance lowerCAmelCase__ = self.get_trainer() lowerCAmelCase__ = trainer.callback_handler.callbacks[0] trainer.remove_callback(snake_case__ ) expected_callbacks.remove(snake_case__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case__ ) lowerCAmelCase__ = self.get_trainer() lowerCAmelCase__ = trainer.callback_handler.callbacks[0] lowerCAmelCase__ = trainer.pop_callback(snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case__ ) trainer.add_callback(snake_case__ ) expected_callbacks.insert(0 , snake_case__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Any ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=snake_case__ ) lowerCAmelCase__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowerCAmelCase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case__ , self.get_expected_events(snake_case__ ) ) # Independent log/save/eval lowerCAmelCase__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowerCAmelCase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case__ , self.get_expected_events(snake_case__ ) ) lowerCAmelCase__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowerCAmelCase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case__ , self.get_expected_events(snake_case__ ) ) lowerCAmelCase__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() lowerCAmelCase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case__ , self.get_expected_events(snake_case__ ) ) lowerCAmelCase__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() lowerCAmelCase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case__ , self.get_expected_events(snake_case__ ) ) # A bit of everything lowerCAmelCase__ = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() lowerCAmelCase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case__ , self.get_expected_events(snake_case__ ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: lowerCAmelCase__ = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(snake_case__ ) in warn_mock.call_args[0][0]
674
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self : Optional[int] ): lowerCAmelCase__ = """""" lowerCAmelCase__ = """""" lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = 256 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = cva.imread(snake_case__ , 0 ) lowerCAmelCase__ = copy.deepcopy(self.img ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" ) lowerCAmelCase__ = np.sum(snake_case__ ) for i in range(len(snake_case__ ) ): lowerCAmelCase__ = x[i] / self.k self.sk += prk lowerCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase__ = int(last % last ) lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case__ ) lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase__ = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase__ = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": __lowerCAmelCase : Dict = os.path.join(os.path.basename(__file__), "image_data/input.jpg") __lowerCAmelCase : Optional[int] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
674
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class a_ ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowerCAmelCase__ = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase__ = TFAutoModel.from_pretrained(snake_case__ , from_pt=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase__ = AutoModel.from_pretrained(snake_case__ , from_tf=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowerCAmelCase__ = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase__ = TFAutoModelForPreTraining.from_pretrained(snake_case__ , from_pt=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase__ = AutoModelForPreTraining.from_pretrained(snake_case__ , from_tf=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase__ = TFAutoModelForCausalLM.from_pretrained(snake_case__ , from_pt=snake_case__ ) lowerCAmelCase__ , lowerCAmelCase__ = TFAutoModelForCausalLM.from_pretrained( snake_case__ , output_loading_info=snake_case__ , from_pt=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase__ = AutoModelForCausalLM.from_pretrained(snake_case__ , from_tf=snake_case__ ) lowerCAmelCase__ , lowerCAmelCase__ = AutoModelForCausalLM.from_pretrained( snake_case__ , output_loading_info=snake_case__ , from_tf=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase__ = TFAutoModelWithLMHead.from_pretrained(snake_case__ , from_pt=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase__ = AutoModelWithLMHead.from_pretrained(snake_case__ , from_tf=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase__ = TFAutoModelForMaskedLM.from_pretrained(snake_case__ , from_pt=snake_case__ ) lowerCAmelCase__ , lowerCAmelCase__ = TFAutoModelForMaskedLM.from_pretrained( snake_case__ , output_loading_info=snake_case__ , from_pt=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase__ = AutoModelForMaskedLM.from_pretrained(snake_case__ , from_tf=snake_case__ ) lowerCAmelCase__ , lowerCAmelCase__ = AutoModelForMaskedLM.from_pretrained( snake_case__ , output_loading_info=snake_case__ , from_tf=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : int ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained(snake_case__ , from_pt=snake_case__ ) lowerCAmelCase__ , lowerCAmelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained( snake_case__ , output_loading_info=snake_case__ , from_pt=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained(snake_case__ , from_tf=snake_case__ ) lowerCAmelCase__ , lowerCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained( snake_case__ , output_loading_info=snake_case__ , from_tf=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : Any ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowerCAmelCase__ = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase__ = TFAutoModelForSequenceClassification.from_pretrained(snake_case__ , from_pt=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained(snake_case__ , from_tf=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : int ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowerCAmelCase__ = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase__ = TFAutoModelForQuestionAnswering.from_pretrained(snake_case__ , from_pt=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase__ = AutoModelForQuestionAnswering.from_pretrained(snake_case__ , from_tf=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = TFAutoModelWithLMHead.from_pretrained(snake_case__ , from_pt=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=snake_case__ ) , 14410 ) lowerCAmelCase__ = AutoModelWithLMHead.from_pretrained(snake_case__ , from_tf=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=snake_case__ ) , 14410 ) def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = TFAutoModelWithLMHead.from_pretrained(snake_case__ , from_pt=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=snake_case__ ) , 14410 ) lowerCAmelCase__ = AutoModelWithLMHead.from_pretrained(snake_case__ , from_tf=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=snake_case__ ) , 14410 )
674
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class a_ ( __UpperCamelCase ): UpperCamelCase_ : List[str] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) UpperCamelCase_ : str = "CIDAS/clipseg-rd64-refined" UpperCamelCase_ : Any = "image_segmenter" UpperCamelCase_ : Optional[Any] = CLIPSegForImageSegmentation UpperCamelCase_ : List[str] = ["image", "text"] UpperCamelCase_ : int = ["image"] def __init__( self : Tuple , *snake_case__ : str , **snake_case__ : Optional[Any] ): requires_backends(self , ["""vision"""] ) super().__init__(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : "Image" , snake_case__ : str ): return self.pre_processor(text=[label] , images=[image] , padding=snake_case__ , return_tensors="""pt""" ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple ): with torch.no_grad(): lowerCAmelCase__ = self.model(**snake_case__ ).logits return logits def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] ): lowerCAmelCase__ = outputs.cpu().detach().numpy() lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
674
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = 1 lowerCAmelCase__ = 3 lowerCAmelCase__ = (32, 32) lowerCAmelCase__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case__ ) return image @property def _SCREAMING_SNAKE_CASE ( self : List[str] ): torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def _SCREAMING_SNAKE_CASE ( self : List[str] ): torch.manual_seed(0 ) lowerCAmelCase__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(snake_case__ ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple ): def extract(*snake_case__ : List[Any] , **snake_case__ : List[str] ): class a_ : def __init__( self : Any ): lowerCAmelCase__ = torch.ones([0] ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Union[str, Any] ): self.pixel_values.to(snake_case__ ) return self return Out() return extract def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.dummy_cond_unet lowerCAmelCase__ = PNDMScheduler(skip_prk_steps=snake_case__ ) lowerCAmelCase__ = self.dummy_vae lowerCAmelCase__ = self.dummy_text_encoder lowerCAmelCase__ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowerCAmelCase__ = 77 lowerCAmelCase__ = self.dummy_image.to(snake_case__ ) lowerCAmelCase__ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCAmelCase__ = AltDiffusionImgaImgPipeline( unet=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , safety_checker=snake_case__ , feature_extractor=self.dummy_extractor , ) lowerCAmelCase__ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=snake_case__ ) lowerCAmelCase__ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = """A painting of a squirrel eating a burger""" lowerCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(0 ) lowerCAmelCase__ = alt_pipe( [prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=snake_case__ , ) lowerCAmelCase__ = output.images lowerCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(0 ) lowerCAmelCase__ = alt_pipe( [prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=snake_case__ , return_dict=snake_case__ , )[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.dummy_cond_unet lowerCAmelCase__ = PNDMScheduler(skip_prk_steps=snake_case__ ) lowerCAmelCase__ = self.dummy_vae lowerCAmelCase__ = self.dummy_text_encoder lowerCAmelCase__ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowerCAmelCase__ = 77 lowerCAmelCase__ = self.dummy_image.to(snake_case__ ) # put models in fp16 lowerCAmelCase__ = unet.half() lowerCAmelCase__ = vae.half() lowerCAmelCase__ = bert.half() # make sure here that pndm scheduler skips prk lowerCAmelCase__ = AltDiffusionImgaImgPipeline( unet=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , safety_checker=snake_case__ , feature_extractor=self.dummy_extractor , ) lowerCAmelCase__ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=snake_case__ ) lowerCAmelCase__ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = """A painting of a squirrel eating a burger""" lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = alt_pipe( [prompt] , generator=snake_case__ , num_inference_steps=2 , output_type="""np""" , image=snake_case__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCAmelCase__ = init_image.resize((760, 504) ) lowerCAmelCase__ = """BAAI/AltDiffusion""" lowerCAmelCase__ = AltDiffusionImgaImgPipeline.from_pretrained( snake_case__ , safety_checker=snake_case__ , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase__ = """A fantasy landscape, trending on artstation""" lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( prompt=snake_case__ , image=snake_case__ , strength=0.75 , guidance_scale=7.5 , generator=snake_case__ , output_type="""np""" , ) lowerCAmelCase__ = output.images[0] lowerCAmelCase__ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowerCAmelCase__ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowerCAmelCase__ = init_image.resize((768, 512) ) lowerCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) lowerCAmelCase__ = """BAAI/AltDiffusion""" lowerCAmelCase__ = AltDiffusionImgaImgPipeline.from_pretrained( snake_case__ , safety_checker=snake_case__ , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase__ = """A fantasy landscape, trending on artstation""" lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( prompt=snake_case__ , image=snake_case__ , strength=0.75 , guidance_scale=7.5 , generator=snake_case__ , output_type="""np""" , ) lowerCAmelCase__ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
674
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = LayoutLMTokenizer UpperCamelCase_ : List[Any] = LayoutLMTokenizerFast UpperCamelCase_ : Dict = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() lowerCAmelCase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : Union[str, Any] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Tuple ): lowerCAmelCase__ = """UNwant\u00E9d,running""" lowerCAmelCase__ = """unwanted, running""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(snake_case__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): pass
674
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : str = logging.get_logger(__name__) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["""stage2""", """stage3""", """stage4"""] , ) lowerCAmelCase__ = DetaConfig( backbone_config=lowerCamelCase__ , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=lowerCamelCase__ , with_box_refine=lowerCamelCase__ , two_stage=lowerCamelCase__ , ) # set labels lowerCAmelCase__ = """huggingface/label-files""" if "o365" in model_name: lowerCAmelCase__ = 366 lowerCAmelCase__ = """object365-id2label.json""" else: lowerCAmelCase__ = 91 lowerCAmelCase__ = """coco-detection-id2label.json""" lowerCAmelCase__ = num_labels lowerCAmelCase__ = json.load(open(cached_download(hf_hub_url(lowerCamelCase__ , lowerCamelCase__ , repo_type="""dataset""" ) ) , """r""" ) ) lowerCAmelCase__ = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.patch_embed.proj.weight""", """model.backbone.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.proj.bias""", """model.backbone.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.weight""", """model.backbone.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.bias""", """model.backbone.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.reduction.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.bias""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append(("""backbone.0.body.norm1.weight""", """model.backbone.model.hidden_states_norms.stage2.weight""") ) rename_keys.append(("""backbone.0.body.norm1.bias""", """model.backbone.model.hidden_states_norms.stage2.bias""") ) rename_keys.append(("""backbone.0.body.norm2.weight""", """model.backbone.model.hidden_states_norms.stage3.weight""") ) rename_keys.append(("""backbone.0.body.norm2.bias""", """model.backbone.model.hidden_states_norms.stage3.bias""") ) rename_keys.append(("""backbone.0.body.norm3.weight""", """model.backbone.model.hidden_states_norms.stage4.weight""") ) rename_keys.append(("""backbone.0.body.norm3.bias""", """model.backbone.model.hidden_states_norms.stage4.bias""") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.weight""", f"""model.encoder.layers.{i}.self_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.bias""", f"""model.encoder.layers.{i}.self_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.weight""", f"""model.encoder.layers.{i}.self_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.bias""", f"""model.encoder.layers.{i}.self_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.weight""", f"""model.encoder.layers.{i}.self_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.bias""", f"""model.encoder.layers.{i}.self_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.weight""", f"""model.encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""model.encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""model.encoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""model.encoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""model.encoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""model.encoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""model.encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""model.encoder.layers.{i}.final_layer_norm.bias""") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.weight""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.bias""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.weight""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""model.decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""model.decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.weight""", f"""model.decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.bias""", f"""model.decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""model.decoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""model.decoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""model.decoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""model.decoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""model.decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""model.decoder.layers.{i}.final_layer_norm.bias""") ) # fmt: on return rename_keys def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = dct.pop(lowerCamelCase__ ) lowerCAmelCase__ = val def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCAmelCase__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight""" ) lowerCAmelCase__ = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[:dim, :] lowerCAmelCase__ = in_proj_bias[: dim] lowerCAmelCase__ = in_proj_weight[ dim : dim * 2, : ] lowerCAmelCase__ = in_proj_bias[ dim : dim * 2 ] lowerCAmelCase__ = in_proj_weight[ -dim :, : ] lowerCAmelCase__ = in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention lowerCAmelCase__ = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) lowerCAmelCase__ = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[:hidden_size, :] lowerCAmelCase__ = in_proj_bias[:hidden_size] lowerCAmelCase__ = in_proj_weight[ hidden_size : hidden_size * 2, : ] lowerCAmelCase__ = in_proj_bias[hidden_size : hidden_size * 2] lowerCAmelCase__ = in_proj_weight[-hidden_size:, :] lowerCAmelCase__ = in_proj_bias[-hidden_size:] def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase__ = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = get_deta_config(lowerCamelCase__ ) # load original state dict if model_name == "deta-swin-large": lowerCAmelCase__ = hf_hub_download(repo_id="""nielsr/deta-checkpoints""" , filename="""adet_swin_ft.pth""" ) elif model_name == "deta-swin-large-o365": lowerCAmelCase__ = hf_hub_download(repo_id="""jozhang97/deta-swin-l-o365""" , filename="""deta_swin_pt_o365.pth""" ) else: raise ValueError(f"""Model name {model_name} not supported""" ) lowerCAmelCase__ = torch.load(lowerCamelCase__ , map_location="""cpu""" )["""model"""] # original state dict for name, param in state_dict.items(): print(lowerCamelCase__ , param.shape ) # rename keys lowerCAmelCase__ = create_rename_keys(lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) read_in_swin_q_k_v(lowerCamelCase__ , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase__ , lowerCamelCase__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: lowerCAmelCase__ = state_dict.pop(lowerCamelCase__ ) lowerCAmelCase__ = val if "input_proj" in key: lowerCAmelCase__ = state_dict.pop(lowerCamelCase__ ) lowerCAmelCase__ = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: lowerCAmelCase__ = state_dict.pop(lowerCamelCase__ ) lowerCAmelCase__ = val # finally, create HuggingFace model and load state dict lowerCAmelCase__ = DetaForObjectDetection(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() lowerCAmelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" model.to(lowerCamelCase__ ) # load image processor lowerCAmelCase__ = DetaImageProcessor(format="""coco_detection""" ) # verify our conversion on image lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = processor(images=lowerCamelCase__ , return_tensors="""pt""" ) lowerCAmelCase__ = encoding["""pixel_values"""] lowerCAmelCase__ = model(pixel_values.to(lowerCamelCase__ ) ) # verify logits print("""Logits:""" , outputs.logits[0, :3, :3] ) print("""Boxes:""" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": lowerCAmelCase__ = torch.tensor( [[-7.63_08, -2.84_85, -5.37_37], [-7.20_37, -4.55_05, -4.80_27], [-7.29_43, -4.26_11, -4.66_17]] ) lowerCAmelCase__ = torch.tensor([[0.49_87, 0.49_69, 0.99_99], [0.25_49, 0.54_98, 0.48_05], [0.54_98, 0.27_57, 0.05_69]] ) elif model_name == "deta-swin-large-o365": lowerCAmelCase__ = torch.tensor( [[-8.01_22, -3.57_20, -4.97_17], [-8.15_47, -3.68_86, -4.63_89], [-7.66_10, -3.61_94, -5.01_34]] ) lowerCAmelCase__ = torch.tensor([[0.25_23, 0.55_49, 0.48_81], [0.77_15, 0.41_49, 0.46_01], [0.55_03, 0.27_53, 0.05_75]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(lowerCamelCase__ ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(lowerCamelCase__ ) , atol=1e-4 ) print("""Everything ok!""" ) if pytorch_dump_folder_path: # Save model and processor logger.info(f"""Saving PyTorch model and processor to {pytorch_dump_folder_path}...""" ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) # Push to hub if push_to_hub: print("""Pushing model and processor to hub...""" ) model.push_to_hub(f"""jozhang97/{model_name}""" ) processor.push_to_hub(f"""jozhang97/{model_name}""" ) if __name__ == "__main__": __lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the ๐Ÿค— hub." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
674
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __lowerCAmelCase : Any = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : def __init__( self : List[str] , snake_case__ : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) lowerCAmelCase__ = primes[group]["""prime"""] lowerCAmelCase__ = primes[group]["""generator"""] lowerCAmelCase__ = int(hexlify(urandom(32 ) ) , base=16 ) def _SCREAMING_SNAKE_CASE ( self : Any ): return hex(self.__private_key )[2:] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = pow(self.generator , self.__private_key , self.prime ) return hex(snake_case__ )[2:] def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(snake_case__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str ): lowerCAmelCase__ = int(snake_case__ , base=16 ) if not self.is_valid_public_key(snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , self.__private_key , self.prime ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : int , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(snake_case__ , (prime - 1) // 2 , snake_case__ ) == 1 ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : str , snake_case__ : str , snake_case__ : int = 14 ): lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(snake_case__ , snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , snake_case__ , snake_case__ ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
674
1
"""simple docstring""" from __future__ import annotations def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" lowerCAmelCase__ = word_bank or [] # create a table lowerCAmelCase__ = len(lowerCamelCase__ ) + 1 lowerCAmelCase__ = [] for _ in range(lowerCamelCase__ ): table.append([] ) # seed value lowerCAmelCase__ = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCamelCase__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCamelCase__ )] == word: lowerCAmelCase__ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCamelCase__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCamelCase__ )]: combination.reverse() return table[len(lowerCamelCase__ )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
674
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) lowerCAmelCase__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = weights[0][0][0] lowerCAmelCase__ = np.asarray(layer_norm_a[0] ) lowerCAmelCase__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # lsh weights + output lowerCAmelCase__ = weights[0][1] if len(lowerCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) else: set_layer_weights_in_torch_local(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) # intermediate weighs lowerCAmelCase__ = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase__ ) == 4: lowerCAmelCase__ = intermediate_weights[2] # layernorm 2 lowerCAmelCase__ = np.asarray(intermediate_weights[0][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # intermediate dense lowerCAmelCase__ = np.asarray(intermediate_weights[1][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) # intermediate out lowerCAmelCase__ = np.asarray(intermediate_weights[4][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = torch_model.reformer # word embeds lowerCAmelCase__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase__ ) , ) if isinstance(weights[3] , lowerCamelCase__ ): lowerCAmelCase__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCAmelCase__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" lowerCAmelCase__ = nn.Parameter(torch.tensor(lowerCamelCase__ ) ) lowerCAmelCase__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCAmelCase__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # output layer norm lowerCAmelCase__ = np.asarray(weights[7][0] ) lowerCAmelCase__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # output embeddings lowerCAmelCase__ = np.asarray(weights[9][0] ) lowerCAmelCase__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = ReformerConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = ReformerModelWithLMHead(lowerCamelCase__ ) with open(lowerCamelCase__ , """rb""" ) as f: lowerCAmelCase__ = pickle.load(lowerCamelCase__ )["""weights"""] set_model_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
674
1
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = args.pruning_method lowerCAmelCase__ = args.threshold lowerCAmelCase__ = args.model_name_or_path.rstrip("""/""" ) lowerCAmelCase__ = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) lowerCAmelCase__ = torch.load(os.path.join(lowerCamelCase__ , """pytorch_model.bin""" ) ) lowerCAmelCase__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowerCAmelCase__ = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: lowerCAmelCase__ = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: lowerCAmelCase__ = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": lowerCAmelCase__ = MagnitudeBinarizer.apply(inputs=lowerCamelCase__ , threshold=lowerCamelCase__ ) lowerCAmelCase__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue lowerCAmelCase__ = name[:-6] lowerCAmelCase__ = model[f"""{prefix_}mask_scores"""] lowerCAmelCase__ = TopKBinarizer.apply(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowerCAmelCase__ = name[:-6] lowerCAmelCase__ = model[f"""{prefix_}mask_scores"""] lowerCAmelCase__ = ThresholdBinarizer.apply(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue lowerCAmelCase__ = name[:-6] lowerCAmelCase__ = model[f"""{prefix_}mask_scores"""] lowerCAmelCase__ , lowerCAmelCase__ = -0.1, 1.1 lowerCAmelCase__ = torch.sigmoid(lowerCamelCase__ ) lowerCAmelCase__ = s * (r - l) + l lowerCAmelCase__ = s_bar.clamp(min=0.0 , max=1.0 ) lowerCAmelCase__ = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError("""Unknown pruning method""" ) if target_model_path is None: lowerCAmelCase__ = os.path.join( os.path.dirname(lowerCamelCase__ ) , f"""bertarized_{os.path.basename(lowerCamelCase__ )}""" ) if not os.path.isdir(lowerCamelCase__ ): shutil.copytree(lowerCamelCase__ , lowerCamelCase__ ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(lowerCamelCase__ , os.path.join(lowerCamelCase__ , """pytorch_model.bin""" ) ) print("""\nPruned model saved! See you later!""" ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) __lowerCAmelCase : int = parser.parse_args() main(args)
674
"""simple docstring""" import os from math import logaa def _UpperCAmelCase ( lowerCamelCase__ = "base_exp.txt" ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) ): lowerCAmelCase__ , lowerCAmelCase__ = list(map(lowerCamelCase__ , line.split(""",""" ) ) ) if x * logaa(lowerCamelCase__ ) > largest: lowerCAmelCase__ = x * logaa(lowerCamelCase__ ) lowerCAmelCase__ = i + 1 return result if __name__ == "__main__": print(solution())
674
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class a_ ( __UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ : Union[str, Any] = "resnet" UpperCamelCase_ : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : List[Any] , snake_case__ : int=3 , snake_case__ : Optional[Any]=64 , snake_case__ : Union[str, Any]=[256, 512, 1024, 2048] , snake_case__ : Tuple=[3, 4, 6, 3] , snake_case__ : int="bottleneck" , snake_case__ : Any="relu" , snake_case__ : Union[str, Any]=False , snake_case__ : int=None , snake_case__ : List[str]=None , **snake_case__ : Tuple , ): super().__init__(**snake_case__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) lowerCAmelCase__ = num_channels lowerCAmelCase__ = embedding_size lowerCAmelCase__ = hidden_sizes lowerCAmelCase__ = depths lowerCAmelCase__ = layer_type lowerCAmelCase__ = hidden_act lowerCAmelCase__ = downsample_in_first_stage lowerCAmelCase__ = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(snake_case__ ) + 1 )] lowerCAmelCase__ , lowerCAmelCase__ = get_aligned_output_features_output_indices( out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names ) class a_ ( __UpperCamelCase ): UpperCamelCase_ : Dict = version.parse("1.11" ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : int ): return 1E-3
674
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" while b: lowerCAmelCase__ , lowerCAmelCase__ = b, a % b return a def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase__ , a % b ) def _UpperCAmelCase ( ): """simple docstring""" print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
674
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a_ ( unittest.TestCase ): @property def _SCREAMING_SNAKE_CASE ( self : List[str] ): torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = self.dummy_uncond_unet lowerCAmelCase__ = PNDMScheduler() lowerCAmelCase__ = PNDMPipeline(unet=snake_case__ , scheduler=snake_case__ ) pndm.to(snake_case__ ) pndm.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pndm(generator=snake_case__ , num_inference_steps=20 , output_type="""numpy""" ).images lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pndm(generator=snake_case__ , num_inference_steps=20 , output_type="""numpy""" , return_dict=snake_case__ )[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = """google/ddpm-cifar10-32""" lowerCAmelCase__ = UNetaDModel.from_pretrained(snake_case__ ) lowerCAmelCase__ = PNDMScheduler() lowerCAmelCase__ = PNDMPipeline(unet=snake_case__ , scheduler=snake_case__ ) pndm.to(snake_case__ ) pndm.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pndm(generator=snake_case__ , output_type="""numpy""" ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
674
"""simple docstring""" import os def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = os.path.dirname(os.path.realpath(lowerCamelCase__ ) ) lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """triangle.txt""" ) with open(lowerCamelCase__ ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = [] for line in triangle: lowerCAmelCase__ = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(lowerCamelCase__ ) ) a.append(lowerCamelCase__ ) for i in range(1 , len(lowerCamelCase__ ) ): for j in range(len(a[i] ) ): lowerCAmelCase__ = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCAmelCase__ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCamelCase__ , lowerCamelCase__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
674
1
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __lowerCAmelCase : Union[str, Any] = pytest.mark.integration __lowerCAmelCase : List[str] = {"comet"} __lowerCAmelCase : List[Any] = importlib.util.find_spec("fairseq") is not None __lowerCAmelCase : Dict = {"code_eval"} __lowerCAmelCase : List[str] = os.name == "nt" __lowerCAmelCase : Tuple = {"bertscore", "frugalscore", "perplexity"} __lowerCAmelCase : List[Any] = importlib.util.find_spec("transformers") is not None def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" @wraps(lowerCamelCase__ ) def wrapper(self , lowerCamelCase__ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self , lowerCamelCase__ ) return wrapper def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" @wraps(lowerCamelCase__ ) def wrapper(self , lowerCamelCase__ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self , lowerCamelCase__ ) return wrapper def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" @wraps(lowerCamelCase__ ) def wrapper(self , lowerCamelCase__ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self , lowerCamelCase__ ) return wrapper def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @local class a_ ( parameterized.TestCase ): UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Dict = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = """[...]""" lowerCAmelCase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , snake_case__ ) ).module_path ) lowerCAmelCase__ = datasets.load.import_main_class(metric_module.__name__ , dataset=snake_case__ ) # check parameters lowerCAmelCase__ = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(snake_case__ , metric_module.__name__ ): with self.use_local_metrics(): try: lowerCAmelCase__ = doctest.testmod(snake_case__ , verbose=snake_case__ , raise_on_error=snake_case__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : int ): lowerCAmelCase__ = """[...]""" lowerCAmelCase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , snake_case__ ) ).module_path ) # run doctest with self.use_local_metrics(): lowerCAmelCase__ = doctest.testmod(snake_case__ , verbose=snake_case__ , raise_on_error=snake_case__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : int ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](snake_case__ ): yield else: yield @contextmanager def _SCREAMING_SNAKE_CASE ( self : Tuple ): def load_local_metric(snake_case__ : Dict , *snake_case__ : List[str] , **snake_case__ : int ): return load_metric(os.path.join("""metrics""" , snake_case__ ) , *snake_case__ , **snake_case__ ) with patch("""datasets.load_metric""" ) as mock_load_metric: lowerCAmelCase__ = load_local_metric yield @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , snake_case__ : int ): def wrapper(snake_case__ : str ): lowerCAmelCase__ = contextmanager(snake_case__ ) lowerCAmelCase__ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags class a_ ( __UpperCamelCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Any ): assert len(input_dict["""input_ids"""] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: lowerCAmelCase__ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" import torch def bert_cos_score_idf(lowerCamelCase__ , lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(lowerCamelCase__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: lowerCAmelCase__ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" def load_from_checkpoint(lowerCamelCase__ ): class a_ : def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : List[str] , *snake_case__ : Union[str, Any] , **snake_case__ : List[str] ): assert len(snake_case__ ) == 2 lowerCAmelCase__ = [0.19, 0.92] return scores, sum(snake_case__ ) / len(snake_case__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: lowerCAmelCase__ = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: lowerCAmelCase__ = load_from_checkpoint yield def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = load_metric(os.path.join("""metrics""" , """seqeval""" ) ) lowerCAmelCase__ = """ERROR""" lowerCAmelCase__ = f"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(lowerCamelCase__ , match=re.escape(lowerCamelCase__ ) ): metric.compute(predictions=[] , references=[] , scheme=lowerCamelCase__ )
674
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCAmelCase : Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __lowerCAmelCase : Optional[int] = json.load(f) @require_torch class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Dict ): return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ): lowerCAmelCase__ = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Any , snake_case__ : int ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowerCAmelCase__ = F"""facebook/wmt19-{pair}""" lowerCAmelCase__ = self.get_tokenizer(snake_case__ ) lowerCAmelCase__ = self.get_model(snake_case__ ) lowerCAmelCase__ = bleu_data[pair]["""src"""] lowerCAmelCase__ = bleu_data[pair]["""tgt"""] lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""pt""" , truncation=snake_case__ , padding="""longest""" ).to(snake_case__ ) lowerCAmelCase__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCAmelCase__ = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) lowerCAmelCase__ = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["""bleu"""] , snake_case__ )
674
1
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") __lowerCAmelCase : Any = F"https://www.google.com/search?q={query}&num=100" __lowerCAmelCase : Optional[int] = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: __lowerCAmelCase : Union[str, Any] = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: __lowerCAmelCase : Dict = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
674
"""simple docstring""" import pprint import requests __lowerCAmelCase : Union[str, Any] = "https://zenquotes.io/api" def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = random_quotes() pprint.pprint(response)
674
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( __UpperCamelCase ): UpperCamelCase_ : Union[str, Any] = ["image_processor", "tokenizer"] UpperCamelCase_ : List[Any] = "CLIPImageProcessor" UpperCamelCase_ : Union[str, Any] = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self : List[str] , snake_case__ : str=None , snake_case__ : Any=None , **snake_case__ : List[Any] ): lowerCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , snake_case__ , ) lowerCAmelCase__ = kwargs.pop("""feature_extractor""" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(snake_case__ , snake_case__ ) def __call__( self : List[str] , snake_case__ : List[str]=None , snake_case__ : Optional[Any]=None , snake_case__ : int=None , **snake_case__ : Optional[int] ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: lowerCAmelCase__ = self.tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if images is not None: lowerCAmelCase__ = self.image_processor(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if text is not None and images is not None: lowerCAmelCase__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case__ ) , tensor_type=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict , *snake_case__ : int , **snake_case__ : Optional[Any] ): return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , *snake_case__ : Dict , **snake_case__ : List[str] ): return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.tokenizer.model_input_names lowerCAmelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
674
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = CLIPConfig() # Create a dummy config file with image_proceesor_type lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ).to_dict() config_dict.pop("""image_processor_type""" ) lowerCAmelCase__ = CLIPImageProcessor(**snake_case__ ) # save in new folder model_config.save_pretrained(snake_case__ ) config.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) # make sure private variable is not incorrectly saved lowerCAmelCase__ = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with self.assertRaisesRegex( snake_case__ , """clip-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""clip-base""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): with self.assertRaisesRegex( snake_case__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , revision="""aaaaaa""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): with self.assertRaisesRegex( snake_case__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , trust_remote_code=snake_case__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ): try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoImageProcessor.register(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = CustomImageProcessor.from_pretrained(snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self : List[str] ): class a_ ( __UpperCamelCase ): UpperCamelCase_ : Tuple = True try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # If remote code is not set, the default is to use local lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(snake_case__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
674
1
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : int = logging.get_logger(__name__) __lowerCAmelCase : Dict = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class a_ ( __UpperCamelCase ): UpperCamelCase_ : Optional[Any] = "xlm-prophetnet" UpperCamelCase_ : Optional[int] = ["past_key_values"] UpperCamelCase_ : Tuple = { "num_attention_heads": "num_encoder_attention_heads", } def __init__( self : List[Any] , snake_case__ : Optional[float] = 0.1 , snake_case__ : Optional[Union[str, Callable]] = "gelu" , snake_case__ : Optional[int] = 30522 , snake_case__ : Optional[int] = 1024 , snake_case__ : Optional[int] = 4096 , snake_case__ : Optional[int] = 12 , snake_case__ : Optional[int] = 16 , snake_case__ : Optional[int] = 4096 , snake_case__ : Optional[int] = 12 , snake_case__ : Optional[int] = 16 , snake_case__ : Optional[float] = 0.1 , snake_case__ : Optional[float] = 0.1 , snake_case__ : Optional[int] = 512 , snake_case__ : Optional[float] = 0.02 , snake_case__ : Optional[bool] = True , snake_case__ : Optional[bool] = True , snake_case__ : Optional[int] = 0 , snake_case__ : Optional[int] = 2 , snake_case__ : Optional[int] = 32 , snake_case__ : Optional[int] = 128 , snake_case__ : Optional[bool] = False , snake_case__ : Optional[float] = 0.0 , snake_case__ : Optional[bool] = True , snake_case__ : Optional[int] = 0 , snake_case__ : Optional[int] = 1 , snake_case__ : Optional[int] = 2 , **snake_case__ : Tuple , ): lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = encoder_ffn_dim lowerCAmelCase__ = num_encoder_layers lowerCAmelCase__ = num_encoder_attention_heads lowerCAmelCase__ = decoder_ffn_dim lowerCAmelCase__ = num_decoder_layers lowerCAmelCase__ = num_decoder_attention_heads lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = init_std # Normal(0, this parameter) lowerCAmelCase__ = activation_function # parameters for xlmprophetnet lowerCAmelCase__ = ngram lowerCAmelCase__ = num_buckets lowerCAmelCase__ = relative_max_distance lowerCAmelCase__ = disable_ngram_loss lowerCAmelCase__ = eps # 3 Types of Dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = dropout lowerCAmelCase__ = use_cache super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , add_cross_attention=snake_case__ , decoder_start_token_id=snake_case__ , **snake_case__ , ) @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Optional[int] ): raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and""" """ `num_decoder_layers`.""" )
674
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a_ : def __init__( self : Optional[int] , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=64 , snake_case__ : Any=None ): lowerCAmelCase__ = np.random.default_rng(snake_case__ ) lowerCAmelCase__ = length lowerCAmelCase__ = rng.normal(size=(length,) ).astype(np.floataa ) lowerCAmelCase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[Any] ): return self.length def __getitem__( self : List[str] , snake_case__ : Optional[int] ): return {"x": self.x[i], "y": self.y[i]} class a_ ( torch.nn.Module ): def __init__( self : List[str] , snake_case__ : str=0 , snake_case__ : Dict=0 , snake_case__ : Any=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Any=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a[0] + self.b[0] class a_ ( torch.nn.Module ): def __init__( self : Any , snake_case__ : Union[str, Any]=0 , snake_case__ : Union[str, Any]=0 , snake_case__ : List[Any]=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any]=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a + self.b def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase__ = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} lowerCAmelCase__ = load_dataset("""csv""" , data_files=lowerCamelCase__ ) lowerCAmelCase__ = datasets["""train"""].unique("""label""" ) lowerCAmelCase__ = {v: i for i, v in enumerate(lowerCamelCase__ )} def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" ) if "label" in examples: lowerCAmelCase__ = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase__ = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=2 ) lowerCAmelCase__ = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
674
1
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = TapasConfig.from_json_file(lowerCamelCase__ ) # set absolute/relative position embeddings parameter lowerCAmelCase__ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WTQ": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = True # hparam_utils.py hparams lowerCAmelCase__ = 0.66_46_94 lowerCAmelCase__ = 0.20_79_51 lowerCAmelCase__ = 0.12_11_94 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 0.0_35_25_13 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = False # hparam_utils.py hparams lowerCAmelCase__ = 36.45_19 lowerCAmelCase__ = 0.90_34_21 lowerCAmelCase__ = 2_22.0_88 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = 0.76_31_41 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "TABFACT": lowerCAmelCase__ = TapasForSequenceClassification(config=lowerCamelCase__ ) elif task == "MLM": lowerCAmelCase__ = TapasForMaskedLM(config=lowerCamelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": lowerCAmelCase__ = TapasModel(config=lowerCamelCase__ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase__ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) lowerCAmelCase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 ) tokenizer.save_pretrained(lowerCamelCase__ ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
674
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = MobileBertConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = MobileBertForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint lowerCAmelCase__ = load_tf_weights_in_mobilebert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
674
1
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): # noqa: E741 """simple docstring""" lowerCAmelCase__ = len(lowerCamelCase__ ) lowerCAmelCase__ = 0 lowerCAmelCase__ = [0] * n lowerCAmelCase__ = [False] * n lowerCAmelCase__ = [False] * n def dfs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if parent == root: out_edge_count += 1 lowerCAmelCase__ = True lowerCAmelCase__ = at for to in l[at]: if to == parent: pass elif not visited[to]: lowerCAmelCase__ = dfs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: lowerCAmelCase__ = True # AP found via cycle if at == low[to]: lowerCAmelCase__ = True else: lowerCAmelCase__ = min(low[at] , lowerCamelCase__ ) return out_edge_count for i in range(lowerCamelCase__ ): if not visited[i]: lowerCAmelCase__ = 0 lowerCAmelCase__ = dfs(lowerCamelCase__ , lowerCamelCase__ , -1 , lowerCamelCase__ ) lowerCAmelCase__ = out_edge_count > 1 for x in range(len(lowerCamelCase__ ) ): if is_art[x] is True: print(lowerCamelCase__ ) # Adjacency list of graph __lowerCAmelCase : str = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
674
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: lowerCAmelCase__ = f"""The input value of [n={number}] has to be > 0""" raise ValueError(lowerCamelCase__ ) else: lowerCAmelCase__ = sylvester(number - 1 ) lowerCAmelCase__ = num - 1 lowerCAmelCase__ = num return lower * upper + 1 if __name__ == "__main__": print(F"The 8th number in Sylvester's sequence: {sylvester(8)}")
674
1
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _UpperCAmelCase ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join lowerCAmelCase__ = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , lowerCamelCase__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _UpperCAmelCase ( ): """simple docstring""" assert _test_patching.open is open lowerCAmelCase__ = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , lowerCamelCase__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , lowerCamelCase__ ): pass def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , lowerCamelCase__ ) is None with patch_submodule(_test_patching , """len""" , lowerCamelCase__ ): assert _test_patching.len is mock assert _test_patching.len is len def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = """__test_patch_submodule_start_and_stop_mock__""" lowerCAmelCase__ = patch_submodule(_test_patching , """open""" , lowerCamelCase__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _UpperCAmelCase ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join lowerCAmelCase__ = """__test_patch_submodule_successive_join__""" lowerCAmelCase__ = """__test_patch_submodule_successive_dirname__""" lowerCAmelCase__ = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , lowerCamelCase__ ): with patch_submodule(_test_patching , """os.rename""" , lowerCamelCase__ ): with patch_submodule(_test_patching , """os.path.dirname""" , lowerCamelCase__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , lowerCamelCase__ ): with patch_submodule(_test_patching , """os.path.join""" , lowerCamelCase__ ): with patch_submodule(_test_patching , """os.path.dirname""" , lowerCamelCase__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , lowerCamelCase__ ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , lowerCamelCase__ ): pass
674
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Tuple = PegasusTokenizer UpperCamelCase_ : Any = PegasusTokenizerFast UpperCamelCase_ : int = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : Optional[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any] ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = """</s>""" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(snake_case__ ) , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowerCAmelCase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase__ = """To ensure a smooth flow of bank resolutions.""" lowerCAmelCase__ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def _SCREAMING_SNAKE_CASE ( self : str ): # fmt: off lowerCAmelCase__ = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = PegasusTokenizer UpperCamelCase_ : Optional[int] = PegasusTokenizerFast UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Optional[int] = True def _SCREAMING_SNAKE_CASE ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ): return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : List[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Dict ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowerCAmelCase__ = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
674
1
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def _UpperCAmelCase ( *lowerCamelCase__ ): """simple docstring""" with open(lowerCamelCase__ , """r""" ) as fh: fcntl.flock(lowerCamelCase__ , fcntl.LOCK_EX ) try: print(*lowerCamelCase__ ) finally: fcntl.flock(lowerCamelCase__ , fcntl.LOCK_UN ) __lowerCAmelCase : Optional[Any] = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __lowerCAmelCase : Optional[Any] = torch.device("cuda", local_rank) __lowerCAmelCase : List[str] = socket.gethostname() __lowerCAmelCase : Dict = F"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __lowerCAmelCase : str = dist.get_rank() __lowerCAmelCase : List[Any] = dist.get_world_size() printflock(F"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(F"{gpu} is broken") raise
674
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case__ , ) assert hasattr(self , """env""" ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] ): # configuration for running training on smdistributed Model Parallel lowerCAmelCase__ = { """enabled""": True, """processes_per_host""": 8, } lowerCAmelCase__ = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowerCAmelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowerCAmelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="""py36""" , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str ): TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] ): # create estimator lowerCAmelCase__ = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case__ )
674
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __lowerCAmelCase : Tuple = datasets.utils.logging.get_logger(__name__) __lowerCAmelCase : Dict = ["names", "prefix"] __lowerCAmelCase : Optional[int] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] __lowerCAmelCase : Optional[int] = ["encoding_errors", "on_bad_lines"] __lowerCAmelCase : Optional[Any] = ["date_format"] @dataclass class a_ ( datasets.BuilderConfig ): UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_0000 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): if self.delimiter is not None: lowerCAmelCase__ = self.delimiter if self.column_names is not None: lowerCAmelCase__ = self.column_names @property def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , snake_case__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class a_ ( datasets.ArrowBasedBuilder ): UpperCamelCase_ : Dict = CsvConfig def _SCREAMING_SNAKE_CASE ( self : int ): return datasets.DatasetInfo(features=self.config.features ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Optional[int] ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) lowerCAmelCase__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case__ , (str, list, tuple) ): lowerCAmelCase__ = data_files if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase__ = [files] lowerCAmelCase__ = [dl_manager.iter_files(snake_case__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] lowerCAmelCase__ = [] for split_name, files in data_files.items(): if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase__ = [files] lowerCAmelCase__ = [dl_manager.iter_files(snake_case__ ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case__ , gen_kwargs={"""files""": files} ) ) return splits def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : pa.Table ): if self.config.features is not None: lowerCAmelCase__ = self.config.features.arrow_schema if all(not require_storage_cast(snake_case__ ) for feature in self.config.features.values() ): # cheaper cast lowerCAmelCase__ = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=snake_case__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example lowerCAmelCase__ = table_cast(snake_case__ , snake_case__ ) return pa_table def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Tuple ): lowerCAmelCase__ = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str lowerCAmelCase__ = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(snake_case__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case__ ) ): lowerCAmelCase__ = pd.read_csv(snake_case__ , iterator=snake_case__ , dtype=snake_case__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(snake_case__ ): lowerCAmelCase__ = pa.Table.from_pandas(snake_case__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(snake_case__ )}: {e}""" ) raise
674
"""simple docstring""" from math import pi, sqrt def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if num <= 0: raise ValueError("""math domain error""" ) if num > 1_71.5: raise OverflowError("""math range error""" ) elif num - int(lowerCamelCase__ ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(lowerCamelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _UpperCAmelCase ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(lowerCamelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __lowerCAmelCase : Dict = 1.0 while num: __lowerCAmelCase : Any = float(input("Gamma of: ")) print(F"gamma({num}) = {gamma(num)}") print("\nEnter 0 to exit...")
674
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[str] = logging.get_logger(__name__) __lowerCAmelCase : Any = { "google/pegasus-large": "https://huggingface.co/google/pegasus-large/resolve/main/config.json", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class a_ ( __UpperCamelCase ): UpperCamelCase_ : Optional[int] = "pegasus" UpperCamelCase_ : Optional[int] = ["past_key_values"] UpperCamelCase_ : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Any , snake_case__ : List[Any]=50265 , snake_case__ : Tuple=1024 , snake_case__ : Tuple=12 , snake_case__ : List[Any]=4096 , snake_case__ : Any=16 , snake_case__ : Any=12 , snake_case__ : Any=4096 , snake_case__ : List[str]=16 , snake_case__ : Union[str, Any]=0.0 , snake_case__ : Union[str, Any]=0.0 , snake_case__ : Union[str, Any]=True , snake_case__ : Dict=True , snake_case__ : Optional[int]="gelu" , snake_case__ : List[Any]=1024 , snake_case__ : int=0.1 , snake_case__ : int=0.0 , snake_case__ : Dict=0.0 , snake_case__ : int=0.02 , snake_case__ : Union[str, Any]=0 , snake_case__ : Optional[Any]=False , snake_case__ : int=0 , snake_case__ : Dict=1 , snake_case__ : Tuple=1 , **snake_case__ : Optional[Any] , ): lowerCAmelCase__ = vocab_size lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = d_model lowerCAmelCase__ = encoder_ffn_dim lowerCAmelCase__ = encoder_layers lowerCAmelCase__ = encoder_attention_heads lowerCAmelCase__ = decoder_ffn_dim lowerCAmelCase__ = decoder_layers lowerCAmelCase__ = decoder_attention_heads lowerCAmelCase__ = dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = activation_function lowerCAmelCase__ = init_std lowerCAmelCase__ = encoder_layerdrop lowerCAmelCase__ = decoder_layerdrop lowerCAmelCase__ = use_cache lowerCAmelCase__ = encoder_layers lowerCAmelCase__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) @property def _SCREAMING_SNAKE_CASE ( self : Any ): return self.encoder_attention_heads @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return self.d_model
674
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : def __init__( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any=13 , snake_case__ : int=30 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : Dict=True , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=32 , snake_case__ : List[str]=2 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[int]=37 , snake_case__ : Tuple="gelu" , snake_case__ : str=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=10 , snake_case__ : Dict=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : str=None , snake_case__ : List[Any]=2 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = num_patches + 2 def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[Any] ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[str] ): lowerCAmelCase__ = TFDeiTModel(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict ): lowerCAmelCase__ = TFDeiTForMaskedImageModeling(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForMaskedImageModeling(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple ): lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase_ : Any = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : int = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = TFDeiTModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): pass def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Dense ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any]=False ): lowerCAmelCase__ = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _SCREAMING_SNAKE_CASE ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDeiTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Any ): return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors="""tf""" ) # forward pass lowerCAmelCase__ = model(**snake_case__ ) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase__ = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
674
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : str = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __lowerCAmelCase : Tuple = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
674
"""simple docstring""" from __future__ import annotations from math import gcd def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 3 , ): """simple docstring""" if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: return (pow(lowerCamelCase__ , 2 ) + step) % modulus for _ in range(lowerCamelCase__ ): # These track the position within the cycle detection logic. lowerCAmelCase__ = seed lowerCAmelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCAmelCase__ = gcd(hare - tortoise , lowerCamelCase__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCAmelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : Dict = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"{args.num} is probably prime") else: __lowerCAmelCase : List[str] = args.num // divisor print(F"{args.num} = {divisor} * {quotient}")
674
1
"""simple docstring""" import os import sys import unittest __lowerCAmelCase : Union[str, Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __lowerCAmelCase : List[Any] = os.path.join(git_repo_path, "src", "transformers") __lowerCAmelCase : List[str] = "\n{0} = None\n" __lowerCAmelCase : Optional[int] = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" __lowerCAmelCase : Optional[Any] = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" ) self.assertIsNone(snake_case__ ) lowerCAmelCase__ = find_backend(""" if not is_tokenizers_available():""" ) self.assertEqual(snake_case__ , """tokenizers""" ) lowerCAmelCase__ = find_backend(""" if not is_tensorflow_text_available():""" ) self.assertEqual(snake_case__ , """tensorflow_text""" ) lowerCAmelCase__ = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" ) self.assertEqual(snake_case__ , """sentencepiece_and_tokenizers""" ) lowerCAmelCase__ = find_backend( """ if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" ) self.assertEqual(snake_case__ , """sentencepiece_and_tensorflow_text""" ) lowerCAmelCase__ = find_backend( """ if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" ) self.assertEqual(snake_case__ , """sentencepiece_and_tokenizers_and_vision""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , snake_case__ ) self.assertIn("""tensorflow_text""" , snake_case__ ) self.assertIn("""sentencepiece_and_tokenizers""" , snake_case__ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertModel""" , objects["""tf"""] ) self.assertIn("""FlaxBertModel""" , objects["""flax"""] ) self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertTokenizer""" , objects["""tensorflow_text"""] ) self.assertIn("""convert_slow_tokenizer""" , objects["""sentencepiece_and_tokenizers"""] ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = create_dummy_object("""CONSTANT""" , """'torch'""" ) self.assertEqual(snake_case__ , """\nCONSTANT = None\n""" ) lowerCAmelCase__ = create_dummy_object("""function""" , """'torch'""" ) self.assertEqual( snake_case__ , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) lowerCAmelCase__ = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') """ lowerCAmelCase__ = create_dummy_object("""FakeClass""" , """'torch'""" ) self.assertEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) """ lowerCAmelCase__ = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] , snake_case__ )
674
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = TapasConfig.from_json_file(lowerCamelCase__ ) # set absolute/relative position embeddings parameter lowerCAmelCase__ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WTQ": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = True # hparam_utils.py hparams lowerCAmelCase__ = 0.66_46_94 lowerCAmelCase__ = 0.20_79_51 lowerCAmelCase__ = 0.12_11_94 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 0.0_35_25_13 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = False # hparam_utils.py hparams lowerCAmelCase__ = 36.45_19 lowerCAmelCase__ = 0.90_34_21 lowerCAmelCase__ = 2_22.0_88 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = 0.76_31_41 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "TABFACT": lowerCAmelCase__ = TapasForSequenceClassification(config=lowerCamelCase__ ) elif task == "MLM": lowerCAmelCase__ = TapasForMaskedLM(config=lowerCamelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": lowerCAmelCase__ = TapasModel(config=lowerCamelCase__ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase__ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) lowerCAmelCase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 ) tokenizer.save_pretrained(lowerCamelCase__ ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
674
1
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = set() # edges = list of graph's edges lowerCAmelCase__ = get_edges(lowerCamelCase__ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCAmelCase__ , lowerCAmelCase__ = edges.pop() chosen_vertices.add(lowerCamelCase__ ) chosen_vertices.add(lowerCamelCase__ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowerCamelCase__ ) return chosen_vertices def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
674
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ = 50 ): """simple docstring""" lowerCAmelCase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"{solution() = }")
674
1
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : int = GPTSanJapaneseTokenizer UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : str = {"do_clean_text": False, "add_prefix_space": False} def _SCREAMING_SNAKE_CASE ( self : Any ): super().setUp() # fmt: off lowerCAmelCase__ = ["""ใ“ใ‚“""", """ใ“ใ‚“ใซ""", """ใซใกใฏ""", """ใฐใ‚“ใฏ""", """ไธ–็•Œ,ใ”บ็•Œ""", """ใ€""", """ใ€‚""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on lowerCAmelCase__ = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # ๐Ÿ˜€ lowerCAmelCase__ = {"""unk_token""": """<unk>"""} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(snake_case__ ) ) def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : int ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Any ): lowerCAmelCase__ = """ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ \nใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚๐Ÿ˜€""" lowerCAmelCase__ = """ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ \nใ“ใ‚“ใฐใ‚“ใฏใ€ไธ–็•Œใ€‚๐Ÿ˜€""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : List[str] ): lowerCAmelCase__ , lowerCAmelCase__ = self.get_input_output_texts(snake_case__ ) lowerCAmelCase__ = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) lowerCAmelCase__ = tokenizer.decode(snake_case__ , clean_up_tokenization_spaces=snake_case__ ) return text, ids def _SCREAMING_SNAKE_CASE ( self : List[str] ): pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = self.get_tokenizer() # Testing tokenization lowerCAmelCase__ = """ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ใ€€ใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚""" lowerCAmelCase__ = ["""ใ“ใ‚“""", """ใซใกใฏ""", """ใ€""", """ไธ–็•Œ""", """ใ€‚""", """<SP>""", """ใ“ใ‚“""", """ใฐใ‚“ใฏ""", """ใ€""", """ใ”บ็•Œ""", """ใ€‚"""] lowerCAmelCase__ = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) # Testing conversion to ids without special tokens lowerCAmelCase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) # Testing conversion to ids with special tokens lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.get_tokenizer() # Testing tokenization lowerCAmelCase__ = """ใ“ใ‚“ใซใกใฏใ€<|bagoftoken|>ไธ–็•Œใ€‚ใ“ใ‚“ใฐใ‚“ใฏใ€<|bagoftoken|>ใ”บ็•Œใ€‚""" lowerCAmelCase__ = """ใ“ใ‚“ใซใกใฏใ€ใ€ใ€ใ€ไธ–็•Œใ€‚ใ“ใ‚“ใฐใ‚“ใฏใ€ใ€ใ€ใ€ไธ–็•Œใ€‚""" lowerCAmelCase__ = tokenizer.encode(snake_case__ ) lowerCAmelCase__ = tokenizer.decode(snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowerCAmelCase__ = """ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚""" lowerCAmelCase__ = """ใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚๐Ÿ˜€""" lowerCAmelCase__ = """ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ใ“ใ‚“ใฐใ‚“ใฏใ€ไธ–็•Œใ€‚๐Ÿ˜€""" lowerCAmelCase__ = tokenizer.encode(prefix_text + input_text ) lowerCAmelCase__ = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) lowerCAmelCase__ = tokenizer.encode(snake_case__ , prefix_text=snake_case__ ) lowerCAmelCase__ = tokenizer.decode(snake_case__ ) lowerCAmelCase__ = tokenizer.decode(snake_case__ ) lowerCAmelCase__ = tokenizer.decode(snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowerCAmelCase__ = """ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚""" lowerCAmelCase__ = """ใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚๐Ÿ˜€""" lowerCAmelCase__ = len(tokenizer.encode(snake_case__ ) ) - 2 lowerCAmelCase__ = len(tokenizer.encode(snake_case__ ) ) - 2 lowerCAmelCase__ = [1] + [0] * (len_prefix + len_text + 1) lowerCAmelCase__ = [1] * (len_prefix + len_text + 1) + [0] lowerCAmelCase__ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowerCAmelCase__ = tokenizer(prefix_text + input_text ).token_type_ids lowerCAmelCase__ = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids lowerCAmelCase__ = tokenizer(snake_case__ , prefix_text=snake_case__ ).token_type_ids self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowerCAmelCase__ = tokenizer.encode("""ใ‚ใƒณใ„ใƒฏ""" ) lowerCAmelCase__ = tokenizer.encode("""""" , prefix_text="""ใ‚ใƒณใ„ใƒฏ""" ) lowerCAmelCase__ = tokenizer.encode("""ใ„ใƒฏ""" , prefix_text="""ใ‚ใƒณ""" ) self.assertEqual(tokenizer.decode(snake_case__ ) , tokenizer.decode(snake_case__ ) ) self.assertEqual(tokenizer.decode(snake_case__ ) , tokenizer.decode(snake_case__ ) ) self.assertNotEqual(snake_case__ , snake_case__ ) self.assertNotEqual(snake_case__ , snake_case__ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowerCAmelCase__ = [["""ๆญฆ็”ฐไฟก็Ž„""", """ใฏใ€"""], ["""็น”็”ฐไฟก้•ท""", """ใฎ้…ไธ‹ใฎใ€"""]] lowerCAmelCase__ = tokenizer(snake_case__ , padding=snake_case__ ) lowerCAmelCase__ = tokenizer.batch_encode_plus(snake_case__ , padding=snake_case__ ) # fmt: off lowerCAmelCase__ = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] lowerCAmelCase__ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowerCAmelCase__ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , snake_case__ ) self.assertListEqual(x_token.token_type_ids , snake_case__ ) self.assertListEqual(x_token.attention_mask , snake_case__ ) self.assertListEqual(x_token_a.input_ids , snake_case__ ) self.assertListEqual(x_token_a.token_type_ids , snake_case__ ) self.assertListEqual(x_token_a.attention_mask , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Any ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def _SCREAMING_SNAKE_CASE ( self : int ): # tokenizer has no padding token pass
674
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Any = "The Nymphenburg Palace is a beautiful palace in Munich!" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } lowerCAmelCase__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase__ = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCamelCase__ , output_all_encodings=lowerCamelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCamelCase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase__ = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab lowerCAmelCase__ = os.path.join(get_home_dir() , """models""" ) lowerCAmelCase__ = _load_vocab(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , cls=lowerCamelCase__ ) lowerCAmelCase__ = nlp.model.BERTModel( lowerCamelCase__ , len(lowerCamelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCamelCase__ , use_token_type_embed=lowerCamelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCamelCase__ , use_decoder=lowerCamelCase__ , ) original_bort.load_parameters(lowerCamelCase__ , cast_dtype=lowerCamelCase__ , ignore_extra=lowerCamelCase__ ) lowerCAmelCase__ = original_bort._collect_params_with_prefix() # Build our config ๐Ÿค— lowerCAmelCase__ = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(lowerCamelCase__ ), } lowerCAmelCase__ = BertConfig.from_dict(lowerCamelCase__ ) lowerCAmelCase__ = BertForMaskedLM(lowerCamelCase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCamelCase__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = hf_param.shape lowerCAmelCase__ = to_torch(params[gluon_param] ) lowerCAmelCase__ = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase__ = layer.attention.self lowerCAmelCase__ = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output lowerCAmelCase__ = layer.attention.output lowerCAmelCase__ = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) lowerCAmelCase__ = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate lowerCAmelCase__ = layer.intermediate lowerCAmelCase__ = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) lowerCAmelCase__ = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output lowerCAmelCase__ = layer.output lowerCAmelCase__ = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) lowerCAmelCase__ = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy ๐ŸŽ„ hf_bort_model.half() # Compare output of both models lowerCAmelCase__ = RobertaTokenizer.from_pretrained("""roberta-base""" ) lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ )["""input_ids"""] # Get gluon output lowerCAmelCase__ = mx.nd.array([input_ids] ) lowerCAmelCase__ = original_bort(inputs=lowerCamelCase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCamelCase__ ) lowerCAmelCase__ = BertModel.from_pretrained(lowerCamelCase__ ) hf_bort_model.eval() lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" ) lowerCAmelCase__ = hf_bort_model(**lowerCamelCase__ )[0] lowerCAmelCase__ = output_gluon[0].asnumpy() lowerCAmelCase__ = output_hf[0].detach().numpy() lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase__ = np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) if success: print("""โœ”๏ธ Both model do output the same tensors""" ) else: print("""โŒ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : str = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
674
1