code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class a_ : def __init__( self : int , snake_case__ : List[Any] , snake_case__ : Tuple=13 , snake_case__ : int=7 , snake_case__ : Union[str, Any]=True , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=True , snake_case__ : int=True , snake_case__ : List[Any]=99 , snake_case__ : Dict=32 , snake_case__ : Any=2 , snake_case__ : List[str]=4 , snake_case__ : str=37 , snake_case__ : Optional[Any]="gelu" , snake_case__ : str=0.1 , snake_case__ : Dict=0.1 , snake_case__ : List[Any]=512 , snake_case__ : Any=16 , snake_case__ : List[Any]=2 , snake_case__ : Union[str, Any]=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : List[str]=4 , snake_case__ : Optional[int]=None , ): lowerCAmelCase__ = parent lowerCAmelCase__ = 13 lowerCAmelCase__ = 7 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = 99 lowerCAmelCase__ = 32 lowerCAmelCase__ = 2 lowerCAmelCase__ = 4 lowerCAmelCase__ = 37 lowerCAmelCase__ = """gelu""" lowerCAmelCase__ = 0.1 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = 512 lowerCAmelCase__ = 16 lowerCAmelCase__ = 2 lowerCAmelCase__ = 0.02 lowerCAmelCase__ = 3 lowerCAmelCase__ = 4 lowerCAmelCase__ = None def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : str ): lowerCAmelCase__ = TFRoFormerModel(config=snake_case__ ) lowerCAmelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : int , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : int , snake_case__ : int ): lowerCAmelCase__ = True lowerCAmelCase__ = TFRoFormerForCausalLM(config=snake_case__ ) lowerCAmelCase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase__ = model(snake_case__ )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : Tuple ): lowerCAmelCase__ = TFRoFormerForMaskedLM(config=snake_case__ ) lowerCAmelCase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Any , snake_case__ : Tuple ): lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFRoFormerForSequenceClassification(config=snake_case__ ) lowerCAmelCase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Any , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : Dict ): lowerCAmelCase__ = self.num_choices lowerCAmelCase__ = TFRoFormerForMultipleChoice(config=snake_case__ ) lowerCAmelCase__ = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Tuple , snake_case__ : int , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Tuple ): lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFRoFormerForTokenClassification(config=snake_case__ ) lowerCAmelCase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : int , snake_case__ : Tuple ): lowerCAmelCase__ = TFRoFormerForQuestionAnswering(config=snake_case__ ) lowerCAmelCase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Any = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ : List[str] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ : Tuple = False UpperCamelCase_ : Tuple = False def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Any ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = TFRoFormerModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(snake_case__ ) @require_tf class a_ ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) lowerCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase__ = model(snake_case__ )[0] # TODO Replace vocab size lowerCAmelCase__ = 50000 lowerCAmelCase__ = [1, 6, vocab_size] self.assertEqual(output.shape , snake_case__ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase__ = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case__ , atol=1E-4 ) @require_tf class a_ ( unittest.TestCase ): UpperCamelCase_ : str = 1e-4 def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = tf.constant([[4, 10]] ) lowerCAmelCase__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase__ = emba(input_ids.shape ) lowerCAmelCase__ = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(snake_case__ , snake_case__ , atol=self.tolerance ) def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) lowerCAmelCase__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCAmelCase__ = emba.weight[:3, :5] tf.debugging.assert_near(snake_case__ , snake_case__ , atol=self.tolerance ) @require_tf class a_ ( unittest.TestCase ): UpperCamelCase_ : Union[str, Any] = 1e-4 def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): # 2,12,16,64 lowerCAmelCase__ = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase__ = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCAmelCase__ = embed_positions([2, 16, 768] )[None, None, :, :] lowerCAmelCase__ , lowerCAmelCase__ = TFRoFormerSelfAttention.apply_rotary_position_embeddings( snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase__ = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) lowerCAmelCase__ = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , snake_case__ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , snake_case__ , atol=self.tolerance )
674
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self : Optional[int] ): lowerCAmelCase__ = """""" lowerCAmelCase__ = """""" lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = 256 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = cva.imread(snake_case__ , 0 ) lowerCAmelCase__ = copy.deepcopy(self.img ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" ) lowerCAmelCase__ = np.sum(snake_case__ ) for i in range(len(snake_case__ ) ): lowerCAmelCase__ = x[i] / self.k self.sk += prk lowerCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase__ = int(last % last ) lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case__ ) lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase__ = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase__ = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": __lowerCAmelCase : Dict = os.path.join(os.path.basename(__file__), "image_data/input.jpg") __lowerCAmelCase : Optional[int] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
674
1
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = len(lowerCamelCase__ ) lowerCAmelCase__ = len(matrix[0] ) lowerCAmelCase__ = min(lowerCamelCase__ , lowerCamelCase__ ) for row in range(lowerCamelCase__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , lowerCamelCase__ ): lowerCAmelCase__ = matrix[col][row] / matrix[row][row] for i in range(lowerCamelCase__ , lowerCamelCase__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows lowerCAmelCase__ = True for i in range(row + 1 , lowerCamelCase__ ): if matrix[i][row] != 0: lowerCAmelCase__ , lowerCAmelCase__ = matrix[i], matrix[row] lowerCAmelCase__ = False break if reduce: rank -= 1 for i in range(lowerCamelCase__ ): lowerCAmelCase__ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
674
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class a_ ( __UpperCamelCase ): UpperCamelCase_ : List[str] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) UpperCamelCase_ : str = "CIDAS/clipseg-rd64-refined" UpperCamelCase_ : Any = "image_segmenter" UpperCamelCase_ : Optional[Any] = CLIPSegForImageSegmentation UpperCamelCase_ : List[str] = ["image", "text"] UpperCamelCase_ : int = ["image"] def __init__( self : Tuple , *snake_case__ : str , **snake_case__ : Optional[Any] ): requires_backends(self , ["""vision"""] ) super().__init__(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : "Image" , snake_case__ : str ): return self.pre_processor(text=[label] , images=[image] , padding=snake_case__ , return_tensors="""pt""" ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple ): with torch.no_grad(): lowerCAmelCase__ = self.model(**snake_case__ ).logits return logits def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] ): lowerCAmelCase__ = outputs.cpu().detach().numpy() lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
674
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : List[str] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.linear_k": "encoder.layers.*.self_attn.linear_k", "self_attn.linear_v": "encoder.layers.*.self_attn.linear_v", "self_attn.linear_q": "encoder.layers.*.self_attn.linear_q", "self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u", "self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v", "self_attn.linear_out": "encoder.layers.*.self_attn.linear_out", "self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos", "self_attn.rotary_emb": "encoder.embed_positions", "self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm", "conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1", "conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2", "conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv", "conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm", "conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm", "ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense", "ffn1.w_2": "encoder.layers.*.ffn1.output_dense", "ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm", "ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense", "ffn2.w_2": "encoder.layers.*.ffn2.output_dense", "ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __lowerCAmelCase : str = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" for attribute in key.split(""".""" ): lowerCAmelCase__ = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: lowerCAmelCase__ = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: lowerCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase__ = value elif weight_type == "weight_g": lowerCAmelCase__ = value elif weight_type == "weight_v": lowerCAmelCase__ = value elif weight_type == "bias": lowerCAmelCase__ = value elif weight_type == "running_mean": lowerCAmelCase__ = value elif weight_type == "running_var": lowerCAmelCase__ = value elif weight_type == "num_batches_tracked": lowerCAmelCase__ = value elif weight_type == "inv_freq": lowerCAmelCase__ = value else: lowerCAmelCase__ = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = fairseq_model.state_dict() lowerCAmelCase__ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase__ = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == """group""" , ) lowerCAmelCase__ = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase__ = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowerCAmelCase__ = True if "*" in mapped_key: lowerCAmelCase__ = name.split(lowerCamelCase__ )[0].split(""".""" )[-2] lowerCAmelCase__ = mapped_key.replace("""*""" , lowerCamelCase__ ) if "pos_bias_u" in name: lowerCAmelCase__ = None elif "pos_bias_v" in name: lowerCAmelCase__ = None elif "weight_g" in name: lowerCAmelCase__ = """weight_g""" elif "weight_v" in name: lowerCAmelCase__ = """weight_v""" elif "bias" in name: lowerCAmelCase__ = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase__ = """weight""" elif "running_mean" in name: lowerCAmelCase__ = """running_mean""" elif "inv_freq" in name: lowerCAmelCase__ = """inv_freq""" elif "running_var" in name: lowerCAmelCase__ = """running_var""" elif "num_batches_tracked" in name: lowerCAmelCase__ = """num_batches_tracked""" else: lowerCAmelCase__ = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = full_name.split("""conv_layers.""" )[-1] lowerCAmelCase__ = name.split(""".""" ) lowerCAmelCase__ = int(items[0] ) lowerCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCamelCase__ ) @torch.no_grad() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True ): """simple docstring""" if config_path is not None: lowerCAmelCase__ = WavaVecaConformerConfig.from_pretrained(lowerCamelCase__ , hidden_act="""swish""" ) else: lowerCAmelCase__ = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowerCAmelCase__ = """rotary""" if is_finetuned: if dict_path: lowerCAmelCase__ = Dictionary.load(lowerCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase__ = target_dict.pad_index lowerCAmelCase__ = target_dict.bos_index lowerCAmelCase__ = target_dict.eos_index lowerCAmelCase__ = len(target_dict.symbols ) lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """vocab.json""" ) if not os.path.isdir(lowerCamelCase__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCamelCase__ ) ) return os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) lowerCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = WavaVecaCTCTokenizer( lowerCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCamelCase__ , ) lowerCAmelCase__ = True if config.feat_extract_norm == """layer""" else False lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) lowerCAmelCase__ = WavaVecaProcessor(feature_extractor=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) lowerCAmelCase__ = WavaVecaConformerForCTC(lowerCamelCase__ ) else: lowerCAmelCase__ = WavaVecaConformerForPreTraining(lowerCamelCase__ ) if is_finetuned: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: lowerCAmelCase__ = argparse.Namespace(task="""audio_pretraining""" ) lowerCAmelCase__ = fairseq.tasks.setup_task(lowerCamelCase__ ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCamelCase__ ) lowerCAmelCase__ = model[0].eval() recursively_load_weights(lowerCamelCase__ , lowerCamelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __lowerCAmelCase : int = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
674
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = LayoutLMTokenizer UpperCamelCase_ : List[Any] = LayoutLMTokenizerFast UpperCamelCase_ : Dict = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() lowerCAmelCase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : Union[str, Any] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Tuple ): lowerCAmelCase__ = """UNwant\u00E9d,running""" lowerCAmelCase__ = """unwanted, running""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(snake_case__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): pass
674
1
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __lowerCAmelCase : Any = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : def __init__( self : List[str] , snake_case__ : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) lowerCAmelCase__ = primes[group]["""prime"""] lowerCAmelCase__ = primes[group]["""generator"""] lowerCAmelCase__ = int(hexlify(urandom(32 ) ) , base=16 ) def _SCREAMING_SNAKE_CASE ( self : Any ): return hex(self.__private_key )[2:] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = pow(self.generator , self.__private_key , self.prime ) return hex(snake_case__ )[2:] def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(snake_case__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str ): lowerCAmelCase__ = int(snake_case__ , base=16 ) if not self.is_valid_public_key(snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , self.__private_key , self.prime ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : int , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(snake_case__ , (prime - 1) // 2 , snake_case__ ) == 1 ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : str , snake_case__ : str , snake_case__ : int = 14 ): lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(snake_case__ , snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , snake_case__ , snake_case__ ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
674
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __lowerCAmelCase : Any = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : def __init__( self : List[str] , snake_case__ : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) lowerCAmelCase__ = primes[group]["""prime"""] lowerCAmelCase__ = primes[group]["""generator"""] lowerCAmelCase__ = int(hexlify(urandom(32 ) ) , base=16 ) def _SCREAMING_SNAKE_CASE ( self : Any ): return hex(self.__private_key )[2:] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = pow(self.generator , self.__private_key , self.prime ) return hex(snake_case__ )[2:] def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(snake_case__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str ): lowerCAmelCase__ = int(snake_case__ , base=16 ) if not self.is_valid_public_key(snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , self.__private_key , self.prime ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : int , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(snake_case__ , (prime - 1) // 2 , snake_case__ ) == 1 ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : str , snake_case__ : str , snake_case__ : int = 14 ): lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(snake_case__ , snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , snake_case__ , snake_case__ ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
674
1
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowerCAmelCase : Tuple = { "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
674
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) lowerCAmelCase__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = weights[0][0][0] lowerCAmelCase__ = np.asarray(layer_norm_a[0] ) lowerCAmelCase__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # lsh weights + output lowerCAmelCase__ = weights[0][1] if len(lowerCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) else: set_layer_weights_in_torch_local(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) # intermediate weighs lowerCAmelCase__ = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase__ ) == 4: lowerCAmelCase__ = intermediate_weights[2] # layernorm 2 lowerCAmelCase__ = np.asarray(intermediate_weights[0][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # intermediate dense lowerCAmelCase__ = np.asarray(intermediate_weights[1][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) # intermediate out lowerCAmelCase__ = np.asarray(intermediate_weights[4][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = torch_model.reformer # word embeds lowerCAmelCase__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase__ ) , ) if isinstance(weights[3] , lowerCamelCase__ ): lowerCAmelCase__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCAmelCase__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" lowerCAmelCase__ = nn.Parameter(torch.tensor(lowerCamelCase__ ) ) lowerCAmelCase__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCAmelCase__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # output layer norm lowerCAmelCase__ = np.asarray(weights[7][0] ) lowerCAmelCase__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # output embeddings lowerCAmelCase__ = np.asarray(weights[9][0] ) lowerCAmelCase__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = ReformerConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = ReformerModelWithLMHead(lowerCamelCase__ ) with open(lowerCamelCase__ , """rb""" ) as f: lowerCAmelCase__ = pickle.load(lowerCamelCase__ )["""weights"""] set_model_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
674
1
"""simple docstring""" from ....utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class a_ ( __UpperCamelCase ): def __init__( self : List[str] , snake_case__ : int , snake_case__ : Union[str, Any]=None , snake_case__ : Union[str, Any]=2048 ): lowerCAmelCase__ = config.__dict__ lowerCAmelCase__ = modal_hidden_size if num_labels: lowerCAmelCase__ = num_labels
674
"""simple docstring""" import os from math import logaa def _UpperCAmelCase ( lowerCamelCase__ = "base_exp.txt" ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) ): lowerCAmelCase__ , lowerCAmelCase__ = list(map(lowerCamelCase__ , line.split(""",""" ) ) ) if x * logaa(lowerCamelCase__ ) > largest: lowerCAmelCase__ = x * logaa(lowerCamelCase__ ) lowerCAmelCase__ = i + 1 return result if __name__ == "__main__": print(solution())
674
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase : Union[str, Any] = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __lowerCAmelCase : Optional[Any] = { "yjernite/retribert-base-uncased": 5_12, } __lowerCAmelCase : List[str] = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class a_ ( __UpperCamelCase ): UpperCamelCase_ : Optional[int] = VOCAB_FILES_NAMES UpperCamelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : List[str] = RetriBertTokenizer UpperCamelCase_ : List[str] = ["input_ids", "attention_mask"] def __init__( self : Tuple , snake_case__ : Union[str, Any]=None , snake_case__ : int=None , snake_case__ : Dict=True , snake_case__ : Union[str, Any]="[UNK]" , snake_case__ : Dict="[SEP]" , snake_case__ : Tuple="[PAD]" , snake_case__ : Optional[Any]="[CLS]" , snake_case__ : List[str]="[MASK]" , snake_case__ : str=True , snake_case__ : str=None , **snake_case__ : Dict , ): super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case__ ) != tokenize_chinese_chars ): lowerCAmelCase__ = getattr(snake_case__ , normalizer_state.pop("""type""" ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = tokenize_chinese_chars lowerCAmelCase__ = normalizer_class(**snake_case__ ) lowerCAmelCase__ = do_lower_case def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] , snake_case__ : Optional[int]=None ): lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): lowerCAmelCase__ = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
674
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" while b: lowerCAmelCase__ , lowerCAmelCase__ = b, a % b return a def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase__ , a % b ) def _UpperCAmelCase ( ): """simple docstring""" print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
674
1
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowerCAmelCase__ = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) lowerCAmelCase__ = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) lowerCAmelCase__ = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) lowerCAmelCase__ = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) lowerCAmelCase__ = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) lowerCAmelCase__ = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) lowerCAmelCase__ = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) lowerCAmelCase__ = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) lowerCAmelCase__ = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) lowerCAmelCase__ = key.replace("""image_encoder.module""" , """flava.image_model""" ) lowerCAmelCase__ = key.replace("""text_encoder.module""" , """flava.text_model""" ) lowerCAmelCase__ = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) lowerCAmelCase__ = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) lowerCAmelCase__ = key.replace("""text_projection""" , """flava.text_projection""" ) lowerCAmelCase__ = key.replace("""image_projection""" , """flava.image_projection""" ) lowerCAmelCase__ = value.float() for key, value in codebook_state_dict.items(): lowerCAmelCase__ = value return upgrade @torch.no_grad() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" if config_path is not None: lowerCAmelCase__ = FlavaConfig.from_pretrained(lowerCamelCase__ ) else: lowerCAmelCase__ = FlavaConfig() lowerCAmelCase__ = FlavaForPreTraining(lowerCamelCase__ ).eval() lowerCAmelCase__ = convert_dalle_checkpoint(lowerCamelCase__ , lowerCamelCase__ , save_checkpoint=lowerCamelCase__ ) if os.path.exists(lowerCamelCase__ ): lowerCAmelCase__ = torch.load(lowerCamelCase__ , map_location="""cpu""" ) else: lowerCAmelCase__ = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location="""cpu""" ) lowerCAmelCase__ = upgrade_state_dict(lowerCamelCase__ , lowerCamelCase__ ) hf_model.load_state_dict(lowerCamelCase__ ) lowerCAmelCase__ = hf_model.state_dict() lowerCAmelCase__ = count_parameters(lowerCamelCase__ ) lowerCAmelCase__ = count_parameters(lowerCamelCase__ ) + count_parameters(lowerCamelCase__ ) assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) hf_model.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
674
"""simple docstring""" import os def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = os.path.dirname(os.path.realpath(lowerCamelCase__ ) ) lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """triangle.txt""" ) with open(lowerCamelCase__ ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = [] for line in triangle: lowerCAmelCase__ = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(lowerCamelCase__ ) ) a.append(lowerCamelCase__ ) for i in range(1 , len(lowerCamelCase__ ) ): for j in range(len(a[i] ) ): lowerCAmelCase__ = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCAmelCase__ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCamelCase__ , lowerCamelCase__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
674
1
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = BertConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = BertForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
674
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCAmelCase : Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __lowerCAmelCase : Optional[int] = json.load(f) @require_torch class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Dict ): return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ): lowerCAmelCase__ = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Any , snake_case__ : int ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowerCAmelCase__ = F"""facebook/wmt19-{pair}""" lowerCAmelCase__ = self.get_tokenizer(snake_case__ ) lowerCAmelCase__ = self.get_model(snake_case__ ) lowerCAmelCase__ = bleu_data[pair]["""src"""] lowerCAmelCase__ = bleu_data[pair]["""tgt"""] lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""pt""" , truncation=snake_case__ , padding="""longest""" ).to(snake_case__ ) lowerCAmelCase__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCAmelCase__ = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) lowerCAmelCase__ = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["""bleu"""] , snake_case__ )
674
1
"""simple docstring""" __lowerCAmelCase : List[str] = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
674
"""simple docstring""" import pprint import requests __lowerCAmelCase : Union[str, Any] = "https://zenquotes.io/api" def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = random_quotes() pprint.pprint(response)
674
1
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(snake_case__ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(snake_case__ ) ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(snake_case__ ) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] self.assertTrue(is_safetensors_compatible(snake_case__ ) ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", # Removed: 'text_encoder/model.safetensors', """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertFalse(is_safetensors_compatible(snake_case__ ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] lowerCAmelCase__ = """fp16""" self.assertTrue(is_safetensors_compatible(snake_case__ , variant=snake_case__ ) ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = [ """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] lowerCAmelCase__ = """fp16""" self.assertTrue(is_safetensors_compatible(snake_case__ , variant=snake_case__ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): # pass variant but use the non-variant filenames lowerCAmelCase__ = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] lowerCAmelCase__ = """fp16""" self.assertTrue(is_safetensors_compatible(snake_case__ , variant=snake_case__ ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowerCAmelCase__ = """fp16""" self.assertFalse(is_safetensors_compatible(snake_case__ , variant=snake_case__ ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = [ """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", ] lowerCAmelCase__ = """fp16""" self.assertTrue(is_safetensors_compatible(snake_case__ , variant=snake_case__ ) ) def _SCREAMING_SNAKE_CASE ( self : Any ): # pass variant but use the non-variant filenames lowerCAmelCase__ = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] lowerCAmelCase__ = """fp16""" self.assertTrue(is_safetensors_compatible(snake_case__ , variant=snake_case__ ) ) def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", # 'text_encoder/model.fp16.safetensors', """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] lowerCAmelCase__ = """fp16""" self.assertFalse(is_safetensors_compatible(snake_case__ , variant=snake_case__ ) )
674
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = CLIPConfig() # Create a dummy config file with image_proceesor_type lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ).to_dict() config_dict.pop("""image_processor_type""" ) lowerCAmelCase__ = CLIPImageProcessor(**snake_case__ ) # save in new folder model_config.save_pretrained(snake_case__ ) config.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) # make sure private variable is not incorrectly saved lowerCAmelCase__ = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with self.assertRaisesRegex( snake_case__ , """clip-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""clip-base""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): with self.assertRaisesRegex( snake_case__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , revision="""aaaaaa""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): with self.assertRaisesRegex( snake_case__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , trust_remote_code=snake_case__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ): try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoImageProcessor.register(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = CustomImageProcessor.from_pretrained(snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self : List[str] ): class a_ ( __UpperCamelCase ): UpperCamelCase_ : Tuple = True try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # If remote code is not set, the default is to use local lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(snake_case__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
674
1
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowerCAmelCase : List[str] = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" __lowerCAmelCase : Any = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" __lowerCAmelCase : Union[str, Any] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[List[List[str]]] , snake_case__ : List[List[str]] , snake_case__ : int = 1 , snake_case__ : int = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=snake_case__ , hypotheses=snake_case__ , min_len=snake_case__ , max_len=snake_case__ ) }
674
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a_ : def __init__( self : Optional[int] , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=64 , snake_case__ : Any=None ): lowerCAmelCase__ = np.random.default_rng(snake_case__ ) lowerCAmelCase__ = length lowerCAmelCase__ = rng.normal(size=(length,) ).astype(np.floataa ) lowerCAmelCase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[Any] ): return self.length def __getitem__( self : List[str] , snake_case__ : Optional[int] ): return {"x": self.x[i], "y": self.y[i]} class a_ ( torch.nn.Module ): def __init__( self : List[str] , snake_case__ : str=0 , snake_case__ : Dict=0 , snake_case__ : Any=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Any=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a[0] + self.b[0] class a_ ( torch.nn.Module ): def __init__( self : Any , snake_case__ : Union[str, Any]=0 , snake_case__ : Union[str, Any]=0 , snake_case__ : List[Any]=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any]=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a + self.b def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase__ = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} lowerCAmelCase__ = load_dataset("""csv""" , data_files=lowerCamelCase__ ) lowerCAmelCase__ = datasets["""train"""].unique("""label""" ) lowerCAmelCase__ = {v: i for i, v in enumerate(lowerCamelCase__ )} def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" ) if "label" in examples: lowerCAmelCase__ = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase__ = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=2 ) lowerCAmelCase__ = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
674
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class a_ ( __UpperCamelCase ): UpperCamelCase_ : List[Any] = "philschmid/bart-large-cnn-samsum" UpperCamelCase_ : List[Any] = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) UpperCamelCase_ : int = "summarizer" UpperCamelCase_ : Any = AutoTokenizer UpperCamelCase_ : Optional[Any] = AutoModelForSeqaSeqLM UpperCamelCase_ : Optional[Any] = ["text"] UpperCamelCase_ : Dict = ["text"] def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : str ): return self.pre_processor(snake_case__ , return_tensors="""pt""" , truncation=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Optional[Any] ): return self.model.generate(**snake_case__ )[0] def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Any ): return self.pre_processor.decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ )
674
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = MobileBertConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = MobileBertForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint lowerCAmelCase__ = load_tf_weights_in_mobilebert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
674
1
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class a_ : def __init__( self : List[Any] , snake_case__ : List[Any] , snake_case__ : List[str]=2 , snake_case__ : Tuple=True , snake_case__ : Optional[Any]=False , snake_case__ : List[Any]=10 , snake_case__ : str=3 , snake_case__ : Any=32 * 4 , snake_case__ : int=32 * 6 , snake_case__ : int=4 , snake_case__ : List[Any]=32 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = is_training lowerCAmelCase__ = use_auxiliary_loss lowerCAmelCase__ = num_queries lowerCAmelCase__ = num_channels lowerCAmelCase__ = min_size lowerCAmelCase__ = max_size lowerCAmelCase__ = num_labels lowerCAmelCase__ = mask_feature_size def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( snake_case__ ) lowerCAmelCase__ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=snake_case__ ) lowerCAmelCase__ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=snake_case__ ) > 0.5 ).float() lowerCAmelCase__ = (torch.rand((self.batch_size, self.num_labels) , device=snake_case__ ) > 0.5).long() lowerCAmelCase__ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _SCREAMING_SNAKE_CASE ( self : int ): return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int , snake_case__ : Any ): lowerCAmelCase__ = output.encoder_hidden_states lowerCAmelCase__ = output.pixel_decoder_hidden_states lowerCAmelCase__ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(snake_case__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case__ ) , config.decoder_config.decoder_layers ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Dict=False ): with torch.no_grad(): lowerCAmelCase__ = MaskFormerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model(pixel_values=snake_case__ , pixel_mask=snake_case__ ) lowerCAmelCase__ = model(snake_case__ , output_hidden_states=snake_case__ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : int , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = MaskFormerForInstanceSegmentation(config=snake_case__ ) model.to(snake_case__ ) model.eval() def comm_check_on_output(snake_case__ : int ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCAmelCase__ = model(pixel_values=snake_case__ , pixel_mask=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) comm_check_on_output(snake_case__ ) lowerCAmelCase__ = model( pixel_values=snake_case__ , pixel_mask=snake_case__ , mask_labels=snake_case__ , class_labels=snake_case__ ) comm_check_on_output(snake_case__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () UpperCamelCase_ : Optional[Any] = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) UpperCamelCase_ : Tuple = False UpperCamelCase_ : List[str] = False UpperCamelCase_ : List[str] = False UpperCamelCase_ : Dict = False def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = MaskFormerModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(snake_case__ , **snake_case__ , output_hidden_states=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*snake_case__ ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ): pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def _SCREAMING_SNAKE_CASE ( self : str ): pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): pass def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ): for model_name in ["facebook/maskformer-swin-small-coco"]: lowerCAmelCase__ = MaskFormerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = (self.model_tester.min_size,) * 2 lowerCAmelCase__ = { """pixel_values""": torch.randn((2, 3, *size) , device=snake_case__ ), """mask_labels""": torch.randn((2, 10, *size) , device=snake_case__ ), """class_labels""": torch.zeros(2 , 10 , device=snake_case__ ).long(), } lowerCAmelCase__ = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(snake_case__ ) lowerCAmelCase__ = model(**snake_case__ ) self.assertTrue(outputs.loss is not None ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(snake_case__ , **snake_case__ , output_hidden_states=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ).to(snake_case__ ) lowerCAmelCase__ = model(**snake_case__ , output_attentions=snake_case__ ) self.assertTrue(outputs.attentions is not None ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss lowerCAmelCase__ = self.all_model_classes[1] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ = model_class(snake_case__ ) model.to(snake_case__ ) model.train() lowerCAmelCase__ = model(snake_case__ , mask_labels=snake_case__ , class_labels=snake_case__ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : List[Any] ): # only MaskFormerForInstanceSegmentation has the loss lowerCAmelCase__ = self.all_model_classes[1] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = model_class(snake_case__ ) model.to(snake_case__ ) model.train() lowerCAmelCase__ = model(snake_case__ , mask_labels=snake_case__ , class_labels=snake_case__ ) lowerCAmelCase__ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase__ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't lowerCAmelCase__ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase__ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=snake_case__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase : List[str] = 1e-4 def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class a_ ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : int ): return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(snake_case__ ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(snake_case__ , return_tensors="""pt""" ).to(snake_case__ ) lowerCAmelCase__ = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case__ , (1, 3, 800, 1088) ) with torch.no_grad(): lowerCAmelCase__ = model(**snake_case__ ) lowerCAmelCase__ = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(snake_case__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , snake_case__ , atol=snake_case__ ) ) lowerCAmelCase__ = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(snake_case__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , snake_case__ , atol=snake_case__ ) ) lowerCAmelCase__ = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(snake_case__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , snake_case__ , atol=snake_case__ ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(snake_case__ ) .eval() ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(snake_case__ , return_tensors="""pt""" ).to(snake_case__ ) lowerCAmelCase__ = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case__ , (1, 3, 800, 1088) ) with torch.no_grad(): lowerCAmelCase__ = model(**snake_case__ ) # masks_queries_logits lowerCAmelCase__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowerCAmelCase__ = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] lowerCAmelCase__ = torch.tensor(snake_case__ ).to(snake_case__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case__ , atol=snake_case__ ) ) # class_queries_logits lowerCAmelCase__ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase__ = torch.tensor( [ [1.6_512E00, -5.2_572E00, -3.3_519E00], [3.6_169E-02, -5.9_025E00, -2.9_313E00], [1.0_766E-04, -7.7_630E00, -5.1_263E00], ] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case__ , atol=snake_case__ ) ) def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(snake_case__ ) .eval() ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(snake_case__ , return_tensors="""pt""" ).to(snake_case__ ) lowerCAmelCase__ = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case__ , (1, 3, 800, 1088) ) with torch.no_grad(): lowerCAmelCase__ = model(**snake_case__ ) # masks_queries_logits lowerCAmelCase__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowerCAmelCase__ = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] lowerCAmelCase__ = torch.tensor(snake_case__ ).to(snake_case__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case__ , atol=snake_case__ ) ) # class_queries_logits lowerCAmelCase__ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase__ = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case__ , atol=snake_case__ ) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(snake_case__ ) .eval() ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) lowerCAmelCase__ = inputs["""pixel_values"""].to(snake_case__ ) lowerCAmelCase__ = [el.to(snake_case__ ) for el in inputs["""mask_labels"""]] lowerCAmelCase__ = [el.to(snake_case__ ) for el in inputs["""class_labels"""]] with torch.no_grad(): lowerCAmelCase__ = model(**snake_case__ ) self.assertTrue(outputs.loss is not None )
674
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: lowerCAmelCase__ = f"""The input value of [n={number}] has to be > 0""" raise ValueError(lowerCamelCase__ ) else: lowerCAmelCase__ = sylvester(number - 1 ) lowerCAmelCase__ = num - 1 lowerCAmelCase__ = num return lower * upper + 1 if __name__ == "__main__": print(F"The 8th number in Sylvester's sequence: {sylvester(8)}")
674
1
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example __lowerCAmelCase : List[str] = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example __lowerCAmelCase : Union[str, Any] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [] for i in range(len(lowerCamelCase__ ) ): lowerCAmelCase__ = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowerCAmelCase__ = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCamelCase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCamelCase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCamelCase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowerCAmelCase__ = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowerCamelCase__ ) return next_generation def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [] for _ in range(lowerCamelCase__ ): # Create output image lowerCAmelCase__ = Image.new("""RGB""" , (len(cells[0] ), len(lowerCamelCase__ )) ) lowerCAmelCase__ = img.load() # Save cells to image for x in range(len(lowerCamelCase__ ) ): for y in range(len(cells[0] ) ): lowerCAmelCase__ = 255 - cells[y][x] * 255 lowerCAmelCase__ = (colour, colour, colour) # Save image images.append(lowerCamelCase__ ) lowerCAmelCase__ = new_generation(lowerCamelCase__ ) return images if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
674
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Tuple = PegasusTokenizer UpperCamelCase_ : Any = PegasusTokenizerFast UpperCamelCase_ : int = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : Optional[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any] ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = """</s>""" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(snake_case__ ) , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowerCAmelCase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase__ = """To ensure a smooth flow of bank resolutions.""" lowerCAmelCase__ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def _SCREAMING_SNAKE_CASE ( self : str ): # fmt: off lowerCAmelCase__ = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = PegasusTokenizer UpperCamelCase_ : Optional[int] = PegasusTokenizerFast UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Optional[int] = True def _SCREAMING_SNAKE_CASE ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ): return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : List[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Dict ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowerCAmelCase__ = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
674
1
"""simple docstring""" import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class a_ ( unittest.TestCase ): def __init__( self : Tuple , snake_case__ : List[Any] , snake_case__ : List[Any]=13 , snake_case__ : List[Any]=7 , snake_case__ : int=True , snake_case__ : List[Any]=True , snake_case__ : str=True , snake_case__ : Any=True , snake_case__ : List[Any]=99 , snake_case__ : Any=32 , snake_case__ : Dict=5 , snake_case__ : List[str]=4 , snake_case__ : Tuple=37 , snake_case__ : Dict="gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : Any=0.1 , snake_case__ : Optional[Any]=512 , snake_case__ : Union[str, Any]=16 , snake_case__ : Optional[Any]=2 , snake_case__ : int=0.02 , snake_case__ : str=4 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_attention_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = num_choices def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_attention_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = True lowerCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Tuple = True UpperCamelCase_ : int = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = FlaxBertModelTester(self ) @slow def _SCREAMING_SNAKE_CASE ( self : str ): # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. lowerCAmelCase__ = FlaxBertModel.from_pretrained("""bert-base-cased""" ) lowerCAmelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case__ )
674
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case__ , ) assert hasattr(self , """env""" ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] ): # configuration for running training on smdistributed Model Parallel lowerCAmelCase__ = { """enabled""": True, """processes_per_host""": 8, } lowerCAmelCase__ = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowerCAmelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowerCAmelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="""py36""" , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str ): TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] ): # create estimator lowerCAmelCase__ = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case__ )
674
1
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Dict = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Union[str, Any] = XLNetTokenizer UpperCamelCase_ : Optional[int] = XLNetTokenizerFast UpperCamelCase_ : int = True UpperCamelCase_ : Union[str, Any] = True def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = XLNetTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = """<s>""" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<eod>""" ) self.assertEqual(len(snake_case__ ) , 1006 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = XLNetTokenizer(snake_case__ , keep_accents=snake_case__ ) lowerCAmelCase__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(snake_case__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [285, 46, 10, 170, 382] ) lowerCAmelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual(snake_case__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = XLNetTokenizer(snake_case__ , do_lower_case=snake_case__ ) lowerCAmelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""▁he""", """ll""", """o"""] ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = XLNetTokenizer(snake_case__ , do_lower_case=snake_case__ ) lowerCAmelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) @slow def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) lowerCAmelCase__ = tokenizer.encode("""sequence builders""" , add_special_tokens=snake_case__ ) lowerCAmelCase__ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=snake_case__ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(snake_case__ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ): # fmt: off lowerCAmelCase__ = {"""input_ids""": [[17, 21442, 270, 17, 10, 14645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 22018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 14431, 13, 5500, 11, 1176, 580, 13, 16819, 4797, 23, 17, 10, 17135, 658, 19, 457, 7932, 13, 184, 19, 3154, 17135, 6468, 19, 1404, 12269, 19, 4229, 5356, 16264, 46, 19, 17, 20545, 10395, 9, 9, 9, 11, 28, 6421, 9531, 20729, 17, 10, 353, 17022, 11, 21, 6421, 9531, 16949, 17, 10, 11509, 753, 11, 33, 95, 2421, 7385, 956, 14431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 24738, 19, 13203, 658, 218, 787, 21, 430, 18482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22178, 27, 1064, 22, 956, 13, 11101, 1429, 5854, 24313, 18953, 40, 422, 24366, 68, 1758, 37, 10483, 14257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 13894, 3380, 23, 95, 18, 17634, 2288, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
674
"""simple docstring""" from math import pi, sqrt def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if num <= 0: raise ValueError("""math domain error""" ) if num > 1_71.5: raise OverflowError("""math range error""" ) elif num - int(lowerCamelCase__ ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(lowerCamelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _UpperCAmelCase ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(lowerCamelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __lowerCAmelCase : Dict = 1.0 while num: __lowerCAmelCase : Any = float(input("Gamma of: ")) print(F"gamma({num}) = {gamma(num)}") print("\nEnter 0 to exit...")
674
1
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase : List[Any] = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" __lowerCAmelCase : List[str] = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" __lowerCAmelCase : Tuple = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return float((preds == labels).mean() ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="binary" ): """simple docstring""" lowerCAmelCase__ = simple_accuracy(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = float(fa_score(y_true=lowerCamelCase__ , y_pred=lowerCamelCase__ , average=lowerCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = {} for id_pred, label in zip(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = f"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" lowerCAmelCase__ = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase__ = [(pred, label)] lowerCAmelCase__ , lowerCAmelCase__ = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase__ , lowerCAmelCase__ = zip(*lowerCamelCase__ ) lowerCAmelCase__ = fa_score(y_true=lowerCamelCase__ , y_pred=lowerCamelCase__ , average="""macro""" ) fas.append(lowerCamelCase__ ) lowerCAmelCase__ = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase__ ) ) ems.append(lowerCamelCase__ ) lowerCAmelCase__ = float(sum(lowerCamelCase__ ) / len(lowerCamelCase__ ) ) lowerCAmelCase__ = sum(lowerCamelCase__ ) / len(lowerCamelCase__ ) lowerCAmelCase__ = float(fa_score(y_true=lowerCamelCase__ , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self : Any ): if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : int , snake_case__ : Union[str, Any] ): if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(snake_case__ , snake_case__ )} elif self.config_name == "cb": return acc_and_fa(snake_case__ , snake_case__ , fa_avg="""macro""" ) elif self.config_name == "record": lowerCAmelCase__ = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] lowerCAmelCase__ = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(snake_case__ , snake_case__ )[0] elif self.config_name == "multirc": return evaluate_multirc(snake_case__ , snake_case__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(snake_case__ , snake_case__ )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
674
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : def __init__( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any=13 , snake_case__ : int=30 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : Dict=True , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=32 , snake_case__ : List[str]=2 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[int]=37 , snake_case__ : Tuple="gelu" , snake_case__ : str=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=10 , snake_case__ : Dict=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : str=None , snake_case__ : List[Any]=2 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = num_patches + 2 def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[Any] ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[str] ): lowerCAmelCase__ = TFDeiTModel(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict ): lowerCAmelCase__ = TFDeiTForMaskedImageModeling(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForMaskedImageModeling(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple ): lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase_ : Any = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : int = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = TFDeiTModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): pass def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Dense ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any]=False ): lowerCAmelCase__ = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _SCREAMING_SNAKE_CASE ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDeiTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Any ): return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors="""tf""" ) # forward pass lowerCAmelCase__ = model(**snake_case__ ) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase__ = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
674
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class a_ ( __UpperCamelCase ): UpperCamelCase_ : UNetaDModel UpperCamelCase_ : ScoreSdeVeScheduler def __init__( self : Optional[Any] , snake_case__ : UNetaDModel , snake_case__ : ScoreSdeVeScheduler ): super().__init__() self.register_modules(unet=snake_case__ , scheduler=snake_case__ ) @torch.no_grad() def __call__( self : Dict , snake_case__ : int = 1 , snake_case__ : int = 2000 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , **snake_case__ : int , ): lowerCAmelCase__ = self.unet.config.sample_size lowerCAmelCase__ = (batch_size, 3, img_size, img_size) lowerCAmelCase__ = self.unet lowerCAmelCase__ = randn_tensor(snake_case__ , generator=snake_case__ ) * self.scheduler.init_noise_sigma lowerCAmelCase__ = sample.to(self.device ) self.scheduler.set_timesteps(snake_case__ ) self.scheduler.set_sigmas(snake_case__ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCAmelCase__ = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowerCAmelCase__ = self.unet(snake_case__ , snake_case__ ).sample lowerCAmelCase__ = self.scheduler.step_correct(snake_case__ , snake_case__ , generator=snake_case__ ).prev_sample # prediction step lowerCAmelCase__ = model(snake_case__ , snake_case__ ).sample lowerCAmelCase__ = self.scheduler.step_pred(snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ ) lowerCAmelCase__ , lowerCAmelCase__ = output.prev_sample, output.prev_sample_mean lowerCAmelCase__ = sample_mean.clamp(0 , 1 ) lowerCAmelCase__ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase__ = self.numpy_to_pil(snake_case__ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=snake_case__ )
674
"""simple docstring""" from __future__ import annotations from math import gcd def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 3 , ): """simple docstring""" if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: return (pow(lowerCamelCase__ , 2 ) + step) % modulus for _ in range(lowerCamelCase__ ): # These track the position within the cycle detection logic. lowerCAmelCase__ = seed lowerCAmelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCAmelCase__ = gcd(hare - tortoise , lowerCamelCase__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCAmelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : Dict = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"{args.num} is probably prime") else: __lowerCAmelCase : List[str] = args.num // divisor print(F"{args.num} = {divisor} * {quotient}")
674
1
"""simple docstring""" from typing import Any import numpy as np def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return np.array_equal(lowerCamelCase__ , matrix.conjugate().T ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = v.conjugate().T lowerCAmelCase__ = v_star.dot(lowerCamelCase__ ) assert isinstance(lowerCamelCase__ , np.ndarray ) return (v_star_dot.dot(lowerCamelCase__ )) / (v_star.dot(lowerCamelCase__ )) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) lowerCAmelCase__ = np.array([[1], [2], [3]] ) assert is_hermitian(lowerCamelCase__ ), f"""{a} is not hermitian.""" print(rayleigh_quotient(lowerCamelCase__ , lowerCamelCase__ ) ) lowerCAmelCase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowerCamelCase__ ), f"""{a} is not hermitian.""" assert rayleigh_quotient(lowerCamelCase__ , lowerCamelCase__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
674
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = TapasConfig.from_json_file(lowerCamelCase__ ) # set absolute/relative position embeddings parameter lowerCAmelCase__ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WTQ": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = True # hparam_utils.py hparams lowerCAmelCase__ = 0.66_46_94 lowerCAmelCase__ = 0.20_79_51 lowerCAmelCase__ = 0.12_11_94 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 0.0_35_25_13 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = False # hparam_utils.py hparams lowerCAmelCase__ = 36.45_19 lowerCAmelCase__ = 0.90_34_21 lowerCAmelCase__ = 2_22.0_88 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = 0.76_31_41 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "TABFACT": lowerCAmelCase__ = TapasForSequenceClassification(config=lowerCamelCase__ ) elif task == "MLM": lowerCAmelCase__ = TapasForMaskedLM(config=lowerCamelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": lowerCAmelCase__ = TapasModel(config=lowerCamelCase__ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase__ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) lowerCAmelCase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 ) tokenizer.save_pretrained(lowerCamelCase__ ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
674
1
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __lowerCAmelCase : Tuple = object() # For specifying empty leaf dict `{}` __lowerCAmelCase : int = object() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(lowerCamelCase__ ) - len(lowerCamelCase__ ) + 1 ): lowerCAmelCase__ = [x.match(lowerCamelCase__ ) for x, y in zip(lowerCamelCase__ , ks[i:] )] if matches and all(lowerCamelCase__ ): return True return False def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" def replace(lowerCamelCase__ , lowerCamelCase__ ): for rule, replacement in rules: if _match(lowerCamelCase__ , lowerCamelCase__ ): return replacement return val return replace def _UpperCAmelCase ( ): """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""" , lowerCamelCase__ )), (("transformer", "wte", "embedding"), P("""mp""" , lowerCamelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(lowerCamelCase__ , """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""" , lowerCamelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(lowerCamelCase__ , """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""" , lowerCamelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = _get_partition_rules() lowerCAmelCase__ = _replacement_rules(lowerCamelCase__ ) lowerCAmelCase__ = {k: _unmatched for k in flatten_dict(lowerCamelCase__ )} lowerCAmelCase__ = {k: replace(lowerCamelCase__ , lowerCamelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(lowerCamelCase__ ) )
674
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ = 50 ): """simple docstring""" lowerCAmelCase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"{solution() = }")
674
1
"""simple docstring""" from __future__ import annotations class a_ : def __init__( self : str , snake_case__ : List[str]=None ): lowerCAmelCase__ = data lowerCAmelCase__ = None def __repr__( self : List[Any] ): lowerCAmelCase__ = [] lowerCAmelCase__ = self while temp: string_rep.append(F"""{temp.data}""" ) lowerCAmelCase__ = temp.next return "->".join(snake_case__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if not elements_list: raise Exception("""The Elements List is empty""" ) lowerCAmelCase__ = lowerCAmelCase__ = Node(elements_list[0] ) for i in range(1 , len(lowerCamelCase__ ) ): lowerCAmelCase__ = Node(elements_list[i] ) lowerCAmelCase__ = current.next return head def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if head_node is not None and isinstance(lowerCamelCase__ , lowerCamelCase__ ): print_reverse(head_node.next ) print(head_node.data ) def _UpperCAmelCase ( ): """simple docstring""" from doctest import testmod testmod() lowerCAmelCase__ = make_linked_list([14, 52, 14, 12, 43] ) print("""Linked List:""" ) print(lowerCamelCase__ ) print("""Elements in Reverse:""" ) print_reverse(lowerCamelCase__ ) if __name__ == "__main__": main()
674
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Any = "The Nymphenburg Palace is a beautiful palace in Munich!" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } lowerCAmelCase__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase__ = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCamelCase__ , output_all_encodings=lowerCamelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCamelCase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase__ = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab lowerCAmelCase__ = os.path.join(get_home_dir() , """models""" ) lowerCAmelCase__ = _load_vocab(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , cls=lowerCamelCase__ ) lowerCAmelCase__ = nlp.model.BERTModel( lowerCamelCase__ , len(lowerCamelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCamelCase__ , use_token_type_embed=lowerCamelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCamelCase__ , use_decoder=lowerCamelCase__ , ) original_bort.load_parameters(lowerCamelCase__ , cast_dtype=lowerCamelCase__ , ignore_extra=lowerCamelCase__ ) lowerCAmelCase__ = original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCAmelCase__ = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(lowerCamelCase__ ), } lowerCAmelCase__ = BertConfig.from_dict(lowerCamelCase__ ) lowerCAmelCase__ = BertForMaskedLM(lowerCamelCase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCamelCase__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = hf_param.shape lowerCAmelCase__ = to_torch(params[gluon_param] ) lowerCAmelCase__ = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase__ = layer.attention.self lowerCAmelCase__ = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output lowerCAmelCase__ = layer.attention.output lowerCAmelCase__ = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) lowerCAmelCase__ = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate lowerCAmelCase__ = layer.intermediate lowerCAmelCase__ = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) lowerCAmelCase__ = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output lowerCAmelCase__ = layer.output lowerCAmelCase__ = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) lowerCAmelCase__ = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCAmelCase__ = RobertaTokenizer.from_pretrained("""roberta-base""" ) lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ )["""input_ids"""] # Get gluon output lowerCAmelCase__ = mx.nd.array([input_ids] ) lowerCAmelCase__ = original_bort(inputs=lowerCamelCase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCamelCase__ ) lowerCAmelCase__ = BertModel.from_pretrained(lowerCamelCase__ ) hf_bort_model.eval() lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" ) lowerCAmelCase__ = hf_bort_model(**lowerCamelCase__ )[0] lowerCAmelCase__ = output_gluon[0].asnumpy() lowerCAmelCase__ = output_hf[0].detach().numpy() lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase__ = np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : str = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
674
1
"""simple docstring""" import os __lowerCAmelCase : Any = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 1_00, "D": 5_00, "M": 10_00} def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 while index < len(lowerCamelCase__ ) - 1: lowerCAmelCase__ = SYMBOLS[numerals[index]] lowerCAmelCase__ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = """""" lowerCAmelCase__ = num // 1000 numerals += m_count * "M" num %= 1000 lowerCAmelCase__ = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowerCAmelCase__ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _UpperCAmelCase ( lowerCamelCase__ = "/p089_roman.txt" ): """simple docstring""" lowerCAmelCase__ = 0 with open(os.path.dirname(lowerCamelCase__ ) + roman_numerals_filename ) as filea: lowerCAmelCase__ = filea.readlines() for line in lines: lowerCAmelCase__ = line.strip() lowerCAmelCase__ = parse_roman_numerals(lowerCamelCase__ ) lowerCAmelCase__ = generate_roman_numerals(lowerCamelCase__ ) savings += len(lowerCamelCase__ ) - len(lowerCamelCase__ ) return savings if __name__ == "__main__": print(F"{solution() = }")
674
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self : Optional[int] ): lowerCAmelCase__ = """""" lowerCAmelCase__ = """""" lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = 256 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = cva.imread(snake_case__ , 0 ) lowerCAmelCase__ = copy.deepcopy(self.img ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" ) lowerCAmelCase__ = np.sum(snake_case__ ) for i in range(len(snake_case__ ) ): lowerCAmelCase__ = x[i] / self.k self.sk += prk lowerCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase__ = int(last % last ) lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case__ ) lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase__ = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase__ = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": __lowerCAmelCase : Dict = os.path.join(os.path.basename(__file__), "image_data/input.jpg") __lowerCAmelCase : Optional[int] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
674
1
"""simple docstring""" # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase : List[Any] = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys __lowerCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
674
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class a_ ( __UpperCamelCase ): UpperCamelCase_ : List[str] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) UpperCamelCase_ : str = "CIDAS/clipseg-rd64-refined" UpperCamelCase_ : Any = "image_segmenter" UpperCamelCase_ : Optional[Any] = CLIPSegForImageSegmentation UpperCamelCase_ : List[str] = ["image", "text"] UpperCamelCase_ : int = ["image"] def __init__( self : Tuple , *snake_case__ : str , **snake_case__ : Optional[Any] ): requires_backends(self , ["""vision"""] ) super().__init__(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : "Image" , snake_case__ : str ): return self.pre_processor(text=[label] , images=[image] , padding=snake_case__ , return_tensors="""pt""" ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple ): with torch.no_grad(): lowerCAmelCase__ = self.model(**snake_case__ ).logits return logits def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] ): lowerCAmelCase__ = outputs.cpu().detach().numpy() lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
674
1
"""simple docstring""" import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Dict = TransfoXLTokenizer UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : Tuple = False def _SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setUp() lowerCAmelCase__ = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **snake_case__ : Optional[int] ): lowerCAmelCase__ = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Optional[int] ): lowerCAmelCase__ = """<unk> UNwanted , running""" lowerCAmelCase__ = """<unk> unwanted, running""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=snake_case__ ) lowerCAmelCase__ = tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(snake_case__ , ["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [0, 4, 8, 7] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = TransfoXLTokenizer(lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = TransfoXLTokenizer(lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = TransfoXLTokenizer(lower_case=snake_case__ ) lowerCAmelCase__ = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" lowerCAmelCase__ = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(snake_case__ ) , snake_case__ ) self.assertEqual(tokenizer.convert_tokens_to_string(snake_case__ ) , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = len(snake_case__ ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(snake_case__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , """new1""" )
674
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = LayoutLMTokenizer UpperCamelCase_ : List[Any] = LayoutLMTokenizerFast UpperCamelCase_ : Dict = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() lowerCAmelCase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : Union[str, Any] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Tuple ): lowerCAmelCase__ = """UNwant\u00E9d,running""" lowerCAmelCase__ = """unwanted, running""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(snake_case__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): pass
674
1
"""simple docstring""" import doctest from collections import deque import numpy as np class a_ : def __init__( self : Union[str, Any] ): lowerCAmelCase__ = [2, 1, 2, -1] lowerCAmelCase__ = [1, 2, 3, 4] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = len(self.first_signal ) lowerCAmelCase__ = len(self.second_signal ) lowerCAmelCase__ = max(snake_case__ , snake_case__ ) # create a zero matrix of max_length x max_length lowerCAmelCase__ = [[0] * max_length for i in range(snake_case__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(snake_case__ ): lowerCAmelCase__ = deque(self.second_signal ) rotated_signal.rotate(snake_case__ ) for j, item in enumerate(snake_case__ ): matrix[i][j] += item # multiply the matrix with the first signal lowerCAmelCase__ = np.matmul(np.transpose(snake_case__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(snake_case__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
674
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __lowerCAmelCase : Any = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : def __init__( self : List[str] , snake_case__ : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) lowerCAmelCase__ = primes[group]["""prime"""] lowerCAmelCase__ = primes[group]["""generator"""] lowerCAmelCase__ = int(hexlify(urandom(32 ) ) , base=16 ) def _SCREAMING_SNAKE_CASE ( self : Any ): return hex(self.__private_key )[2:] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = pow(self.generator , self.__private_key , self.prime ) return hex(snake_case__ )[2:] def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(snake_case__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str ): lowerCAmelCase__ = int(snake_case__ , base=16 ) if not self.is_valid_public_key(snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , self.__private_key , self.prime ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : int , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(snake_case__ , (prime - 1) // 2 , snake_case__ ) == 1 ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : str , snake_case__ : str , snake_case__ : int = 14 ): lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(snake_case__ , snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , snake_case__ , snake_case__ ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
674
1
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = int(lowerCamelCase__ ) if decimal in (0, 1): # Exit cases for the recursion return str(lowerCamelCase__ ) lowerCAmelCase__ , lowerCAmelCase__ = divmod(lowerCamelCase__ , 2 ) return binary_recursive(lowerCamelCase__ ) + str(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = str(lowerCamelCase__ ).strip() if not number: raise ValueError("""No input value was provided""" ) lowerCAmelCase__ = """-""" if number.startswith("""-""" ) else """""" lowerCAmelCase__ = number.lstrip("""-""" ) if not number.isnumeric(): raise ValueError("""Input value is not an integer""" ) return f"""{negative}0b{binary_recursive(int(lowerCamelCase__ ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
674
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) lowerCAmelCase__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = weights[0][0][0] lowerCAmelCase__ = np.asarray(layer_norm_a[0] ) lowerCAmelCase__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # lsh weights + output lowerCAmelCase__ = weights[0][1] if len(lowerCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) else: set_layer_weights_in_torch_local(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) # intermediate weighs lowerCAmelCase__ = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase__ ) == 4: lowerCAmelCase__ = intermediate_weights[2] # layernorm 2 lowerCAmelCase__ = np.asarray(intermediate_weights[0][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # intermediate dense lowerCAmelCase__ = np.asarray(intermediate_weights[1][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) # intermediate out lowerCAmelCase__ = np.asarray(intermediate_weights[4][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = torch_model.reformer # word embeds lowerCAmelCase__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase__ ) , ) if isinstance(weights[3] , lowerCamelCase__ ): lowerCAmelCase__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCAmelCase__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" lowerCAmelCase__ = nn.Parameter(torch.tensor(lowerCamelCase__ ) ) lowerCAmelCase__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCAmelCase__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # output layer norm lowerCAmelCase__ = np.asarray(weights[7][0] ) lowerCAmelCase__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # output embeddings lowerCAmelCase__ = np.asarray(weights[9][0] ) lowerCAmelCase__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = ReformerConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = ReformerModelWithLMHead(lowerCamelCase__ ) with open(lowerCamelCase__ , """rb""" ) as f: lowerCAmelCase__ = pickle.load(lowerCamelCase__ )["""weights"""] set_model_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
674
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = """laion/clap-htsat-unfused""" lowerCAmelCase__ = tempfile.mkdtemp() def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : Optional[int] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , **snake_case__ : Dict ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_feature_extractor() lowerCAmelCase__ = ClapProcessor(tokenizer=snake_case__ , feature_extractor=snake_case__ ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase__ = self.get_feature_extractor(do_normalize=snake_case__ , padding_value=1.0 ) lowerCAmelCase__ = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.get_feature_extractor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = ClapProcessor(tokenizer=snake_case__ , feature_extractor=snake_case__ ) lowerCAmelCase__ = floats_list((3, 1000) ) lowerCAmelCase__ = feature_extractor(snake_case__ , return_tensors="""np""" ) lowerCAmelCase__ = processor(audios=snake_case__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = self.get_feature_extractor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = ClapProcessor(tokenizer=snake_case__ , feature_extractor=snake_case__ ) lowerCAmelCase__ = """This is a test string""" lowerCAmelCase__ = processor(text=snake_case__ ) lowerCAmelCase__ = tokenizer(snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.get_feature_extractor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = ClapProcessor(tokenizer=snake_case__ , feature_extractor=snake_case__ ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.batch_decode(snake_case__ ) lowerCAmelCase__ = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.get_feature_extractor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = ClapProcessor(tokenizer=snake_case__ , feature_extractor=snake_case__ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
674
"""simple docstring""" import os from math import logaa def _UpperCAmelCase ( lowerCamelCase__ = "base_exp.txt" ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) ): lowerCAmelCase__ , lowerCAmelCase__ = list(map(lowerCamelCase__ , line.split(""",""" ) ) ) if x * logaa(lowerCamelCase__ ) > largest: lowerCAmelCase__ = x * logaa(lowerCamelCase__ ) lowerCAmelCase__ = i + 1 return result if __name__ == "__main__": print(solution())
674
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class a_ ( unittest.TestCase ): def __init__( self : Union[str, Any] , snake_case__ : Dict , snake_case__ : str=7 , snake_case__ : str=3 , snake_case__ : Optional[Any]=30 , snake_case__ : Any=400 , snake_case__ : Union[str, Any]=True , snake_case__ : List[str]=None , snake_case__ : List[str]=True , snake_case__ : List[str]=[0.5, 0.5, 0.5] , snake_case__ : Any=[0.5, 0.5, 0.5] , snake_case__ : Dict=True , snake_case__ : Any=1 / 255 , snake_case__ : str=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase__ = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = min_resolution lowerCAmelCase__ = max_resolution lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean lowerCAmelCase__ = image_std lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_pad def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : Union[str, Any] , snake_case__ : str=False ): if not batched: lowerCAmelCase__ = image_inputs[0] if isinstance(snake_case__ , Image.Image ): lowerCAmelCase__ , lowerCAmelCase__ = image.size else: lowerCAmelCase__ , lowerCAmelCase__ = image.shape[1], image.shape[2] if w < h: lowerCAmelCase__ = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase__ = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase__ = self.size["""shortest_edge"""] lowerCAmelCase__ = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase__ = self.size["""shortest_edge"""] lowerCAmelCase__ = self.size["""shortest_edge"""] else: lowerCAmelCase__ = [] for image in image_inputs: lowerCAmelCase__ , lowerCAmelCase__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase__ = max(snake_case__ , key=lambda snake_case__ : item[0] )[0] lowerCAmelCase__ = max(snake_case__ , key=lambda snake_case__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Dict = YolosImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = YolosImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case__ , """image_std""" ) ) self.assertTrue(hasattr(snake_case__ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case__ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case__ , """size""" ) ) def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , snake_case__ ) lowerCAmelCase__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=snake_case__ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): pass def _SCREAMING_SNAKE_CASE ( self : int ): # Initialize image_processing lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) lowerCAmelCase__ = image_processing(snake_case__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): # Initialize image_processing lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase__ = image_processing(snake_case__ , return_tensors="""pt""" ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): # Initialize image_processing lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase__ = image_processing(snake_case__ , return_tensors="""pt""" ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # Initialize image_processings lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) lowerCAmelCase__ = self.image_processing_class(do_resize=snake_case__ , do_normalize=snake_case__ , do_rescale=snake_case__ ) # create random PyTorch tensors lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors lowerCAmelCase__ = image_processing_a.pad(snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = image_processing_a(snake_case__ , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1E-4 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): # prepare image and target lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase__ = json.loads(f.read() ) lowerCAmelCase__ = {"""image_id""": 39769, """annotations""": target} # encode them lowerCAmelCase__ = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) lowerCAmelCase__ = image_processing(images=snake_case__ , annotations=snake_case__ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , snake_case__ ) lowerCAmelCase__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , snake_case__ , atol=1E-4 ) ) # verify area lowerCAmelCase__ = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , snake_case__ ) ) # verify boxes lowerCAmelCase__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , snake_case__ ) lowerCAmelCase__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , snake_case__ , atol=1E-3 ) ) # verify image_id lowerCAmelCase__ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , snake_case__ ) ) # verify is_crowd lowerCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , snake_case__ ) ) # verify class_labels lowerCAmelCase__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , snake_case__ ) ) # verify orig_size lowerCAmelCase__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , snake_case__ ) ) # verify size lowerCAmelCase__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , snake_case__ ) ) @slow def _SCREAMING_SNAKE_CASE ( self : int ): # prepare image, target and masks_path lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase__ = json.loads(f.read() ) lowerCAmelCase__ = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} lowerCAmelCase__ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase__ = YolosImageProcessor(format="""coco_panoptic""" ) lowerCAmelCase__ = image_processing(images=snake_case__ , annotations=snake_case__ , masks_path=snake_case__ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , snake_case__ ) lowerCAmelCase__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , snake_case__ , atol=1E-4 ) ) # verify area lowerCAmelCase__ = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , snake_case__ ) ) # verify boxes lowerCAmelCase__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , snake_case__ ) lowerCAmelCase__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , snake_case__ , atol=1E-3 ) ) # verify image_id lowerCAmelCase__ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , snake_case__ ) ) # verify is_crowd lowerCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , snake_case__ ) ) # verify class_labels lowerCAmelCase__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , snake_case__ ) ) # verify masks lowerCAmelCase__ = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , snake_case__ ) # verify orig_size lowerCAmelCase__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , snake_case__ ) ) # verify size lowerCAmelCase__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , snake_case__ ) )
674
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" while b: lowerCAmelCase__ , lowerCAmelCase__ = b, a % b return a def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase__ , a % b ) def _UpperCAmelCase ( ): """simple docstring""" print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
674
1
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __lowerCAmelCase : Dict = False __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Tuple = "ybelkada/fonts" def _UpperCAmelCase ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ """Pix2StructImageProcessor. Please upgrade torch.""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" requires_backends(lowerCamelCase__ , ["""torch"""] ) _check_torch_version() lowerCAmelCase__ = image_tensor.unsqueeze(0 ) lowerCAmelCase__ = torch.nn.functional.unfold(lowerCamelCase__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowerCAmelCase__ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , lowerCamelCase__ , lowerCamelCase__ , -1 ) lowerCAmelCase__ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 36 , lowerCamelCase__ = "black" , lowerCamelCase__ = "white" , lowerCamelCase__ = 5 , lowerCamelCase__ = 5 , lowerCamelCase__ = 5 , lowerCamelCase__ = 5 , lowerCamelCase__ = None , lowerCamelCase__ = None , ): """simple docstring""" requires_backends(lowerCamelCase__ , """vision""" ) # Add new lines so that each line is no more than 80 characters. lowerCAmelCase__ = textwrap.TextWrapper(width=80 ) lowerCAmelCase__ = wrapper.wrap(text=lowerCamelCase__ ) lowerCAmelCase__ = """\n""".join(lowerCamelCase__ ) if font_bytes is not None and font_path is None: lowerCAmelCase__ = io.BytesIO(lowerCamelCase__ ) elif font_path is not None: lowerCAmelCase__ = font_path else: lowerCAmelCase__ = hf_hub_download(lowerCamelCase__ , """Arial.TTF""" ) lowerCAmelCase__ = ImageFont.truetype(lowerCamelCase__ , encoding="""UTF-8""" , size=lowerCamelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowerCAmelCase__ = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , lowerCamelCase__ ) ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = temp_draw.textbbox((0, 0) , lowerCamelCase__ , lowerCamelCase__ ) # Create the actual image with a bit of padding around the text. lowerCAmelCase__ = text_width + left_padding + right_padding lowerCAmelCase__ = text_height + top_padding + bottom_padding lowerCAmelCase__ = Image.new("""RGB""" , (image_width, image_height) , lowerCamelCase__ ) lowerCAmelCase__ = ImageDraw.Draw(lowerCamelCase__ ) draw.text(xy=(left_padding, top_padding) , text=lowerCamelCase__ , fill=lowerCamelCase__ , font=lowerCamelCase__ ) return image def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" requires_backends(lowerCamelCase__ , """vision""" ) # Convert to PIL image if necessary lowerCAmelCase__ = to_pil_image(lowerCamelCase__ ) lowerCAmelCase__ = render_text(lowerCamelCase__ , **lowerCamelCase__ ) lowerCAmelCase__ = max(header_image.width , image.width ) lowerCAmelCase__ = int(image.height * (new_width / image.width) ) lowerCAmelCase__ = int(header_image.height * (new_width / header_image.width) ) lowerCAmelCase__ = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowerCAmelCase__ = to_numpy_array(lowerCamelCase__ ) if infer_channel_dimension_format(lowerCamelCase__ ) == ChannelDimension.LAST: lowerCAmelCase__ = to_channel_dimension_format(lowerCamelCase__ , ChannelDimension.LAST ) return new_image class a_ ( __UpperCamelCase ): UpperCamelCase_ : Dict = ["flattened_patches"] def __init__( self : Tuple , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : int = 2048 , snake_case__ : bool = False , **snake_case__ : Optional[Any] , ): super().__init__(**snake_case__ ) lowerCAmelCase__ = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} lowerCAmelCase__ = do_normalize lowerCAmelCase__ = do_convert_rgb lowerCAmelCase__ = max_patches lowerCAmelCase__ = is_vqa def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : np.ndarray , snake_case__ : int , snake_case__ : dict , **snake_case__ : Any ): requires_backends(self.extract_flattened_patches , """torch""" ) _check_torch_version() # convert to torch lowerCAmelCase__ = to_channel_dimension_format(snake_case__ , ChannelDimension.FIRST ) lowerCAmelCase__ = torch.from_numpy(snake_case__ ) lowerCAmelCase__ , lowerCAmelCase__ = patch_size["""height"""], patch_size["""width"""] lowerCAmelCase__ , lowerCAmelCase__ = get_image_size(snake_case__ ) # maximize scale s.t. lowerCAmelCase__ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowerCAmelCase__ = max(min(math.floor(scale * image_height / patch_height ) , snake_case__ ) , 1 ) lowerCAmelCase__ = max(min(math.floor(scale * image_width / patch_width ) , snake_case__ ) , 1 ) lowerCAmelCase__ = max(num_feasible_rows * patch_height , 1 ) lowerCAmelCase__ = max(num_feasible_cols * patch_width , 1 ) lowerCAmelCase__ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=snake_case__ , antialias=snake_case__ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowerCAmelCase__ = torch_extract_patches(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase__ = patches.shape lowerCAmelCase__ = patches_shape[1] lowerCAmelCase__ = patches_shape[2] lowerCAmelCase__ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowerCAmelCase__ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowerCAmelCase__ = torch.arange(snake_case__ ).reshape([rows, 1] ).repeat(1 , snake_case__ ).reshape([rows * columns, 1] ) lowerCAmelCase__ = torch.arange(snake_case__ ).reshape([1, columns] ).repeat(snake_case__ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowerCAmelCase__ = row_ids.to(torch.floataa ) lowerCAmelCase__ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowerCAmelCase__ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowerCAmelCase__ = torch.nn.functional.pad(snake_case__ , [0, 0, 0, max_patches - (rows * columns)] ).float() lowerCAmelCase__ = to_numpy_array(snake_case__ ) return result def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : np.ndarray , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Optional[int] ): if image.dtype == np.uinta: lowerCAmelCase__ = image.astype(np.floataa ) # take mean across the whole `image` lowerCAmelCase__ = np.mean(snake_case__ ) lowerCAmelCase__ = np.std(snake_case__ ) lowerCAmelCase__ = max(snake_case__ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : ImageInput , snake_case__ : Optional[str] = None , snake_case__ : bool = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[Dict[str, int]] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : ChannelDimension = ChannelDimension.FIRST , **snake_case__ : Optional[int] , ): lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase__ = patch_size if patch_size is not None else self.patch_size lowerCAmelCase__ = max_patches if max_patches is not None else self.max_patches lowerCAmelCase__ = self.is_vqa if kwargs.get("""data_format""" , snake_case__ ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) lowerCAmelCase__ = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase__ = [convert_to_rgb(snake_case__ ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(snake_case__ ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) lowerCAmelCase__ = kwargs.pop("""font_bytes""" , snake_case__ ) lowerCAmelCase__ = kwargs.pop("""font_path""" , snake_case__ ) if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase__ = [header_text] * len(snake_case__ ) lowerCAmelCase__ = [ render_header(snake_case__ , header_text[i] , font_bytes=snake_case__ , font_path=snake_case__ ) for i, image in enumerate(snake_case__ ) ] if do_normalize: lowerCAmelCase__ = [self.normalize(image=snake_case__ ) for image in images] # convert to torch tensor and permute lowerCAmelCase__ = [ self.extract_flattened_patches(image=snake_case__ , max_patches=snake_case__ , patch_size=snake_case__ ) for image in images ] # create attention mask in numpy lowerCAmelCase__ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowerCAmelCase__ = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=snake_case__ ) return encoded_outputs
674
"""simple docstring""" import os def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = os.path.dirname(os.path.realpath(lowerCamelCase__ ) ) lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """triangle.txt""" ) with open(lowerCamelCase__ ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = [] for line in triangle: lowerCAmelCase__ = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(lowerCamelCase__ ) ) a.append(lowerCamelCase__ ) for i in range(1 , len(lowerCamelCase__ ) ): for j in range(len(a[i] ) ): lowerCAmelCase__ = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCAmelCase__ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCamelCase__ , lowerCamelCase__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
674
1
"""simple docstring""" import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=False ): """simple docstring""" try: lowerCAmelCase__ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowerCAmelCase__ = default else: # KEY is set, convert it to True or False. try: lowerCAmelCase__ = strtobool(lowerCamelCase__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value __lowerCAmelCase : Optional[int] = parse_flag_from_env("RUN_SLOW", default=False) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skip("""Test was skipped""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(_run_slow_tests , """test is slow""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__=None , lowerCamelCase__=None ): """simple docstring""" if test_case is None: return partial(lowerCamelCase__ , version=lowerCamelCase__ ) return unittest.skipUnless(is_torch_version(""">=""" , lowerCamelCase__ ) , f"""test requires torch version >= {version}""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(lowerCamelCase__ ) __lowerCAmelCase : Dict = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(lowerCamelCase__ ) class a_ ( unittest.TestCase ): UpperCamelCase_ : Union[str, Any] = True @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] ): lowerCAmelCase__ = tempfile.mkdtemp() @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def _SCREAMING_SNAKE_CASE ( self : str ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(snake_case__ ) class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : List[Any] ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[mock.Mock, List[mock.Mock]] ): lowerCAmelCase__ = mocks if isinstance(snake_case__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = AcceleratorState() lowerCAmelCase__ = tensor[None].clone().to(state.device ) lowerCAmelCase__ = gather(lowerCamelCase__ ).cpu() lowerCAmelCase__ = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , lowerCamelCase__ ): return False return True class a_ : def __init__( self : Union[str, Any] , snake_case__ : Any , snake_case__ : Any , snake_case__ : Tuple ): lowerCAmelCase__ = returncode lowerCAmelCase__ = stdout lowerCAmelCase__ = stderr async def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" while True: lowerCAmelCase__ = await stream.readline() if line: callback(lowerCamelCase__ ) else: break async def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=False ): """simple docstring""" if echo: print("""\nRunning: """ , """ """.join(lowerCamelCase__ ) ) lowerCAmelCase__ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCamelCase__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCamelCase__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowerCAmelCase__ = [] lowerCAmelCase__ = [] def tee(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="" ): lowerCAmelCase__ = line.decode("""utf-8""" ).rstrip() sink.append(lowerCamelCase__ ) if not quiet: print(lowerCamelCase__ , lowerCamelCase__ , file=lowerCamelCase__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda lowerCamelCase__ : tee(lowerCamelCase__ , lowerCamelCase__ , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda lowerCamelCase__ : tee(lowerCamelCase__ , lowerCamelCase__ , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=lowerCamelCase__ , ) return _RunOutput(await p.wait() , lowerCamelCase__ , lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=180 , lowerCamelCase__=False , lowerCamelCase__=True ): """simple docstring""" lowerCAmelCase__ = asyncio.get_event_loop() lowerCAmelCase__ = loop.run_until_complete( _stream_subprocess(lowerCamelCase__ , env=lowerCamelCase__ , stdin=lowerCamelCase__ , timeout=lowerCamelCase__ , quiet=lowerCamelCase__ , echo=lowerCamelCase__ ) ) lowerCAmelCase__ = """ """.join(lowerCamelCase__ ) if result.returncode > 0: lowerCAmelCase__ = """\n""".join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) return result class a_ ( __UpperCamelCase ): pass def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=False ): """simple docstring""" try: lowerCAmelCase__ = subprocess.check_output(lowerCamelCase__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(lowerCamelCase__ , """decode""" ): lowerCAmelCase__ = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f"""Command `{' '.join(lowerCamelCase__ )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
674
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCAmelCase : Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __lowerCAmelCase : Optional[int] = json.load(f) @require_torch class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Dict ): return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ): lowerCAmelCase__ = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Any , snake_case__ : int ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowerCAmelCase__ = F"""facebook/wmt19-{pair}""" lowerCAmelCase__ = self.get_tokenizer(snake_case__ ) lowerCAmelCase__ = self.get_model(snake_case__ ) lowerCAmelCase__ = bleu_data[pair]["""src"""] lowerCAmelCase__ = bleu_data[pair]["""tgt"""] lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""pt""" , truncation=snake_case__ , padding="""longest""" ).to(snake_case__ ) lowerCAmelCase__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCAmelCase__ = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) lowerCAmelCase__ = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["""bleu"""] , snake_case__ )
674
1
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification __lowerCAmelCase : Optional[Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co __lowerCAmelCase : Optional[Any] = "main" # Default branch name __lowerCAmelCase : Tuple = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) __lowerCAmelCase : str = "aaaaaaa" # This commit does not exist, so we should 404. __lowerCAmelCase : Dict = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes __lowerCAmelCase : Union[str, Any] = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def _UpperCAmelCase ( ): """simple docstring""" print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def _UpperCAmelCase ( ): """simple docstring""" print("""Bonjour!""" ) yield print("""Au revoir!""" ) class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Tuple ): # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class a_ ( unittest.TestCase ): @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : Optional[Any] ): with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : List[str] ): with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : List[str] ): with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Dict ): self.assertEqual(find_labels(snake_case__ ) , ["""labels"""] ) self.assertEqual(find_labels(snake_case__ ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(snake_case__ ) , ["""start_positions""", """end_positions"""] ) class a_ ( __UpperCamelCase ): pass self.assertEqual(find_labels(snake_case__ ) , ["""labels"""] ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.assertEqual(find_labels(snake_case__ ) , ["""labels"""] ) self.assertEqual(find_labels(snake_case__ ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(snake_case__ ) , ["""start_positions""", """end_positions"""] ) class a_ ( __UpperCamelCase ): pass self.assertEqual(find_labels(snake_case__ ) , ["""labels"""] ) @require_flax def _SCREAMING_SNAKE_CASE ( self : Any ): # Flax models don't have labels self.assertEqual(find_labels(snake_case__ ) , [] ) self.assertEqual(find_labels(snake_case__ ) , [] ) self.assertEqual(find_labels(snake_case__ ) , [] ) class a_ ( __UpperCamelCase ): pass self.assertEqual(find_labels(snake_case__ ) , [] )
674
"""simple docstring""" import pprint import requests __lowerCAmelCase : Union[str, Any] = "https://zenquotes.io/api" def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = random_quotes() pprint.pprint(response)
674
1
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class a_ ( __UpperCamelCase ): def __init__( self : Optional[Any] , snake_case__ : UNetaDModel , snake_case__ : UNetaDModel , snake_case__ : DDPMScheduler , snake_case__ : Optional[Any] , ): super().__init__() lowerCAmelCase__ = value_function lowerCAmelCase__ = unet lowerCAmelCase__ = scheduler lowerCAmelCase__ = env lowerCAmelCase__ = env.get_dataset() lowerCAmelCase__ = {} for key in self.data.keys(): try: lowerCAmelCase__ = self.data[key].mean() except: # noqa: E722 pass lowerCAmelCase__ = {} for key in self.data.keys(): try: lowerCAmelCase__ = self.data[key].std() except: # noqa: E722 pass lowerCAmelCase__ = env.observation_space.shape[0] lowerCAmelCase__ = env.action_space.shape[0] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Tuple ): return (x_in - self.means[key]) / self.stds[key] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Any , snake_case__ : Optional[int] ): return x_in * self.stds[key] + self.means[key] def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] ): if type(snake_case__ ) is dict: return {k: self.to_torch(snake_case__ ) for k, v in x_in.items()} elif torch.is_tensor(snake_case__ ): return x_in.to(self.unet.device ) return torch.tensor(snake_case__ , device=self.unet.device ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : Any ): for key, val in cond.items(): lowerCAmelCase__ = val.clone() return x_in def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : str , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : Dict ): lowerCAmelCase__ = x.shape[0] lowerCAmelCase__ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowerCAmelCase__ = torch.full((batch_size,) , snake_case__ , device=self.unet.device , dtype=torch.long ) for _ in range(snake_case__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowerCAmelCase__ = self.value_function(x.permute(0 , 2 , 1 ) , snake_case__ ).sample lowerCAmelCase__ = torch.autograd.grad([y.sum()] , [x] )[0] lowerCAmelCase__ = self.scheduler._get_variance(snake_case__ ) lowerCAmelCase__ = torch.exp(0.5 * posterior_variance ) lowerCAmelCase__ = model_std * grad lowerCAmelCase__ = 0 lowerCAmelCase__ = x.detach() lowerCAmelCase__ = x + scale * grad lowerCAmelCase__ = self.reset_xa(snake_case__ , snake_case__ , self.action_dim ) lowerCAmelCase__ = self.unet(x.permute(0 , 2 , 1 ) , snake_case__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg lowerCAmelCase__ = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , predict_epsilon=snake_case__ )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) lowerCAmelCase__ = self.reset_xa(snake_case__ , snake_case__ , self.action_dim ) lowerCAmelCase__ = self.to_torch(snake_case__ ) return x, y def __call__( self : int , snake_case__ : Optional[int] , snake_case__ : int=64 , snake_case__ : Dict=32 , snake_case__ : Any=2 , snake_case__ : Optional[Any]=0.1 ): # normalize the observations and create batch dimension lowerCAmelCase__ = self.normalize(snake_case__ , """observations""" ) lowerCAmelCase__ = obs[None].repeat(snake_case__ , axis=0 ) lowerCAmelCase__ = {0: self.to_torch(snake_case__ )} lowerCAmelCase__ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowerCAmelCase__ = randn_tensor(snake_case__ , device=self.unet.device ) lowerCAmelCase__ = self.reset_xa(snake_case__ , snake_case__ , self.action_dim ) lowerCAmelCase__ = self.to_torch(snake_case__ ) # run the diffusion process lowerCAmelCase__ , lowerCAmelCase__ = self.run_diffusion(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # sort output trajectories by value lowerCAmelCase__ = y.argsort(0 , descending=snake_case__ ).squeeze() lowerCAmelCase__ = x[sorted_idx] lowerCAmelCase__ = sorted_values[:, :, : self.action_dim] lowerCAmelCase__ = actions.detach().cpu().numpy() lowerCAmelCase__ = self.de_normalize(snake_case__ , key="""actions""" ) # select the action with the highest value if y is not None: lowerCAmelCase__ = 0 else: # if we didn't run value guiding, select a random action lowerCAmelCase__ = np.random.randint(0 , snake_case__ ) lowerCAmelCase__ = denorm_actions[selected_index, 0] return denorm_actions
674
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = CLIPConfig() # Create a dummy config file with image_proceesor_type lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ).to_dict() config_dict.pop("""image_processor_type""" ) lowerCAmelCase__ = CLIPImageProcessor(**snake_case__ ) # save in new folder model_config.save_pretrained(snake_case__ ) config.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) # make sure private variable is not incorrectly saved lowerCAmelCase__ = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with self.assertRaisesRegex( snake_case__ , """clip-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""clip-base""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): with self.assertRaisesRegex( snake_case__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , revision="""aaaaaa""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): with self.assertRaisesRegex( snake_case__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , trust_remote_code=snake_case__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ): try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoImageProcessor.register(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = CustomImageProcessor.from_pretrained(snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self : List[str] ): class a_ ( __UpperCamelCase ): UpperCamelCase_ : Tuple = True try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # If remote code is not set, the default is to use local lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(snake_case__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
674
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Any = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
674
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a_ : def __init__( self : Optional[int] , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=64 , snake_case__ : Any=None ): lowerCAmelCase__ = np.random.default_rng(snake_case__ ) lowerCAmelCase__ = length lowerCAmelCase__ = rng.normal(size=(length,) ).astype(np.floataa ) lowerCAmelCase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[Any] ): return self.length def __getitem__( self : List[str] , snake_case__ : Optional[int] ): return {"x": self.x[i], "y": self.y[i]} class a_ ( torch.nn.Module ): def __init__( self : List[str] , snake_case__ : str=0 , snake_case__ : Dict=0 , snake_case__ : Any=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Any=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a[0] + self.b[0] class a_ ( torch.nn.Module ): def __init__( self : Any , snake_case__ : Union[str, Any]=0 , snake_case__ : Union[str, Any]=0 , snake_case__ : List[Any]=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any]=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a + self.b def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase__ = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} lowerCAmelCase__ = load_dataset("""csv""" , data_files=lowerCamelCase__ ) lowerCAmelCase__ = datasets["""train"""].unique("""label""" ) lowerCAmelCase__ = {v: i for i, v in enumerate(lowerCamelCase__ )} def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" ) if "label" in examples: lowerCAmelCase__ = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase__ = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=2 ) lowerCAmelCase__ = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
674
1
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ = 100 ): """simple docstring""" lowerCAmelCase__ = (n * (n + 1) // 2) ** 2 lowerCAmelCase__ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F"{solution() = }")
674
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = MobileBertConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = MobileBertForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint lowerCAmelCase__ = load_tf_weights_in_mobilebert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
674
1
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __lowerCAmelCase : Tuple = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class a_ ( unittest.TestCase ): @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[int] ): lowerCAmelCase__ = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] ): try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) lowerCAmelCase__ = FlaxBertModel(snake_case__ ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) lowerCAmelCase__ = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) lowerCAmelCase__ = flatten_dict(unfreeze(model.params ) ) lowerCAmelCase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCAmelCase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case__ , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(snake_case__ , repo_id="""test-model-flax""" , push_to_hub=snake_case__ , use_auth_token=self._token ) lowerCAmelCase__ = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) lowerCAmelCase__ = flatten_dict(unfreeze(model.params ) ) lowerCAmelCase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCAmelCase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case__ , 1E-3 , msg=F"""{key} not identical""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) lowerCAmelCase__ = FlaxBertModel(snake_case__ ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) lowerCAmelCase__ = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) lowerCAmelCase__ = flatten_dict(unfreeze(model.params ) ) lowerCAmelCase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCAmelCase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case__ , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( snake_case__ , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=snake_case__ , use_auth_token=self._token ) lowerCAmelCase__ = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) lowerCAmelCase__ = flatten_dict(unfreeze(model.params ) ) lowerCAmelCase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCAmelCase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case__ , 1E-3 , msg=F"""{key} not identical""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = True lowerCAmelCase__ = flatten_dict(modela.params ) lowerCAmelCase__ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: lowerCAmelCase__ = False return models_are_equal @require_flax class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) lowerCAmelCase__ = FlaxBertModel(snake_case__ ) lowerCAmelCase__ = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(snake_case__ , snake_case__ ) ) with self.assertRaises(snake_case__ ): lowerCAmelCase__ = FlaxBertModel.from_pretrained(snake_case__ ) lowerCAmelCase__ = FlaxBertModel.from_pretrained(snake_case__ , subfolder=snake_case__ ) self.assertTrue(check_models_equal(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) lowerCAmelCase__ = FlaxBertModel(snake_case__ ) lowerCAmelCase__ = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(snake_case__ , snake_case__ ) , max_shard_size="""10KB""" ) with self.assertRaises(snake_case__ ): lowerCAmelCase__ = FlaxBertModel.from_pretrained(snake_case__ ) lowerCAmelCase__ = FlaxBertModel.from_pretrained(snake_case__ , subfolder=snake_case__ ) self.assertTrue(check_models_equal(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = """bert""" lowerCAmelCase__ = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(snake_case__ ): lowerCAmelCase__ = FlaxBertModel.from_pretrained(snake_case__ ) lowerCAmelCase__ = FlaxBertModel.from_pretrained(snake_case__ , subfolder=snake_case__ ) self.assertIsNotNone(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = """bert""" lowerCAmelCase__ = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(snake_case__ ): lowerCAmelCase__ = FlaxBertModel.from_pretrained(snake_case__ ) lowerCAmelCase__ = FlaxBertModel.from_pretrained(snake_case__ , subfolder=snake_case__ ) self.assertIsNotNone(snake_case__ )
674
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: lowerCAmelCase__ = f"""The input value of [n={number}] has to be > 0""" raise ValueError(lowerCamelCase__ ) else: lowerCAmelCase__ = sylvester(number - 1 ) lowerCAmelCase__ = num - 1 lowerCAmelCase__ = num return lower * upper + 1 if __name__ == "__main__": print(F"The 8th number in Sylvester's sequence: {sylvester(8)}")
674
1
"""simple docstring""" from __future__ import annotations from collections import namedtuple def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = namedtuple("""result""" , """name value""" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("""Only one argument must be 0""" ) elif power < 0: raise ValueError( """Power cannot be negative in any electrical/electronics system""" ) elif voltage == 0: return result("""voltage""" , power / current ) elif current == 0: return result("""current""" , power / voltage ) elif power == 0: return result("""power""" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
674
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Tuple = PegasusTokenizer UpperCamelCase_ : Any = PegasusTokenizerFast UpperCamelCase_ : int = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : Optional[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any] ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = """</s>""" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(snake_case__ ) , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowerCAmelCase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase__ = """To ensure a smooth flow of bank resolutions.""" lowerCAmelCase__ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def _SCREAMING_SNAKE_CASE ( self : str ): # fmt: off lowerCAmelCase__ = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = PegasusTokenizer UpperCamelCase_ : Optional[int] = PegasusTokenizerFast UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Optional[int] = True def _SCREAMING_SNAKE_CASE ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ): return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : List[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Dict ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowerCAmelCase__ = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
674
1
"""simple docstring""" import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = BigBirdConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: lowerCAmelCase__ = BigBirdForQuestionAnswering(lowerCamelCase__ ) else: lowerCAmelCase__ = BigBirdForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(lowerCamelCase__ , lowerCamelCase__ , is_trivia_qa=lowerCamelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) __lowerCAmelCase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
674
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case__ , ) assert hasattr(self , """env""" ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] ): # configuration for running training on smdistributed Model Parallel lowerCAmelCase__ = { """enabled""": True, """processes_per_host""": 8, } lowerCAmelCase__ = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowerCAmelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowerCAmelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="""py36""" , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str ): TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] ): # create estimator lowerCAmelCase__ = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case__ )
674
1
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib __lowerCAmelCase : Tuple = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } __lowerCAmelCase : Optional[int] = logging.WARNING def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = os.getenv("""DATASETS_VERBOSITY""" , lowerCamelCase__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def _UpperCAmelCase ( ): """simple docstring""" return __name__.split(""".""" )[0] def _UpperCAmelCase ( ): """simple docstring""" return logging.getLogger(_get_library_name() ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def _UpperCAmelCase ( lowerCamelCase__ = None ): """simple docstring""" if name is None: lowerCAmelCase__ = _get_library_name() return logging.getLogger(lowerCamelCase__ ) def _UpperCAmelCase ( ): """simple docstring""" return _get_library_root_logger().getEffectiveLevel() def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" _get_library_root_logger().setLevel(lowerCamelCase__ ) def _UpperCAmelCase ( ): """simple docstring""" return set_verbosity(lowerCamelCase__ ) def _UpperCAmelCase ( ): """simple docstring""" return set_verbosity(lowerCamelCase__ ) def _UpperCAmelCase ( ): """simple docstring""" return set_verbosity(lowerCamelCase__ ) def _UpperCAmelCase ( ): """simple docstring""" return set_verbosity(lowerCamelCase__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = False def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class a_ : def __init__( self : str , *snake_case__ : Any , **snake_case__ : List[Any] ): # pylint: disable=unused-argument lowerCAmelCase__ = args[0] if args else None def __iter__( self : List[Any] ): return iter(self._iterator ) def __getattr__( self : Any , snake_case__ : Dict ): def empty_fn(*snake_case__ : List[str] , **snake_case__ : Union[str, Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : List[Any] ): return self def __exit__( self : int , snake_case__ : str , snake_case__ : List[str] , snake_case__ : str ): return __lowerCAmelCase : Tuple = True class a_ : def __call__( self : int , *snake_case__ : Optional[int] , snake_case__ : Optional[int]=False , **snake_case__ : Optional[int] ): if _tqdm_active and not disable: return tqdm_lib.tqdm(*snake_case__ , **snake_case__ ) else: return EmptyTqdm(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , *snake_case__ : str , **snake_case__ : str ): lowerCAmelCase__ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Any ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() __lowerCAmelCase : Union[str, Any] = _tqdm_cls() def _UpperCAmelCase ( ): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def _UpperCAmelCase ( ): """simple docstring""" global _tqdm_active lowerCAmelCase__ = True def _UpperCAmelCase ( ): """simple docstring""" global _tqdm_active lowerCAmelCase__ = False
674
"""simple docstring""" from math import pi, sqrt def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if num <= 0: raise ValueError("""math domain error""" ) if num > 1_71.5: raise OverflowError("""math range error""" ) elif num - int(lowerCamelCase__ ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(lowerCamelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _UpperCAmelCase ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(lowerCamelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __lowerCAmelCase : Dict = 1.0 while num: __lowerCAmelCase : Any = float(input("Gamma of: ")) print(F"gamma({num}) = {gamma(num)}") print("\nEnter 0 to exit...")
674
1
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if len(lowerCamelCase__ ) <= 1: return [tuple(lowerCamelCase__ )] lowerCAmelCase__ = [] def generate(lowerCamelCase__ , lowerCamelCase__ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even lowerCAmelCase__ , lowerCAmelCase__ = arr[k - 1], arr[i] else: # k is odd lowerCAmelCase__ , lowerCAmelCase__ = arr[k - 1], arr[0] generate(k - 1 , lowerCamelCase__ ) generate(len(lowerCamelCase__ ) , lowerCamelCase__ ) return res if __name__ == "__main__": __lowerCAmelCase : Optional[int] = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : Tuple = [int(item) for item in user_input.split(",")] print(heaps(arr))
674
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : def __init__( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any=13 , snake_case__ : int=30 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : Dict=True , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=32 , snake_case__ : List[str]=2 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[int]=37 , snake_case__ : Tuple="gelu" , snake_case__ : str=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=10 , snake_case__ : Dict=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : str=None , snake_case__ : List[Any]=2 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = num_patches + 2 def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[Any] ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[str] ): lowerCAmelCase__ = TFDeiTModel(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict ): lowerCAmelCase__ = TFDeiTForMaskedImageModeling(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForMaskedImageModeling(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple ): lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase_ : Any = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : int = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = TFDeiTModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): pass def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Dense ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any]=False ): lowerCAmelCase__ = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _SCREAMING_SNAKE_CASE ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDeiTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Any ): return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors="""tf""" ) # forward pass lowerCAmelCase__ = model(**snake_case__ ) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase__ = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
674
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __lowerCAmelCase : str = None __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : str = "▁" __lowerCAmelCase : List[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase : str = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } __lowerCAmelCase : Dict = { "google/pegasus-xsum": 5_12, } class a_ ( __UpperCamelCase ): UpperCamelCase_ : int = VOCAB_FILES_NAMES UpperCamelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Dict = PegasusTokenizer UpperCamelCase_ : Any = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , snake_case__ : Tuple=None , snake_case__ : List[str]=None , snake_case__ : int="<pad>" , snake_case__ : Dict="</s>" , snake_case__ : List[str]="<unk>" , snake_case__ : int="<mask_2>" , snake_case__ : Tuple="<mask_1>" , snake_case__ : Optional[Any]=None , snake_case__ : str=103 , **snake_case__ : List[str] , ): lowerCAmelCase__ = offset if additional_special_tokens is not None: if not isinstance(snake_case__ , snake_case__ ): raise TypeError( F"""additional_special_tokens should be of type {type(snake_case__ )}, but is""" F""" {type(snake_case__ )}""" ) lowerCAmelCase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(snake_case__ ) , self.offset - 1 ) ] if len(set(snake_case__ ) ) != len(snake_case__ ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) lowerCAmelCase__ = additional_special_tokens_extended else: lowerCAmelCase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( snake_case__ , tokenizer_file=snake_case__ , pad_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , mask_token=snake_case__ , mask_token_sent=snake_case__ , offset=snake_case__ , additional_special_tokens=snake_case__ , **snake_case__ , ) lowerCAmelCase__ = vocab_file lowerCAmelCase__ = False if not self.vocab_file else True def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : str ): lowerCAmelCase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" F""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : List , snake_case__ : Optional[List] = None , snake_case__ : bool = False ): if already_has_special_tokens: return self._special_token_mask(snake_case__ ) elif token_ids_a is None: return self._special_token_mask(snake_case__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : str , snake_case__ : Any=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(snake_case__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ = os.path.join( snake_case__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
674
"""simple docstring""" from __future__ import annotations from math import gcd def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 3 , ): """simple docstring""" if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: return (pow(lowerCamelCase__ , 2 ) + step) % modulus for _ in range(lowerCamelCase__ ): # These track the position within the cycle detection logic. lowerCAmelCase__ = seed lowerCAmelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCAmelCase__ = gcd(hare - tortoise , lowerCamelCase__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCAmelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : Dict = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"{args.num} is probably prime") else: __lowerCAmelCase : List[str] = args.num // divisor print(F"{args.num} = {divisor} * {quotient}")
674
1
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path __lowerCAmelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) __lowerCAmelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] __lowerCAmelCase : set[int] = {ord(char) for char in VALID_CHARS} __lowerCAmelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = "" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 for keychar, cipherchar in zip(cycle(lowerCamelCase__ ) , lowerCamelCase__ ): lowerCAmelCase__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowerCamelCase__ ) return decoded def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [] for key in product(lowerCamelCase__ , repeat=3 ): lowerCAmelCase__ = try_key(lowerCamelCase__ , lowerCamelCase__ ) if encoded is not None: possibles.append(lowerCamelCase__ ) return possibles def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def _UpperCAmelCase ( lowerCamelCase__ = "p059_cipher.txt" ): """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = Path(lowerCamelCase__ ).parent.joinpath(lowerCamelCase__ ).read_text(encoding="""utf-8""" ) lowerCAmelCase__ = [int(lowerCamelCase__ ) for number in data.strip().split(""",""" )] lowerCAmelCase__ = filter_valid_chars(lowerCamelCase__ ) for common_word in COMMON_WORDS: lowerCAmelCase__ = filter_common_word(lowerCamelCase__ , lowerCamelCase__ ) if len(lowerCamelCase__ ) == 1: break lowerCAmelCase__ = possibles[0] return sum(ord(lowerCamelCase__ ) for char in decoded_text ) if __name__ == "__main__": print(F"{solution() = }")
674
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = TapasConfig.from_json_file(lowerCamelCase__ ) # set absolute/relative position embeddings parameter lowerCAmelCase__ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WTQ": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = True # hparam_utils.py hparams lowerCAmelCase__ = 0.66_46_94 lowerCAmelCase__ = 0.20_79_51 lowerCAmelCase__ = 0.12_11_94 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 0.0_35_25_13 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = False # hparam_utils.py hparams lowerCAmelCase__ = 36.45_19 lowerCAmelCase__ = 0.90_34_21 lowerCAmelCase__ = 2_22.0_88 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = 0.76_31_41 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "TABFACT": lowerCAmelCase__ = TapasForSequenceClassification(config=lowerCamelCase__ ) elif task == "MLM": lowerCAmelCase__ = TapasForMaskedLM(config=lowerCamelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": lowerCAmelCase__ = TapasModel(config=lowerCamelCase__ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase__ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) lowerCAmelCase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 ) tokenizer.save_pretrained(lowerCamelCase__ ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
674
1
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __lowerCAmelCase : int = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase : Optional[int] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __lowerCAmelCase : Optional[Any] = {"allegro/herbert-base-cased": 5_14} __lowerCAmelCase : List[str] = {} class a_ ( __UpperCamelCase ): UpperCamelCase_ : Optional[int] = VOCAB_FILES_NAMES UpperCamelCase_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[Any] = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : List[str] = HerbertTokenizer def __init__( self : Union[str, Any] , snake_case__ : List[str]=None , snake_case__ : List[Any]=None , snake_case__ : Any=None , snake_case__ : Dict="<s>" , snake_case__ : Optional[Any]="<unk>" , snake_case__ : Optional[int]="<pad>" , snake_case__ : List[str]="<mask>" , snake_case__ : Dict="</s>" , **snake_case__ : int , ): super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sep_token=snake_case__ , **snake_case__ , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCAmelCase__ = [self.cls_token_id] lowerCAmelCase__ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): lowerCAmelCase__ = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
674
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ = 50 ): """simple docstring""" lowerCAmelCase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"{solution() = }")
674
1
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : def __init__( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any=13 , snake_case__ : int=30 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : Dict=True , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=32 , snake_case__ : List[str]=2 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[int]=37 , snake_case__ : Tuple="gelu" , snake_case__ : str=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=10 , snake_case__ : Dict=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : str=None , snake_case__ : List[Any]=2 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = num_patches + 2 def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[Any] ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[str] ): lowerCAmelCase__ = TFDeiTModel(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict ): lowerCAmelCase__ = TFDeiTForMaskedImageModeling(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForMaskedImageModeling(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple ): lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase_ : Any = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : int = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = TFDeiTModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): pass def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Dense ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any]=False ): lowerCAmelCase__ = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _SCREAMING_SNAKE_CASE ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDeiTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Any ): return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors="""tf""" ) # forward pass lowerCAmelCase__ = model(**snake_case__ ) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase__ = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
674
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Any = "The Nymphenburg Palace is a beautiful palace in Munich!" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } lowerCAmelCase__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase__ = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCamelCase__ , output_all_encodings=lowerCamelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCamelCase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase__ = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab lowerCAmelCase__ = os.path.join(get_home_dir() , """models""" ) lowerCAmelCase__ = _load_vocab(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , cls=lowerCamelCase__ ) lowerCAmelCase__ = nlp.model.BERTModel( lowerCamelCase__ , len(lowerCamelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCamelCase__ , use_token_type_embed=lowerCamelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCamelCase__ , use_decoder=lowerCamelCase__ , ) original_bort.load_parameters(lowerCamelCase__ , cast_dtype=lowerCamelCase__ , ignore_extra=lowerCamelCase__ ) lowerCAmelCase__ = original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCAmelCase__ = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(lowerCamelCase__ ), } lowerCAmelCase__ = BertConfig.from_dict(lowerCamelCase__ ) lowerCAmelCase__ = BertForMaskedLM(lowerCamelCase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCamelCase__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = hf_param.shape lowerCAmelCase__ = to_torch(params[gluon_param] ) lowerCAmelCase__ = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase__ = layer.attention.self lowerCAmelCase__ = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output lowerCAmelCase__ = layer.attention.output lowerCAmelCase__ = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) lowerCAmelCase__ = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate lowerCAmelCase__ = layer.intermediate lowerCAmelCase__ = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) lowerCAmelCase__ = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output lowerCAmelCase__ = layer.output lowerCAmelCase__ = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) lowerCAmelCase__ = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCAmelCase__ = RobertaTokenizer.from_pretrained("""roberta-base""" ) lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ )["""input_ids"""] # Get gluon output lowerCAmelCase__ = mx.nd.array([input_ids] ) lowerCAmelCase__ = original_bort(inputs=lowerCamelCase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCamelCase__ ) lowerCAmelCase__ = BertModel.from_pretrained(lowerCamelCase__ ) hf_bort_model.eval() lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" ) lowerCAmelCase__ = hf_bort_model(**lowerCamelCase__ )[0] lowerCAmelCase__ = output_gluon[0].asnumpy() lowerCAmelCase__ = output_hf[0].detach().numpy() lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase__ = np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : str = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
674
1
"""simple docstring""" from maths.prime_factors import prime_factors def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCamelCase__ ) if number < 1: raise ValueError("""Input must be a positive integer""" ) return -1 if len(prime_factors(lowerCamelCase__ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
674
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self : Optional[int] ): lowerCAmelCase__ = """""" lowerCAmelCase__ = """""" lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = 256 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = cva.imread(snake_case__ , 0 ) lowerCAmelCase__ = copy.deepcopy(self.img ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" ) lowerCAmelCase__ = np.sum(snake_case__ ) for i in range(len(snake_case__ ) ): lowerCAmelCase__ = x[i] / self.k self.sk += prk lowerCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase__ = int(last % last ) lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case__ ) lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase__ = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase__ = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": __lowerCAmelCase : Dict = os.path.join(os.path.basename(__file__), "image_data/input.jpg") __lowerCAmelCase : Optional[int] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
674
1
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class a_ ( __UpperCamelCase ): def __init__( self : List[str] , snake_case__ : List[Any] , snake_case__ : Tuple=13 , snake_case__ : str=7 , snake_case__ : int=True , snake_case__ : Any=True , snake_case__ : Optional[int]=True , snake_case__ : List[str]=True , snake_case__ : Union[str, Any]=99 , snake_case__ : List[Any]=32 , snake_case__ : List[Any]=5 , snake_case__ : Union[str, Any]=4 , snake_case__ : Optional[int]=37 , snake_case__ : Any="gelu" , snake_case__ : Any=0.1 , snake_case__ : int=0.1 , snake_case__ : Any=512 , snake_case__ : str=16 , snake_case__ : Optional[Any]=2 , snake_case__ : List[str]=0.02 , snake_case__ : List[Any]=False , snake_case__ : Dict=True , snake_case__ : List[Any]="None" , snake_case__ : List[str]=3 , snake_case__ : Dict=4 , snake_case__ : List[Any]=None , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = relative_attention lowerCAmelCase__ = position_biased_input lowerCAmelCase__ = pos_att_type lowerCAmelCase__ = scope def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = self.get_config() lowerCAmelCase__ = 300 return config def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Dict ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = DebertaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ )[0] lowerCAmelCase__ = model(snake_case__ , token_type_ids=snake_case__ )[0] lowerCAmelCase__ = model(snake_case__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : int , snake_case__ : str ): lowerCAmelCase__ = DebertaForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Dict , snake_case__ : str , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : Tuple ): lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = DebertaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : Optional[int] ): lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = DebertaForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : str , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = DebertaForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase_ : Optional[int] = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : int = True UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : Dict = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Union[str, Any] = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = DebertaModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : Any ): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = DebertaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) lowerCAmelCase__ = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) lowerCAmelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase__ = model(snake_case__ , attention_mask=snake_case__ )[0] # compare the actual values for a slice. lowerCAmelCase__ = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1E-4 ) , F"""{output[:, 1:4, 1:4]}""" )
674
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class a_ ( __UpperCamelCase ): UpperCamelCase_ : List[str] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) UpperCamelCase_ : str = "CIDAS/clipseg-rd64-refined" UpperCamelCase_ : Any = "image_segmenter" UpperCamelCase_ : Optional[Any] = CLIPSegForImageSegmentation UpperCamelCase_ : List[str] = ["image", "text"] UpperCamelCase_ : int = ["image"] def __init__( self : Tuple , *snake_case__ : str , **snake_case__ : Optional[Any] ): requires_backends(self , ["""vision"""] ) super().__init__(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : "Image" , snake_case__ : str ): return self.pre_processor(text=[label] , images=[image] , padding=snake_case__ , return_tensors="""pt""" ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple ): with torch.no_grad(): lowerCAmelCase__ = self.model(**snake_case__ ).logits return logits def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] ): lowerCAmelCase__ = outputs.cpu().detach().numpy() lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
674
1
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests __lowerCAmelCase : Union[str, Any] = "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __lowerCAmelCase : int = BASE_URL + "/user" # https://github.com/settings/tokens __lowerCAmelCase : Tuple = os.environ.get("USER_TOKEN", "") def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = { """Authorization""": f"""token {auth_token}""", """Accept""": """application/vnd.github.v3+json""", } return requests.get(lowerCamelCase__ , headers=lowerCamelCase__ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F"{key}: {value}") else: raise ValueError("'USER_TOKEN' field cannot be empty.")
674
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = LayoutLMTokenizer UpperCamelCase_ : List[Any] = LayoutLMTokenizerFast UpperCamelCase_ : Dict = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() lowerCAmelCase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : Union[str, Any] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Tuple ): lowerCAmelCase__ = """UNwant\u00E9d,running""" lowerCAmelCase__ = """unwanted, running""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(snake_case__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): pass
674
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class a_ ( __UpperCamelCase ): UpperCamelCase_ : List[str] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) UpperCamelCase_ : str = "CIDAS/clipseg-rd64-refined" UpperCamelCase_ : Any = "image_segmenter" UpperCamelCase_ : Optional[Any] = CLIPSegForImageSegmentation UpperCamelCase_ : List[str] = ["image", "text"] UpperCamelCase_ : int = ["image"] def __init__( self : Tuple , *snake_case__ : str , **snake_case__ : Optional[Any] ): requires_backends(self , ["""vision"""] ) super().__init__(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : "Image" , snake_case__ : str ): return self.pre_processor(text=[label] , images=[image] , padding=snake_case__ , return_tensors="""pt""" ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple ): with torch.no_grad(): lowerCAmelCase__ = self.model(**snake_case__ ).logits return logits def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] ): lowerCAmelCase__ = outputs.cpu().detach().numpy() lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
674
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __lowerCAmelCase : Any = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : def __init__( self : List[str] , snake_case__ : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) lowerCAmelCase__ = primes[group]["""prime"""] lowerCAmelCase__ = primes[group]["""generator"""] lowerCAmelCase__ = int(hexlify(urandom(32 ) ) , base=16 ) def _SCREAMING_SNAKE_CASE ( self : Any ): return hex(self.__private_key )[2:] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = pow(self.generator , self.__private_key , self.prime ) return hex(snake_case__ )[2:] def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(snake_case__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str ): lowerCAmelCase__ = int(snake_case__ , base=16 ) if not self.is_valid_public_key(snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , self.__private_key , self.prime ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : int , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(snake_case__ , (prime - 1) // 2 , snake_case__ ) == 1 ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : str , snake_case__ : str , snake_case__ : int = 14 ): lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(snake_case__ , snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , snake_case__ , snake_case__ ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
674
1
"""simple docstring""" import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __lowerCAmelCase : Optional[Any] = trt.Logger(trt.Logger.WARNING) __lowerCAmelCase : int = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __lowerCAmelCase : Dict = logging.getLogger(__name__) __lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--onnx_model_path", default=None, type=str, required=True, help="Path to ONNX model: ", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--tokenizer_name", default="", type=str, required=True, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=3_84, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=1_28, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--dataset_name", type=str, default=None, required=True, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision instead of 32-bit", ) parser.add_argument( "--int8", action="store_true", help="Whether to use INT8", ) __lowerCAmelCase : Tuple = parser.parse_args() if args.tokenizer_name: __lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) logger.info("Training/evaluation parameters %s", args) __lowerCAmelCase : int = args.per_device_eval_batch_size __lowerCAmelCase : Union[str, Any] = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __lowerCAmelCase : Dict = True __lowerCAmelCase : Dict = "temp_engine/bert-fp32.engine" if args.fpaa: __lowerCAmelCase : Any = "temp_engine/bert-fp16.engine" if args.inta: __lowerCAmelCase : Optional[Any] = "temp_engine/bert-int8.engine" # import ONNX file if not os.path.exists("temp_engine"): os.makedirs("temp_engine") __lowerCAmelCase : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, "rb") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __lowerCAmelCase : Optional[Any] = [network.get_input(i) for i in range(network.num_inputs)] __lowerCAmelCase : List[Any] = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __lowerCAmelCase : str = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __lowerCAmelCase : Any = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __lowerCAmelCase : Any = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, "wb") as f: f.write(engine.serialize()) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) lowerCAmelCase__ = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) lowerCAmelCase__ = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCamelCase__ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCamelCase__ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCamelCase__ ) # start time lowerCAmelCase__ = time.time() # Run inference context.execute_async( bindings=[int(lowerCamelCase__ ) for d_inp in d_inputs] + [int(lowerCamelCase__ ), int(lowerCamelCase__ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) cuda.memcpy_dtoh_async(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase__ = time.time() lowerCAmelCase__ = end_time - start_time lowerCAmelCase__ = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __lowerCAmelCase : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase : str = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("Evaluation requires a dataset name") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __lowerCAmelCase : Dict = raw_datasets["validation"].column_names __lowerCAmelCase : Any = "question" if "question" in column_names else column_names[0] __lowerCAmelCase : List[str] = "context" if "context" in column_names else column_names[1] __lowerCAmelCase : Any = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __lowerCAmelCase : Optional[Any] = tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) __lowerCAmelCase : int = min(args.max_seq_length, tokenizer.model_max_length) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase__ = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCamelCase__ , stride=args.doc_stride , return_overflowing_tokens=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase__ = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase__ = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase__ = tokenized_examples.sequence_ids(lowerCamelCase__ ) lowerCAmelCase__ = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase__ = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase__ = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples __lowerCAmelCase : List[str] = raw_datasets["validation"] # Validation Feature Creation __lowerCAmelCase : str = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) __lowerCAmelCase : Optional[Any] = default_data_collator __lowerCAmelCase : int = eval_dataset.remove_columns(["example_id", "offset_mapping"]) __lowerCAmelCase : Any = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="eval" ): """simple docstring""" lowerCAmelCase__ = postprocess_qa_predictions( examples=lowerCamelCase__ , features=lowerCamelCase__ , predictions=lowerCamelCase__ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCamelCase__ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase__ = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: lowerCAmelCase__ = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] lowerCAmelCase__ = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCamelCase__ , label_ids=lowerCamelCase__ ) __lowerCAmelCase : List[Any] = load_metric("squad_v2" if args.version_2_with_negative else "squad") # Evaluation! logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return trt.volume(engine.get_binding_shape(lowerCamelCase__ ) ) * engine.get_binding_dtype(lowerCamelCase__ ).itemsize # Allocate device memory for inputs and outputs. __lowerCAmelCase : Dict = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __lowerCAmelCase : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __lowerCAmelCase : List[str] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __lowerCAmelCase : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) __lowerCAmelCase : Union[str, Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __lowerCAmelCase : Any = cuda.Stream() # Evaluation logger.info("***** Running Evaluation *****") logger.info(F" Num examples = {len(eval_dataset)}") logger.info(F" Batch size = {args.per_device_eval_batch_size}") __lowerCAmelCase : List[str] = 0.0 __lowerCAmelCase : str = 0 __lowerCAmelCase : Dict = timeit.default_timer() __lowerCAmelCase : List[str] = None for step, batch in enumerate(eval_dataloader): __lowerCAmelCase , __lowerCAmelCase : Tuple = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __lowerCAmelCase , __lowerCAmelCase : List[str] = outputs __lowerCAmelCase : Dict = torch.tensor(start_logits) __lowerCAmelCase : List[str] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __lowerCAmelCase : List[str] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) __lowerCAmelCase : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) __lowerCAmelCase : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __lowerCAmelCase : Union[str, Any] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: __lowerCAmelCase : str = nested_truncate(all_preds, len(eval_dataset)) __lowerCAmelCase : str = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("Average Inference Time = {:.3f} ms".format(total_time * 10_00 / niter)) logger.info("Total Inference Time = {:.3f} ms".format(total_time * 10_00)) logger.info("Total Number of Inference = %d", niter) __lowerCAmelCase : Any = post_processing_function(eval_examples, eval_dataset, all_preds) __lowerCAmelCase : List[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F"Evaluation metrics: {eval_metric}")
674
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) lowerCAmelCase__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = weights[0][0][0] lowerCAmelCase__ = np.asarray(layer_norm_a[0] ) lowerCAmelCase__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # lsh weights + output lowerCAmelCase__ = weights[0][1] if len(lowerCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) else: set_layer_weights_in_torch_local(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) # intermediate weighs lowerCAmelCase__ = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase__ ) == 4: lowerCAmelCase__ = intermediate_weights[2] # layernorm 2 lowerCAmelCase__ = np.asarray(intermediate_weights[0][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # intermediate dense lowerCAmelCase__ = np.asarray(intermediate_weights[1][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) # intermediate out lowerCAmelCase__ = np.asarray(intermediate_weights[4][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = torch_model.reformer # word embeds lowerCAmelCase__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase__ ) , ) if isinstance(weights[3] , lowerCamelCase__ ): lowerCAmelCase__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCAmelCase__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" lowerCAmelCase__ = nn.Parameter(torch.tensor(lowerCamelCase__ ) ) lowerCAmelCase__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCAmelCase__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # output layer norm lowerCAmelCase__ = np.asarray(weights[7][0] ) lowerCAmelCase__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # output embeddings lowerCAmelCase__ = np.asarray(weights[9][0] ) lowerCAmelCase__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = ReformerConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = ReformerModelWithLMHead(lowerCamelCase__ ) with open(lowerCamelCase__ , """rb""" ) as f: lowerCAmelCase__ = pickle.load(lowerCamelCase__ )["""weights"""] set_model_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
674
1
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = MgpstrTokenizer UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : Dict = {} UpperCamelCase_ : int = False def _SCREAMING_SNAKE_CASE ( self : int ): super().setUp() # fmt: off lowerCAmelCase__ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on lowerCAmelCase__ = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case__ ) + """\n""" ) def _SCREAMING_SNAKE_CASE ( self : Tuple , **snake_case__ : Dict ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ): lowerCAmelCase__ = """tester""" lowerCAmelCase__ = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.get_tokenizers(do_lower_case=snake_case__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase__ = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) lowerCAmelCase__ = tokenizer.encode([special_token] , add_special_tokens=snake_case__ ) self.assertEqual(len(snake_case__ ) , 1 ) lowerCAmelCase__ = tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) self.assertTrue(special_token not in decoded ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase__ , lowerCAmelCase__ = self.get_input_output_texts(snake_case__ ) lowerCAmelCase__ = tokenizer.tokenize(snake_case__ ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(snake_case__ ) lowerCAmelCase__ = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertNotEqual(len(snake_case__ ) , 0 ) lowerCAmelCase__ = tokenizer.decode(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , snake_case__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): pass
674
"""simple docstring""" import os from math import logaa def _UpperCAmelCase ( lowerCamelCase__ = "base_exp.txt" ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) ): lowerCAmelCase__ , lowerCAmelCase__ = list(map(lowerCamelCase__ , line.split(""",""" ) ) ) if x * logaa(lowerCamelCase__ ) > largest: lowerCAmelCase__ = x * logaa(lowerCamelCase__ ) lowerCAmelCase__ = i + 1 return result if __name__ == "__main__": print(solution())
674
1
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = LayoutLMTokenizer UpperCamelCase_ : List[Any] = LayoutLMTokenizerFast UpperCamelCase_ : Dict = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() lowerCAmelCase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : Union[str, Any] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Tuple ): lowerCAmelCase__ = """UNwant\u00E9d,running""" lowerCAmelCase__ = """unwanted, running""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(snake_case__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): pass
674
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" while b: lowerCAmelCase__ , lowerCAmelCase__ = b, a % b return a def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase__ , a % b ) def _UpperCAmelCase ( ): """simple docstring""" print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
674
1
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class a_ ( __UpperCamelCase , __UpperCamelCase ): @register_to_config def __init__( self : Dict , snake_case__ : int = 768 , ): super().__init__() lowerCAmelCase__ = nn.Parameter(torch.zeros(1 , snake_case__ ) ) lowerCAmelCase__ = nn.Parameter(torch.ones(1 , snake_case__ ) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Optional[Union[str, torch.device]] = None , snake_case__ : Optional[torch.dtype] = None , ): lowerCAmelCase__ = nn.Parameter(self.mean.to(snake_case__ ).to(snake_case__ ) ) lowerCAmelCase__ = nn.Parameter(self.std.to(snake_case__ ).to(snake_case__ ) ) return self def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Any ): lowerCAmelCase__ = (embeds - self.mean) * 1.0 / self.std return embeds def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Dict ): lowerCAmelCase__ = (embeds * self.std) + self.mean return embeds
674
"""simple docstring""" import os def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = os.path.dirname(os.path.realpath(lowerCamelCase__ ) ) lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """triangle.txt""" ) with open(lowerCamelCase__ ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = [] for line in triangle: lowerCAmelCase__ = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(lowerCamelCase__ ) ) a.append(lowerCamelCase__ ) for i in range(1 , len(lowerCamelCase__ ) ): for j in range(len(a[i] ) ): lowerCAmelCase__ = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCAmelCase__ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCamelCase__ , lowerCamelCase__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
674
1
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" assert ( isinstance(lowerCamelCase__ , lowerCamelCase__ ) and number_of_steps > 0 ), f"""number_of_steps needs to be positive integer, your input {number_of_steps}""" if number_of_steps == 1: return 1 lowerCAmelCase__ , lowerCAmelCase__ = 1, 1 for _ in range(number_of_steps - 1 ): lowerCAmelCase__ , lowerCAmelCase__ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
674
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCAmelCase : Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __lowerCAmelCase : Optional[int] = json.load(f) @require_torch class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Dict ): return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ): lowerCAmelCase__ = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Any , snake_case__ : int ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowerCAmelCase__ = F"""facebook/wmt19-{pair}""" lowerCAmelCase__ = self.get_tokenizer(snake_case__ ) lowerCAmelCase__ = self.get_model(snake_case__ ) lowerCAmelCase__ = bleu_data[pair]["""src"""] lowerCAmelCase__ = bleu_data[pair]["""tgt"""] lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""pt""" , truncation=snake_case__ , padding="""longest""" ).to(snake_case__ ) lowerCAmelCase__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCAmelCase__ = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) lowerCAmelCase__ = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["""bleu"""] , snake_case__ )
674
1
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class a_ : def _SCREAMING_SNAKE_CASE ( self : List[str] ): torch.manual_seed(0 ) lowerCAmelCase__ = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCAmelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCAmelCase__ = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=snake_case__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) lowerCAmelCase__ = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _SCREAMING_SNAKE_CASE ( self : str ): torch.manual_seed(0 ) lowerCAmelCase__ = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCAmelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.414 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCAmelCase__ = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=snake_case__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) lowerCAmelCase__ = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) lowerCAmelCase__ = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase__ = inputs["""prompt"""] lowerCAmelCase__ = inputs["""generator"""] lowerCAmelCase__ = inputs["""num_inference_steps"""] lowerCAmelCase__ = inputs["""output_type"""] if "image" in inputs: lowerCAmelCase__ = inputs["""image"""] else: lowerCAmelCase__ = None if "mask_image" in inputs: lowerCAmelCase__ = inputs["""mask_image"""] else: lowerCAmelCase__ = None if "original_image" in inputs: lowerCAmelCase__ = inputs["""original_image"""] else: lowerCAmelCase__ = None lowerCAmelCase__ , lowerCAmelCase__ = pipe.encode_prompt(snake_case__ ) # inputs with prompt converted to embeddings lowerCAmelCase__ = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: lowerCAmelCase__ = image if mask_image is not None: lowerCAmelCase__ = mask_image if original_image is not None: lowerCAmelCase__ = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase__ = pipe(**snake_case__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(snake_case__ ) lowerCAmelCase__ = self.pipeline_class.from_pretrained(snake_case__ ) pipe_loaded.to(snake_case__ ) pipe_loaded.set_progress_bar_config(disable=snake_case__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(snake_case__ , snake_case__ ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) lowerCAmelCase__ = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase__ = inputs["""generator"""] lowerCAmelCase__ = inputs["""num_inference_steps"""] lowerCAmelCase__ = inputs["""output_type"""] # inputs with prompt converted to embeddings lowerCAmelCase__ = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: lowerCAmelCase__ = image if mask_image is not None: lowerCAmelCase__ = mask_image if original_image is not None: lowerCAmelCase__ = original_image lowerCAmelCase__ = pipe_loaded(**snake_case__ )[0] lowerCAmelCase__ = np.abs(to_np(snake_case__ ) - to_np(snake_case__ ) ).max() self.assertLess(snake_case__ , 1E-4 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase__ = pipe(**snake_case__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(snake_case__ ) lowerCAmelCase__ = self.pipeline_class.from_pretrained(snake_case__ ) pipe_loaded.to(snake_case__ ) pipe_loaded.set_progress_bar_config(disable=snake_case__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests lowerCAmelCase__ = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase__ = pipe_loaded(**snake_case__ )[0] lowerCAmelCase__ = np.abs(to_np(snake_case__ ) - to_np(snake_case__ ) ).max() self.assertLess(snake_case__ , 1E-4 )
674
"""simple docstring""" import pprint import requests __lowerCAmelCase : Union[str, Any] = "https://zenquotes.io/api" def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = random_quotes() pprint.pprint(response)
674
1
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" random.seed(lowerCamelCase__ ) np.random.seed(lowerCamelCase__ ) torch.manual_seed(lowerCamelCase__ ) torch.cuda.manual_seed_all(lowerCamelCase__ ) # ^^ safe to call this function even if cuda is not available class a_ : def __init__( self : Any , snake_case__ : Iterable[torch.nn.Parameter] , snake_case__ : float = 0.9999 , snake_case__ : float = 0.0 , snake_case__ : int = 0 , snake_case__ : bool = False , snake_case__ : Union[float, int] = 1.0 , snake_case__ : Union[float, int] = 2 / 3 , snake_case__ : Optional[Any] = None , snake_case__ : Dict[str, Any] = None , **snake_case__ : List[Any] , ): if isinstance(snake_case__ , torch.nn.Module ): lowerCAmelCase__ = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , snake_case__ , standard_warn=snake_case__ , ) lowerCAmelCase__ = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility lowerCAmelCase__ = True if kwargs.get("""max_value""" , snake_case__ ) is not None: lowerCAmelCase__ = """The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , snake_case__ , standard_warn=snake_case__ ) lowerCAmelCase__ = kwargs["""max_value"""] if kwargs.get("""min_value""" , snake_case__ ) is not None: lowerCAmelCase__ = """The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , snake_case__ , standard_warn=snake_case__ ) lowerCAmelCase__ = kwargs["""min_value"""] lowerCAmelCase__ = list(snake_case__ ) lowerCAmelCase__ = [p.clone().detach() for p in parameters] if kwargs.get("""device""" , snake_case__ ) is not None: lowerCAmelCase__ = """The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , snake_case__ , standard_warn=snake_case__ ) self.to(device=kwargs["""device"""] ) lowerCAmelCase__ = None lowerCAmelCase__ = decay lowerCAmelCase__ = min_decay lowerCAmelCase__ = update_after_step lowerCAmelCase__ = use_ema_warmup lowerCAmelCase__ = inv_gamma lowerCAmelCase__ = power lowerCAmelCase__ = 0 lowerCAmelCase__ = None # set in `step()` lowerCAmelCase__ = model_cls lowerCAmelCase__ = model_config @classmethod def _SCREAMING_SNAKE_CASE ( cls : int , snake_case__ : Tuple , snake_case__ : Optional[Any] ): lowerCAmelCase__ , lowerCAmelCase__ = model_cls.load_config(snake_case__ , return_unused_kwargs=snake_case__ ) lowerCAmelCase__ = model_cls.from_pretrained(snake_case__ ) lowerCAmelCase__ = cls(model.parameters() , model_cls=snake_case__ , model_config=model.config ) ema_model.load_state_dict(snake_case__ ) return ema_model def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : str ): if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) lowerCAmelCase__ = self.model_cls.from_config(self.model_config ) lowerCAmelCase__ = self.state_dict() state_dict.pop("""shadow_params""" , snake_case__ ) model.register_to_config(**snake_case__ ) self.copy_to(model.parameters() ) model.save_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : int ): lowerCAmelCase__ = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: lowerCAmelCase__ = 1 - (1 + step / self.inv_gamma) ** -self.power else: lowerCAmelCase__ = (1 + step) / (10 + step) lowerCAmelCase__ = min(snake_case__ , self.decay ) # make sure decay is not smaller than min_decay lowerCAmelCase__ = max(snake_case__ , self.min_decay ) return cur_decay_value @torch.no_grad() def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Iterable[torch.nn.Parameter] ): if isinstance(snake_case__ , torch.nn.Module ): lowerCAmelCase__ = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , snake_case__ , standard_warn=snake_case__ , ) lowerCAmelCase__ = parameters.parameters() lowerCAmelCase__ = list(snake_case__ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. lowerCAmelCase__ = self.get_decay(self.optimization_step ) lowerCAmelCase__ = decay lowerCAmelCase__ = 1 - decay lowerCAmelCase__ = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , snake_case__ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): lowerCAmelCase__ = deepspeed.zero.GatheredParameters(snake_case__ , modifier_rank=snake_case__ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Iterable[torch.nn.Parameter] ): lowerCAmelCase__ = list(snake_case__ ) for s_param, param in zip(self.shadow_params , snake_case__ ): param.data.copy_(s_param.to(param.device ).data ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str=None , snake_case__ : List[Any]=None ): lowerCAmelCase__ = [ p.to(device=snake_case__ , dtype=snake_case__ ) if p.is_floating_point() else p.to(device=snake_case__ ) for p in self.shadow_params ] def _SCREAMING_SNAKE_CASE ( self : Tuple ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Iterable[torch.nn.Parameter] ): lowerCAmelCase__ = [param.detach().cpu().clone() for param in parameters] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , snake_case__ ): param.data.copy_(c_param.data ) # Better memory-wise. lowerCAmelCase__ = None def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : dict ): lowerCAmelCase__ = copy.deepcopy(snake_case__ ) lowerCAmelCase__ = state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) lowerCAmelCase__ = state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , snake_case__ ): raise ValueError("""Invalid min_decay""" ) lowerCAmelCase__ = state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , snake_case__ ): raise ValueError("""Invalid optimization_step""" ) lowerCAmelCase__ = state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , snake_case__ ): raise ValueError("""Invalid update_after_step""" ) lowerCAmelCase__ = state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , snake_case__ ): raise ValueError("""Invalid use_ema_warmup""" ) lowerCAmelCase__ = state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) lowerCAmelCase__ = state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) lowerCAmelCase__ = state_dict.get("""shadow_params""" , snake_case__ ) if shadow_params is not None: lowerCAmelCase__ = shadow_params if not isinstance(self.shadow_params , snake_case__ ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(snake_case__ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
674
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = CLIPConfig() # Create a dummy config file with image_proceesor_type lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ).to_dict() config_dict.pop("""image_processor_type""" ) lowerCAmelCase__ = CLIPImageProcessor(**snake_case__ ) # save in new folder model_config.save_pretrained(snake_case__ ) config.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) # make sure private variable is not incorrectly saved lowerCAmelCase__ = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with self.assertRaisesRegex( snake_case__ , """clip-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""clip-base""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): with self.assertRaisesRegex( snake_case__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , revision="""aaaaaa""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): with self.assertRaisesRegex( snake_case__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , trust_remote_code=snake_case__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ): try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoImageProcessor.register(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = CustomImageProcessor.from_pretrained(snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self : List[str] ): class a_ ( __UpperCamelCase ): UpperCamelCase_ : Tuple = True try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # If remote code is not set, the default is to use local lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(snake_case__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
674
1
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if isinstance(lowerCamelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class a_ : def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] ): pass def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass def _SCREAMING_SNAKE_CASE ( self : int ): pass def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : np.ndarray , snake_case__ : np.ndarray , snake_case__ : float ): lowerCAmelCase__ = np.abs((a - b) ).max() self.assertLessEqual(snake_case__ , snake_case__ , F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : str , snake_case__ : Dict , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : str=None , **snake_case__ : Optional[Any] ): lowerCAmelCase__ = VisionTextDualEncoderConfig.from_vision_text_configs(snake_case__ , snake_case__ ) lowerCAmelCase__ = FlaxVisionTextDualEncoderModel(snake_case__ ) lowerCAmelCase__ = model(input_ids=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Dict , snake_case__ : Optional[int]=None , **snake_case__ : Tuple ): lowerCAmelCase__ , lowerCAmelCase__ = self.get_vision_text_model(snake_case__ , snake_case__ ) lowerCAmelCase__ = {"""vision_model""": vision_model, """text_model""": text_model} lowerCAmelCase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**snake_case__ ) lowerCAmelCase__ = model(input_ids=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : str , snake_case__ : int=None , **snake_case__ : Optional[Any] ): lowerCAmelCase__ , lowerCAmelCase__ = self.get_vision_text_model(snake_case__ , snake_case__ ) lowerCAmelCase__ = {"""vision_model""": vision_model, """text_model""": text_model} lowerCAmelCase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**snake_case__ ) lowerCAmelCase__ = model(input_ids=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ ) lowerCAmelCase__ = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case__ ) lowerCAmelCase__ = FlaxVisionTextDualEncoderModel.from_pretrained(snake_case__ ) lowerCAmelCase__ = model(input_ids=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ ) lowerCAmelCase__ = after_output[0] lowerCAmelCase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case__ , 1E-3 ) def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : List[str]=None , **snake_case__ : List[str] ): lowerCAmelCase__ , lowerCAmelCase__ = self.get_vision_text_model(snake_case__ , snake_case__ ) lowerCAmelCase__ = {"""vision_model""": vision_model, """text_model""": text_model} lowerCAmelCase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**snake_case__ ) lowerCAmelCase__ = model( input_ids=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , output_attentions=snake_case__ ) lowerCAmelCase__ = output.vision_model_output.attentions self.assertEqual(len(snake_case__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ = output.text_model_output.attentions self.assertEqual(len(snake_case__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : int ): pt_model.to(snake_case__ ) pt_model.eval() # prepare inputs lowerCAmelCase__ = inputs_dict lowerCAmelCase__ = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowerCAmelCase__ = pt_model(**snake_case__ ).to_tuple() lowerCAmelCase__ = fx_model(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(snake_case__ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(snake_case__ ) lowerCAmelCase__ = FlaxVisionTextDualEncoderModel.from_pretrained(snake_case__ , from_pt=snake_case__ ) lowerCAmelCase__ = fx_model_loaded(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(snake_case__ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(snake_case__ ) lowerCAmelCase__ = VisionTextDualEncoderModel.from_pretrained(snake_case__ , from_flax=snake_case__ ) pt_model_loaded.to(snake_case__ ) pt_model_loaded.eval() with torch.no_grad(): lowerCAmelCase__ = pt_model_loaded(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(snake_case__ , pt_output_loaded.numpy() , 4E-2 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Optional[Any] ): lowerCAmelCase__ = VisionTextDualEncoderConfig.from_vision_text_configs(snake_case__ , snake_case__ ) lowerCAmelCase__ = VisionTextDualEncoderModel(snake_case__ ) lowerCAmelCase__ = FlaxVisionTextDualEncoderModel(snake_case__ ) lowerCAmelCase__ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , snake_case__ ) lowerCAmelCase__ = fx_state self.check_pt_flax_equivalence(snake_case__ , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Any , snake_case__ : Any , snake_case__ : Tuple ): lowerCAmelCase__ = VisionTextDualEncoderConfig.from_vision_text_configs(snake_case__ , snake_case__ ) lowerCAmelCase__ = VisionTextDualEncoderModel(snake_case__ ) lowerCAmelCase__ = FlaxVisionTextDualEncoderModel(snake_case__ ) lowerCAmelCase__ = load_flax_weights_in_pytorch_model(snake_case__ , fx_model.params ) self.check_pt_flax_equivalence(snake_case__ , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = self.prepare_config_and_inputs() self.check_save_load(**snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**snake_case__ ) @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ = config_inputs_dict.pop("""vision_config""" ) lowerCAmelCase__ = config_inputs_dict.pop("""text_config""" ) lowerCAmelCase__ = config_inputs_dict self.check_equivalence_pt_to_flax(snake_case__ , snake_case__ , snake_case__ ) self.check_equivalence_flax_to_pt(snake_case__ , snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ , lowerCAmelCase__ = self.get_pretrained_model_and_inputs() lowerCAmelCase__ = model_a(**snake_case__ ) lowerCAmelCase__ = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(snake_case__ ) lowerCAmelCase__ = FlaxVisionTextDualEncoderModel.from_pretrained(snake_case__ ) lowerCAmelCase__ = model_a(**snake_case__ ) lowerCAmelCase__ = after_outputs[0] lowerCAmelCase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case__ , 1E-5 ) @require_flax class a_ ( __UpperCamelCase , unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=snake_case__ , text_from_pt=snake_case__ , ) lowerCAmelCase__ = 13 lowerCAmelCase__ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowerCAmelCase__ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowerCAmelCase__ = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : str , snake_case__ : Optional[int] ): lowerCAmelCase__ = FlaxViTModel(snake_case__ ) lowerCAmelCase__ = FlaxBertModel(snake_case__ ) return vision_model, text_model def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = FlaxViTModelTester(self ) lowerCAmelCase__ = FlaxBertModelTester(self ) lowerCAmelCase__ = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ = vision_config_and_inputs lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class a_ ( __UpperCamelCase , unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=snake_case__ , text_from_pt=snake_case__ , ) lowerCAmelCase__ = 13 lowerCAmelCase__ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowerCAmelCase__ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowerCAmelCase__ = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Dict , snake_case__ : str ): lowerCAmelCase__ = FlaxCLIPVisionModel(snake_case__ ) lowerCAmelCase__ = FlaxBertModel(snake_case__ ) return vision_model, text_model def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = FlaxCLIPVisionModelTester(self ) lowerCAmelCase__ = FlaxBertModelTester(self ) lowerCAmelCase__ = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase__ = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ = vision_config_and_inputs lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class a_ ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) lowerCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase__ = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=snake_case__ , padding=snake_case__ , return_tensors="""np""" ) lowerCAmelCase__ = model(**snake_case__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase__ = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , snake_case__ , atol=1E-3 ) )
674
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a_ : def __init__( self : Optional[int] , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=64 , snake_case__ : Any=None ): lowerCAmelCase__ = np.random.default_rng(snake_case__ ) lowerCAmelCase__ = length lowerCAmelCase__ = rng.normal(size=(length,) ).astype(np.floataa ) lowerCAmelCase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[Any] ): return self.length def __getitem__( self : List[str] , snake_case__ : Optional[int] ): return {"x": self.x[i], "y": self.y[i]} class a_ ( torch.nn.Module ): def __init__( self : List[str] , snake_case__ : str=0 , snake_case__ : Dict=0 , snake_case__ : Any=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Any=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a[0] + self.b[0] class a_ ( torch.nn.Module ): def __init__( self : Any , snake_case__ : Union[str, Any]=0 , snake_case__ : Union[str, Any]=0 , snake_case__ : List[Any]=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any]=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a + self.b def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase__ = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} lowerCAmelCase__ = load_dataset("""csv""" , data_files=lowerCamelCase__ ) lowerCAmelCase__ = datasets["""train"""].unique("""label""" ) lowerCAmelCase__ = {v: i for i, v in enumerate(lowerCamelCase__ )} def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" ) if "label" in examples: lowerCAmelCase__ = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase__ = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=2 ) lowerCAmelCase__ = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
674
1
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __lowerCAmelCase : Union[str, Any] = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def _UpperCAmelCase ( lowerCamelCase__ = "mumbai" ): """simple docstring""" lowerCAmelCase__ = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): lowerCAmelCase__ = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() lowerCAmelCase__ = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F"Job {i:>2} is {job[0]} at {job[1]}")
674
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = MobileBertConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = MobileBertForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint lowerCAmelCase__ = load_tf_weights_in_mobilebert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
674
1
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __lowerCAmelCase : Dict = True except ImportError: __lowerCAmelCase : Dict = False try: from torch.hub import _get_torch_home __lowerCAmelCase : Optional[Any] = _get_torch_home() except ImportError: __lowerCAmelCase : List[Any] = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) __lowerCAmelCase : Optional[Any] = os.path.join(torch_cache_home, "transformers") __lowerCAmelCase : Any = "https://cdn.huggingface.co" __lowerCAmelCase : Tuple = "https://s3.amazonaws.com/models.huggingface.co/bert" __lowerCAmelCase : List[Any] = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) __lowerCAmelCase : Any = os.path.join(PATH, "config.yaml") __lowerCAmelCase : Union[str, Any] = os.path.join(PATH, "attributes.txt") __lowerCAmelCase : List[str] = os.path.join(PATH, "objects.txt") __lowerCAmelCase : int = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) __lowerCAmelCase : Union[str, Any] = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) __lowerCAmelCase : Tuple = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) __lowerCAmelCase : Optional[Any] = "pytorch_model.bin" __lowerCAmelCase : Any = "config.yaml" def _UpperCAmelCase ( lowerCamelCase__=OBJECTS , lowerCamelCase__=ATTRIBUTES ): """simple docstring""" lowerCAmelCase__ = [] with open(lowerCamelCase__ ) as f: for object in f.readlines(): vg_classes.append(object.split(""",""" )[0].lower().strip() ) lowerCAmelCase__ = [] with open(lowerCamelCase__ ) as f: for object in f.readlines(): vg_attrs.append(object.split(""",""" )[0].lower().strip() ) return vg_classes, vg_attrs def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = OrderedDict() with open(lowerCamelCase__ , """rb""" ) as f: lowerCAmelCase__ = pkl.load(lowerCamelCase__ )["""model"""] for k in copy.deepcopy(list(ckp.keys() ) ): lowerCAmelCase__ = ckp.pop(lowerCamelCase__ ) if isinstance(lowerCamelCase__ , np.ndarray ): lowerCAmelCase__ = torch.tensor(lowerCamelCase__ ) else: assert isinstance(lowerCamelCase__ , torch.tensor ), type(lowerCamelCase__ ) lowerCAmelCase__ = v return r class a_ : UpperCamelCase_ : List[str] = {} def __init__( self : Tuple , snake_case__ : dict , snake_case__ : str = "root" , snake_case__ : int=0 ): lowerCAmelCase__ = name lowerCAmelCase__ = level lowerCAmelCase__ = {} for k, v in dictionary.items(): if v is None: raise ValueError() lowerCAmelCase__ = copy.deepcopy(snake_case__ ) lowerCAmelCase__ = copy.deepcopy(snake_case__ ) if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase__ = Config(snake_case__ , name=snake_case__ , level=level + 1 ) lowerCAmelCase__ = v setattr(self , snake_case__ , snake_case__ ) lowerCAmelCase__ = d def __repr__( self : Optional[Any] ): return str(list((self._pointer.keys()) ) ) def __setattr__( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Dict ): lowerCAmelCase__ = val lowerCAmelCase__ = val lowerCAmelCase__ = key.split(""".""" ) lowerCAmelCase__ = len(snake_case__ ) - 1 lowerCAmelCase__ = self._pointer if len(snake_case__ ) > 1: for i, l in enumerate(snake_case__ ): if hasattr(self , snake_case__ ) and isinstance(getattr(self , snake_case__ ) , snake_case__ ): setattr(getattr(self , snake_case__ ) , """.""".join(levels[i:] ) , snake_case__ ) if l == last_level: lowerCAmelCase__ = val else: lowerCAmelCase__ = pointer[l] def _SCREAMING_SNAKE_CASE ( self : int ): return self._pointer def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Dict , snake_case__ : Tuple ): with open(F"""{file_name}""" , """w""" ) as stream: dump(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : List[Any] , snake_case__ : List[str] ): with open(F"""{file_name}""" , """w""" ) as stream: json.dump(snake_case__ , snake_case__ ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : List[Any] ): with open(snake_case__ ) as stream: lowerCAmelCase__ = load(snake_case__ , Loader=snake_case__ ) return data def __str__( self : Any ): lowerCAmelCase__ = """ """ if self._name != "root": lowerCAmelCase__ = F"""{t * (self._level-1)}{self._name}:\n""" else: lowerCAmelCase__ = """""" lowerCAmelCase__ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(snake_case__ , snake_case__ ): r += F"""{t * (self._level)}{v}\n""" self._level += 1 else: r += F"""{t * (self._level)}{k}: {v} ({type(snake_case__ ).__name__})\n""" lowerCAmelCase__ = level return r[:-1] @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any , snake_case__ : str , **snake_case__ : Optional[int] ): lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(snake_case__ , **snake_case__ ) return cls(snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , snake_case__ : str , **snake_case__ : Optional[Any] ): lowerCAmelCase__ = kwargs.pop("""cache_dir""" , snake_case__ ) lowerCAmelCase__ = kwargs.pop("""force_download""" , snake_case__ ) lowerCAmelCase__ = kwargs.pop("""resume_download""" , snake_case__ ) lowerCAmelCase__ = kwargs.pop("""proxies""" , snake_case__ ) lowerCAmelCase__ = kwargs.pop("""local_files_only""" , snake_case__ ) if os.path.isdir(snake_case__ ): lowerCAmelCase__ = os.path.join(snake_case__ , snake_case__ ) elif os.path.isfile(snake_case__ ) or is_remote_url(snake_case__ ): lowerCAmelCase__ = pretrained_model_name_or_path else: lowerCAmelCase__ = hf_bucket_url(snake_case__ , filename=snake_case__ , use_cdn=snake_case__ ) try: # Load from URL or cache if already cached lowerCAmelCase__ = cached_path( snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , ) # Load config dict if resolved_config_file is None: raise EnvironmentError lowerCAmelCase__ = Config.load_yaml(snake_case__ ) except EnvironmentError: lowerCAmelCase__ = """Can't load config for""" raise EnvironmentError(snake_case__ ) if resolved_config_file == config_file: print("""loading configuration file from path""" ) else: print("""loading configuration file cache""" ) return Config.load_yaml(snake_case__ ), kwargs def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = torch.load("""dump.pt""" , map_location=in_tensor.device ) lowerCAmelCase__ = in_tensor.numpy() lowerCAmelCase__ = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(lowerCamelCase__ , lowerCamelCase__ , rtol=0.01 , atol=0.1 ), ( f"""{sum([1 for x in np.isclose(lowerCamelCase__ , lowerCamelCase__ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %""" " element-wise mismatch" ) raise Exception("""tensors are all good""" ) # Hugging face functions below def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = urlparse(lowerCamelCase__ ) return parsed.scheme in ("http", "https") def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=True ): """simple docstring""" lowerCAmelCase__ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX lowerCAmelCase__ = """/""" not in model_id if legacy_format: return f"""{endpoint}/{model_id}-{filename}""" else: return f"""{endpoint}/{model_id}/{filename}""" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=0 , lowerCamelCase__=None , ): """simple docstring""" lowerCAmelCase__ = """python/{}""".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): ua += "; " + "; ".join("""{}/{}""".format(lowerCamelCase__ , lowerCamelCase__ ) for k, v in user_agent.items() ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): ua += "; " + user_agent lowerCAmelCase__ = {"""user-agent""": ua} if resume_size > 0: lowerCAmelCase__ = """bytes=%d-""" % (resume_size,) lowerCAmelCase__ = requests.get(lowerCamelCase__ , stream=lowerCamelCase__ , proxies=lowerCamelCase__ , headers=lowerCamelCase__ ) if response.status_code == 416: # Range not satisfiable return lowerCAmelCase__ = response.headers.get("""Content-Length""" ) lowerCAmelCase__ = resume_size + int(lowerCamelCase__ ) if content_length is not None else None lowerCAmelCase__ = tqdm( unit="""B""" , unit_scale=lowerCamelCase__ , total=lowerCamelCase__ , initial=lowerCamelCase__ , desc="""Downloading""" , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowerCamelCase__ ) ) temp_file.write(lowerCamelCase__ ) progress.close() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=None , lowerCamelCase__=10 , lowerCamelCase__=False , lowerCamelCase__=None , lowerCamelCase__=False , ): """simple docstring""" if cache_dir is None: lowerCAmelCase__ = TRANSFORMERS_CACHE if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = str(lowerCamelCase__ ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) lowerCAmelCase__ = None if not local_files_only: try: lowerCAmelCase__ = requests.head(lowerCamelCase__ , allow_redirects=lowerCamelCase__ , proxies=lowerCamelCase__ , timeout=lowerCamelCase__ ) if response.status_code == 200: lowerCAmelCase__ = response.headers.get("""ETag""" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass lowerCAmelCase__ = url_to_filename(lowerCamelCase__ , lowerCamelCase__ ) # get cache path to put the file lowerCAmelCase__ = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowerCamelCase__ ): return cache_path else: lowerCAmelCase__ = [ file for file in fnmatch.filter(os.listdir(lowerCamelCase__ ) , filename + """.*""" ) if not file.endswith(""".json""" ) and not file.endswith(""".lock""" ) ] if len(lowerCamelCase__ ) > 0: return os.path.join(lowerCamelCase__ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( """Cannot find the requested files in the cached path and outgoing traffic has been""" """ disabled. To enable model look-ups and downloads online, set 'local_files_only'""" """ to False.""" ) return None # From now on, etag is not None. if os.path.exists(lowerCamelCase__ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. lowerCAmelCase__ = cache_path + """.lock""" with FileLock(lowerCamelCase__ ): # If the download just completed while the lock was activated. if os.path.exists(lowerCamelCase__ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: lowerCAmelCase__ = cache_path + """.incomplete""" @contextmanager def _resumable_file_manager(): with open(lowerCamelCase__ , """a+b""" ) as f: yield f lowerCAmelCase__ = _resumable_file_manager if os.path.exists(lowerCamelCase__ ): lowerCAmelCase__ = os.stat(lowerCamelCase__ ).st_size else: lowerCAmelCase__ = 0 else: lowerCAmelCase__ = partial(tempfile.NamedTemporaryFile , dir=lowerCamelCase__ , delete=lowerCamelCase__ ) lowerCAmelCase__ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( """%s not found in cache or force_download set to True, downloading to %s""" , lowerCamelCase__ , temp_file.name , ) http_get( lowerCamelCase__ , lowerCamelCase__ , proxies=lowerCamelCase__ , resume_size=lowerCamelCase__ , user_agent=lowerCamelCase__ , ) os.replace(temp_file.name , lowerCamelCase__ ) lowerCAmelCase__ = {"""url""": url, """etag""": etag} lowerCAmelCase__ = cache_path + """.json""" with open(lowerCamelCase__ , """w""" ) as meta_file: json.dump(lowerCamelCase__ , lowerCamelCase__ ) return cache_path def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" lowerCAmelCase__ = url.encode("""utf-8""" ) lowerCAmelCase__ = shaaaa(lowerCamelCase__ ) lowerCAmelCase__ = url_hash.hexdigest() if etag: lowerCAmelCase__ = etag.encode("""utf-8""" ) lowerCAmelCase__ = shaaaa(lowerCamelCase__ ) filename += "." + etag_hash.hexdigest() if url.endswith(""".h5""" ): filename += ".h5" return filename def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , ): """simple docstring""" if cache_dir is None: lowerCAmelCase__ = TRANSFORMERS_CACHE if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = str(lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = str(lowerCamelCase__ ) if is_remote_url(lowerCamelCase__ ): # URL, so get it from the cache (downloading if necessary) lowerCAmelCase__ = get_from_cache( lowerCamelCase__ , cache_dir=lowerCamelCase__ , force_download=lowerCamelCase__ , proxies=lowerCamelCase__ , resume_download=lowerCamelCase__ , user_agent=lowerCamelCase__ , local_files_only=lowerCamelCase__ , ) elif os.path.exists(lowerCamelCase__ ): # File, and it exists. lowerCAmelCase__ = url_or_filename elif urlparse(lowerCamelCase__ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("""file {} not found""".format(lowerCamelCase__ ) ) else: # Something unknown raise ValueError("""unable to parse {} as a URL or as a local path""".format(lowerCamelCase__ ) ) if extract_compressed_file: if not is_zipfile(lowerCamelCase__ ) and not tarfile.is_tarfile(lowerCamelCase__ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" lowerCAmelCase__ , lowerCAmelCase__ = os.path.split(lowerCamelCase__ ) lowerCAmelCase__ = output_file.replace(""".""" , """-""" ) + """-extracted""" lowerCAmelCase__ = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) if os.path.isdir(lowerCamelCase__ ) and os.listdir(lowerCamelCase__ ) and not force_extract: return output_path_extracted # Prevent parallel extractions lowerCAmelCase__ = output_path + """.lock""" with FileLock(lowerCamelCase__ ): shutil.rmtree(lowerCamelCase__ , ignore_errors=lowerCamelCase__ ) os.makedirs(lowerCamelCase__ ) if is_zipfile(lowerCamelCase__ ): with ZipFile(lowerCamelCase__ , """r""" ) as zip_file: zip_file.extractall(lowerCamelCase__ ) zip_file.close() elif tarfile.is_tarfile(lowerCamelCase__ ): lowerCAmelCase__ = tarfile.open(lowerCamelCase__ ) tar_file.extractall(lowerCamelCase__ ) tar_file.close() else: raise EnvironmentError("""Archive format of {} could not be identified""".format(lowerCamelCase__ ) ) return output_path_extracted return output_path def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__="," ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) if os.path.isfile(lowerCamelCase__ ): with open(lowerCamelCase__ ) as f: lowerCAmelCase__ = eval(f.read() ) else: lowerCAmelCase__ = requests.get(lowerCamelCase__ ) try: lowerCAmelCase__ = requests.json() except Exception: lowerCAmelCase__ = req.content.decode() assert data is not None, "could not connect" try: lowerCAmelCase__ = eval(lowerCamelCase__ ) except Exception: lowerCAmelCase__ = data.split("""\n""" ) req.close() return data def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = requests.get(lowerCamelCase__ ) lowerCAmelCase__ = np.array(Image.open(BytesIO(response.content ) ) ) return img def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = url.split("""/""" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowerCamelCase__ ) with open(lowerCamelCase__ , """rb""" ) as stream: lowerCAmelCase__ = pkl.load(lowerCamelCase__ ) lowerCAmelCase__ = weights.pop("""model""" ) lowerCAmelCase__ = {} for k, v in model.items(): lowerCAmelCase__ = torch.from_numpy(lowerCamelCase__ ) if "running_var" in k: lowerCAmelCase__ = torch.tensor([0] ) lowerCAmelCase__ = k.replace("""running_var""" , """num_batches_tracked""" ) lowerCAmelCase__ = zero return new def _UpperCAmelCase ( ): """simple docstring""" print(f"""{os.path.abspath(os.path.join(lowerCamelCase__ , os.pardir ) )}/demo.ipynb""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__="RGB" ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) if os.path.isfile(lowerCamelCase__ ): lowerCAmelCase__ = cva.imread(lowerCamelCase__ ) else: lowerCAmelCase__ = get_image_from_url(lowerCamelCase__ ) assert img is not None, f"""could not connect to: {im}""" lowerCAmelCase__ = cva.cvtColor(lowerCamelCase__ , cva.COLOR_BGR2RGB ) if input_format == "RGB": lowerCAmelCase__ = img[:, :, ::-1] return img def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=1 ): """simple docstring""" return (images[i : i + batch] for i in range(0 , len(lowerCamelCase__ ) , lowerCamelCase__ ))
674
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: lowerCAmelCase__ = f"""The input value of [n={number}] has to be > 0""" raise ValueError(lowerCamelCase__ ) else: lowerCAmelCase__ = sylvester(number - 1 ) lowerCAmelCase__ = num - 1 lowerCAmelCase__ = num return lower * upper + 1 if __name__ == "__main__": print(F"The 8th number in Sylvester's sequence: {sylvester(8)}")
674
1
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" while b: lowerCAmelCase__ , lowerCAmelCase__ = b, a % b return a def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase__ , a % b ) def _UpperCAmelCase ( ): """simple docstring""" print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
674
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Tuple = PegasusTokenizer UpperCamelCase_ : Any = PegasusTokenizerFast UpperCamelCase_ : int = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : Optional[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any] ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = """</s>""" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(snake_case__ ) , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowerCAmelCase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase__ = """To ensure a smooth flow of bank resolutions.""" lowerCAmelCase__ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def _SCREAMING_SNAKE_CASE ( self : str ): # fmt: off lowerCAmelCase__ = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = PegasusTokenizer UpperCamelCase_ : Optional[int] = PegasusTokenizerFast UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Optional[int] = True def _SCREAMING_SNAKE_CASE ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ): return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : List[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Dict ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowerCAmelCase__ = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
674
1
"""simple docstring""" import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) __lowerCAmelCase : str = logging.getLogger() __lowerCAmelCase : Tuple = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class a_ ( __UpperCamelCase ): def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ): os.makedirs(snake_case__ , exist_ok=snake_case__ ) lowerCAmelCase__ = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase__ = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase__ = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case__ , F"""{split}.{field}""" ) , """w""" ) as f: f.write(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : int , snake_case__ : str = "pytorch" ): lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = os.path.join(snake_case__ , """output""" ) lowerCAmelCase__ = os.path.join(snake_case__ , """data""" ) self._create_dummy_data(data_dir=snake_case__ ) lowerCAmelCase__ = F""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(F"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase__ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case__ , env=self.get_env() ) lowerCAmelCase__ = os.path.join(snake_case__ , """metrics.json""" ) with open(snake_case__ ) as f: lowerCAmelCase__ = json.load(snake_case__ ) return result @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
674
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case__ , ) assert hasattr(self , """env""" ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] ): # configuration for running training on smdistributed Model Parallel lowerCAmelCase__ = { """enabled""": True, """processes_per_host""": 8, } lowerCAmelCase__ = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowerCAmelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowerCAmelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="""py36""" , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str ): TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] ): # create estimator lowerCAmelCase__ = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case__ )
674
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = KandinskyVaaInpaintPipeline UpperCamelCase_ : List[str] = ["image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCamelCase_ : Dict = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCamelCase_ : List[str] = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCamelCase_ : Dict = False @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): return 32 @property def _SCREAMING_SNAKE_CASE ( self : Any ): return 32 @property def _SCREAMING_SNAKE_CASE ( self : str ): return self.time_input_dim @property def _SCREAMING_SNAKE_CASE ( self : Tuple ): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : List[str] ): return 100 @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): torch.manual_seed(0 ) lowerCAmelCase__ = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowerCAmelCase__ = UNetaDConditionModel(**snake_case__ ) return model @property def _SCREAMING_SNAKE_CASE ( self : Dict ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): torch.manual_seed(0 ) lowerCAmelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = self.dummy_unet lowerCAmelCase__ = self.dummy_movq lowerCAmelCase__ = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=snake_case__ , ) lowerCAmelCase__ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] , snake_case__ : Optional[Any]=0 ): lowerCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image lowerCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(snake_case__ ) ).convert("""RGB""" ).resize((256, 256) ) # create mask lowerCAmelCase__ = np.ones((64, 64) , dtype=np.floataa ) lowerCAmelCase__ = 0 if str(snake_case__ ).startswith("""mps""" ): lowerCAmelCase__ = torch.manual_seed(snake_case__ ) else: lowerCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase__ = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = """cpu""" lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**snake_case__ ) lowerCAmelCase__ = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowerCAmelCase__ = output.images lowerCAmelCase__ = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) lowerCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowerCAmelCase__ = np.ones((768, 768) , dtype=np.floataa ) lowerCAmelCase__ = 0 lowerCAmelCase__ = """a hat""" lowerCAmelCase__ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowerCAmelCase__ = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""" , torch_dtype=torch.floataa ) lowerCAmelCase__ = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase__ , lowerCAmelCase__ = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowerCAmelCase__ = pipeline( image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) lowerCAmelCase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
674
"""simple docstring""" from math import pi, sqrt def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if num <= 0: raise ValueError("""math domain error""" ) if num > 1_71.5: raise OverflowError("""math range error""" ) elif num - int(lowerCamelCase__ ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(lowerCamelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _UpperCAmelCase ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(lowerCamelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __lowerCAmelCase : Dict = 1.0 while num: __lowerCAmelCase : Any = float(input("Gamma of: ")) print(F"gamma({num}) = {gamma(num)}") print("\nEnter 0 to exit...")
674
1
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) __lowerCAmelCase : str = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class a_ : def __init__( self : Any , snake_case__ : Any=None , **snake_case__ : Dict ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) lowerCAmelCase__ = model lowerCAmelCase__ = kwargs.get("""model_save_dir""" , snake_case__ ) lowerCAmelCase__ = kwargs.get("""latest_model_name""" , snake_case__ ) def __call__( self : Tuple , **snake_case__ : List[Any] ): lowerCAmelCase__ = {k: np.array(snake_case__ ) for k, v in kwargs.items()} return self.model.run(snake_case__ , snake_case__ ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : Union[str, Path] , snake_case__ : Optional[Any]=None , snake_case__ : Union[str, Any]=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) lowerCAmelCase__ = """CPUExecutionProvider""" return ort.InferenceSession(snake_case__ , providers=[provider] , sess_options=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[str, Path] , snake_case__ : Optional[str] = None , **snake_case__ : str ): lowerCAmelCase__ = file_name if file_name is not None else ONNX_WEIGHTS_NAME lowerCAmelCase__ = self.model_save_dir.joinpath(self.latest_model_name ) lowerCAmelCase__ = Path(snake_case__ ).joinpath(snake_case__ ) try: shutil.copyfile(snake_case__ , snake_case__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) lowerCAmelCase__ = self.model_save_dir.joinpath(snake_case__ ) if src_path.exists(): lowerCAmelCase__ = Path(snake_case__ ).joinpath(snake_case__ ) try: shutil.copyfile(snake_case__ , snake_case__ ) except shutil.SameFileError: pass def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Union[str, os.PathLike] , **snake_case__ : Dict , ): if os.path.isfile(snake_case__ ): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(snake_case__ , exist_ok=snake_case__ ) # saving model weights/files self._save_pretrained(snake_case__ , **snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[int] , snake_case__ : Union[str, Path] , snake_case__ : Optional[Union[bool, str, None]] = None , snake_case__ : Optional[Union[str, None]] = None , snake_case__ : bool = False , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , snake_case__ : Optional["ort.SessionOptions"] = None , **snake_case__ : List[Any] , ): lowerCAmelCase__ = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(snake_case__ ): lowerCAmelCase__ = OnnxRuntimeModel.load_model( os.path.join(snake_case__ , snake_case__ ) , provider=snake_case__ , sess_options=snake_case__ ) lowerCAmelCase__ = Path(snake_case__ ) # load model from hub else: # download model lowerCAmelCase__ = hf_hub_download( repo_id=snake_case__ , filename=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , ) lowerCAmelCase__ = Path(snake_case__ ).parent lowerCAmelCase__ = Path(snake_case__ ).name lowerCAmelCase__ = OnnxRuntimeModel.load_model(snake_case__ , provider=snake_case__ , sess_options=snake_case__ ) return cls(model=snake_case__ , **snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str , snake_case__ : Union[str, Path] , snake_case__ : bool = True , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , **snake_case__ : int , ): lowerCAmelCase__ = None if len(str(snake_case__ ).split("""@""" ) ) == 2: lowerCAmelCase__ , lowerCAmelCase__ = model_id.split("""@""" ) return cls._from_pretrained( model_id=snake_case__ , revision=snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , use_auth_token=snake_case__ , **snake_case__ , )
674
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : def __init__( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any=13 , snake_case__ : int=30 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : Dict=True , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=32 , snake_case__ : List[str]=2 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[int]=37 , snake_case__ : Tuple="gelu" , snake_case__ : str=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=10 , snake_case__ : Dict=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : str=None , snake_case__ : List[Any]=2 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = num_patches + 2 def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[Any] ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[str] ): lowerCAmelCase__ = TFDeiTModel(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict ): lowerCAmelCase__ = TFDeiTForMaskedImageModeling(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForMaskedImageModeling(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple ): lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase_ : Any = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : int = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = TFDeiTModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): pass def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Dense ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any]=False ): lowerCAmelCase__ = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _SCREAMING_SNAKE_CASE ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDeiTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Any ): return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors="""tf""" ) # forward pass lowerCAmelCase__ = model(**snake_case__ ) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase__ = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
674
1
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __lowerCAmelCase : int = logging.get_logger(__name__) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None ): """simple docstring""" if "." in tensor_name: lowerCAmelCase__ = tensor_name.split(""".""" ) for split in splits[:-1]: lowerCAmelCase__ = getattr(lowerCamelCase__ , lowerCamelCase__ ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) lowerCAmelCase__ = new_module lowerCAmelCase__ = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) lowerCAmelCase__ = tensor_name in module._buffers lowerCAmelCase__ = getattr(lowerCamelCase__ , lowerCamelCase__ ) if old_value.device == torch.device("""meta""" ) and device not in ["meta", torch.device("""meta""" )] and value is None: raise ValueError(f"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) lowerCAmelCase__ = False lowerCAmelCase__ = False if is_buffer or not is_bitsandbytes_available(): lowerCAmelCase__ = False lowerCAmelCase__ = False else: lowerCAmelCase__ = hasattr(bnb.nn , """Params4bit""" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) lowerCAmelCase__ = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: lowerCAmelCase__ = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: lowerCAmelCase__ = old_value.to(lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , torch.Tensor ): lowerCAmelCase__ = value.to("""cpu""" ) if value.dtype == torch.inta: lowerCAmelCase__ = version.parse(importlib.metadata.version("""bitsandbytes""" ) ) > version.parse( """0.37.2""" ) if not is_abit_serializable: raise ValueError( """Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. """ """Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.""" ) else: lowerCAmelCase__ = torch.tensor(lowerCamelCase__ , device="""cpu""" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , lowerCamelCase__ ) and fpaa_statistics is None: lowerCAmelCase__ = new_value.T lowerCAmelCase__ = old_value.__dict__ if is_abit: lowerCAmelCase__ = bnb.nn.IntaParams(lowerCamelCase__ , requires_grad=lowerCamelCase__ , **lowerCamelCase__ ).to(lowerCamelCase__ ) elif is_abit: lowerCAmelCase__ = bnb.nn.Paramsabit(lowerCamelCase__ , requires_grad=lowerCamelCase__ , **lowerCamelCase__ ).to(lowerCamelCase__ ) lowerCAmelCase__ = new_value if fpaa_statistics is not None: setattr(module.weight , """SCB""" , fpaa_statistics.to(lowerCamelCase__ ) ) else: if value is None: lowerCAmelCase__ = old_value.to(lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , torch.Tensor ): lowerCAmelCase__ = value.to(lowerCamelCase__ ) else: lowerCAmelCase__ = torch.tensor(lowerCamelCase__ , device=lowerCamelCase__ ) if is_buffer: lowerCAmelCase__ = new_value else: lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ , requires_grad=old_value.requires_grad ) lowerCAmelCase__ = new_value def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase__ = [] current_key_name.append(lowerCamelCase__ ) if (isinstance(lowerCamelCase__ , nn.Linear ) or isinstance(lowerCamelCase__ , lowerCamelCase__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in """.""".join(lowerCamelCase__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ , lowerCAmelCase__ = module.weight.shape else: lowerCAmelCase__ = module.in_features lowerCAmelCase__ = module.out_features if quantization_config.quantization_method() == "llm_int8": lowerCAmelCase__ = bnb.nn.LinearabitLt( lowerCamelCase__ , lowerCamelCase__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) lowerCAmelCase__ = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: lowerCAmelCase__ = bnb.nn.Linearabit( lowerCamelCase__ , lowerCamelCase__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) lowerCAmelCase__ = True # Store the module class in case we need to transpose the weight later lowerCAmelCase__ = type(lowerCamelCase__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(lowerCamelCase__ ) if len(list(module.children() ) ) > 0: lowerCAmelCase__ , lowerCAmelCase__ = _replace_with_bnb_linear( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , has_been_replaced=lowerCamelCase__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None ): """simple docstring""" lowerCAmelCase__ = ["""lm_head"""] if modules_to_not_convert is None else modules_to_not_convert lowerCAmelCase__ , lowerCAmelCase__ = _replace_with_bnb_linear( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def _UpperCAmelCase ( *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" warnings.warn( """`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead""" , lowerCamelCase__ , ) return replace_with_bnb_linear(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCAmelCase ( *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" warnings.warn( """`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead""" , lowerCamelCase__ , ) return set_module_quantized_tensor_to_device(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = deepcopy(lowerCamelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() lowerCAmelCase__ = find_tied_parameters(lowerCamelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowerCAmelCase__ = sum(lowerCamelCase__ , [] ) lowerCAmelCase__ = len(lowerCamelCase__ ) > 0 # Check if it is a base model lowerCAmelCase__ = not hasattr(lowerCamelCase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase__ = list(model.named_children() ) lowerCAmelCase__ = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase__ = set(lowerCamelCase__ ) - set(lowerCamelCase__ ) lowerCAmelCase__ = list(set(lowerCamelCase__ ) ) + list(lowerCamelCase__ ) # remove ".weight" from the keys lowerCAmelCase__ = [""".weight""", """.bias"""] lowerCAmelCase__ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase__ = name.replace(lowerCamelCase__ , """""" ) filtered_module_names.append(lowerCamelCase__ ) return filtered_module_names
674
"""simple docstring""" from __future__ import annotations from math import gcd def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 3 , ): """simple docstring""" if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: return (pow(lowerCamelCase__ , 2 ) + step) % modulus for _ in range(lowerCamelCase__ ): # These track the position within the cycle detection logic. lowerCAmelCase__ = seed lowerCAmelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCAmelCase__ = gcd(hare - tortoise , lowerCamelCase__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCAmelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : Dict = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"{args.num} is probably prime") else: __lowerCAmelCase : List[str] = args.num // divisor print(F"{args.num} = {divisor} * {quotient}")
674
1
"""simple docstring""" import os from math import logaa def _UpperCAmelCase ( lowerCamelCase__ = "base_exp.txt" ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) ): lowerCAmelCase__ , lowerCAmelCase__ = list(map(lowerCamelCase__ , line.split(""",""" ) ) ) if x * logaa(lowerCamelCase__ ) > largest: lowerCAmelCase__ = x * logaa(lowerCamelCase__ ) lowerCAmelCase__ = i + 1 return result if __name__ == "__main__": print(solution())
674
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = TapasConfig.from_json_file(lowerCamelCase__ ) # set absolute/relative position embeddings parameter lowerCAmelCase__ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WTQ": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = True # hparam_utils.py hparams lowerCAmelCase__ = 0.66_46_94 lowerCAmelCase__ = 0.20_79_51 lowerCAmelCase__ = 0.12_11_94 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 0.0_35_25_13 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = False # hparam_utils.py hparams lowerCAmelCase__ = 36.45_19 lowerCAmelCase__ = 0.90_34_21 lowerCAmelCase__ = 2_22.0_88 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = 0.76_31_41 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "TABFACT": lowerCAmelCase__ = TapasForSequenceClassification(config=lowerCamelCase__ ) elif task == "MLM": lowerCAmelCase__ = TapasForMaskedLM(config=lowerCamelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": lowerCAmelCase__ = TapasModel(config=lowerCamelCase__ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase__ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) lowerCAmelCase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 ) tokenizer.save_pretrained(lowerCamelCase__ ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
674
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : List[str] = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class a_ ( __UpperCamelCase ): UpperCamelCase_ : List[str] = "roc_bert" def __init__( self : List[str] , snake_case__ : int=30522 , snake_case__ : Tuple=768 , snake_case__ : Union[str, Any]=12 , snake_case__ : Any=12 , snake_case__ : int=3072 , snake_case__ : List[Any]="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : Any=0.1 , snake_case__ : List[str]=512 , snake_case__ : Any=2 , snake_case__ : List[str]=0.02 , snake_case__ : Optional[int]=1E-12 , snake_case__ : Dict=True , snake_case__ : List[Any]=0 , snake_case__ : List[Any]="absolute" , snake_case__ : int=None , snake_case__ : Optional[Any]=True , snake_case__ : Any=True , snake_case__ : str=768 , snake_case__ : Union[str, Any]=910 , snake_case__ : Any=512 , snake_case__ : Tuple=24858 , snake_case__ : Optional[Any]=True , **snake_case__ : Union[str, Any] , ): lowerCAmelCase__ = vocab_size lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = initializer_range lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = use_cache lowerCAmelCase__ = enable_pronunciation lowerCAmelCase__ = enable_shape lowerCAmelCase__ = pronunciation_embed_dim lowerCAmelCase__ = pronunciation_vocab_size lowerCAmelCase__ = shape_embed_dim lowerCAmelCase__ = shape_vocab_size lowerCAmelCase__ = concat_input lowerCAmelCase__ = position_embedding_type lowerCAmelCase__ = classifier_dropout super().__init__(pad_token_id=snake_case__ , **snake_case__ )
674
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ = 50 ): """simple docstring""" lowerCAmelCase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"{solution() = }")
674
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a_ ( unittest.TestCase ): def __init__( self : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any]=7 , snake_case__ : List[str]=3 , snake_case__ : Tuple=18 , snake_case__ : Dict=30 , snake_case__ : List[str]=400 , snake_case__ : Union[str, Any]=True , snake_case__ : int=None , snake_case__ : int=True , ): lowerCAmelCase__ = size if size is not None else {"""height""": 18, """width""": 18} lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = image_size lowerCAmelCase__ = min_resolution lowerCAmelCase__ = max_resolution lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = apply_ocr def _SCREAMING_SNAKE_CASE ( self : str ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : List[Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = LayoutLMvaImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple ): return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case__ , """size""" ) ) self.assertTrue(hasattr(snake_case__ , """apply_ocr""" ) ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def _SCREAMING_SNAKE_CASE ( self : str ): pass def _SCREAMING_SNAKE_CASE ( self : Dict ): # Initialize image_processing lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , snake_case__ ) self.assertIsInstance(encoding.boxes , snake_case__ ) # Test batched lowerCAmelCase__ = image_processing(snake_case__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _SCREAMING_SNAKE_CASE ( self : int ): # Initialize image_processing lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase__ = image_processing(snake_case__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): # Initialize image_processing lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase__ = image_processing(snake_case__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): # with apply_OCR = True lowerCAmelCase__ = LayoutLMvaImageProcessor() from datasets import load_dataset lowerCAmelCase__ = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) lowerCAmelCase__ = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) lowerCAmelCase__ = image_processing(snake_case__ , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowerCAmelCase__ = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 lowerCAmelCase__ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , snake_case__ ) self.assertListEqual(encoding.boxes , snake_case__ ) # with apply_OCR = False lowerCAmelCase__ = LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) lowerCAmelCase__ = image_processing(snake_case__ , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
674
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Any = "The Nymphenburg Palace is a beautiful palace in Munich!" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } lowerCAmelCase__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase__ = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCamelCase__ , output_all_encodings=lowerCamelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCamelCase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase__ = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab lowerCAmelCase__ = os.path.join(get_home_dir() , """models""" ) lowerCAmelCase__ = _load_vocab(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , cls=lowerCamelCase__ ) lowerCAmelCase__ = nlp.model.BERTModel( lowerCamelCase__ , len(lowerCamelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCamelCase__ , use_token_type_embed=lowerCamelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCamelCase__ , use_decoder=lowerCamelCase__ , ) original_bort.load_parameters(lowerCamelCase__ , cast_dtype=lowerCamelCase__ , ignore_extra=lowerCamelCase__ ) lowerCAmelCase__ = original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCAmelCase__ = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(lowerCamelCase__ ), } lowerCAmelCase__ = BertConfig.from_dict(lowerCamelCase__ ) lowerCAmelCase__ = BertForMaskedLM(lowerCamelCase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCamelCase__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = hf_param.shape lowerCAmelCase__ = to_torch(params[gluon_param] ) lowerCAmelCase__ = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase__ = layer.attention.self lowerCAmelCase__ = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output lowerCAmelCase__ = layer.attention.output lowerCAmelCase__ = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) lowerCAmelCase__ = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate lowerCAmelCase__ = layer.intermediate lowerCAmelCase__ = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) lowerCAmelCase__ = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output lowerCAmelCase__ = layer.output lowerCAmelCase__ = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) lowerCAmelCase__ = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCAmelCase__ = RobertaTokenizer.from_pretrained("""roberta-base""" ) lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ )["""input_ids"""] # Get gluon output lowerCAmelCase__ = mx.nd.array([input_ids] ) lowerCAmelCase__ = original_bort(inputs=lowerCamelCase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCamelCase__ ) lowerCAmelCase__ = BertModel.from_pretrained(lowerCamelCase__ ) hf_bort_model.eval() lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" ) lowerCAmelCase__ = hf_bort_model(**lowerCamelCase__ )[0] lowerCAmelCase__ = output_gluon[0].asnumpy() lowerCAmelCase__ = output_hf[0].detach().numpy() lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase__ = np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : str = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
674
1
"""simple docstring""" from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class a_ ( nn.Module ): def __init__( self : Optional[int] , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int=0.0 , snake_case__ : Optional[int] = None , snake_case__ : str = "geglu" , snake_case__ : Optional[int] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = True , snake_case__ : str = "layer_norm" , snake_case__ : bool = False , ): super().__init__() lowerCAmelCase__ = only_cross_attention lowerCAmelCase__ = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" lowerCAmelCase__ = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: lowerCAmelCase__ = AdaLayerNorm(snake_case__ , snake_case__ ) elif self.use_ada_layer_norm_zero: lowerCAmelCase__ = AdaLayerNormZero(snake_case__ , snake_case__ ) else: lowerCAmelCase__ = nn.LayerNorm(snake_case__ , elementwise_affine=snake_case__ ) lowerCAmelCase__ = Attention( query_dim=snake_case__ , heads=snake_case__ , dim_head=snake_case__ , dropout=snake_case__ , bias=snake_case__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=snake_case__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. lowerCAmelCase__ = ( AdaLayerNorm(snake_case__ , snake_case__ ) if self.use_ada_layer_norm else nn.LayerNorm(snake_case__ , elementwise_affine=snake_case__ ) ) lowerCAmelCase__ = Attention( query_dim=snake_case__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=snake_case__ , dim_head=snake_case__ , dropout=snake_case__ , bias=snake_case__ , upcast_attention=snake_case__ , ) # is self-attn if encoder_hidden_states is none else: lowerCAmelCase__ = None lowerCAmelCase__ = None # 3. Feed-forward lowerCAmelCase__ = nn.LayerNorm(snake_case__ , elementwise_affine=snake_case__ ) lowerCAmelCase__ = FeedForward(snake_case__ , dropout=snake_case__ , activation_fn=snake_case__ , final_dropout=snake_case__ ) # let chunk size default to None lowerCAmelCase__ = None lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : int ): # Sets chunk feed-forward lowerCAmelCase__ = chunk_size lowerCAmelCase__ = dim def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : torch.FloatTensor , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[torch.LongTensor] = None , snake_case__ : Dict[str, Any] = None , snake_case__ : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: lowerCAmelCase__ = self.norma(snake_case__ , snake_case__ ) elif self.use_ada_layer_norm_zero: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.norma( snake_case__ , snake_case__ , snake_case__ , hidden_dtype=hidden_states.dtype ) else: lowerCAmelCase__ = self.norma(snake_case__ ) lowerCAmelCase__ = cross_attention_kwargs if cross_attention_kwargs is not None else {} lowerCAmelCase__ = self.attna( snake_case__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=snake_case__ , **snake_case__ , ) if self.use_ada_layer_norm_zero: lowerCAmelCase__ = gate_msa.unsqueeze(1 ) * attn_output lowerCAmelCase__ = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: lowerCAmelCase__ = ( self.norma(snake_case__ , snake_case__ ) if self.use_ada_layer_norm else self.norma(snake_case__ ) ) lowerCAmelCase__ = self.attna( snake_case__ , encoder_hidden_states=snake_case__ , attention_mask=snake_case__ , **snake_case__ , ) lowerCAmelCase__ = attn_output + hidden_states # 3. Feed-forward lowerCAmelCase__ = self.norma(snake_case__ ) if self.use_ada_layer_norm_zero: lowerCAmelCase__ = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) lowerCAmelCase__ = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size lowerCAmelCase__ = torch.cat( [self.ff(snake_case__ ) for hid_slice in norm_hidden_states.chunk(snake_case__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: lowerCAmelCase__ = self.ff(snake_case__ ) if self.use_ada_layer_norm_zero: lowerCAmelCase__ = gate_mlp.unsqueeze(1 ) * ff_output lowerCAmelCase__ = ff_output + hidden_states return hidden_states class a_ ( nn.Module ): def __init__( self : str , snake_case__ : int , snake_case__ : Optional[int] = None , snake_case__ : int = 4 , snake_case__ : float = 0.0 , snake_case__ : str = "geglu" , snake_case__ : bool = False , ): super().__init__() lowerCAmelCase__ = int(dim * mult ) lowerCAmelCase__ = dim_out if dim_out is not None else dim if activation_fn == "gelu": lowerCAmelCase__ = GELU(snake_case__ , snake_case__ ) if activation_fn == "gelu-approximate": lowerCAmelCase__ = GELU(snake_case__ , snake_case__ , approximate="""tanh""" ) elif activation_fn == "geglu": lowerCAmelCase__ = GEGLU(snake_case__ , snake_case__ ) elif activation_fn == "geglu-approximate": lowerCAmelCase__ = ApproximateGELU(snake_case__ , snake_case__ ) lowerCAmelCase__ = nn.ModuleList([] ) # project in self.net.append(snake_case__ ) # project dropout self.net.append(nn.Dropout(snake_case__ ) ) # project out self.net.append(nn.Linear(snake_case__ , snake_case__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(snake_case__ ) ) def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : Dict ): for module in self.net: lowerCAmelCase__ = module(snake_case__ ) return hidden_states class a_ ( nn.Module ): def __init__( self : Tuple , snake_case__ : int , snake_case__ : int , snake_case__ : str = "none" ): super().__init__() lowerCAmelCase__ = nn.Linear(snake_case__ , snake_case__ ) lowerCAmelCase__ = approximate def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : str ): if gate.device.type != "mps": return F.gelu(snake_case__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : List[Any] ): lowerCAmelCase__ = self.proj(snake_case__ ) lowerCAmelCase__ = self.gelu(snake_case__ ) return hidden_states class a_ ( nn.Module ): def __init__( self : int , snake_case__ : int , snake_case__ : int ): super().__init__() lowerCAmelCase__ = nn.Linear(snake_case__ , dim_out * 2 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : int ): if gate.device.type != "mps": return F.gelu(snake_case__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Any ): lowerCAmelCase__ , lowerCAmelCase__ = self.proj(snake_case__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(snake_case__ ) class a_ ( nn.Module ): def __init__( self : Union[str, Any] , snake_case__ : int , snake_case__ : int ): super().__init__() lowerCAmelCase__ = nn.Linear(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : List[Any] ): lowerCAmelCase__ = self.proj(snake_case__ ) return x * torch.sigmoid(1.702 * x ) class a_ ( nn.Module ): def __init__( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ): super().__init__() lowerCAmelCase__ = nn.Embedding(snake_case__ , snake_case__ ) lowerCAmelCase__ = nn.SiLU() lowerCAmelCase__ = nn.Linear(snake_case__ , embedding_dim * 2 ) lowerCAmelCase__ = nn.LayerNorm(snake_case__ , elementwise_affine=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] , snake_case__ : Optional[Any] ): lowerCAmelCase__ = self.linear(self.silu(self.emb(snake_case__ ) ) ) lowerCAmelCase__ , lowerCAmelCase__ = torch.chunk(snake_case__ , 2 ) lowerCAmelCase__ = self.norm(snake_case__ ) * (1 + scale) + shift return x class a_ ( nn.Module ): def __init__( self : List[str] , snake_case__ : int , snake_case__ : List[Any] ): super().__init__() lowerCAmelCase__ = CombinedTimestepLabelEmbeddings(snake_case__ , snake_case__ ) lowerCAmelCase__ = nn.SiLU() lowerCAmelCase__ = nn.Linear(snake_case__ , 6 * embedding_dim , bias=snake_case__ ) lowerCAmelCase__ = nn.LayerNorm(snake_case__ , elementwise_affine=snake_case__ , eps=1E-6 ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Dict=None ): lowerCAmelCase__ = self.linear(self.silu(self.emb(snake_case__ , snake_case__ , hidden_dtype=snake_case__ ) ) ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = emb.chunk(6 , dim=1 ) lowerCAmelCase__ = self.norm(snake_case__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class a_ ( nn.Module ): def __init__( self : str , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : Optional[str] = None , snake_case__ : float = 1E-5 ): super().__init__() lowerCAmelCase__ = num_groups lowerCAmelCase__ = eps if act_fn is None: lowerCAmelCase__ = None else: lowerCAmelCase__ = get_activation(snake_case__ ) lowerCAmelCase__ = nn.Linear(snake_case__ , out_dim * 2 ) def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : List[str] , snake_case__ : Tuple ): if self.act: lowerCAmelCase__ = self.act(snake_case__ ) lowerCAmelCase__ = self.linear(snake_case__ ) lowerCAmelCase__ = emb[:, :, None, None] lowerCAmelCase__ , lowerCAmelCase__ = emb.chunk(2 , dim=1 ) lowerCAmelCase__ = F.group_norm(snake_case__ , self.num_groups , eps=self.eps ) lowerCAmelCase__ = x * (1 + scale) + shift return x
674
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self : Optional[int] ): lowerCAmelCase__ = """""" lowerCAmelCase__ = """""" lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = 256 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = cva.imread(snake_case__ , 0 ) lowerCAmelCase__ = copy.deepcopy(self.img ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" ) lowerCAmelCase__ = np.sum(snake_case__ ) for i in range(len(snake_case__ ) ): lowerCAmelCase__ = x[i] / self.k self.sk += prk lowerCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase__ = int(last % last ) lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case__ ) lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase__ = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase__ = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": __lowerCAmelCase : Dict = os.path.join(os.path.basename(__file__), "image_data/input.jpg") __lowerCAmelCase : Optional[int] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
674
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase : Tuple = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys __lowerCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
674
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class a_ ( __UpperCamelCase ): UpperCamelCase_ : List[str] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) UpperCamelCase_ : str = "CIDAS/clipseg-rd64-refined" UpperCamelCase_ : Any = "image_segmenter" UpperCamelCase_ : Optional[Any] = CLIPSegForImageSegmentation UpperCamelCase_ : List[str] = ["image", "text"] UpperCamelCase_ : int = ["image"] def __init__( self : Tuple , *snake_case__ : str , **snake_case__ : Optional[Any] ): requires_backends(self , ["""vision"""] ) super().__init__(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : "Image" , snake_case__ : str ): return self.pre_processor(text=[label] , images=[image] , padding=snake_case__ , return_tensors="""pt""" ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple ): with torch.no_grad(): lowerCAmelCase__ = self.model(**snake_case__ ).logits return logits def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] ): lowerCAmelCase__ = outputs.cpu().detach().numpy() lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
674
1
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class a_ ( __UpperCamelCase ): UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor class a_ ( __UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ : Dict = 1 @register_to_config def __init__( self : Optional[int] , snake_case__ : int = 2000 , snake_case__ : float = 0.15 , snake_case__ : float = 0.01 , snake_case__ : float = 1348.0 , snake_case__ : float = 1E-5 , snake_case__ : int = 1 , ): # standard deviation of the initial noise distribution lowerCAmelCase__ = sigma_max # setable values lowerCAmelCase__ = None self.set_sigmas(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : torch.FloatTensor , snake_case__ : Optional[int] = None ): return sample def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : int , snake_case__ : float = None , snake_case__ : Union[str, torch.device] = None ): lowerCAmelCase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowerCAmelCase__ = torch.linspace(1 , snake_case__ , snake_case__ , device=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : int , snake_case__ : float = None , snake_case__ : float = None , snake_case__ : float = None ): lowerCAmelCase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowerCAmelCase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowerCAmelCase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(snake_case__ , snake_case__ ) lowerCAmelCase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowerCAmelCase__ = torch.exp(torch.linspace(math.log(snake_case__ ) , math.log(snake_case__ ) , snake_case__ ) ) lowerCAmelCase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : int , snake_case__ : int ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Optional[torch.Generator] = None , snake_case__ : bool = True , ): if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) lowerCAmelCase__ = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowerCAmelCase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowerCAmelCase__ = timesteps.to(self.discrete_sigmas.device ) lowerCAmelCase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowerCAmelCase__ = self.get_adjacent_sigma(snake_case__ , snake_case__ ).to(sample.device ) lowerCAmelCase__ = torch.zeros_like(snake_case__ ) lowerCAmelCase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowerCAmelCase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowerCAmelCase__ = diffusion.unsqueeze(-1 ) lowerCAmelCase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowerCAmelCase__ = randn_tensor( sample.shape , layout=sample.layout , generator=snake_case__ , device=sample.device , dtype=sample.dtype ) lowerCAmelCase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowerCAmelCase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=snake_case__ , prev_sample_mean=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : Optional[torch.Generator] = None , snake_case__ : bool = True , ): if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowerCAmelCase__ = randn_tensor(sample.shape , layout=sample.layout , generator=snake_case__ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowerCAmelCase__ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() lowerCAmelCase__ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() lowerCAmelCase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowerCAmelCase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowerCAmelCase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowerCAmelCase__ = step_size.unsqueeze(-1 ) lowerCAmelCase__ = sample + step_size * model_output lowerCAmelCase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples lowerCAmelCase__ = timesteps.to(original_samples.device ) lowerCAmelCase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowerCAmelCase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(snake_case__ ) * sigmas[:, None, None, None] ) lowerCAmelCase__ = noise + original_samples return noisy_samples def __len__( self : List[Any] ): return self.config.num_train_timesteps
674
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = LayoutLMTokenizer UpperCamelCase_ : List[Any] = LayoutLMTokenizerFast UpperCamelCase_ : Dict = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() lowerCAmelCase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : Union[str, Any] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Tuple ): lowerCAmelCase__ = """UNwant\u00E9d,running""" lowerCAmelCase__ = """unwanted, running""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(snake_case__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): pass
674
1
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __lowerCAmelCase : Dict = logging.get_logger(__name__) __lowerCAmelCase : str = TypeVar("DatasetType", Dataset, IterableDataset) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "first_exhausted" , ): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(lowerCamelCase__ ): if not isinstance(lowerCamelCase__ , (Dataset, IterableDataset) ): if isinstance(lowerCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(lowerCamelCase__ )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowerCamelCase__ ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCamelCase__ ).__name__}.""" ) if i == 0: lowerCAmelCase__ , lowerCAmelCase__ = ( (Dataset, IterableDataset) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , info=lowerCamelCase__ , split=lowerCamelCase__ , stopping_strategy=lowerCamelCase__ ) else: return _interleave_iterable_datasets( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , info=lowerCamelCase__ , split=lowerCamelCase__ , stopping_strategy=lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 0 , ): """simple docstring""" if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(lowerCamelCase__ ): if not isinstance(lowerCamelCase__ , (Dataset, IterableDataset) ): if isinstance(lowerCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(lowerCamelCase__ )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowerCamelCase__ ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCamelCase__ ).__name__}.""" ) if i == 0: lowerCAmelCase__ , lowerCAmelCase__ = ( (Dataset, IterableDataset) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowerCamelCase__ , info=lowerCamelCase__ , split=lowerCamelCase__ , axis=lowerCamelCase__ ) else: return _concatenate_iterable_datasets(lowerCamelCase__ , info=lowerCamelCase__ , split=lowerCamelCase__ , axis=lowerCamelCase__ )
674
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __lowerCAmelCase : Any = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : def __init__( self : List[str] , snake_case__ : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) lowerCAmelCase__ = primes[group]["""prime"""] lowerCAmelCase__ = primes[group]["""generator"""] lowerCAmelCase__ = int(hexlify(urandom(32 ) ) , base=16 ) def _SCREAMING_SNAKE_CASE ( self : Any ): return hex(self.__private_key )[2:] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = pow(self.generator , self.__private_key , self.prime ) return hex(snake_case__ )[2:] def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(snake_case__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str ): lowerCAmelCase__ = int(snake_case__ , base=16 ) if not self.is_valid_public_key(snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , self.__private_key , self.prime ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : int , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(snake_case__ , (prime - 1) // 2 , snake_case__ ) == 1 ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : str , snake_case__ : str , snake_case__ : int = 14 ): lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(snake_case__ , snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , snake_case__ , snake_case__ ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
674
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : str = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __lowerCAmelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
674
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) lowerCAmelCase__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = weights[0][0][0] lowerCAmelCase__ = np.asarray(layer_norm_a[0] ) lowerCAmelCase__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # lsh weights + output lowerCAmelCase__ = weights[0][1] if len(lowerCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) else: set_layer_weights_in_torch_local(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) # intermediate weighs lowerCAmelCase__ = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase__ ) == 4: lowerCAmelCase__ = intermediate_weights[2] # layernorm 2 lowerCAmelCase__ = np.asarray(intermediate_weights[0][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # intermediate dense lowerCAmelCase__ = np.asarray(intermediate_weights[1][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) # intermediate out lowerCAmelCase__ = np.asarray(intermediate_weights[4][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = torch_model.reformer # word embeds lowerCAmelCase__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase__ ) , ) if isinstance(weights[3] , lowerCamelCase__ ): lowerCAmelCase__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCAmelCase__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" lowerCAmelCase__ = nn.Parameter(torch.tensor(lowerCamelCase__ ) ) lowerCAmelCase__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCAmelCase__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # output layer norm lowerCAmelCase__ = np.asarray(weights[7][0] ) lowerCAmelCase__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # output embeddings lowerCAmelCase__ = np.asarray(weights[9][0] ) lowerCAmelCase__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = ReformerConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = ReformerModelWithLMHead(lowerCamelCase__ ) with open(lowerCamelCase__ , """rb""" ) as f: lowerCAmelCase__ = pickle.load(lowerCamelCase__ )["""weights"""] set_model_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
674
1
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __lowerCAmelCase : Dict = "bart" __lowerCAmelCase : Union[str, Any] = True @st.cache(allow_output_mutation=lowerCamelCase__ ) def _UpperCAmelCase ( ): """simple docstring""" if LOAD_DENSE_INDEX: lowerCAmelCase__ = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) lowerCAmelCase__ = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) lowerCAmelCase__ = qar_model.eval() else: lowerCAmelCase__ , lowerCAmelCase__ = (None, None) if MODEL_TYPE == "bart": lowerCAmelCase__ = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) lowerCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) lowerCAmelCase__ = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) lowerCAmelCase__ = sas_model.eval() else: lowerCAmelCase__ , lowerCAmelCase__ = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowerCamelCase__ ) def _UpperCAmelCase ( ): """simple docstring""" if LOAD_DENSE_INDEX: lowerCAmelCase__ = faiss.StandardGpuResources() lowerCAmelCase__ = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] lowerCAmelCase__ = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) lowerCAmelCase__ = faiss.IndexFlatIP(128 ) lowerCAmelCase__ = faiss.index_cpu_to_gpu(lowerCamelCase__ , 1 , lowerCamelCase__ ) wikiaab_gpu_index_flat.add(lowerCamelCase__ ) # TODO fix for larger GPU else: lowerCAmelCase__ , lowerCAmelCase__ = (None, None) lowerCAmelCase__ = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowerCamelCase__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) lowerCAmelCase__ = elia["""train_eli5"""] lowerCAmelCase__ = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) lowerCAmelCase__ = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(lowerCamelCase__ ) return (elia_train, eli5_train_q_index) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = load_indexes() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Tuple = load_models() __lowerCAmelCase , __lowerCAmelCase : Optional[int] = load_train_data() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=10 ): """simple docstring""" lowerCAmelCase__ = embed_questions_for_retrieval([question] , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ , lowerCAmelCase__ = eli5_train_q_index.search(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = [elia_train[int(lowerCamelCase__ )] for i in I[0]] return nn_examples def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__="wiki40b" , lowerCamelCase__="dense" , lowerCamelCase__=10 ): """simple docstring""" if source == "none": lowerCAmelCase__ , lowerCAmelCase__ = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": lowerCAmelCase__ , lowerCAmelCase__ = query_qa_dense_index( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) else: lowerCAmelCase__ , lowerCAmelCase__ = query_es_index( lowerCamelCase__ , lowerCamelCase__ , index_name="""english_wiki40b_snippets_100w""" , n_results=lowerCamelCase__ , ) lowerCAmelCase__ = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] lowerCAmelCase__ = """question: {} context: {}""".format(lowerCamelCase__ , lowerCamelCase__ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowerCamelCase__ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowerCamelCase__ : None), } ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=64 , lowerCamelCase__=256 , lowerCamelCase__=False , lowerCamelCase__=2 , lowerCamelCase__=0.95 , lowerCamelCase__=0.8 ): """simple docstring""" with torch.no_grad(): lowerCAmelCase__ = qa_sas_generate( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , num_answers=1 , num_beams=lowerCamelCase__ , min_len=lowerCamelCase__ , max_len=lowerCamelCase__ , do_sample=lowerCamelCase__ , temp=lowerCamelCase__ , top_p=lowerCamelCase__ , top_k=lowerCamelCase__ , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar __lowerCAmelCase : Tuple = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" __lowerCAmelCase : List[Any] = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __lowerCAmelCase : Any = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) __lowerCAmelCase : Union[str, Any] = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] __lowerCAmelCase : Tuple = st.sidebar.checkbox("Demo options") if demo_options: __lowerCAmelCase : Optional[int] = st.sidebar.selectbox( "", action_list, index=3, ) __lowerCAmelCase : Tuple = action_list.index(action_st) __lowerCAmelCase : Optional[Any] = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) __lowerCAmelCase : Optional[Any] = show_type == "Show full text of passages" else: __lowerCAmelCase : Any = 3 __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Any = st.sidebar.checkbox("Retrieval options") if retrieval_options: __lowerCAmelCase : List[Any] = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) __lowerCAmelCase : str = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) __lowerCAmelCase : Optional[Any] = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: __lowerCAmelCase : Any = "wiki40b" __lowerCAmelCase : Optional[int] = "dense" __lowerCAmelCase : Tuple = "beam" __lowerCAmelCase : Optional[int] = 2 __lowerCAmelCase : int = 64 __lowerCAmelCase : Optional[Any] = 2_56 __lowerCAmelCase : List[Any] = None __lowerCAmelCase : int = None __lowerCAmelCase : str = st.sidebar.checkbox("Generation options") if generate_options: __lowerCAmelCase : List[Any] = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) __lowerCAmelCase : List[Any] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) __lowerCAmelCase : Union[str, Any] = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) __lowerCAmelCase : List[str] = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": __lowerCAmelCase : List[Any] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __lowerCAmelCase : Optional[Any] = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __lowerCAmelCase : str = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __lowerCAmelCase : List[Any] = None # start main text __lowerCAmelCase : List[str] = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] __lowerCAmelCase : Optional[int] = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": __lowerCAmelCase : int = st.text_input("Enter your question here:", "") else: __lowerCAmelCase : Optional[Any] = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": __lowerCAmelCase , __lowerCAmelCase : int = make_support(question, source=wiki_source, method="dense", n_results=10) __lowerCAmelCase , __lowerCAmelCase : Dict = make_support(question, source=wiki_source, method="sparse", n_results=10) __lowerCAmelCase : str = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __lowerCAmelCase : Optional[int] = support_list[:10] __lowerCAmelCase : List[str] = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: __lowerCAmelCase , __lowerCAmelCase : str = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __lowerCAmelCase , __lowerCAmelCase : Any = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): __lowerCAmelCase : int = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) __lowerCAmelCase : Dict = res[1].strip() if sec_titles == "": __lowerCAmelCase : Dict = "[{}]({})".format(res[0], wiki_url) else: __lowerCAmelCase : str = sec_titles.split(" & ") __lowerCAmelCase : Optional[int] = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: __lowerCAmelCase : int = find_nearest_training(question) __lowerCAmelCase : Any = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) __lowerCAmelCase : int = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) __lowerCAmelCase : Optional[Any] = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
674
"""simple docstring""" import os from math import logaa def _UpperCAmelCase ( lowerCamelCase__ = "base_exp.txt" ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) ): lowerCAmelCase__ , lowerCAmelCase__ = list(map(lowerCamelCase__ , line.split(""",""" ) ) ) if x * logaa(lowerCamelCase__ ) > largest: lowerCAmelCase__ = x * logaa(lowerCamelCase__ ) lowerCAmelCase__ = i + 1 return result if __name__ == "__main__": print(solution())
674
1
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ = 10**12 ): """simple docstring""" lowerCAmelCase__ = 1 lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 lowerCAmelCase__ = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F"{solution() = }")
674
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" while b: lowerCAmelCase__ , lowerCAmelCase__ = b, a % b return a def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase__ , a % b ) def _UpperCAmelCase ( ): """simple docstring""" print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
674
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : int = logging.get_logger(__name__) class a_ ( __UpperCamelCase ): UpperCamelCase_ : Optional[Any] = "timm_backbone" def __init__( self : Optional[int] , snake_case__ : int=None , snake_case__ : List[str]=3 , snake_case__ : str=True , snake_case__ : Dict=True , snake_case__ : List[str]=None , **snake_case__ : Optional[Any] , ): super().__init__(**snake_case__ ) lowerCAmelCase__ = backbone lowerCAmelCase__ = num_channels lowerCAmelCase__ = features_only lowerCAmelCase__ = use_pretrained_backbone lowerCAmelCase__ = True lowerCAmelCase__ = out_indices if out_indices is not None else (-1,)
674
"""simple docstring""" import os def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = os.path.dirname(os.path.realpath(lowerCamelCase__ ) ) lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """triangle.txt""" ) with open(lowerCamelCase__ ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = [] for line in triangle: lowerCAmelCase__ = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(lowerCamelCase__ ) ) a.append(lowerCamelCase__ ) for i in range(1 , len(lowerCamelCase__ ) ): for j in range(len(a[i] ) ): lowerCAmelCase__ = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCAmelCase__ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCamelCase__ , lowerCamelCase__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
674
1
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class a_ : UpperCamelCase_ : int UpperCamelCase_ : Node | None = None UpperCamelCase_ : Node | None = None def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = Node(1 ) lowerCAmelCase__ = Node(2 ) lowerCAmelCase__ = Node(3 ) lowerCAmelCase__ = Node(4 ) lowerCAmelCase__ = Node(5 ) return tree def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [] if root is None: return output lowerCAmelCase__ = deque([root] ) while process_queue: lowerCAmelCase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [] def populate_output(lowerCamelCase__ , lowerCamelCase__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase__ , lowerCamelCase__ ) return output def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [] def populate_output(lowerCamelCase__ , lowerCamelCase__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase__ , lowerCamelCase__ ) return output def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if root is None: return [] lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = height(lowerCamelCase__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase__ , lowerCamelCase__ ) ) lowerCAmelCase__ = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase__ , lowerCamelCase__ ) ) lowerCAmelCase__ = 0 return output def _UpperCAmelCase ( ): # Main function for testing. """simple docstring""" lowerCAmelCase__ = make_tree() print(f"""In-order Traversal: {inorder(lowerCamelCase__ )}""" ) print(f"""Pre-order Traversal: {preorder(lowerCamelCase__ )}""" ) print(f"""Post-order Traversal: {postorder(lowerCamelCase__ )}""" , """\n""" ) print(f"""Height of Tree: {height(lowerCamelCase__ )}""" , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(lowerCamelCase__ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(lowerCamelCase__ ) + 1 ): print(f"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase__ , level=lowerCamelCase__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(lowerCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
674
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCAmelCase : Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __lowerCAmelCase : Optional[int] = json.load(f) @require_torch class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Dict ): return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ): lowerCAmelCase__ = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Any , snake_case__ : int ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowerCAmelCase__ = F"""facebook/wmt19-{pair}""" lowerCAmelCase__ = self.get_tokenizer(snake_case__ ) lowerCAmelCase__ = self.get_model(snake_case__ ) lowerCAmelCase__ = bleu_data[pair]["""src"""] lowerCAmelCase__ = bleu_data[pair]["""tgt"""] lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""pt""" , truncation=snake_case__ , padding="""longest""" ).to(snake_case__ ) lowerCAmelCase__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCAmelCase__ = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) lowerCAmelCase__ = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["""bleu"""] , snake_case__ )
674
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : int = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __lowerCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
674
"""simple docstring""" import pprint import requests __lowerCAmelCase : Union[str, Any] = "https://zenquotes.io/api" def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = random_quotes() pprint.pprint(response)
674
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Union[str, Any] = DDIMPipeline UpperCamelCase_ : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCamelCase_ : Optional[int] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } UpperCamelCase_ : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS UpperCamelCase_ : List[str] = False def _SCREAMING_SNAKE_CASE ( self : Any ): torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) lowerCAmelCase__ = DDIMScheduler() lowerCAmelCase__ = {"""unet""": unet, """scheduler""": scheduler} return components def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : int , snake_case__ : Dict=0 ): if str(snake_case__ ).startswith("""mps""" ): lowerCAmelCase__ = torch.manual_seed(snake_case__ ) else: lowerCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase__ = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = """cpu""" lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase__ = pipe(**snake_case__ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) lowerCAmelCase__ = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) lowerCAmelCase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case__ , 1E-3 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): super().test_save_load_local(expected_max_difference=3E-3 ) def _SCREAMING_SNAKE_CASE ( self : Any ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = """google/ddpm-cifar10-32""" lowerCAmelCase__ = UNetaDModel.from_pretrained(snake_case__ ) lowerCAmelCase__ = DDIMScheduler() lowerCAmelCase__ = DDIMPipeline(unet=snake_case__ , scheduler=snake_case__ ) ddim.to(snake_case__ ) ddim.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = ddim(generator=snake_case__ , eta=0.0 , output_type="""numpy""" ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = """google/ddpm-ema-bedroom-256""" lowerCAmelCase__ = UNetaDModel.from_pretrained(snake_case__ ) lowerCAmelCase__ = DDIMScheduler.from_pretrained(snake_case__ ) lowerCAmelCase__ = DDIMPipeline(unet=snake_case__ , scheduler=snake_case__ ) ddpm.to(snake_case__ ) ddpm.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = ddpm(generator=snake_case__ , output_type="""numpy""" ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase__ = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
674
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = CLIPConfig() # Create a dummy config file with image_proceesor_type lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ).to_dict() config_dict.pop("""image_processor_type""" ) lowerCAmelCase__ = CLIPImageProcessor(**snake_case__ ) # save in new folder model_config.save_pretrained(snake_case__ ) config.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) # make sure private variable is not incorrectly saved lowerCAmelCase__ = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with self.assertRaisesRegex( snake_case__ , """clip-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""clip-base""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): with self.assertRaisesRegex( snake_case__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , revision="""aaaaaa""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): with self.assertRaisesRegex( snake_case__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , trust_remote_code=snake_case__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ): try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoImageProcessor.register(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = CustomImageProcessor.from_pretrained(snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self : List[str] ): class a_ ( __UpperCamelCase ): UpperCamelCase_ : Tuple = True try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # If remote code is not set, the default is to use local lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(snake_case__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
674
1
"""simple docstring""" from __future__ import annotations from typing import Any class a_ : def __init__( self : Union[str, Any] , snake_case__ : int ): lowerCAmelCase__ = num_of_nodes lowerCAmelCase__ = [] lowerCAmelCase__ = {} def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : int , snake_case__ : int , snake_case__ : int ): self.m_edges.append([u_node, v_node, weight] ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase__ = self.find_component(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : list[int] , snake_case__ : int , snake_case__ : int ): if component_size[u_node] <= component_size[v_node]: lowerCAmelCase__ = v_node component_size[v_node] += component_size[u_node] self.set_component(snake_case__ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase__ = self.find_component(snake_case__ ) component_size[u_node] += component_size[v_node] self.set_component(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase__ = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = edge lowerCAmelCase__ = self.m_component[u] lowerCAmelCase__ = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase__ = [u, v, w] for edge in minimum_weight_edge: if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = edge lowerCAmelCase__ = self.m_component[u] lowerCAmelCase__ = self.m_component[v] if u_component != v_component: mst_weight += w self.union(snake_case__ , snake_case__ , snake_case__ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 lowerCAmelCase__ = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _UpperCAmelCase ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
674
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a_ : def __init__( self : Optional[int] , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=64 , snake_case__ : Any=None ): lowerCAmelCase__ = np.random.default_rng(snake_case__ ) lowerCAmelCase__ = length lowerCAmelCase__ = rng.normal(size=(length,) ).astype(np.floataa ) lowerCAmelCase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[Any] ): return self.length def __getitem__( self : List[str] , snake_case__ : Optional[int] ): return {"x": self.x[i], "y": self.y[i]} class a_ ( torch.nn.Module ): def __init__( self : List[str] , snake_case__ : str=0 , snake_case__ : Dict=0 , snake_case__ : Any=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Any=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a[0] + self.b[0] class a_ ( torch.nn.Module ): def __init__( self : Any , snake_case__ : Union[str, Any]=0 , snake_case__ : Union[str, Any]=0 , snake_case__ : List[Any]=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any]=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a + self.b def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase__ = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} lowerCAmelCase__ = load_dataset("""csv""" , data_files=lowerCamelCase__ ) lowerCAmelCase__ = datasets["""train"""].unique("""label""" ) lowerCAmelCase__ = {v: i for i, v in enumerate(lowerCamelCase__ )} def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" ) if "label" in examples: lowerCAmelCase__ = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase__ = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=2 ) lowerCAmelCase__ = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
674
1
"""simple docstring""" import logging from transformers import PretrainedConfig __lowerCAmelCase : List[str] = logging.getLogger(__name__) __lowerCAmelCase : Optional[Any] = { "bertabs-finetuned-cnndm": "https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json", } class a_ ( __UpperCamelCase ): UpperCamelCase_ : Tuple = "bertabs" def __init__( self : Union[str, Any] , snake_case__ : Dict=30522 , snake_case__ : List[str]=512 , snake_case__ : Any=6 , snake_case__ : Optional[Any]=512 , snake_case__ : Optional[Any]=8 , snake_case__ : Union[str, Any]=512 , snake_case__ : int=0.2 , snake_case__ : Any=6 , snake_case__ : str=768 , snake_case__ : Optional[Any]=8 , snake_case__ : Dict=2048 , snake_case__ : Union[str, Any]=0.2 , **snake_case__ : Optional[int] , ): super().__init__(**snake_case__ ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = max_pos lowerCAmelCase__ = enc_layers lowerCAmelCase__ = enc_hidden_size lowerCAmelCase__ = enc_heads lowerCAmelCase__ = enc_ff_size lowerCAmelCase__ = enc_dropout lowerCAmelCase__ = dec_layers lowerCAmelCase__ = dec_hidden_size lowerCAmelCase__ = dec_heads lowerCAmelCase__ = dec_ff_size lowerCAmelCase__ = dec_dropout
674
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = MobileBertConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = MobileBertForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint lowerCAmelCase__ = load_tf_weights_in_mobilebert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
674
1
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class a_ ( unittest.TestCase ): UpperCamelCase_ : Optional[Any] = JukeboxTokenizer UpperCamelCase_ : List[Any] = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def _SCREAMING_SNAKE_CASE ( self : Any ): import torch lowerCAmelCase__ = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) lowerCAmelCase__ = tokenizer(**self.metas )["""input_ids"""] # fmt: off lowerCAmelCase__ = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): import torch lowerCAmelCase__ = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) lowerCAmelCase__ = tokenizer(**self.metas )["""input_ids"""] # fmt: off lowerCAmelCase__ = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
674
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: lowerCAmelCase__ = f"""The input value of [n={number}] has to be > 0""" raise ValueError(lowerCamelCase__ ) else: lowerCAmelCase__ = sylvester(number - 1 ) lowerCAmelCase__ = num - 1 lowerCAmelCase__ = num return lower * upper + 1 if __name__ == "__main__": print(F"The 8th number in Sylvester's sequence: {sylvester(8)}")
674
1
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return "".join(chr(ord(lowerCamelCase__ ) - 32 ) if """a""" <= char <= """z""" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
674
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Tuple = PegasusTokenizer UpperCamelCase_ : Any = PegasusTokenizerFast UpperCamelCase_ : int = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : Optional[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any] ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = """</s>""" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(snake_case__ ) , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowerCAmelCase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase__ = """To ensure a smooth flow of bank resolutions.""" lowerCAmelCase__ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def _SCREAMING_SNAKE_CASE ( self : str ): # fmt: off lowerCAmelCase__ = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = PegasusTokenizer UpperCamelCase_ : Optional[int] = PegasusTokenizerFast UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Optional[int] = True def _SCREAMING_SNAKE_CASE ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ): return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : List[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Dict ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowerCAmelCase__ = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
674
1
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __lowerCAmelCase : str = logging.get_logger(__name__) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" def constraint_to_multiple_of(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=0 , lowerCamelCase__=None ): lowerCAmelCase__ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCAmelCase__ = math.floor(val / multiple ) * multiple if x < min_val: lowerCAmelCase__ = math.ceil(val / multiple ) * multiple return x lowerCAmelCase__ = (output_size, output_size) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else output_size lowerCAmelCase__ , lowerCAmelCase__ = get_image_size(lowerCamelCase__ ) lowerCAmelCase__ , lowerCAmelCase__ = output_size # determine new height and width lowerCAmelCase__ = output_height / input_height lowerCAmelCase__ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCAmelCase__ = scale_width else: # fit height lowerCAmelCase__ = scale_height lowerCAmelCase__ = constraint_to_multiple_of(scale_height * input_height , multiple=lowerCamelCase__ ) lowerCAmelCase__ = constraint_to_multiple_of(scale_width * input_width , multiple=lowerCamelCase__ ) return (new_height, new_width) class a_ ( __UpperCamelCase ): UpperCamelCase_ : Dict = ["pixel_values"] def __init__( self : Tuple , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = PILImageResampling.BILINEAR , snake_case__ : bool = False , snake_case__ : int = 1 , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 255 , snake_case__ : bool = True , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , **snake_case__ : Dict , ): super().__init__(**snake_case__ ) lowerCAmelCase__ = size if size is not None else {"""height""": 384, """width""": 384} lowerCAmelCase__ = get_size_dict(snake_case__ ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = keep_aspect_ratio lowerCAmelCase__ = ensure_multiple_of lowerCAmelCase__ = resample lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : np.ndarray , snake_case__ : Dict[str, int] , snake_case__ : bool = False , snake_case__ : int = 1 , snake_case__ : PILImageResampling = PILImageResampling.BICUBIC , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Optional[int] , ): lowerCAmelCase__ = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowerCAmelCase__ = get_resize_output_image_size( snake_case__ , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=snake_case__ , multiple=snake_case__ , ) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : np.ndarray , snake_case__ : Union[int, float] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] , ): return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : np.ndarray , snake_case__ : Union[float, List[float]] , snake_case__ : Union[float, List[float]] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : str , ): return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : ImageInput , snake_case__ : bool = None , snake_case__ : int = None , snake_case__ : bool = None , snake_case__ : int = None , snake_case__ : PILImageResampling = None , snake_case__ : bool = None , snake_case__ : float = None , snake_case__ : bool = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : ChannelDimension = ChannelDimension.FIRST , **snake_case__ : str , ): lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(snake_case__ ) lowerCAmelCase__ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCAmelCase__ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(snake_case__ ) for image in images] if do_resize: lowerCAmelCase__ = [self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] lowerCAmelCase__ = {"""pixel_values""": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : int , snake_case__ : List[Tuple] = None ): lowerCAmelCase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(snake_case__ ) != len(snake_case__ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(snake_case__ ): lowerCAmelCase__ = target_sizes.numpy() lowerCAmelCase__ = [] for idx in range(len(snake_case__ ) ): lowerCAmelCase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=snake_case__ ) lowerCAmelCase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(snake_case__ ) else: lowerCAmelCase__ = logits.argmax(dim=1 ) lowerCAmelCase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
674
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case__ , ) assert hasattr(self , """env""" ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] ): # configuration for running training on smdistributed Model Parallel lowerCAmelCase__ = { """enabled""": True, """processes_per_host""": 8, } lowerCAmelCase__ = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowerCAmelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowerCAmelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="""py36""" , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str ): TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] ): # create estimator lowerCAmelCase__ = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case__ )
674
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __lowerCAmelCase : Dict = logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase : Optional[Any] = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } __lowerCAmelCase : Dict = { "distilbert-base-uncased": 5_12, "distilbert-base-uncased-distilled-squad": 5_12, "distilbert-base-cased": 5_12, "distilbert-base-cased-distilled-squad": 5_12, "distilbert-base-german-cased": 5_12, "distilbert-base-multilingual-cased": 5_12, } __lowerCAmelCase : Union[str, Any] = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class a_ ( __UpperCamelCase ): UpperCamelCase_ : Union[str, Any] = VOCAB_FILES_NAMES UpperCamelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : List[Any] = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Tuple = ["input_ids", "attention_mask"] UpperCamelCase_ : int = DistilBertTokenizer def __init__( self : Optional[int] , snake_case__ : Dict=None , snake_case__ : int=None , snake_case__ : Tuple=True , snake_case__ : Union[str, Any]="[UNK]" , snake_case__ : Tuple="[SEP]" , snake_case__ : List[str]="[PAD]" , snake_case__ : int="[CLS]" , snake_case__ : Any="[MASK]" , snake_case__ : str=True , snake_case__ : str=None , **snake_case__ : Tuple , ): super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case__ ) != tokenize_chinese_chars ): lowerCAmelCase__ = getattr(snake_case__ , normalizer_state.pop("""type""" ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = tokenize_chinese_chars lowerCAmelCase__ = normalizer_class(**snake_case__ ) lowerCAmelCase__ = do_lower_case def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : int=None ): lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : str , snake_case__ : Optional[str] = None ): lowerCAmelCase__ = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
674
"""simple docstring""" from math import pi, sqrt def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if num <= 0: raise ValueError("""math domain error""" ) if num > 1_71.5: raise OverflowError("""math range error""" ) elif num - int(lowerCamelCase__ ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(lowerCamelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _UpperCAmelCase ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(lowerCamelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __lowerCAmelCase : Dict = 1.0 while num: __lowerCAmelCase : Any = float(input("Gamma of: ")) print(F"gamma({num}) = {gamma(num)}") print("\nEnter 0 to exit...")
674
1
"""simple docstring""" from __future__ import annotations from typing import Any class a_ ( __UpperCamelCase ): pass class a_ : def __init__( self : Optional[int] , snake_case__ : Any ): lowerCAmelCase__ = data lowerCAmelCase__ = None def __iter__( self : str ): lowerCAmelCase__ = self lowerCAmelCase__ = [] while node: if node in visited: raise ContainsLoopError visited.append(snake_case__ ) yield node.data lowerCAmelCase__ = node.next_node @property def _SCREAMING_SNAKE_CASE ( self : str ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": __lowerCAmelCase : Tuple = Node(1) __lowerCAmelCase : str = Node(2) __lowerCAmelCase : int = Node(3) __lowerCAmelCase : Tuple = Node(4) print(root_node.has_loop) # False __lowerCAmelCase : Optional[Any] = root_node.next_node print(root_node.has_loop) # True __lowerCAmelCase : Dict = Node(5) __lowerCAmelCase : Any = Node(6) __lowerCAmelCase : List[str] = Node(5) __lowerCAmelCase : Dict = Node(6) print(root_node.has_loop) # False __lowerCAmelCase : Optional[Any] = Node(1) print(root_node.has_loop) # False
674
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : def __init__( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any=13 , snake_case__ : int=30 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : Dict=True , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=32 , snake_case__ : List[str]=2 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[int]=37 , snake_case__ : Tuple="gelu" , snake_case__ : str=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=10 , snake_case__ : Dict=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : str=None , snake_case__ : List[Any]=2 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = num_patches + 2 def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[Any] ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[str] ): lowerCAmelCase__ = TFDeiTModel(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict ): lowerCAmelCase__ = TFDeiTForMaskedImageModeling(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForMaskedImageModeling(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple ): lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase_ : Any = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : int = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = TFDeiTModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): pass def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Dense ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any]=False ): lowerCAmelCase__ = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _SCREAMING_SNAKE_CASE ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDeiTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Any ): return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors="""tf""" ) # forward pass lowerCAmelCase__ = model(**snake_case__ ) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase__ = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
674
1
"""simple docstring""" import math def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = input("""Enter message: """ ) lowerCAmelCase__ = int(input(f"""Enter key [2-{len(lowerCamelCase__ ) - 1}]: """ ) ) lowerCAmelCase__ = input("""Encryption/Decryption [e/d]: """ ) if mode.lower().startswith("""e""" ): lowerCAmelCase__ = encrypt_message(lowerCamelCase__ , lowerCamelCase__ ) elif mode.lower().startswith("""d""" ): lowerCAmelCase__ = decrypt_message(lowerCamelCase__ , lowerCamelCase__ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"""Output:\n{text + '|'}""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [""""""] * key for col in range(lowerCamelCase__ ): lowerCAmelCase__ = col while pointer < len(lowerCamelCase__ ): cipher_text[col] += message[pointer] pointer += key return "".join(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = math.ceil(len(lowerCamelCase__ ) / key ) lowerCAmelCase__ = key lowerCAmelCase__ = (num_cols * num_rows) - len(lowerCamelCase__ ) lowerCAmelCase__ = [""""""] * num_cols lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): lowerCAmelCase__ = 0 row += 1 return "".join(lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
674
"""simple docstring""" from __future__ import annotations from math import gcd def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 3 , ): """simple docstring""" if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: return (pow(lowerCamelCase__ , 2 ) + step) % modulus for _ in range(lowerCamelCase__ ): # These track the position within the cycle detection logic. lowerCAmelCase__ = seed lowerCAmelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCAmelCase__ = gcd(hare - tortoise , lowerCamelCase__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCAmelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : Dict = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"{args.num} is probably prime") else: __lowerCAmelCase : List[str] = args.num // divisor print(F"{args.num} = {divisor} * {quotient}")
674
1
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class a_ ( __UpperCamelCase ): UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = False UpperCamelCase_ : float = 3.0 class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} ) self.assertDictEqual(MockClass(a=2 , b=snake_case__ ).to_kwargs() , {"""a""": 2, """b""": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"""a""": 2, """c""": 2.25} ) @require_cuda def _SCREAMING_SNAKE_CASE ( self : str ): # If no defaults are changed, `to_kwargs` returns an empty dict. lowerCAmelCase__ = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() lowerCAmelCase__ = Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) lowerCAmelCase__ = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , snake_case__ ) @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = ["""torchrun""", F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case__ , env=os.environ.copy() ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) __lowerCAmelCase : Tuple = Accelerator(kwargs_handlers=[ddp_scaler]) __lowerCAmelCase : Optional[Any] = torch.nn.Linear(1_00, 2_00) __lowerCAmelCase : Optional[int] = accelerator.prepare(model) # Check the values changed in kwargs __lowerCAmelCase : str = "" __lowerCAmelCase : Optional[Any] = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
674
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = TapasConfig.from_json_file(lowerCamelCase__ ) # set absolute/relative position embeddings parameter lowerCAmelCase__ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WTQ": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = True # hparam_utils.py hparams lowerCAmelCase__ = 0.66_46_94 lowerCAmelCase__ = 0.20_79_51 lowerCAmelCase__ = 0.12_11_94 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 0.0_35_25_13 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = False # hparam_utils.py hparams lowerCAmelCase__ = 36.45_19 lowerCAmelCase__ = 0.90_34_21 lowerCAmelCase__ = 2_22.0_88 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = 0.76_31_41 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "TABFACT": lowerCAmelCase__ = TapasForSequenceClassification(config=lowerCamelCase__ ) elif task == "MLM": lowerCAmelCase__ = TapasForMaskedLM(config=lowerCamelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": lowerCAmelCase__ = TapasModel(config=lowerCamelCase__ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase__ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) lowerCAmelCase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 ) tokenizer.save_pretrained(lowerCamelCase__ ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
674
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : List[str] = logging.get_logger(__name__) __lowerCAmelCase : Any = {"vocab_file": "spiece.model"} __lowerCAmelCase : Dict = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } __lowerCAmelCase : Tuple = { "albert-base-v1": 5_12, "albert-large-v1": 5_12, "albert-xlarge-v1": 5_12, "albert-xxlarge-v1": 5_12, "albert-base-v2": 5_12, "albert-large-v2": 5_12, "albert-xlarge-v2": 5_12, "albert-xxlarge-v2": 5_12, } __lowerCAmelCase : Union[str, Any] = "▁" class a_ ( __UpperCamelCase ): UpperCamelCase_ : List[str] = VOCAB_FILES_NAMES UpperCamelCase_ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Tuple , snake_case__ : List[str] , snake_case__ : Optional[Any]=True , snake_case__ : Tuple=True , snake_case__ : str=False , snake_case__ : Optional[Any]="[CLS]" , snake_case__ : Optional[int]="[SEP]" , snake_case__ : List[str]="<unk>" , snake_case__ : Optional[int]="[SEP]" , snake_case__ : List[Any]="<pad>" , snake_case__ : Tuple="[CLS]" , snake_case__ : Optional[Any]="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Tuple , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowerCAmelCase__ = ( AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ , normalized=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token ) lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case__ , remove_space=snake_case__ , keep_accents=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = remove_space lowerCAmelCase__ = keep_accents lowerCAmelCase__ = vocab_file lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) @property def _SCREAMING_SNAKE_CASE ( self : Any ): return len(self.sp_model ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ): lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None return state def __setstate__( self : Tuple , snake_case__ : Any ): lowerCAmelCase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase__ = {} lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Dict ): if self.remove_space: lowerCAmelCase__ = """ """.join(inputs.strip().split() ) else: lowerCAmelCase__ = inputs lowerCAmelCase__ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: lowerCAmelCase__ = unicodedata.normalize("""NFKD""" , snake_case__ ) lowerCAmelCase__ = """""".join([c for c in outputs if not unicodedata.combining(snake_case__ )] ) if self.do_lower_case: lowerCAmelCase__ = outputs.lower() return outputs def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : str ): lowerCAmelCase__ = self.preprocess_text(snake_case__ ) lowerCAmelCase__ = self.sp_model.encode(snake_case__ , out_type=snake_case__ ) lowerCAmelCase__ = [] for piece in pieces: if len(snake_case__ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): lowerCAmelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case__ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCAmelCase__ = cur_pieces[1:] else: lowerCAmelCase__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case__ ) else: new_pieces.append(snake_case__ ) return new_pieces def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Union[str, Any] ): return self.sp_model.PieceToId(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : str ): return self.sp_model.IdToPiece(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Tuple ): lowerCAmelCase__ = [] lowerCAmelCase__ = """""" lowerCAmelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case__ ) + token lowerCAmelCase__ = True lowerCAmelCase__ = [] else: current_sub_tokens.append(snake_case__ ) lowerCAmelCase__ = False out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is not None: return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): if not os.path.isdir(snake_case__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ = os.path.join( snake_case__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , """wb""" ) as fi: lowerCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
674
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ = 50 ): """simple docstring""" lowerCAmelCase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"{solution() = }")
674
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __lowerCAmelCase : Optional[Any] = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __lowerCAmelCase : int = "UperNetConfig" class a_ ( nn.Module ): def __init__( self : Dict , snake_case__ : int , snake_case__ : int , snake_case__ : Union[int, Tuple[int, int]] , snake_case__ : Union[int, Tuple[int, int], str] = 0 , snake_case__ : bool = False , snake_case__ : Union[int, Tuple[int, int]] = 1 , ): super().__init__() lowerCAmelCase__ = nn.Convad( in_channels=snake_case__ , out_channels=snake_case__ , kernel_size=snake_case__ , padding=snake_case__ , bias=snake_case__ , dilation=snake_case__ , ) lowerCAmelCase__ = nn.BatchNormad(snake_case__ ) lowerCAmelCase__ = nn.ReLU() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : torch.Tensor ): lowerCAmelCase__ = self.conv(snake_case__ ) lowerCAmelCase__ = self.batch_norm(snake_case__ ) lowerCAmelCase__ = self.activation(snake_case__ ) return output class a_ ( nn.Module ): def __init__( self : Any , snake_case__ : int , snake_case__ : int , snake_case__ : int ): super().__init__() lowerCAmelCase__ = [ nn.AdaptiveAvgPoolad(snake_case__ ), UperNetConvModule(snake_case__ , snake_case__ , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(snake_case__ ) , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : torch.Tensor ): lowerCAmelCase__ = input for layer in self.layers: lowerCAmelCase__ = layer(snake_case__ ) return hidden_state class a_ ( nn.Module ): def __init__( self : Optional[int] , snake_case__ : Tuple[int, ...] , snake_case__ : int , snake_case__ : int , snake_case__ : bool ): super().__init__() lowerCAmelCase__ = pool_scales lowerCAmelCase__ = align_corners lowerCAmelCase__ = in_channels lowerCAmelCase__ = channels lowerCAmelCase__ = [] for i, pool_scale in enumerate(snake_case__ ): lowerCAmelCase__ = UperNetPyramidPoolingBlock(pool_scale=snake_case__ , in_channels=snake_case__ , channels=snake_case__ ) self.blocks.append(snake_case__ ) self.add_module(str(snake_case__ ) , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : torch.Tensor ): lowerCAmelCase__ = [] for ppm in self.blocks: lowerCAmelCase__ = ppm(snake_case__ ) lowerCAmelCase__ = nn.functional.interpolate( snake_case__ , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners ) ppm_outs.append(snake_case__ ) return ppm_outs class a_ ( nn.Module ): def __init__( self : Union[str, Any] , snake_case__ : int , snake_case__ : Optional[Any] ): super().__init__() lowerCAmelCase__ = config lowerCAmelCase__ = config.pool_scales # e.g. (1, 2, 3, 6) lowerCAmelCase__ = in_channels lowerCAmelCase__ = config.hidden_size lowerCAmelCase__ = False lowerCAmelCase__ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module lowerCAmelCase__ = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) lowerCAmelCase__ = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module lowerCAmelCase__ = nn.ModuleList() lowerCAmelCase__ = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowerCAmelCase__ = UperNetConvModule(snake_case__ , self.channels , kernel_size=1 ) lowerCAmelCase__ = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(snake_case__ ) self.fpn_convs.append(snake_case__ ) lowerCAmelCase__ = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): self.apply(self._init_weights ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : List[Any] ): if isinstance(snake_case__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Optional[int] ): lowerCAmelCase__ = inputs[-1] lowerCAmelCase__ = [x] psp_outs.extend(self.psp_modules(snake_case__ ) ) lowerCAmelCase__ = torch.cat(snake_case__ , dim=1 ) lowerCAmelCase__ = self.bottleneck(snake_case__ ) return output def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : torch.Tensor ): # build laterals lowerCAmelCase__ = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(snake_case__ ) ) # build top-down path lowerCAmelCase__ = len(snake_case__ ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCAmelCase__ = laterals[i - 1].shape[2:] lowerCAmelCase__ = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=snake_case__ , mode="""bilinear""" , align_corners=self.align_corners ) # build outputs lowerCAmelCase__ = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCAmelCase__ = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners ) lowerCAmelCase__ = torch.cat(snake_case__ , dim=1 ) lowerCAmelCase__ = self.fpn_bottleneck(snake_case__ ) lowerCAmelCase__ = self.classifier(snake_case__ ) return output class a_ ( nn.Module ): def __init__( self : Optional[int] , snake_case__ : List[str] , snake_case__ : int = 2 , snake_case__ : int = 3 , snake_case__ : Union[int, Tuple[int, int]] = 1 ): super().__init__() lowerCAmelCase__ = config lowerCAmelCase__ = config.auxiliary_in_channels lowerCAmelCase__ = config.auxiliary_channels lowerCAmelCase__ = config.auxiliary_num_convs lowerCAmelCase__ = config.auxiliary_concat_input lowerCAmelCase__ = in_index lowerCAmelCase__ = (kernel_size // 2) * dilation lowerCAmelCase__ = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=snake_case__ , padding=snake_case__ , dilation=snake_case__ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=snake_case__ , padding=snake_case__ , dilation=snake_case__ ) ) if self.num_convs == 0: lowerCAmelCase__ = nn.Identity() else: lowerCAmelCase__ = nn.Sequential(*snake_case__ ) if self.concat_input: lowerCAmelCase__ = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=snake_case__ , padding=kernel_size // 2 ) lowerCAmelCase__ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): self.apply(self._init_weights ) def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : Union[str, Any] ): if isinstance(snake_case__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : torch.Tensor ): # just take the relevant feature maps lowerCAmelCase__ = encoder_hidden_states[self.in_index] lowerCAmelCase__ = self.convs(snake_case__ ) if self.concat_input: lowerCAmelCase__ = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) lowerCAmelCase__ = self.classifier(snake_case__ ) return output class a_ ( __UpperCamelCase ): UpperCamelCase_ : Dict = UperNetConfig UpperCamelCase_ : Tuple = "pixel_values" UpperCamelCase_ : str = True def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Tuple ): if isinstance(snake_case__ , snake_case__ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _SCREAMING_SNAKE_CASE ( self : str ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Any=False ): if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase__ = value __lowerCAmelCase : Optional[int] = R"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __lowerCAmelCase : List[Any] = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , __UpperCamelCase , ) class a_ ( __UpperCamelCase ): def __init__( self : Dict , snake_case__ : Optional[Any] ): super().__init__(snake_case__ ) lowerCAmelCase__ = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowerCAmelCase__ = UperNetHead(snake_case__ , in_channels=self.backbone.channels ) lowerCAmelCase__ = UperNetFCNHead(snake_case__ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=snake_case__ , config_class=_CONFIG_FOR_DOC ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Optional[torch.Tensor] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[torch.Tensor] = None , snake_case__ : Optional[bool] = None , ): lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = output_attentions if output_attentions is not None else self.config.output_attentions lowerCAmelCase__ = self.backbone.forward_with_filtered_kwargs( snake_case__ , output_hidden_states=snake_case__ , output_attentions=snake_case__ ) lowerCAmelCase__ = outputs.feature_maps lowerCAmelCase__ = self.decode_head(snake_case__ ) lowerCAmelCase__ = nn.functional.interpolate(snake_case__ , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=snake_case__ ) lowerCAmelCase__ = None if self.auxiliary_head is not None: lowerCAmelCase__ = self.auxiliary_head(snake_case__ ) lowerCAmelCase__ = nn.functional.interpolate( snake_case__ , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=snake_case__ ) lowerCAmelCase__ = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss lowerCAmelCase__ = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowerCAmelCase__ = loss_fct(snake_case__ , snake_case__ ) lowerCAmelCase__ = loss_fct(snake_case__ , snake_case__ ) lowerCAmelCase__ = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowerCAmelCase__ = (logits,) + outputs[1:] else: lowerCAmelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=snake_case__ , logits=snake_case__ , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
674
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Any = "The Nymphenburg Palace is a beautiful palace in Munich!" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } lowerCAmelCase__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase__ = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCamelCase__ , output_all_encodings=lowerCamelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCamelCase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase__ = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab lowerCAmelCase__ = os.path.join(get_home_dir() , """models""" ) lowerCAmelCase__ = _load_vocab(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , cls=lowerCamelCase__ ) lowerCAmelCase__ = nlp.model.BERTModel( lowerCamelCase__ , len(lowerCamelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCamelCase__ , use_token_type_embed=lowerCamelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCamelCase__ , use_decoder=lowerCamelCase__ , ) original_bort.load_parameters(lowerCamelCase__ , cast_dtype=lowerCamelCase__ , ignore_extra=lowerCamelCase__ ) lowerCAmelCase__ = original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCAmelCase__ = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(lowerCamelCase__ ), } lowerCAmelCase__ = BertConfig.from_dict(lowerCamelCase__ ) lowerCAmelCase__ = BertForMaskedLM(lowerCamelCase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCamelCase__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = hf_param.shape lowerCAmelCase__ = to_torch(params[gluon_param] ) lowerCAmelCase__ = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase__ = layer.attention.self lowerCAmelCase__ = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output lowerCAmelCase__ = layer.attention.output lowerCAmelCase__ = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) lowerCAmelCase__ = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate lowerCAmelCase__ = layer.intermediate lowerCAmelCase__ = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) lowerCAmelCase__ = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output lowerCAmelCase__ = layer.output lowerCAmelCase__ = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) lowerCAmelCase__ = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCAmelCase__ = RobertaTokenizer.from_pretrained("""roberta-base""" ) lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ )["""input_ids"""] # Get gluon output lowerCAmelCase__ = mx.nd.array([input_ids] ) lowerCAmelCase__ = original_bort(inputs=lowerCamelCase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCamelCase__ ) lowerCAmelCase__ = BertModel.from_pretrained(lowerCamelCase__ ) hf_bort_model.eval() lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" ) lowerCAmelCase__ = hf_bort_model(**lowerCamelCase__ )[0] lowerCAmelCase__ = output_gluon[0].asnumpy() lowerCAmelCase__ = output_hf[0].detach().numpy() lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase__ = np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : str = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
674
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] = { "google/mobilenet_v2_1.4_224": "https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json", "google/mobilenet_v2_1.0_224": "https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json", "google/mobilenet_v2_0.75_160": "https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json", "google/mobilenet_v2_0.35_96": "https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class a_ ( __UpperCamelCase ): UpperCamelCase_ : List[Any] = "mobilenet_v2" def __init__( self : Optional[Any] , snake_case__ : Union[str, Any]=3 , snake_case__ : Tuple=224 , snake_case__ : str=1.0 , snake_case__ : Any=8 , snake_case__ : Dict=8 , snake_case__ : Any=6 , snake_case__ : str=32 , snake_case__ : str=True , snake_case__ : List[str]=True , snake_case__ : List[str]="relu6" , snake_case__ : Tuple=True , snake_case__ : List[str]=0.8 , snake_case__ : int=0.02 , snake_case__ : Any=0.001 , snake_case__ : Dict=255 , **snake_case__ : str , ): super().__init__(**snake_case__ ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) lowerCAmelCase__ = num_channels lowerCAmelCase__ = image_size lowerCAmelCase__ = depth_multiplier lowerCAmelCase__ = depth_divisible_by lowerCAmelCase__ = min_depth lowerCAmelCase__ = expand_ratio lowerCAmelCase__ = output_stride lowerCAmelCase__ = first_layer_is_expansion lowerCAmelCase__ = finegrained_output lowerCAmelCase__ = hidden_act lowerCAmelCase__ = tf_padding lowerCAmelCase__ = classifier_dropout_prob lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = semantic_loss_ignore_index class a_ ( __UpperCamelCase ): UpperCamelCase_ : Tuple = version.parse("1.11" ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def _SCREAMING_SNAKE_CASE ( self : int ): if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ): return 1E-4
674
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self : Optional[int] ): lowerCAmelCase__ = """""" lowerCAmelCase__ = """""" lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = 256 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = cva.imread(snake_case__ , 0 ) lowerCAmelCase__ = copy.deepcopy(self.img ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" ) lowerCAmelCase__ = np.sum(snake_case__ ) for i in range(len(snake_case__ ) ): lowerCAmelCase__ = x[i] / self.k self.sk += prk lowerCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase__ = int(last % last ) lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case__ ) lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase__ = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase__ = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": __lowerCAmelCase : Dict = os.path.join(os.path.basename(__file__), "image_data/input.jpg") __lowerCAmelCase : Optional[int] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
674
1
"""simple docstring""" import os def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = os.path.dirname(os.path.realpath(lowerCamelCase__ ) ) lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """triangle.txt""" ) with open(lowerCamelCase__ ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = [] for line in triangle: lowerCAmelCase__ = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(lowerCamelCase__ ) ) a.append(lowerCamelCase__ ) for i in range(1 , len(lowerCamelCase__ ) ): for j in range(len(a[i] ) ): lowerCAmelCase__ = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCAmelCase__ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCamelCase__ , lowerCamelCase__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
674
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class a_ ( __UpperCamelCase ): UpperCamelCase_ : List[str] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) UpperCamelCase_ : str = "CIDAS/clipseg-rd64-refined" UpperCamelCase_ : Any = "image_segmenter" UpperCamelCase_ : Optional[Any] = CLIPSegForImageSegmentation UpperCamelCase_ : List[str] = ["image", "text"] UpperCamelCase_ : int = ["image"] def __init__( self : Tuple , *snake_case__ : str , **snake_case__ : Optional[Any] ): requires_backends(self , ["""vision"""] ) super().__init__(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : "Image" , snake_case__ : str ): return self.pre_processor(text=[label] , images=[image] , padding=snake_case__ , return_tensors="""pt""" ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple ): with torch.no_grad(): lowerCAmelCase__ = self.model(**snake_case__ ).logits return logits def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] ): lowerCAmelCase__ = outputs.cpu().detach().numpy() lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
674
1
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class a_ : def __init__( self : List[Any] , snake_case__ : Any , snake_case__ : Union[str, Any]=2 , snake_case__ : List[str]=8 , snake_case__ : Optional[int]=True , snake_case__ : Optional[Any]=True , snake_case__ : Union[str, Any]=True , snake_case__ : List[str]=True , snake_case__ : List[Any]=99 , snake_case__ : List[str]=16 , snake_case__ : Dict=5 , snake_case__ : List[Any]=2 , snake_case__ : Optional[Any]=36 , snake_case__ : Any="gelu" , snake_case__ : Dict=0.0 , snake_case__ : List[str]=0.0 , snake_case__ : str=512 , snake_case__ : Union[str, Any]=16 , snake_case__ : Optional[Any]=2 , snake_case__ : List[str]=0.02 , snake_case__ : Dict=3 , snake_case__ : List[Any]=4 , snake_case__ : Dict=None , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = scope def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.get_config() lowerCAmelCase__ = 300 return config def _SCREAMING_SNAKE_CASE ( self : Any ): ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) = self.prepare_config_and_inputs() lowerCAmelCase__ = True lowerCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Any ): lowerCAmelCase__ = MraModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase__ = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Optional[int] , ): lowerCAmelCase__ = True lowerCAmelCase__ = MraModel(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , ) lowerCAmelCase__ = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , encoder_hidden_states=snake_case__ , ) lowerCAmelCase__ = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : int ): lowerCAmelCase__ = MraForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : Any , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Tuple ): lowerCAmelCase__ = MraForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : List[Any] ): lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = MraForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : int , snake_case__ : str ): lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = MraForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Optional[int] ): lowerCAmelCase__ = self.num_choices lowerCAmelCase__ = MraForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase_ : Any = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : int = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : Optional[Any] = () def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = MraModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase__ = type self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : Any ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = MraModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @unittest.skip(reason="""MRA does not output attentions""" ) def _SCREAMING_SNAKE_CASE ( self : str ): return @require_torch class a_ ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) lowerCAmelCase__ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): lowerCAmelCase__ = model(snake_case__ )[0] lowerCAmelCase__ = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase__ = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1E-4 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) lowerCAmelCase__ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): lowerCAmelCase__ = model(snake_case__ )[0] lowerCAmelCase__ = 50265 lowerCAmelCase__ = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase__ = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1E-4 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) lowerCAmelCase__ = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): lowerCAmelCase__ = model(snake_case__ )[0] lowerCAmelCase__ = 50265 lowerCAmelCase__ = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase__ = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1E-4 ) )
674
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = LayoutLMTokenizer UpperCamelCase_ : List[Any] = LayoutLMTokenizerFast UpperCamelCase_ : Dict = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() lowerCAmelCase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : Union[str, Any] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Tuple ): lowerCAmelCase__ = """UNwant\u00E9d,running""" lowerCAmelCase__ = """unwanted, running""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(snake_case__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): pass
674
1
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) lowerCAmelCase__ = hex_num[0] == """-""" if is_negative: lowerCAmelCase__ = hex_num[1:] try: lowerCAmelCase__ = int(lowerCamelCase__ , 16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) lowerCAmelCase__ = """""" while int_num > 0: lowerCAmelCase__ = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
674
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __lowerCAmelCase : Any = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : def __init__( self : List[str] , snake_case__ : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) lowerCAmelCase__ = primes[group]["""prime"""] lowerCAmelCase__ = primes[group]["""generator"""] lowerCAmelCase__ = int(hexlify(urandom(32 ) ) , base=16 ) def _SCREAMING_SNAKE_CASE ( self : Any ): return hex(self.__private_key )[2:] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = pow(self.generator , self.__private_key , self.prime ) return hex(snake_case__ )[2:] def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(snake_case__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str ): lowerCAmelCase__ = int(snake_case__ , base=16 ) if not self.is_valid_public_key(snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , self.__private_key , self.prime ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : int , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(snake_case__ , (prime - 1) // 2 , snake_case__ ) == 1 ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : str , snake_case__ : str , snake_case__ : int = 14 ): lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(snake_case__ , snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , snake_case__ , snake_case__ ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
674
1
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def _UpperCAmelCase ( lowerCamelCase__="ro" , lowerCamelCase__="en" , lowerCamelCase__="wmt16" , lowerCamelCase__=None ): """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) lowerCAmelCase__ = f"""{src_lang}-{tgt_lang}""" print(f"""Converting {dataset}-{pair}""" ) lowerCAmelCase__ = datasets.load_dataset(lowerCamelCase__ , lowerCamelCase__ ) if save_dir is None: lowerCAmelCase__ = f"""{dataset}-{pair}""" lowerCAmelCase__ = Path(lowerCamelCase__ ) save_dir.mkdir(exist_ok=lowerCamelCase__ ) for split in ds.keys(): print(f"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets lowerCAmelCase__ = """val""" if split == """validation""" else split lowerCAmelCase__ = save_dir.joinpath(f"""{fn}.source""" ) lowerCAmelCase__ = save_dir.joinpath(f"""{fn}.target""" ) lowerCAmelCase__ = src_path.open("""w+""" ) lowerCAmelCase__ = tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): lowerCAmelCase__ = x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(f"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
674
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) lowerCAmelCase__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = weights[0][0][0] lowerCAmelCase__ = np.asarray(layer_norm_a[0] ) lowerCAmelCase__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # lsh weights + output lowerCAmelCase__ = weights[0][1] if len(lowerCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) else: set_layer_weights_in_torch_local(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) # intermediate weighs lowerCAmelCase__ = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase__ ) == 4: lowerCAmelCase__ = intermediate_weights[2] # layernorm 2 lowerCAmelCase__ = np.asarray(intermediate_weights[0][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # intermediate dense lowerCAmelCase__ = np.asarray(intermediate_weights[1][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) # intermediate out lowerCAmelCase__ = np.asarray(intermediate_weights[4][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = torch_model.reformer # word embeds lowerCAmelCase__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase__ ) , ) if isinstance(weights[3] , lowerCamelCase__ ): lowerCAmelCase__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCAmelCase__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" lowerCAmelCase__ = nn.Parameter(torch.tensor(lowerCamelCase__ ) ) lowerCAmelCase__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCAmelCase__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # output layer norm lowerCAmelCase__ = np.asarray(weights[7][0] ) lowerCAmelCase__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # output embeddings lowerCAmelCase__ = np.asarray(weights[9][0] ) lowerCAmelCase__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = ReformerConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = ReformerModelWithLMHead(lowerCamelCase__ ) with open(lowerCamelCase__ , """rb""" ) as f: lowerCAmelCase__ = pickle.load(lowerCamelCase__ )["""weights"""] set_model_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
674
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class a_ ( metaclass=__UpperCamelCase ): UpperCamelCase_ : Optional[Any] = ["torch", "scipy"] def __init__( self : Optional[int] , *snake_case__ : str , **snake_case__ : Tuple ): requires_backends(self , ["""torch""", """scipy"""] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] , *snake_case__ : int , **snake_case__ : Optional[int] ): requires_backends(cls , ["""torch""", """scipy"""] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] , *snake_case__ : Any , **snake_case__ : Tuple ): requires_backends(cls , ["""torch""", """scipy"""] )
674
"""simple docstring""" import os from math import logaa def _UpperCAmelCase ( lowerCamelCase__ = "base_exp.txt" ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) ): lowerCAmelCase__ , lowerCAmelCase__ = list(map(lowerCamelCase__ , line.split(""",""" ) ) ) if x * logaa(lowerCamelCase__ ) > largest: lowerCAmelCase__ = x * logaa(lowerCamelCase__ ) lowerCAmelCase__ = i + 1 return result if __name__ == "__main__": print(solution())
674
1
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ = 50 ): """simple docstring""" lowerCAmelCase__ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"{solution() = }")
674
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" while b: lowerCAmelCase__ , lowerCAmelCase__ = b, a % b return a def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase__ , a % b ) def _UpperCAmelCase ( ): """simple docstring""" print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
674
1
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : List[str] = XGLMTokenizer UpperCamelCase_ : Union[str, Any] = XGLMTokenizerFast UpperCamelCase_ : List[str] = True UpperCamelCase_ : List[str] = True def _SCREAMING_SNAKE_CASE ( self : str ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = XGLMTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = """<pad>""" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(snake_case__ ) , 1008 ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = XGLMTokenizer(snake_case__ , keep_accents=snake_case__ ) lowerCAmelCase__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(snake_case__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCAmelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : List[Any] ): return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def _SCREAMING_SNAKE_CASE ( self : str ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(snake_case__ , f.name ) lowerCAmelCase__ = XGLMTokenizer(f.name , keep_accents=snake_case__ ) lowerCAmelCase__ = pickle.dumps(snake_case__ ) pickle.loads(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): if not self.test_rust_tokenizer: return lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = """I was born in 92000, and this is falsé.""" lowerCAmelCase__ = tokenizer.tokenize(snake_case__ ) lowerCAmelCase__ = rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase__ = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) lowerCAmelCase__ = rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = tokenizer.encode(snake_case__ ) lowerCAmelCase__ = rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = """Hello World!""" lowerCAmelCase__ = [2, 31227, 4447, 35] self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off lowerCAmelCase__ = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): # fmt: off lowerCAmelCase__ = { """input_ids""": [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="""facebook/xglm-564M""" , padding=snake_case__ , )
674
"""simple docstring""" import os def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = os.path.dirname(os.path.realpath(lowerCamelCase__ ) ) lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """triangle.txt""" ) with open(lowerCamelCase__ ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = [] for line in triangle: lowerCAmelCase__ = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(lowerCamelCase__ ) ) a.append(lowerCamelCase__ ) for i in range(1 , len(lowerCamelCase__ ) ): for j in range(len(a[i] ) ): lowerCAmelCase__ = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCAmelCase__ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCamelCase__ , lowerCamelCase__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
674
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if isinstance(lowerCamelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCamelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCamelCase__ ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class a_ ( __UpperCamelCase ): UpperCamelCase_ : int = ["pixel_values"] def __init__( self : Optional[Any] , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = PILImageResampling.BILINEAR , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 255 , snake_case__ : bool = True , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , **snake_case__ : Optional[Any] , ): super().__init__(**snake_case__ ) lowerCAmelCase__ = size if size is not None else {"""shortest_edge""": 224} lowerCAmelCase__ = get_size_dict(snake_case__ , default_to_square=snake_case__ ) lowerCAmelCase__ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowerCAmelCase__ = get_size_dict(snake_case__ , param_name="""crop_size""" ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = do_center_crop lowerCAmelCase__ = crop_size lowerCAmelCase__ = resample lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : np.ndarray , snake_case__ : Dict[str, int] , snake_case__ : PILImageResampling = PILImageResampling.BILINEAR , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Tuple , ): lowerCAmelCase__ = get_size_dict(snake_case__ , default_to_square=snake_case__ ) if "shortest_edge" in size: lowerCAmelCase__ = get_resize_output_image_size(snake_case__ , size["""shortest_edge"""] , default_to_square=snake_case__ ) elif "height" in size and "width" in size: lowerCAmelCase__ = (size["""height"""], size["""width"""]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : np.ndarray , snake_case__ : Dict[str, int] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[Any] , ): lowerCAmelCase__ = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(snake_case__ , size=(size["""height"""], size["""width"""]) , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : np.ndarray , snake_case__ : Union[int, float] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Tuple , ): return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : np.ndarray , snake_case__ : Union[float, List[float]] , snake_case__ : Union[float, List[float]] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[Any] , ): return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : ImageInput , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = None , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : bool = None , snake_case__ : float = None , snake_case__ : bool = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCAmelCase__ = to_numpy_array(snake_case__ ) if do_resize: lowerCAmelCase__ = self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) if do_center_crop: lowerCAmelCase__ = self.center_crop(snake_case__ , size=snake_case__ ) if do_rescale: lowerCAmelCase__ = self.rescale(image=snake_case__ , scale=snake_case__ ) if do_normalize: lowerCAmelCase__ = self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) lowerCAmelCase__ = to_channel_dimension_format(snake_case__ , snake_case__ ) return image def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : ImageInput , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = None , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : bool = None , snake_case__ : float = None , snake_case__ : bool = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : ChannelDimension = ChannelDimension.FIRST , **snake_case__ : Any , ): lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(snake_case__ , default_to_square=snake_case__ ) lowerCAmelCase__ = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ = get_size_dict(snake_case__ , param_name="""crop_size""" ) if not valid_images(snake_case__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) lowerCAmelCase__ = make_batched(snake_case__ ) lowerCAmelCase__ = [ [ self._preprocess_image( image=snake_case__ , do_resize=snake_case__ , size=snake_case__ , resample=snake_case__ , do_center_crop=snake_case__ , crop_size=snake_case__ , do_rescale=snake_case__ , rescale_factor=snake_case__ , do_normalize=snake_case__ , image_mean=snake_case__ , image_std=snake_case__ , data_format=snake_case__ , ) for img in video ] for video in videos ] lowerCAmelCase__ = {"""pixel_values""": videos} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
674
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCAmelCase : Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __lowerCAmelCase : Optional[int] = json.load(f) @require_torch class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Dict ): return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ): lowerCAmelCase__ = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Any , snake_case__ : int ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowerCAmelCase__ = F"""facebook/wmt19-{pair}""" lowerCAmelCase__ = self.get_tokenizer(snake_case__ ) lowerCAmelCase__ = self.get_model(snake_case__ ) lowerCAmelCase__ = bleu_data[pair]["""src"""] lowerCAmelCase__ = bleu_data[pair]["""tgt"""] lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""pt""" , truncation=snake_case__ , padding="""longest""" ).to(snake_case__ ) lowerCAmelCase__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCAmelCase__ = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) lowerCAmelCase__ = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["""bleu"""] , snake_case__ )
674
1
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCAmelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : Dict = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __lowerCAmelCase : Dict = spec.loader.load_module() __lowerCAmelCase : Optional[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __lowerCAmelCase : Any = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __lowerCAmelCase : int = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCAmelCase__ = False # source code of `config_class` lowerCAmelCase__ = inspect.getsource(lowerCamelCase__ ) lowerCAmelCase__ = _re_checkpoint.findall(lowerCamelCase__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCAmelCase__ , lowerCAmelCase__ = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCAmelCase__ = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: lowerCAmelCase__ = True break lowerCAmelCase__ = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: lowerCAmelCase__ = """\n""".join(sorted(lowerCamelCase__ ) ) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
674
"""simple docstring""" import pprint import requests __lowerCAmelCase : Union[str, Any] = "https://zenquotes.io/api" def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = random_quotes() pprint.pprint(response)
674
1
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = OmegaConf.load(lowerCamelCase__ ) lowerCAmelCase__ = torch.load(lowerCamelCase__ , map_location="""cpu""" )["""model"""] lowerCAmelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCAmelCase__ = {} lowerCAmelCase__ = """first_stage_model.""" for key in keys: if key.startswith(lowerCamelCase__ ): lowerCAmelCase__ = state_dict[key] # extract state_dict for UNetLDM lowerCAmelCase__ = {} lowerCAmelCase__ = """model.diffusion_model.""" for key in keys: if key.startswith(lowerCamelCase__ ): lowerCAmelCase__ = state_dict[key] lowerCAmelCase__ = config.model.params.first_stage_config.params lowerCAmelCase__ = config.model.params.unet_config.params lowerCAmelCase__ = VQModel(**lowerCamelCase__ ).eval() vqvae.load_state_dict(lowerCamelCase__ ) lowerCAmelCase__ = UNetLDMModel(**lowerCamelCase__ ).eval() unet.load_state_dict(lowerCamelCase__ ) lowerCAmelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=lowerCamelCase__ , ) lowerCAmelCase__ = LDMPipeline(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) pipeline.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", type=str, required=True) parser.add_argument("--config_path", type=str, required=True) parser.add_argument("--output_path", type=str, required=True) __lowerCAmelCase : Optional[Any] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
674
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = CLIPConfig() # Create a dummy config file with image_proceesor_type lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ).to_dict() config_dict.pop("""image_processor_type""" ) lowerCAmelCase__ = CLIPImageProcessor(**snake_case__ ) # save in new folder model_config.save_pretrained(snake_case__ ) config.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) # make sure private variable is not incorrectly saved lowerCAmelCase__ = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with self.assertRaisesRegex( snake_case__ , """clip-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""clip-base""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): with self.assertRaisesRegex( snake_case__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , revision="""aaaaaa""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): with self.assertRaisesRegex( snake_case__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , trust_remote_code=snake_case__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ): try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoImageProcessor.register(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = CustomImageProcessor.from_pretrained(snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self : List[str] ): class a_ ( __UpperCamelCase ): UpperCamelCase_ : Tuple = True try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # If remote code is not set, the default is to use local lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(snake_case__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
674
1
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = """""" for i in table: res += inp[i - 1] return res def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return data[1:] + data[0] def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = """""" for i in range(len(lowerCamelCase__ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = int("""0b""" + data[0] + data[-1] , 2 ) lowerCAmelCase__ = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = message[:4] lowerCAmelCase__ = message[4:] lowerCAmelCase__ = apply_table(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = xor(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = apply_sbox(lowerCamelCase__ , temp[:4] ) # noqa: E741 lowerCAmelCase__ = apply_sbox(lowerCamelCase__ , temp[4:] ) lowerCAmelCase__ = """0""" * (2 - len(lowerCamelCase__ )) + l # noqa: E741 lowerCAmelCase__ = """0""" * (2 - len(lowerCamelCase__ )) + r lowerCAmelCase__ = apply_table(l + r , lowerCamelCase__ ) lowerCAmelCase__ = xor(lowerCamelCase__ , lowerCamelCase__ ) return temp + right if __name__ == "__main__": __lowerCAmelCase : List[str] = input("Enter 10 bit key: ") __lowerCAmelCase : Optional[int] = input("Enter 8 bit message: ") __lowerCAmelCase : str = [6, 3, 7, 4, 8, 5, 10, 9] __lowerCAmelCase : Union[str, Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __lowerCAmelCase : Tuple = [2, 4, 3, 1] __lowerCAmelCase : Dict = [2, 6, 3, 1, 4, 8, 5, 7] __lowerCAmelCase : str = [4, 1, 3, 5, 7, 2, 8, 6] __lowerCAmelCase : List[str] = [4, 1, 2, 3, 2, 3, 4, 1] __lowerCAmelCase : Union[str, Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __lowerCAmelCase : str = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __lowerCAmelCase : List[Any] = apply_table(key, paa_table) __lowerCAmelCase : Dict = temp[:5] __lowerCAmelCase : List[Any] = temp[5:] __lowerCAmelCase : int = left_shift(left) __lowerCAmelCase : Optional[Any] = left_shift(right) __lowerCAmelCase : List[Any] = apply_table(left + right, pa_table) __lowerCAmelCase : Tuple = left_shift(left) __lowerCAmelCase : Dict = left_shift(right) __lowerCAmelCase : Any = left_shift(left) __lowerCAmelCase : Optional[Any] = left_shift(right) __lowerCAmelCase : int = apply_table(left + right, pa_table) # encryption __lowerCAmelCase : Union[str, Any] = apply_table(message, IP) __lowerCAmelCase : Dict = function(expansion, sa, sa, keya, temp) __lowerCAmelCase : List[Any] = temp[4:] + temp[:4] __lowerCAmelCase : List[str] = function(expansion, sa, sa, keya, temp) __lowerCAmelCase : Any = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __lowerCAmelCase : Union[str, Any] = apply_table(CT, IP) __lowerCAmelCase : int = function(expansion, sa, sa, keya, temp) __lowerCAmelCase : List[str] = temp[4:] + temp[:4] __lowerCAmelCase : List[str] = function(expansion, sa, sa, keya, temp) __lowerCAmelCase : List[str] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
674
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a_ : def __init__( self : Optional[int] , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=64 , snake_case__ : Any=None ): lowerCAmelCase__ = np.random.default_rng(snake_case__ ) lowerCAmelCase__ = length lowerCAmelCase__ = rng.normal(size=(length,) ).astype(np.floataa ) lowerCAmelCase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[Any] ): return self.length def __getitem__( self : List[str] , snake_case__ : Optional[int] ): return {"x": self.x[i], "y": self.y[i]} class a_ ( torch.nn.Module ): def __init__( self : List[str] , snake_case__ : str=0 , snake_case__ : Dict=0 , snake_case__ : Any=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Any=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a[0] + self.b[0] class a_ ( torch.nn.Module ): def __init__( self : Any , snake_case__ : Union[str, Any]=0 , snake_case__ : Union[str, Any]=0 , snake_case__ : List[Any]=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any]=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a + self.b def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase__ = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} lowerCAmelCase__ = load_dataset("""csv""" , data_files=lowerCamelCase__ ) lowerCAmelCase__ = datasets["""train"""].unique("""label""" ) lowerCAmelCase__ = {v: i for i, v in enumerate(lowerCamelCase__ )} def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" ) if "label" in examples: lowerCAmelCase__ = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase__ = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=2 ) lowerCAmelCase__ = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
674
1