code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import os
def _UpperCAmelCase ( lowerCamelCase__ = "input.txt" ):
"""simple docstring"""
with open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) as input_file:
lowerCAmelCase__ = [
[int(lowerCamelCase__ ) for element in line.split(""",""" )]
for line in input_file.readlines()
]
lowerCAmelCase__ = len(lowerCamelCase__ )
lowerCAmelCase__ = len(matrix[0] )
lowerCAmelCase__ = [[-1 for _ in range(lowerCamelCase__ )] for _ in range(lowerCamelCase__ )]
for i in range(lowerCamelCase__ ):
lowerCAmelCase__ = matrix[i][0]
for j in range(1 , lowerCamelCase__ ):
for i in range(lowerCamelCase__ ):
lowerCAmelCase__ = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , lowerCamelCase__ ):
lowerCAmelCase__ = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
lowerCAmelCase__ = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(F"{solution() = }")
| 674 | """simple docstring"""
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = MobileBertConfig.from_json_file(lowerCamelCase__ )
print(f"""Building PyTorch model from configuration: {config}""" )
lowerCAmelCase__ = MobileBertForPreTraining(lowerCamelCase__ )
# Load weights from tf checkpoint
lowerCAmelCase__ = load_tf_weights_in_mobilebert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , lowerCamelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--mobilebert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained MobileBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__lowerCAmelCase : Optional[int] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 674 | 1 |
"""simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ = 400_0000 ):
"""simple docstring"""
lowerCAmelCase__ = []
lowerCAmelCase__ , lowerCAmelCase__ = 0, 1
while b <= n:
if b % 2 == 0:
even_fibs.append(lowerCamelCase__ )
lowerCAmelCase__ , lowerCAmelCase__ = b, a + b
return sum(lowerCamelCase__ )
if __name__ == "__main__":
print(F"{solution() = }")
| 674 | """simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), f"""The input value of [n={number}] is not an integer"""
if number == 1:
return 2
elif number < 1:
lowerCAmelCase__ = f"""The input value of [n={number}] has to be > 0"""
raise ValueError(lowerCamelCase__ )
else:
lowerCAmelCase__ = sylvester(number - 1 )
lowerCAmelCase__ = num - 1
lowerCAmelCase__ = num
return lower * upper + 1
if __name__ == "__main__":
print(F"The 8th number in Sylvester's sequence: {sylvester(8)}")
| 674 | 1 |
"""simple docstring"""
import unittest
from transformers.testing_utils import CaptureStdout
from transformers.tools.python_interpreter import evaluate
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
return x + 2
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : Any ):
lowerCAmelCase__ = """x = 3"""
lowerCAmelCase__ = {}
lowerCAmelCase__ = evaluate(snake_case__ , {} , state=snake_case__ )
assert result == 3
self.assertDictEqual(snake_case__ , {"""x""": 3} )
lowerCAmelCase__ = """x = y"""
lowerCAmelCase__ = {"""y""": 5}
lowerCAmelCase__ = evaluate(snake_case__ , {} , state=snake_case__ )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(snake_case__ , {"""x""": 5, """y""": 5} )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = """y = add_two(x)"""
lowerCAmelCase__ = {"""x""": 3}
lowerCAmelCase__ = evaluate(snake_case__ , {"""add_two""": add_two} , state=snake_case__ )
assert result == 5
self.assertDictEqual(snake_case__ , {"""x""": 3, """y""": 5} )
# Won't work without the tool
with CaptureStdout() as out:
lowerCAmelCase__ = evaluate(snake_case__ , {} , state=snake_case__ )
assert result is None
assert "tried to execute add_two" in out.out
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = """x = 3"""
lowerCAmelCase__ = {}
lowerCAmelCase__ = evaluate(snake_case__ , {} , state=snake_case__ )
assert result == 3
self.assertDictEqual(snake_case__ , {"""x""": 3} )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = """test_dict = {'x': x, 'y': add_two(x)}"""
lowerCAmelCase__ = {"""x""": 3}
lowerCAmelCase__ = evaluate(snake_case__ , {"""add_two""": add_two} , state=snake_case__ )
self.assertDictEqual(snake_case__ , {"""x""": 3, """y""": 5} )
self.assertDictEqual(snake_case__ , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} )
def _SCREAMING_SNAKE_CASE ( self : Any ):
lowerCAmelCase__ = """x = 3\ny = 5"""
lowerCAmelCase__ = {}
lowerCAmelCase__ = evaluate(snake_case__ , {} , state=snake_case__ )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(snake_case__ , {"""x""": 3, """y""": 5} )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = """text = f'This is x: {x}.'"""
lowerCAmelCase__ = {"""x""": 3}
lowerCAmelCase__ = evaluate(snake_case__ , {} , state=snake_case__ )
# evaluate returns the value of the last assignment.
assert result == "This is x: 3."
self.assertDictEqual(snake_case__ , {"""x""": 3, """text""": """This is x: 3."""} )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = """if x <= 3:\n y = 2\nelse:\n y = 5"""
lowerCAmelCase__ = {"""x""": 3}
lowerCAmelCase__ = evaluate(snake_case__ , {} , state=snake_case__ )
# evaluate returns the value of the last assignment.
assert result == 2
self.assertDictEqual(snake_case__ , {"""x""": 3, """y""": 2} )
lowerCAmelCase__ = {"""x""": 8}
lowerCAmelCase__ = evaluate(snake_case__ , {} , state=snake_case__ )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(snake_case__ , {"""x""": 8, """y""": 5} )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = """test_list = [x, add_two(x)]"""
lowerCAmelCase__ = {"""x""": 3}
lowerCAmelCase__ = evaluate(snake_case__ , {"""add_two""": add_two} , state=snake_case__ )
self.assertListEqual(snake_case__ , [3, 5] )
self.assertDictEqual(snake_case__ , {"""x""": 3, """test_list""": [3, 5]} )
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = """y = x"""
lowerCAmelCase__ = {"""x""": 3}
lowerCAmelCase__ = evaluate(snake_case__ , {} , state=snake_case__ )
assert result == 3
self.assertDictEqual(snake_case__ , {"""x""": 3, """y""": 3} )
def _SCREAMING_SNAKE_CASE ( self : Any ):
lowerCAmelCase__ = """test_list = [x, add_two(x)]\ntest_list[1]"""
lowerCAmelCase__ = {"""x""": 3}
lowerCAmelCase__ = evaluate(snake_case__ , {"""add_two""": add_two} , state=snake_case__ )
assert result == 5
self.assertDictEqual(snake_case__ , {"""x""": 3, """test_list""": [3, 5]} )
lowerCAmelCase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']"""
lowerCAmelCase__ = {"""x""": 3}
lowerCAmelCase__ = evaluate(snake_case__ , {"""add_two""": add_two} , state=snake_case__ )
assert result == 5
self.assertDictEqual(snake_case__ , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = """x = 0\nfor i in range(3):\n x = i"""
lowerCAmelCase__ = {}
lowerCAmelCase__ = evaluate(snake_case__ , {"""range""": range} , state=snake_case__ )
assert result == 2
self.assertDictEqual(snake_case__ , {"""x""": 2, """i""": 2} )
| 674 | """simple docstring"""
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__lowerCAmelCase : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model")
@require_sentencepiece
@require_tokenizers
class a_ ( __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : Tuple = PegasusTokenizer
UpperCamelCase_ : Any = PegasusTokenizerFast
UpperCamelCase_ : int = True
UpperCamelCase_ : Any = True
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase__ = PegasusTokenizer(snake_case__ )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : Optional[Any] ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any] ):
return ("This is a test", "This is a test")
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = """</s>"""
lowerCAmelCase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(snake_case__ ) , 1103 )
def _SCREAMING_SNAKE_CASE ( self : Any ):
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowerCAmelCase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
lowerCAmelCase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1]
lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 96103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
lowerCAmelCase__ = """To ensure a smooth flow of bank resolutions."""
lowerCAmelCase__ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1]
lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = ["""This is going to be way too long.""" * 150, """short example"""]
lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""]
lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
lowerCAmelCase__ = self._large_tokenizer(
text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(snake_case__ ) == 2 # input_ids, attention_mask.
@slow
def _SCREAMING_SNAKE_CASE ( self : str ):
# fmt: off
lowerCAmelCase__ = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class a_ ( __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : str = PegasusTokenizer
UpperCamelCase_ : Optional[int] = PegasusTokenizerFast
UpperCamelCase_ : Union[str, Any] = True
UpperCamelCase_ : Optional[int] = True
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase__ = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Dict ):
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : List[Any] ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Dict ):
return ("This is a test", "This is a test")
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
@require_torch
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = ["""This is going to be way too long.""" * 1000, """short example"""]
lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""]
lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
lowerCAmelCase__ = self._large_tokenizer(
text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(snake_case__ ) == 2 # input_ids, attention_mask.
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
lowerCAmelCase__ = self._large_tokenizer(snake_case__ ).input_ids
self.assertListEqual(
snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
| 674 | 1 |
"""simple docstring"""
from .configuration_bert_masked import MaskedBertConfig
from .modeling_bert_masked import (
MaskedBertForMultipleChoice,
MaskedBertForQuestionAnswering,
MaskedBertForSequenceClassification,
MaskedBertForTokenClassification,
MaskedBertModel,
)
from .modules import *
| 674 | """simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , )
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue_model_parallelism.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
] )
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : int ):
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case__ , )
assert hasattr(self , """env""" )
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] ):
# configuration for running training on smdistributed Model Parallel
lowerCAmelCase__ = {
"""enabled""": True,
"""processes_per_host""": 8,
}
lowerCAmelCase__ = {
"""enabled""": True,
"""parameters""": {
"""microbatches""": 4,
"""placement_strategy""": """spread""",
"""pipeline""": """interleaved""",
"""optimize""": """speed""",
"""partitions""": 4,
"""ddp""": True,
},
}
lowerCAmelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options}
lowerCAmelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer"""
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={
**self.env.hyperparameters,
"""model_name_or_path""": self.model_name_or_path,
"""max_steps""": 500,
} , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="""py36""" , )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str ):
TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] ):
# create estimator
lowerCAmelCase__ = self.create_estimator(snake_case__ )
# run training
estimator.fit()
# result dataframe
lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] )
lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
lowerCAmelCase__ = (
Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy )
assert all(t <= self.results["""eval_loss"""] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile:
json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case__ )
| 674 | 1 |
"""simple docstring"""
import io
import json
import unittest
from parameterized import parameterized
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device
from utils import calculate_bleu
__lowerCAmelCase : Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json"
with io.open(filename, "r", encoding="utf-8") as f:
__lowerCAmelCase : Optional[int] = json.load(f)
@require_torch
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Dict ):
return FSMTTokenizer.from_pretrained(snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ):
lowerCAmelCase__ = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ )
if torch_device == "cuda":
model.half()
return model
@parameterized.expand(
[
["""en-ru""", 26.0],
["""ru-en""", 22.0],
["""en-de""", 22.0],
["""de-en""", 29.0],
] )
@slow
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Any , snake_case__ : int ):
# note: this test is not testing the best performance since it only evals a small batch
# but it should be enough to detect a regression in the output quality
lowerCAmelCase__ = F"""facebook/wmt19-{pair}"""
lowerCAmelCase__ = self.get_tokenizer(snake_case__ )
lowerCAmelCase__ = self.get_model(snake_case__ )
lowerCAmelCase__ = bleu_data[pair]["""src"""]
lowerCAmelCase__ = bleu_data[pair]["""tgt"""]
lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""pt""" , truncation=snake_case__ , padding="""longest""" ).to(snake_case__ )
lowerCAmelCase__ = model.generate(
input_ids=batch.input_ids , num_beams=8 , )
lowerCAmelCase__ = tokenizer.batch_decode(
snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ )
lowerCAmelCase__ = calculate_bleu(snake_case__ , snake_case__ )
print(snake_case__ )
self.assertGreaterEqual(scores["""bleu"""] , snake_case__ )
| 674 | """simple docstring"""
from math import pi, sqrt
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
if num <= 0:
raise ValueError("""math domain error""" )
if num > 1_71.5:
raise OverflowError("""math range error""" )
elif num - int(lowerCamelCase__ ) not in (0, 0.5):
raise NotImplementedError("""num must be an integer or a half-integer""" )
elif num == 0.5:
return sqrt(lowerCamelCase__ )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def _UpperCAmelCase ( ):
"""simple docstring"""
assert gamma(0.5 ) == sqrt(lowerCamelCase__ )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
__lowerCAmelCase : Dict = 1.0
while num:
__lowerCAmelCase : Any = float(input("Gamma of: "))
print(F"gamma({num}) = {gamma(num)}")
print("\nEnter 0 to exit...")
| 674 | 1 |
"""simple docstring"""
from __future__ import annotations
__lowerCAmelCase : List[Any] = 8.9_8_8e9 # units = N * m^s * C^-2
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = abs(chargea * chargea )
if (force, chargea, chargea, distance).count(0 ) != 1:
raise ValueError("""One and only one argument must be 0""" )
if distance < 0:
raise ValueError("""Distance cannot be negative""" )
if force == 0:
lowerCAmelCase__ = COULOMBS_CONSTANT * charge_product / (distance**2)
return {"force": force}
elif chargea == 0:
lowerCAmelCase__ = abs(lowerCamelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge1": chargea}
elif chargea == 0:
lowerCAmelCase__ = abs(lowerCamelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge2": chargea}
elif distance == 0:
lowerCAmelCase__ = (COULOMBS_CONSTANT * charge_product / abs(lowerCamelCase__ )) ** 0.5
return {"distance": distance}
raise ValueError("""Exactly one argument must be 0""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 674 | """simple docstring"""
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class a_ :
def __init__( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any=13 , snake_case__ : int=30 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : Dict=True , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=32 , snake_case__ : List[str]=2 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[int]=37 , snake_case__ : Tuple="gelu" , snake_case__ : str=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=10 , snake_case__ : Dict=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : str=None , snake_case__ : List[Any]=2 , ):
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = image_size
lowerCAmelCase__ = patch_size
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = type_sequence_label_size
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = scope
lowerCAmelCase__ = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
lowerCAmelCase__ = (image_size // patch_size) ** 2
lowerCAmelCase__ = num_patches + 2
def _SCREAMING_SNAKE_CASE ( self : Any ):
lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase__ = None
if self.use_labels:
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase__ = self.get_config()
return config, pixel_values, labels
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[str] ):
lowerCAmelCase__ = TFDeiTModel(config=snake_case__ )
lowerCAmelCase__ = model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict ):
lowerCAmelCase__ = TFDeiTForMaskedImageModeling(config=snake_case__ )
lowerCAmelCase__ = model(snake_case__ )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
lowerCAmelCase__ = 1
lowerCAmelCase__ = TFDeiTForMaskedImageModeling(snake_case__ )
lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCAmelCase__ = model(snake_case__ )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple ):
lowerCAmelCase__ = self.type_sequence_label_size
lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ )
lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
lowerCAmelCase__ = 1
lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ )
lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = self.prepare_config_and_inputs()
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs
lowerCAmelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : Optional[Any] = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
UpperCamelCase_ : Any = (
{
"feature-extraction": TFDeiTModel,
"image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
UpperCamelCase_ : Optional[Any] = False
UpperCamelCase_ : Optional[Any] = False
UpperCamelCase_ : Optional[int] = False
UpperCamelCase_ : int = False
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = TFDeiTModelTester(self )
lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""DeiT does not use inputs_embeds""" )
def _SCREAMING_SNAKE_CASE ( self : Any ):
pass
def _SCREAMING_SNAKE_CASE ( self : str ):
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
lowerCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Dense ) )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
lowerCAmelCase__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase__ = [*signature.parameters.keys()]
lowerCAmelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any]=False ):
lowerCAmelCase__ = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def _SCREAMING_SNAKE_CASE ( self : Any ):
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase__ = TFDeiTModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class a_ ( unittest.TestCase ):
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Any ):
return (
DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" )
if is_vision_available()
else None
)
@slow
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" )
lowerCAmelCase__ = self.default_image_processor
lowerCAmelCase__ = prepare_img()
lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors="""tf""" )
# forward pass
lowerCAmelCase__ = model(**snake_case__ )
# verify the logits
lowerCAmelCase__ = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , snake_case__ )
lowerCAmelCase__ = tf.constant([-1.0266, 0.1912, -1.2861] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
| 674 | 1 |
"""simple docstring"""
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class a_ :
def __init__( self : Optional[int] , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=64 , snake_case__ : Any=None ):
lowerCAmelCase__ = np.random.default_rng(snake_case__ )
lowerCAmelCase__ = length
lowerCAmelCase__ = rng.normal(size=(length,) ).astype(np.floataa )
lowerCAmelCase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self : Optional[Any] ):
return self.length
def __getitem__( self : List[str] , snake_case__ : Optional[int] ):
return {"x": self.x[i], "y": self.y[i]}
class a_ ( torch.nn.Module ):
def __init__( self : List[str] , snake_case__ : str=0 , snake_case__ : Dict=0 , snake_case__ : Any=False ):
super().__init__()
lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
lowerCAmelCase__ = True
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Any=None ):
if self.first_batch:
print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" )
lowerCAmelCase__ = False
return x * self.a[0] + self.b[0]
class a_ ( torch.nn.Module ):
def __init__( self : Any , snake_case__ : Union[str, Any]=0 , snake_case__ : Union[str, Any]=0 , snake_case__ : List[Any]=False ):
super().__init__()
lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() )
lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() )
lowerCAmelCase__ = True
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any]=None ):
if self.first_batch:
print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" )
lowerCAmelCase__ = False
return x * self.a + self.b
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 16 ):
"""simple docstring"""
from datasets import load_dataset
from transformers import AutoTokenizer
lowerCAmelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" )
lowerCAmelCase__ = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
lowerCAmelCase__ = load_dataset("""csv""" , data_files=lowerCamelCase__ )
lowerCAmelCase__ = datasets["""train"""].unique("""label""" )
lowerCAmelCase__ = {v: i for i, v in enumerate(lowerCamelCase__ )}
def tokenize_function(lowerCamelCase__ ):
# max_length=None => use the model max length (it's actually the default)
lowerCAmelCase__ = tokenizer(
examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" )
if "label" in examples:
lowerCAmelCase__ = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
lowerCAmelCase__ = datasets.map(
lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , )
def collate_fn(lowerCamelCase__ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
lowerCAmelCase__ = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=2 )
lowerCAmelCase__ = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 674 | """simple docstring"""
from __future__ import annotations
from math import gcd
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 3 , ):
"""simple docstring"""
if num < 2:
raise ValueError("""The input value cannot be less than 2""" )
# Because of the relationship between ``f(f(x))`` and ``f(x)``, this
# algorithm struggles to find factors that are divisible by two.
# As a workaround, we specifically check for two and even inputs.
# See: https://math.stackexchange.com/a/2856214/165820
if num > 2 and num % 2 == 0:
return 2
# Pollard's Rho algorithm requires a function that returns pseudorandom
# values between 0 <= X < ``num``. It doesn't need to be random in the
# sense that the output value is cryptographically secure or difficult
# to calculate, it only needs to be random in the sense that all output
# values should be equally likely to appear.
# For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num``
# However, the success of Pollard's algorithm isn't guaranteed and is
# determined in part by the initial seed and the chosen random function.
# To make retries easier, we will instead use ``f(x) = (x**2 + C) % num``
# where ``C`` is a value that we can modify between each attempt.
def rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int:
return (pow(lowerCamelCase__ , 2 ) + step) % modulus
for _ in range(lowerCamelCase__ ):
# These track the position within the cycle detection logic.
lowerCAmelCase__ = seed
lowerCAmelCase__ = seed
while True:
# At each iteration, the tortoise moves one step and the hare moves two.
lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# At some point both the tortoise and the hare will enter a cycle whose
# length ``p`` is a divisor of ``num``. Once in that cycle, at some point
# the tortoise and hare will end up on the same value modulo ``p``.
# We can detect when this happens because the position difference between
# the tortoise and the hare will share a common divisor with ``num``.
lowerCAmelCase__ = gcd(hare - tortoise , lowerCamelCase__ )
if divisor == 1:
# No common divisor yet, just keep searching.
continue
else:
# We found a common divisor!
if divisor == num:
# Unfortunately, the divisor is ``num`` itself and is useless.
break
else:
# The divisor is a nontrivial factor of ``num``!
return divisor
# If we made it here, then this attempt failed.
# We need to pick a new starting seed for the tortoise and hare
# in addition to a new step value for the random function.
# To keep this example implementation deterministic, the
# new values will be generated based on currently available
# values instead of using something like ``random.randint``.
# We can use the hare's position as the new seed.
# This is actually what Richard Brent's the "optimized" variant does.
lowerCAmelCase__ = hare
# The new step value for the random function can just be incremented.
# At first the results will be similar to what the old function would
# have produced, but the value will quickly diverge after a bit.
step += 1
# We haven't found a divisor within the requested number of attempts.
# We were unlucky or ``num`` itself is actually prime.
return None
if __name__ == "__main__":
import argparse
__lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"num",
type=int,
help="The value to find a divisor of",
)
parser.add_argument(
"--attempts",
type=int,
default=3,
help="The number of attempts before giving up",
)
__lowerCAmelCase : List[str] = parser.parse_args()
__lowerCAmelCase : Dict = pollard_rho(args.num, attempts=args.attempts)
if divisor is None:
print(F"{args.num} is probably prime")
else:
__lowerCAmelCase : List[str] = args.num // divisor
print(F"{args.num} = {divisor} * {quotient}")
| 674 | 1 |
"""simple docstring"""
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : int = (IPNDMScheduler,)
UpperCamelCase_ : Optional[int] = (("num_inference_steps", 50),)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **snake_case__ : Union[str, Any] ):
lowerCAmelCase__ = {"""num_train_timesteps""": 1000}
config.update(**snake_case__ )
return config
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Optional[int]=0 , **snake_case__ : Dict ):
lowerCAmelCase__ = dict(self.forward_default_kwargs )
lowerCAmelCase__ = kwargs.pop("""num_inference_steps""" , snake_case__ )
lowerCAmelCase__ = self.dummy_sample
lowerCAmelCase__ = 0.1 * sample
lowerCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowerCAmelCase__ = self.get_scheduler_config(**snake_case__ )
lowerCAmelCase__ = scheduler_class(**snake_case__ )
scheduler.set_timesteps(snake_case__ )
# copy over dummy past residuals
lowerCAmelCase__ = dummy_past_residuals[:]
if time_step is None:
lowerCAmelCase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(snake_case__ )
lowerCAmelCase__ = scheduler_class.from_pretrained(snake_case__ )
new_scheduler.set_timesteps(snake_case__ )
# copy over dummy past residuals
lowerCAmelCase__ = dummy_past_residuals[:]
lowerCAmelCase__ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample
lowerCAmelCase__ = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowerCAmelCase__ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample
lowerCAmelCase__ = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def _SCREAMING_SNAKE_CASE ( self : int ):
pass
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any]=0 , **snake_case__ : Optional[int] ):
lowerCAmelCase__ = dict(self.forward_default_kwargs )
lowerCAmelCase__ = kwargs.pop("""num_inference_steps""" , snake_case__ )
lowerCAmelCase__ = self.dummy_sample
lowerCAmelCase__ = 0.1 * sample
lowerCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowerCAmelCase__ = self.get_scheduler_config()
lowerCAmelCase__ = scheduler_class(**snake_case__ )
scheduler.set_timesteps(snake_case__ )
# copy over dummy past residuals (must be after setting timesteps)
lowerCAmelCase__ = dummy_past_residuals[:]
if time_step is None:
lowerCAmelCase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(snake_case__ )
lowerCAmelCase__ = scheduler_class.from_pretrained(snake_case__ )
# copy over dummy past residuals
new_scheduler.set_timesteps(snake_case__ )
# copy over dummy past residual (must be after setting timesteps)
lowerCAmelCase__ = dummy_past_residuals[:]
lowerCAmelCase__ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample
lowerCAmelCase__ = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowerCAmelCase__ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample
lowerCAmelCase__ = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def _SCREAMING_SNAKE_CASE ( self : Any , **snake_case__ : Optional[int] ):
lowerCAmelCase__ = self.scheduler_classes[0]
lowerCAmelCase__ = self.get_scheduler_config(**snake_case__ )
lowerCAmelCase__ = scheduler_class(**snake_case__ )
lowerCAmelCase__ = 10
lowerCAmelCase__ = self.dummy_model()
lowerCAmelCase__ = self.dummy_sample_deter
scheduler.set_timesteps(snake_case__ )
for i, t in enumerate(scheduler.timesteps ):
lowerCAmelCase__ = model(snake_case__ , snake_case__ )
lowerCAmelCase__ = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
lowerCAmelCase__ = model(snake_case__ , snake_case__ )
lowerCAmelCase__ = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample
return sample
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = dict(self.forward_default_kwargs )
lowerCAmelCase__ = kwargs.pop("""num_inference_steps""" , snake_case__ )
for scheduler_class in self.scheduler_classes:
lowerCAmelCase__ = self.get_scheduler_config()
lowerCAmelCase__ = scheduler_class(**snake_case__ )
lowerCAmelCase__ = self.dummy_sample
lowerCAmelCase__ = 0.1 * sample
if num_inference_steps is not None and hasattr(snake_case__ , """set_timesteps""" ):
scheduler.set_timesteps(snake_case__ )
elif num_inference_steps is not None and not hasattr(snake_case__ , """set_timesteps""" ):
lowerCAmelCase__ = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowerCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
lowerCAmelCase__ = dummy_past_residuals[:]
lowerCAmelCase__ = scheduler.timesteps[5]
lowerCAmelCase__ = scheduler.timesteps[6]
lowerCAmelCase__ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample
lowerCAmelCase__ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
lowerCAmelCase__ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample
lowerCAmelCase__ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=snake_case__ , time_step=snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Any ):
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=snake_case__ , time_step=snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = self.full_loop()
lowerCAmelCase__ = torch.mean(torch.abs(snake_case__ ) )
assert abs(result_mean.item() - 2540529 ) < 10
| 674 | """simple docstring"""
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = TapasConfig.from_json_file(lowerCamelCase__ )
# set absolute/relative position embeddings parameter
lowerCAmelCase__ = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ )
elif task == "WTQ":
# run_task_main.py hparams
lowerCAmelCase__ = 4
lowerCAmelCase__ = True
# hparam_utils.py hparams
lowerCAmelCase__ = 0.66_46_94
lowerCAmelCase__ = 0.20_79_51
lowerCAmelCase__ = 0.12_11_94
lowerCAmelCase__ = True
lowerCAmelCase__ = True
lowerCAmelCase__ = False
lowerCAmelCase__ = 0.0_35_25_13
lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
lowerCAmelCase__ = 4
lowerCAmelCase__ = False
# hparam_utils.py hparams
lowerCAmelCase__ = 36.45_19
lowerCAmelCase__ = 0.90_34_21
lowerCAmelCase__ = 2_22.0_88
lowerCAmelCase__ = True
lowerCAmelCase__ = True
lowerCAmelCase__ = True
lowerCAmelCase__ = 0.76_31_41
lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ )
elif task == "TABFACT":
lowerCAmelCase__ = TapasForSequenceClassification(config=lowerCamelCase__ )
elif task == "MLM":
lowerCAmelCase__ = TapasForMaskedLM(config=lowerCamelCase__ )
elif task == "INTERMEDIATE_PRETRAINING":
lowerCAmelCase__ = TapasModel(config=lowerCamelCase__ )
else:
raise ValueError(f"""Task {task} not supported.""" )
print(f"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# Save pytorch-model (weights and configuration)
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(lowerCamelCase__ )
# Save tokenizer files
print(f"""Save tokenizer files to {pytorch_dump_path}""" )
lowerCAmelCase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 )
tokenizer.save_pretrained(lowerCamelCase__ )
print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
__lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA."
)
parser.add_argument(
"--reset_position_index_per_cell",
default=False,
action="store_true",
help="Whether to use relative position embeddings or not. Defaults to True.",
)
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--tapas_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained TAPAS model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__lowerCAmelCase : Union[str, Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 674 | 1 |
"""simple docstring"""
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=True , lowerCamelCase__="pt" ):
"""simple docstring"""
lowerCAmelCase__ = {"""add_prefix_space""": True} if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and not line.startswith(""" """ ) else {}
lowerCAmelCase__ = padding_side
return tokenizer(
[line] , max_length=lowerCamelCase__ , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase__ , return_tensors=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , **lowerCamelCase__ , )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , ):
"""simple docstring"""
lowerCAmelCase__ = input_ids.ne(lowerCamelCase__ ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class a_ ( __UpperCamelCase ):
def __init__( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[int]="train" , snake_case__ : Union[str, Any]=None , snake_case__ : List[Any]=None , snake_case__ : Union[str, Any]=None , snake_case__ : Optional[Any]="" , ):
super().__init__()
lowerCAmelCase__ = Path(snake_case__ ).joinpath(type_path + """.source""" )
lowerCAmelCase__ = Path(snake_case__ ).joinpath(type_path + """.target""" )
lowerCAmelCase__ = self.get_char_lens(self.src_file )
lowerCAmelCase__ = max_source_length
lowerCAmelCase__ = max_target_length
assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}"""
lowerCAmelCase__ = tokenizer
lowerCAmelCase__ = prefix
if n_obs is not None:
lowerCAmelCase__ = self.src_lens[:n_obs]
lowerCAmelCase__ = src_lang
lowerCAmelCase__ = tgt_lang
def __len__( self : Tuple ):
return len(self.src_lens )
def __getitem__( self : Any , snake_case__ : Union[str, Any] ):
lowerCAmelCase__ = index + 1 # linecache starts at 1
lowerCAmelCase__ = self.prefix + linecache.getline(str(self.src_file ) , snake_case__ ).rstrip("""\n""" )
lowerCAmelCase__ = linecache.getline(str(self.tgt_file ) , snake_case__ ).rstrip("""\n""" )
assert source_line, F"""empty source line for index {index}"""
assert tgt_line, F"""empty tgt line for index {index}"""
# Need to add eos token manually for T5
if isinstance(self.tokenizer , snake_case__ ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
lowerCAmelCase__ = (
self.tokenizer.question_encoder if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer
)
lowerCAmelCase__ = self.tokenizer.generator if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer
lowerCAmelCase__ = encode_line(snake_case__ , snake_case__ , self.max_source_length , """right""" )
lowerCAmelCase__ = encode_line(snake_case__ , snake_case__ , self.max_target_length , """right""" )
lowerCAmelCase__ = source_inputs["""input_ids"""].squeeze()
lowerCAmelCase__ = target_inputs["""input_ids"""].squeeze()
lowerCAmelCase__ = source_inputs["""attention_mask"""].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def _SCREAMING_SNAKE_CASE ( snake_case__ : Union[str, Any] ):
return [len(snake_case__ ) for x in Path(snake_case__ ).open().readlines()]
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Optional[Any] ):
lowerCAmelCase__ = torch.stack([x["""input_ids"""] for x in batch] )
lowerCAmelCase__ = torch.stack([x["""attention_mask"""] for x in batch] )
lowerCAmelCase__ = torch.stack([x["""decoder_input_ids"""] for x in batch] )
lowerCAmelCase__ = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer , snake_case__ )
else self.tokenizer.pad_token_id
)
lowerCAmelCase__ = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer , snake_case__ )
else self.tokenizer.pad_token_id
)
lowerCAmelCase__ = trim_batch(snake_case__ , snake_case__ )
lowerCAmelCase__ , lowerCAmelCase__ = trim_batch(snake_case__ , snake_case__ , attention_mask=snake_case__ )
lowerCAmelCase__ = {
"""input_ids""": source_ids,
"""attention_mask""": source_mask,
"""decoder_input_ids""": y,
}
return batch
__lowerCAmelCase : Optional[int] = getLogger(__name__)
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
return list(itertools.chain.from_iterable(lowerCamelCase__ ) )
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = get_git_info()
save_json(lowerCamelCase__ , os.path.join(lowerCamelCase__ , """git_log.json""" ) )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=4 , **lowerCamelCase__ ):
"""simple docstring"""
with open(lowerCamelCase__ , """w""" ) as f:
json.dump(lowerCamelCase__ , lowerCamelCase__ , indent=lowerCamelCase__ , **lowerCamelCase__ )
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
with open(lowerCamelCase__ ) as f:
return json.load(lowerCamelCase__ )
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = git.Repo(search_parent_directories=lowerCamelCase__ )
lowerCAmelCase__ = {
"""repo_id""": str(lowerCamelCase__ ),
"""repo_sha""": str(repo.head.object.hexsha ),
"""repo_branch""": str(repo.active_branch ),
"""hostname""": str(socket.gethostname() ),
}
return repo_infos
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
return list(map(lowerCamelCase__ , lowerCamelCase__ ) )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
with open(lowerCamelCase__ , """wb""" ) as f:
return pickle.dump(lowerCamelCase__ , lowerCamelCase__ )
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
def remove_articles(lowerCamelCase__ ):
return re.sub(r"""\b(a|an|the)\b""" , """ """ , lowerCamelCase__ )
def white_space_fix(lowerCamelCase__ ):
return " ".join(text.split() )
def remove_punc(lowerCamelCase__ ):
lowerCAmelCase__ = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(lowerCamelCase__ ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase__ ) ) ) )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = normalize_answer(lowerCamelCase__ ).split()
lowerCAmelCase__ = normalize_answer(lowerCamelCase__ ).split()
lowerCAmelCase__ = Counter(lowerCamelCase__ ) & Counter(lowerCamelCase__ )
lowerCAmelCase__ = sum(common.values() )
if num_same == 0:
return 0
lowerCAmelCase__ = 1.0 * num_same / len(lowerCamelCase__ )
lowerCAmelCase__ = 1.0 * num_same / len(lowerCamelCase__ )
lowerCAmelCase__ = (2 * precision * recall) / (precision + recall)
return fa
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
return normalize_answer(lowerCamelCase__ ) == normalize_answer(lowerCamelCase__ )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
assert len(lowerCamelCase__ ) == len(lowerCamelCase__ )
lowerCAmelCase__ = 0
for hypo, pred in zip(lowerCamelCase__ , lowerCamelCase__ ):
em += exact_match_score(lowerCamelCase__ , lowerCamelCase__ )
if len(lowerCamelCase__ ) > 0:
em /= len(lowerCamelCase__ )
return {"em": em}
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
return model_prefix.startswith("""rag""" )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
lowerCAmelCase__ = """dropout_rate"""
for p in extra_params:
if getattr(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
if not hasattr(lowerCamelCase__ , lowerCamelCase__ ) and not hasattr(lowerCamelCase__ , equivalent_param[p] ):
logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase__ ) )
delattr(lowerCamelCase__ , lowerCamelCase__ )
continue
lowerCAmelCase__ = p if hasattr(lowerCamelCase__ , lowerCamelCase__ ) else equivalent_param[p]
setattr(lowerCamelCase__ , lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) )
delattr(lowerCamelCase__ , lowerCamelCase__ )
return hparams, config
| 674 | """simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ = 50 ):
"""simple docstring"""
lowerCAmelCase__ = [[0] * 3 for _ in range(length + 1 )]
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
different_colour_ways_number[row_length][tile_length - 2] += (
different_colour_ways_number[row_length - tile_start - tile_length][
tile_length - 2
]
+ 1
)
return sum(different_colour_ways_number[length] )
if __name__ == "__main__":
print(F"{solution() = }")
| 674 | 1 |
"""simple docstring"""
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
__lowerCAmelCase : List[str] = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"])
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = test_results.split(""" """ )
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
lowerCAmelCase__ = expressions[-2] if """=""" in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowerCamelCase__ ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = {}
lowerCAmelCase__ = None
lowerCAmelCase__ = False
for line in failures_short_lines.split("""\n""" ):
if re.search(r"""_ \[doctest\]""" , lowerCamelCase__ ):
lowerCAmelCase__ = True
lowerCAmelCase__ = line.split(""" """ )[2]
elif in_error and not line.split(""" """ )[0].isdigit():
lowerCAmelCase__ = line
lowerCAmelCase__ = False
return failures
class a_ :
def __init__( self : Union[str, Any] , snake_case__ : str , snake_case__ : Dict ):
lowerCAmelCase__ = title
lowerCAmelCase__ = doc_test_results["""time_spent"""].split(""",""" )[0]
lowerCAmelCase__ = doc_test_results["""success"""]
lowerCAmelCase__ = doc_test_results["""failures"""]
lowerCAmelCase__ = self.n_success + self.n_failures
# Failures and success of the modeling tests
lowerCAmelCase__ = doc_test_results
@property
def _SCREAMING_SNAKE_CASE ( self : Any ):
lowerCAmelCase__ = [self._time_spent]
lowerCAmelCase__ = 0
for time in time_spent:
lowerCAmelCase__ = time.split(""":""" )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(snake_case__ ) == 1:
lowerCAmelCase__ = [0, 0, time_parts[0]]
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 3600 + minutes * 60 + seconds
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60
return F"""{int(snake_case__ )}h{int(snake_case__ )}m{int(snake_case__ )}s"""
@property
def _SCREAMING_SNAKE_CASE ( self : int ):
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def _SCREAMING_SNAKE_CASE ( self : Any ):
return {
"type": "section",
"text": {
"type": "plain_text",
"text": F"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""",
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""",
},
}
@property
def _SCREAMING_SNAKE_CASE ( self : Dict ):
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
F"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in"""
F""" {self.time}."""
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""",
},
}
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = 40
lowerCAmelCase__ = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(snake_case__ , snake_case__ )}
lowerCAmelCase__ = """"""
for category, failures in category_failures.items():
if len(snake_case__ ) == 0:
continue
if report != "":
report += "\n\n"
report += F"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(snake_case__ )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": F"""The following examples had failures:\n\n\n{report}\n""",
},
}
@property
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = [self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(snake_case__ )
@staticmethod
def _SCREAMING_SNAKE_CASE ( ):
lowerCAmelCase__ = [
{
"""type""": """section""",
"""text""": {
"""type""": """plain_text""",
"""text""": """There was an issue running the tests.""",
},
"""accessory""": {
"""type""": """button""",
"""text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True},
"""url""": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""",
},
}
]
print("""Sending the following payload""" )
print(json.dumps({"""blocks""": json.loads(snake_case__ )} ) )
client.chat_postMessage(
channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=snake_case__ , )
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
print("""Sending the following payload""" )
print(json.dumps({"""blocks""": json.loads(self.payload )} ) )
lowerCAmelCase__ = F"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else """All tests passed."""
lowerCAmelCase__ = client.chat_postMessage(
channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=snake_case__ , )
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] ):
lowerCAmelCase__ = """"""
for key, value in failures.items():
lowerCAmelCase__ = value[:200] + """ [Truncated]""" if len(snake_case__ ) > 250 else value
failures_text += F"""*{key}*\n_{value}_\n\n"""
lowerCAmelCase__ = job_name
lowerCAmelCase__ = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}}
if job_link is not None:
lowerCAmelCase__ = {
"""type""": """button""",
"""text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True},
"""url""": job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
if self.thread_ts is None:
raise ValueError("""Can only post reply if a post has been made.""" )
lowerCAmelCase__ = self.doc_test_results.pop("""job_link""" )
self.doc_test_results.pop("""failures""" )
self.doc_test_results.pop("""success""" )
self.doc_test_results.pop("""time_spent""" )
lowerCAmelCase__ = sorted(self.doc_test_results.items() , key=lambda snake_case__ : t[0] )
for job, job_result in sorted_dict:
if len(job_result["""failures"""] ):
lowerCAmelCase__ = F"""*Num failures* :{len(job_result['failed'] )} \n"""
lowerCAmelCase__ = job_result["""failures"""]
lowerCAmelCase__ = self.get_reply_blocks(snake_case__ , snake_case__ , snake_case__ , text=snake_case__ )
print("""Sending the following reply""" )
print(json.dumps({"""blocks""": blocks} ) )
client.chat_postMessage(
channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=F"""Results for {job}""" , blocks=snake_case__ , thread_ts=self.thread_ts["""ts"""] , )
time.sleep(1 )
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = os.environ["""GITHUB_RUN_ID"""]
lowerCAmelCase__ = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100"""
lowerCAmelCase__ = requests.get(lowerCamelCase__ ).json()
lowerCAmelCase__ = {}
try:
jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
lowerCAmelCase__ = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(lowerCamelCase__ ):
lowerCAmelCase__ = requests.get(url + f"""&page={i + 2}""" ).json()
jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return jobs
except Exception as e:
print("""Unknown error, could not fetch links.""" , lowerCamelCase__ )
return {}
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = {}
if os.path.exists(lowerCamelCase__ ):
lowerCAmelCase__ = os.listdir(lowerCamelCase__ )
for file in files:
try:
with open(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , encoding="""utf-8""" ) as f:
lowerCAmelCase__ = f.read()
except UnicodeDecodeError as e:
raise ValueError(f"""Could not open {os.path.join(lowerCamelCase__ , lowerCamelCase__ )}.""" ) from e
return _artifact
def _UpperCAmelCase ( ):
"""simple docstring"""
class a_ :
def __init__( self : Optional[int] , snake_case__ : str ):
lowerCAmelCase__ = name
lowerCAmelCase__ = []
def __str__( self : List[str] ):
return self.name
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : str ):
self.paths.append({"""name""": self.name, """path""": path} )
lowerCAmelCase__ = {}
lowerCAmelCase__ = filter(os.path.isdir , os.listdir() )
for directory in directories:
lowerCAmelCase__ = directory
if artifact_name not in _available_artifacts:
lowerCAmelCase__ = Artifact(lowerCamelCase__ )
_available_artifacts[artifact_name].add_path(lowerCamelCase__ )
return _available_artifacts
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] = get_job_links()
__lowerCAmelCase : str = retrieve_available_artifacts()
__lowerCAmelCase : Optional[int] = collections.OrderedDict(
[
("*.py", "API Examples"),
("*.md", "MD Examples"),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
__lowerCAmelCase : Optional[int] = {
v: {
"failed": [],
"failures": {},
}
for v in docs.values()
}
# Link to the GitHub Action job
__lowerCAmelCase : Optional[int] = github_actions_job_links.get("run_doctests")
__lowerCAmelCase : Any = available_artifacts["doc_tests_gpu_test_reports"].paths[0]
__lowerCAmelCase : Dict = retrieve_artifact(artifact_path["name"])
if "stats" in artifact:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = handle_test_results(artifact["stats"])
__lowerCAmelCase : List[Any] = failed
__lowerCAmelCase : Dict = success
__lowerCAmelCase : List[str] = time_spent[1:-1] + ", "
__lowerCAmelCase : Union[str, Any] = extract_first_line_failure(artifact["failures_short"])
for line in artifact["summary_short"].split("\n"):
if re.search("FAILED", line):
__lowerCAmelCase : Tuple = line.replace("FAILED ", "")
__lowerCAmelCase : Any = line.split()[0].replace("\n", "")
if "::" in line:
__lowerCAmelCase , __lowerCAmelCase : List[Any] = line.split("::")
else:
__lowerCAmelCase , __lowerCAmelCase : Optional[Any] = line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
__lowerCAmelCase : Union[str, Any] = docs[file_regex]
doc_test_results[category]["failed"].append(test)
__lowerCAmelCase : List[str] = all_failures[test] if test in all_failures else "N/A"
__lowerCAmelCase : Optional[int] = failure
break
__lowerCAmelCase : Optional[Any] = Message("🤗 Results of the doc tests.", doc_test_results)
message.post()
message.post_reply()
| 674 | """simple docstring"""
import argparse
import os
import gluonnlp as nlp
import mxnet as mx
import numpy as np
import torch
from gluonnlp.base import get_home_dir
from gluonnlp.model.bert import BERTEncoder
from gluonnlp.model.utils import _load_vocab
from gluonnlp.vocab import Vocab
from packaging import version
from torch import nn
from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
if version.parse(nlp.__version__) != version.parse("0.8.3"):
raise Exception("requires gluonnlp == 0.8.3")
if version.parse(mx.__version__) != version.parse("1.5.0"):
raise Exception("requires mxnet == 1.5.0")
logging.set_verbosity_info()
__lowerCAmelCase : Any = logging.get_logger(__name__)
__lowerCAmelCase : Any = "The Nymphenburg Palace is a beautiful palace in Munich!"
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = {
"""attention_cell""": """multi_head""",
"""num_layers""": 4,
"""units""": 1024,
"""hidden_size""": 768,
"""max_length""": 512,
"""num_heads""": 8,
"""scaled""": True,
"""dropout""": 0.1,
"""use_residual""": True,
"""embed_size""": 1024,
"""embed_dropout""": 0.1,
"""word_embed""": None,
"""layer_norm_eps""": 1e-5,
"""token_type_vocab_size""": 2,
}
lowerCAmelCase__ = bort_4_8_768_1024_hparams
# Let's construct the original Bort model here
# Taken from official BERT implementation, see:
# https://github.com/alexa/bort/blob/master/bort/bort.py
lowerCAmelCase__ = BERTEncoder(
attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCamelCase__ , output_all_encodings=lowerCamelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCamelCase__ ) , )
# Vocab information needs to be fetched first
# It's the same as RoBERTa, so RobertaTokenizer can be used later
lowerCAmelCase__ = """openwebtext_ccnews_stories_books_cased"""
# Specify download folder to Gluonnlp's vocab
lowerCAmelCase__ = os.path.join(get_home_dir() , """models""" )
lowerCAmelCase__ = _load_vocab(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , cls=lowerCamelCase__ )
lowerCAmelCase__ = nlp.model.BERTModel(
lowerCamelCase__ , len(lowerCamelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCamelCase__ , use_token_type_embed=lowerCamelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCamelCase__ , use_decoder=lowerCamelCase__ , )
original_bort.load_parameters(lowerCamelCase__ , cast_dtype=lowerCamelCase__ , ignore_extra=lowerCamelCase__ )
lowerCAmelCase__ = original_bort._collect_params_with_prefix()
# Build our config 🤗
lowerCAmelCase__ = {
"""architectures""": ["""BertForMaskedLM"""],
"""attention_probs_dropout_prob""": predefined_args["""dropout"""],
"""hidden_act""": """gelu""",
"""hidden_dropout_prob""": predefined_args["""dropout"""],
"""hidden_size""": predefined_args["""embed_size"""],
"""initializer_range""": 0.02,
"""intermediate_size""": predefined_args["""hidden_size"""],
"""layer_norm_eps""": predefined_args["""layer_norm_eps"""],
"""max_position_embeddings""": predefined_args["""max_length"""],
"""model_type""": """bort""",
"""num_attention_heads""": predefined_args["""num_heads"""],
"""num_hidden_layers""": predefined_args["""num_layers"""],
"""pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa
"""type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa
"""vocab_size""": len(lowerCamelCase__ ),
}
lowerCAmelCase__ = BertConfig.from_dict(lowerCamelCase__ )
lowerCAmelCase__ = BertForMaskedLM(lowerCamelCase__ )
hf_bort_model.eval()
# Parameter mapping table (Gluonnlp to Transformers)
# * denotes layer index
#
# | Gluon Parameter | Transformers Parameter
# | -------------------------------------------------------------- | ----------------------
# | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias`
# | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight`
# | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight`
# | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight`
# | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight`
# | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight`
# | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias`
# | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight`
# Helper function to convert MXNET Arrays to PyTorch
def to_torch(lowerCamelCase__ ) -> nn.Parameter:
return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) )
# Check param shapes and map new HF param back
def check_and_map_params(lowerCamelCase__ , lowerCamelCase__ ):
lowerCAmelCase__ = hf_param.shape
lowerCAmelCase__ = to_torch(params[gluon_param] )
lowerCAmelCase__ = gluon_param.shape
assert (
shape_hf == shape_gluon
), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers"""
return gluon_param
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" )
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" )
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" )
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" )
# Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them)
lowerCAmelCase__ = torch.zeros_like(
hf_bort_model.bert.embeddings.token_type_embeddings.weight.data )
for i in range(hf_bort_config.num_hidden_layers ):
lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i]
# self attention
lowerCAmelCase__ = layer.attention.self
lowerCAmelCase__ = check_and_map_params(
self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" )
# self attention output
lowerCAmelCase__ = layer.attention.output
lowerCAmelCase__ = check_and_map_params(
self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" )
lowerCAmelCase__ = check_and_map_params(
self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" )
lowerCAmelCase__ = check_and_map_params(
self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" )
# intermediate
lowerCAmelCase__ = layer.intermediate
lowerCAmelCase__ = check_and_map_params(
intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" )
lowerCAmelCase__ = check_and_map_params(
intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" )
# output
lowerCAmelCase__ = layer.output
lowerCAmelCase__ = check_and_map_params(
bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" )
lowerCAmelCase__ = check_and_map_params(
bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" )
lowerCAmelCase__ = check_and_map_params(
bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" )
lowerCAmelCase__ = check_and_map_params(
bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" )
# Save space and energy 🎄
hf_bort_model.half()
# Compare output of both models
lowerCAmelCase__ = RobertaTokenizer.from_pretrained("""roberta-base""" )
lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ )["""input_ids"""]
# Get gluon output
lowerCAmelCase__ = mx.nd.array([input_ids] )
lowerCAmelCase__ = original_bort(inputs=lowerCamelCase__ , token_types=[] )
# Get Transformer output (save and reload model again)
hf_bort_model.save_pretrained(lowerCamelCase__ )
lowerCAmelCase__ = BertModel.from_pretrained(lowerCamelCase__ )
hf_bort_model.eval()
lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" )
lowerCAmelCase__ = hf_bort_model(**lowerCamelCase__ )[0]
lowerCAmelCase__ = output_gluon[0].asnumpy()
lowerCAmelCase__ = output_hf[0].detach().numpy()
lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item()
lowerCAmelCase__ = np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 )
if success:
print("""✔️ Both model do output the same tensors""" )
else:
print("""❌ Both model do **NOT** output the same tensors""" )
print("""Absolute difference is:""" , lowerCamelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__lowerCAmelCase : str = parser.parse_args()
convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
| 674 | 1 |
"""simple docstring"""
from collections.abc import Sequence
from queue import Queue
class a_ :
def __init__( self : List[Any] , snake_case__ : Any , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : str=None , snake_case__ : str=None ):
lowerCAmelCase__ = start
lowerCAmelCase__ = end
lowerCAmelCase__ = val
lowerCAmelCase__ = (start + end) // 2
lowerCAmelCase__ = left
lowerCAmelCase__ = right
def __repr__( self : str ):
return F"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})"""
class a_ :
def __init__( self : Optional[int] , snake_case__ : Sequence , snake_case__ : List[Any] ):
lowerCAmelCase__ = collection
lowerCAmelCase__ = function
if self.collection:
lowerCAmelCase__ = self._build_tree(0 , len(snake_case__ ) - 1 )
def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Dict , snake_case__ : Optional[Any] ):
self._update_tree(self.root , snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : str , snake_case__ : List[str] ):
return self._query_range(self.root , snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] ):
if start == end:
return SegmentTreeNode(snake_case__ , snake_case__ , self.collection[start] )
lowerCAmelCase__ = (start + end) // 2
lowerCAmelCase__ = self._build_tree(snake_case__ , snake_case__ )
lowerCAmelCase__ = self._build_tree(mid + 1 , snake_case__ )
return SegmentTreeNode(snake_case__ , snake_case__ , self.fn(left.val , right.val ) , snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] ):
if node.start == i and node.end == i:
lowerCAmelCase__ = val
return
if i <= node.mid:
self._update_tree(node.left , snake_case__ , snake_case__ )
else:
self._update_tree(node.right , snake_case__ , snake_case__ )
lowerCAmelCase__ = self.fn(node.left.val , node.right.val )
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Any ):
if node.start == i and node.end == j:
return node.val
if i <= node.mid:
if j <= node.mid:
# range in left child tree
return self._query_range(node.left , snake_case__ , snake_case__ )
else:
# range in left child tree and right child tree
return self.fn(
self._query_range(node.left , snake_case__ , node.mid ) , self._query_range(node.right , node.mid + 1 , snake_case__ ) , )
else:
# range in right child tree
return self._query_range(node.right , snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
if self.root is not None:
lowerCAmelCase__ = Queue()
queue.put(self.root )
while not queue.empty():
lowerCAmelCase__ = queue.get()
yield node
if node.left is not None:
queue.put(node.left )
if node.right is not None:
queue.put(node.right )
if __name__ == "__main__":
import operator
for fn in [operator.add, max, min]:
print("*" * 50)
__lowerCAmelCase : str = SegmentTree([2, 1, 5, 3, 4], fn)
for node in arr.traverse():
print(node)
print()
arr.update(1, 5)
for node in arr.traverse():
print(node)
print()
print(arr.query_range(3, 4)) # 7
print(arr.query_range(2, 2)) # 5
print(arr.query_range(1, 3)) # 13
print()
| 674 | """simple docstring"""
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class a_ :
def __init__( self : Optional[int] ):
lowerCAmelCase__ = """"""
lowerCAmelCase__ = """"""
lowerCAmelCase__ = []
lowerCAmelCase__ = 0
lowerCAmelCase__ = 256
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] ):
lowerCAmelCase__ = cva.imread(snake_case__ , 0 )
lowerCAmelCase__ = copy.deepcopy(self.img )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" )
lowerCAmelCase__ = np.sum(snake_case__ )
for i in range(len(snake_case__ ) ):
lowerCAmelCase__ = x[i] / self.k
self.sk += prk
lowerCAmelCase__ = (self.L - 1) * self.sk
if self.rem != 0:
lowerCAmelCase__ = int(last % last )
lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(snake_case__ )
lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size )
lowerCAmelCase__ = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
lowerCAmelCase__ = self.img[j][i]
if num != self.last_list[num]:
lowerCAmelCase__ = self.last_list[num]
cva.imwrite("""output_data/output.jpg""" , self.img )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
plt.hist(self.img.ravel() , 256 , [0, 256] )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
cva.imshow("""Output-Image""" , self.img )
cva.imshow("""Input-Image""" , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
__lowerCAmelCase : Dict = os.path.join(os.path.basename(__file__), "image_data/input.jpg")
__lowerCAmelCase : Optional[int] = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 674 | 1 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : torch.FloatTensor
class a_ ( nn.Module ):
def __init__( self : Dict , snake_case__ : str=3 , snake_case__ : str=3 , snake_case__ : List[str]=("DownEncoderBlock2D",) , snake_case__ : Tuple=(64,) , snake_case__ : str=2 , snake_case__ : Tuple=32 , snake_case__ : List[str]="silu" , snake_case__ : int=True , ):
super().__init__()
lowerCAmelCase__ = layers_per_block
lowerCAmelCase__ = torch.nn.Convad(
snake_case__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
lowerCAmelCase__ = None
lowerCAmelCase__ = nn.ModuleList([] )
# down
lowerCAmelCase__ = block_out_channels[0]
for i, down_block_type in enumerate(snake_case__ ):
lowerCAmelCase__ = output_channel
lowerCAmelCase__ = block_out_channels[i]
lowerCAmelCase__ = i == len(snake_case__ ) - 1
lowerCAmelCase__ = get_down_block(
snake_case__ , num_layers=self.layers_per_block , in_channels=snake_case__ , out_channels=snake_case__ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=snake_case__ , resnet_groups=snake_case__ , attention_head_dim=snake_case__ , temb_channels=snake_case__ , )
self.down_blocks.append(snake_case__ )
# mid
lowerCAmelCase__ = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=snake_case__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=snake_case__ , temb_channels=snake_case__ , )
# out
lowerCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=snake_case__ , eps=1E-6 )
lowerCAmelCase__ = nn.SiLU()
lowerCAmelCase__ = 2 * out_channels if double_z else out_channels
lowerCAmelCase__ = nn.Convad(block_out_channels[-1] , snake_case__ , 3 , padding=1 )
lowerCAmelCase__ = False
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Optional[int] ):
lowerCAmelCase__ = x
lowerCAmelCase__ = self.conv_in(snake_case__ )
if self.training and self.gradient_checkpointing:
def create_custom_forward(snake_case__ : List[Any] ):
def custom_forward(*snake_case__ : str ):
return module(*snake_case__ )
return custom_forward
# down
if is_torch_version(""">=""" , """1.11.0""" ):
for down_block in self.down_blocks:
lowerCAmelCase__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(snake_case__ ) , snake_case__ , use_reentrant=snake_case__ )
# middle
lowerCAmelCase__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , snake_case__ , use_reentrant=snake_case__ )
else:
for down_block in self.down_blocks:
lowerCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(snake_case__ ) , snake_case__ )
# middle
lowerCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , snake_case__ )
else:
# down
for down_block in self.down_blocks:
lowerCAmelCase__ = down_block(snake_case__ )
# middle
lowerCAmelCase__ = self.mid_block(snake_case__ )
# post-process
lowerCAmelCase__ = self.conv_norm_out(snake_case__ )
lowerCAmelCase__ = self.conv_act(snake_case__ )
lowerCAmelCase__ = self.conv_out(snake_case__ )
return sample
class a_ ( nn.Module ):
def __init__( self : Union[str, Any] , snake_case__ : Any=3 , snake_case__ : int=3 , snake_case__ : List[str]=("UpDecoderBlock2D",) , snake_case__ : Tuple=(64,) , snake_case__ : List[Any]=2 , snake_case__ : str=32 , snake_case__ : Optional[Any]="silu" , snake_case__ : str="group" , ):
super().__init__()
lowerCAmelCase__ = layers_per_block
lowerCAmelCase__ = nn.Convad(
snake_case__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
lowerCAmelCase__ = None
lowerCAmelCase__ = nn.ModuleList([] )
lowerCAmelCase__ = in_channels if norm_type == """spatial""" else None
# mid
lowerCAmelCase__ = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=snake_case__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=snake_case__ , temb_channels=snake_case__ , )
# up
lowerCAmelCase__ = list(reversed(snake_case__ ) )
lowerCAmelCase__ = reversed_block_out_channels[0]
for i, up_block_type in enumerate(snake_case__ ):
lowerCAmelCase__ = output_channel
lowerCAmelCase__ = reversed_block_out_channels[i]
lowerCAmelCase__ = i == len(snake_case__ ) - 1
lowerCAmelCase__ = get_up_block(
snake_case__ , num_layers=self.layers_per_block + 1 , in_channels=snake_case__ , out_channels=snake_case__ , prev_output_channel=snake_case__ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=snake_case__ , resnet_groups=snake_case__ , attention_head_dim=snake_case__ , temb_channels=snake_case__ , resnet_time_scale_shift=snake_case__ , )
self.up_blocks.append(snake_case__ )
lowerCAmelCase__ = output_channel
# out
if norm_type == "spatial":
lowerCAmelCase__ = SpatialNorm(block_out_channels[0] , snake_case__ )
else:
lowerCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=snake_case__ , eps=1E-6 )
lowerCAmelCase__ = nn.SiLU()
lowerCAmelCase__ = nn.Convad(block_out_channels[0] , snake_case__ , 3 , padding=1 )
lowerCAmelCase__ = False
def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any]=None ):
lowerCAmelCase__ = z
lowerCAmelCase__ = self.conv_in(snake_case__ )
lowerCAmelCase__ = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(snake_case__ : str ):
def custom_forward(*snake_case__ : Union[str, Any] ):
return module(*snake_case__ )
return custom_forward
if is_torch_version(""">=""" , """1.11.0""" ):
# middle
lowerCAmelCase__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , snake_case__ , snake_case__ , use_reentrant=snake_case__ )
lowerCAmelCase__ = sample.to(snake_case__ )
# up
for up_block in self.up_blocks:
lowerCAmelCase__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(snake_case__ ) , snake_case__ , snake_case__ , use_reentrant=snake_case__ )
else:
# middle
lowerCAmelCase__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , snake_case__ , snake_case__ )
lowerCAmelCase__ = sample.to(snake_case__ )
# up
for up_block in self.up_blocks:
lowerCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(snake_case__ ) , snake_case__ , snake_case__ )
else:
# middle
lowerCAmelCase__ = self.mid_block(snake_case__ , snake_case__ )
lowerCAmelCase__ = sample.to(snake_case__ )
# up
for up_block in self.up_blocks:
lowerCAmelCase__ = up_block(snake_case__ , snake_case__ )
# post-process
if latent_embeds is None:
lowerCAmelCase__ = self.conv_norm_out(snake_case__ )
else:
lowerCAmelCase__ = self.conv_norm_out(snake_case__ , snake_case__ )
lowerCAmelCase__ = self.conv_act(snake_case__ )
lowerCAmelCase__ = self.conv_out(snake_case__ )
return sample
class a_ ( nn.Module ):
def __init__( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Any=None , snake_case__ : str="random" , snake_case__ : Optional[int]=False , snake_case__ : List[Any]=True ):
super().__init__()
lowerCAmelCase__ = n_e
lowerCAmelCase__ = vq_embed_dim
lowerCAmelCase__ = beta
lowerCAmelCase__ = legacy
lowerCAmelCase__ = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
lowerCAmelCase__ = remap
if self.remap is not None:
self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) )
lowerCAmelCase__ = self.used.shape[0]
lowerCAmelCase__ = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
lowerCAmelCase__ = self.re_embed
lowerCAmelCase__ = self.re_embed + 1
print(
F"""Remapping {self.n_e} indices to {self.re_embed} indices. """
F"""Using {self.unknown_index} for unknown indices.""" )
else:
lowerCAmelCase__ = n_e
lowerCAmelCase__ = sane_index_shape
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Dict ):
lowerCAmelCase__ = inds.shape
assert len(snake_case__ ) > 1
lowerCAmelCase__ = inds.reshape(ishape[0] , -1 )
lowerCAmelCase__ = self.used.to(snake_case__ )
lowerCAmelCase__ = (inds[:, :, None] == used[None, None, ...]).long()
lowerCAmelCase__ = match.argmax(-1 )
lowerCAmelCase__ = match.sum(2 ) < 1
if self.unknown_index == "random":
lowerCAmelCase__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
lowerCAmelCase__ = self.unknown_index
return new.reshape(snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : str ):
lowerCAmelCase__ = inds.shape
assert len(snake_case__ ) > 1
lowerCAmelCase__ = inds.reshape(ishape[0] , -1 )
lowerCAmelCase__ = self.used.to(snake_case__ )
if self.re_embed > self.used.shape[0]: # extra token
lowerCAmelCase__ = 0 # simply set to zero
lowerCAmelCase__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , snake_case__ )
return back.reshape(snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : List[Any] ):
# reshape z -> (batch, height, width, channel) and flatten
lowerCAmelCase__ = z.permute(0 , 2 , 3 , 1 ).contiguous()
lowerCAmelCase__ = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
lowerCAmelCase__ = torch.argmin(torch.cdist(snake_case__ , self.embedding.weight ) , dim=1 )
lowerCAmelCase__ = self.embedding(snake_case__ ).view(z.shape )
lowerCAmelCase__ = None
lowerCAmelCase__ = None
# compute loss for embedding
if not self.legacy:
lowerCAmelCase__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
lowerCAmelCase__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
lowerCAmelCase__ = z + (z_q - z).detach()
# reshape back to match original input shape
lowerCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
lowerCAmelCase__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
lowerCAmelCase__ = self.remap_to_used(snake_case__ )
lowerCAmelCase__ = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
lowerCAmelCase__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Tuple , snake_case__ : Union[str, Any] ):
# shape specifying (batch, height, width, channel)
if self.remap is not None:
lowerCAmelCase__ = indices.reshape(shape[0] , -1 ) # add batch axis
lowerCAmelCase__ = self.unmap_to_all(snake_case__ )
lowerCAmelCase__ = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
lowerCAmelCase__ = self.embedding(snake_case__ )
if shape is not None:
lowerCAmelCase__ = z_q.view(snake_case__ )
# reshape back to match original input shape
lowerCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class a_ ( __UpperCamelCase ):
def __init__( self : Dict , snake_case__ : Any , snake_case__ : List[str]=False ):
lowerCAmelCase__ = parameters
lowerCAmelCase__ , lowerCAmelCase__ = torch.chunk(snake_case__ , 2 , dim=1 )
lowerCAmelCase__ = torch.clamp(self.logvar , -30.0 , 20.0 )
lowerCAmelCase__ = deterministic
lowerCAmelCase__ = torch.exp(0.5 * self.logvar )
lowerCAmelCase__ = torch.exp(self.logvar )
if self.deterministic:
lowerCAmelCase__ = lowerCAmelCase__ = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Optional[torch.Generator] = None ):
# make sure sample is on the same device as the parameters and has same dtype
lowerCAmelCase__ = randn_tensor(
self.mean.shape , generator=snake_case__ , device=self.parameters.device , dtype=self.parameters.dtype )
lowerCAmelCase__ = self.mean + self.std * sample
return x
def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : Dict=None ):
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : int , snake_case__ : int=[1, 2, 3] ):
if self.deterministic:
return torch.Tensor([0.0] )
lowerCAmelCase__ = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
return self.mean
| 674 | """simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from ..models.clipseg import CLIPSegForImageSegmentation
from ..utils import is_vision_available, requires_backends
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : List[str] = (
"This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image."
"It takes two arguments named `image` which should be the original image, and `label` which should be a text "
"describing the elements what should be identified in the segmentation mask. The tool returns the mask."
)
UpperCamelCase_ : str = "CIDAS/clipseg-rd64-refined"
UpperCamelCase_ : Any = "image_segmenter"
UpperCamelCase_ : Optional[Any] = CLIPSegForImageSegmentation
UpperCamelCase_ : List[str] = ["image", "text"]
UpperCamelCase_ : int = ["image"]
def __init__( self : Tuple , *snake_case__ : str , **snake_case__ : Optional[Any] ):
requires_backends(self , ["""vision"""] )
super().__init__(*snake_case__ , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : "Image" , snake_case__ : str ):
return self.pre_processor(text=[label] , images=[image] , padding=snake_case__ , return_tensors="""pt""" )
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple ):
with torch.no_grad():
lowerCAmelCase__ = self.model(**snake_case__ ).logits
return logits
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] ):
lowerCAmelCase__ = outputs.cpu().detach().numpy()
lowerCAmelCase__ = 0
lowerCAmelCase__ = 1
return Image.fromarray((array * 255).astype(np.uinta ) )
| 674 | 1 |
"""simple docstring"""
import warnings
from ..trainer import Trainer
from ..utils import logging
__lowerCAmelCase : Tuple = logging.get_logger(__name__)
class a_ ( __UpperCamelCase ):
def __init__( self : Optional[Any] , snake_case__ : List[Any]=None , **snake_case__ : Dict ):
warnings.warn(
"""`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """
"""instead.""" , snake_case__ , )
super().__init__(args=snake_case__ , **snake_case__ )
| 674 | """simple docstring"""
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class a_ ( __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : str = LayoutLMTokenizer
UpperCamelCase_ : List[Any] = LayoutLMTokenizerFast
UpperCamelCase_ : Dict = True
UpperCamelCase_ : Any = True
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
super().setUp()
lowerCAmelCase__ = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : Union[str, Any] ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Tuple ):
lowerCAmelCase__ = """UNwant\u00E9d,running"""
lowerCAmelCase__ = """unwanted, running"""
return input_text, output_text
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = self.tokenizer_class(self.vocab_file )
lowerCAmelCase__ = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(snake_case__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [7, 4, 5, 10, 8, 9] )
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
pass
| 674 | 1 |
"""simple docstring"""
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : BigBirdConfig
UpperCamelCase_ : jnp.dtype = jnp.floataa
UpperCamelCase_ : bool = True
def _SCREAMING_SNAKE_CASE ( self : Any ):
super().setup()
lowerCAmelCase__ = nn.Dense(5 , dtype=self.dtype )
def __call__( self : str , *snake_case__ : int , **snake_case__ : Optional[int] ):
lowerCAmelCase__ = super().__call__(*snake_case__ , **snake_case__ )
lowerCAmelCase__ = self.cls(outputs[2] )
return outputs[:2] + (cls_out,)
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : Any = FlaxBigBirdForNaturalQuestionsModule
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
def cross_entropy(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ):
lowerCAmelCase__ = logits.shape[-1]
lowerCAmelCase__ = (labels[..., None] == jnp.arange(lowerCamelCase__ )[None]).astype("""f4""" )
lowerCAmelCase__ = jax.nn.log_softmax(lowerCamelCase__ , axis=-1 )
lowerCAmelCase__ = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
lowerCAmelCase__ = reduction(lowerCamelCase__ )
return loss
lowerCAmelCase__ = partial(lowerCamelCase__ , reduction=jnp.mean )
lowerCAmelCase__ = cross_entropy(lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = cross_entropy(lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = cross_entropy(lowerCamelCase__ , lowerCamelCase__ )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class a_ :
UpperCamelCase_ : str = "google/bigbird-roberta-base"
UpperCamelCase_ : int = 3000
UpperCamelCase_ : int = 1_0500
UpperCamelCase_ : int = 128
UpperCamelCase_ : int = 3
UpperCamelCase_ : int = 1
UpperCamelCase_ : int = 5
# tx_args
UpperCamelCase_ : float = 3e-5
UpperCamelCase_ : float = 0.0
UpperCamelCase_ : int = 2_0000
UpperCamelCase_ : float = 0.00_95
UpperCamelCase_ : str = "bigbird-roberta-natural-questions"
UpperCamelCase_ : str = "training-expt"
UpperCamelCase_ : str = "data/nq-training.jsonl"
UpperCamelCase_ : str = "data/nq-validation.jsonl"
def _SCREAMING_SNAKE_CASE ( self : int ):
os.makedirs(self.base_dir , exist_ok=snake_case__ )
lowerCAmelCase__ = os.path.join(self.base_dir , self.save_dir )
lowerCAmelCase__ = self.batch_size_per_device * jax.device_count()
@dataclass
class a_ :
UpperCamelCase_ : int
UpperCamelCase_ : int = 4096 # no dynamic padding on TPUs
def __call__( self : int , snake_case__ : Any ):
lowerCAmelCase__ = self.collate_fn(snake_case__ )
lowerCAmelCase__ = jax.tree_util.tree_map(snake_case__ , snake_case__ )
return batch
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Dict ):
lowerCAmelCase__ , lowerCAmelCase__ = self.fetch_inputs(features["""input_ids"""] )
lowerCAmelCase__ = {
"""input_ids""": jnp.array(snake_case__ , dtype=jnp.intaa ),
"""attention_mask""": jnp.array(snake_case__ , dtype=jnp.intaa ),
"""start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ),
"""end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ),
"""pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ),
}
return batch
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : list ):
lowerCAmelCase__ = [self._fetch_inputs(snake_case__ ) for ids in input_ids]
return zip(*snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : list ):
lowerCAmelCase__ = [1 for _ in range(len(snake_case__ ) )]
while len(snake_case__ ) < self.max_length:
input_ids.append(self.pad_id )
attention_mask.append(0 )
return input_ids, attention_mask
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ):
"""simple docstring"""
if seed is not None:
lowerCAmelCase__ = dataset.shuffle(seed=lowerCamelCase__ )
for i in range(len(lowerCamelCase__ ) // batch_size ):
lowerCAmelCase__ = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(lowerCamelCase__ )
@partial(jax.pmap , axis_name="""batch""" )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ):
"""simple docstring"""
def loss_fn(lowerCamelCase__ ):
lowerCAmelCase__ = model_inputs.pop("""start_labels""" )
lowerCAmelCase__ = model_inputs.pop("""end_labels""" )
lowerCAmelCase__ = model_inputs.pop("""pooled_labels""" )
lowerCAmelCase__ = state.apply_fn(**lowerCamelCase__ , params=lowerCamelCase__ , dropout_rng=lowerCamelCase__ , train=lowerCamelCase__ )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = outputs
return state.loss_fn(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , )
lowerCAmelCase__ , lowerCAmelCase__ = jax.random.split(lowerCamelCase__ )
lowerCAmelCase__ = jax.value_and_grad(lowerCamelCase__ )
lowerCAmelCase__ , lowerCAmelCase__ = grad_fn(state.params )
lowerCAmelCase__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
lowerCAmelCase__ = jax.lax.pmean(lowerCamelCase__ , """batch""" )
lowerCAmelCase__ = state.apply_gradients(grads=lowerCamelCase__ )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="""batch""" )
def _UpperCAmelCase ( lowerCamelCase__ , **lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = model_inputs.pop("""start_labels""" )
lowerCAmelCase__ = model_inputs.pop("""end_labels""" )
lowerCAmelCase__ = model_inputs.pop("""pooled_labels""" )
lowerCAmelCase__ = state.apply_fn(**lowerCamelCase__ , params=state.params , train=lowerCamelCase__ )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = outputs
lowerCAmelCase__ = state.loss_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
return metrics
class a_ ( train_state.TrainState ):
UpperCamelCase_ : Callable = struct.field(pytree_node=__UpperCamelCase )
@dataclass
class a_ :
UpperCamelCase_ : Args
UpperCamelCase_ : Callable
UpperCamelCase_ : Callable
UpperCamelCase_ : Callable
UpperCamelCase_ : Callable
UpperCamelCase_ : wandb
UpperCamelCase_ : Callable = None
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : int=None ):
lowerCAmelCase__ = model.params
lowerCAmelCase__ = TrainState.create(
apply_fn=model.__call__ , params=snake_case__ , tx=snake_case__ , loss_fn=snake_case__ , )
if ckpt_dir is not None:
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = restore_checkpoint(snake_case__ , snake_case__ )
lowerCAmelCase__ = {
"""lr""": args.lr,
"""init_lr""": args.init_lr,
"""warmup_steps""": args.warmup_steps,
"""num_train_steps""": num_train_steps,
"""weight_decay""": args.weight_decay,
}
lowerCAmelCase__ , lowerCAmelCase__ = build_tx(**snake_case__ )
lowerCAmelCase__ = train_state.TrainState(
step=snake_case__ , apply_fn=model.__call__ , params=snake_case__ , tx=snake_case__ , opt_state=snake_case__ , )
lowerCAmelCase__ = args
lowerCAmelCase__ = data_collator
lowerCAmelCase__ = lr
lowerCAmelCase__ = params
lowerCAmelCase__ = jax_utils.replicate(snake_case__ )
return state
def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : Any ):
lowerCAmelCase__ = self.args
lowerCAmelCase__ = len(snake_case__ ) // args.batch_size
lowerCAmelCase__ = jax.random.PRNGKey(0 )
lowerCAmelCase__ = jax.random.split(snake_case__ , jax.device_count() )
for epoch in range(args.max_epochs ):
lowerCAmelCase__ = jnp.array(0 , dtype=jnp.floataa )
lowerCAmelCase__ = get_batched_dataset(snake_case__ , args.batch_size , seed=snake_case__ )
lowerCAmelCase__ = 0
for batch in tqdm(snake_case__ , total=snake_case__ , desc=F"""Running EPOCH-{epoch}""" ):
lowerCAmelCase__ = self.data_collator(snake_case__ )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.train_step_fn(snake_case__ , snake_case__ , **snake_case__ )
running_loss += jax_utils.unreplicate(metrics["""loss"""] )
i += 1
if i % args.logging_steps == 0:
lowerCAmelCase__ = jax_utils.unreplicate(state.step )
lowerCAmelCase__ = running_loss.item() / i
lowerCAmelCase__ = self.scheduler_fn(state_step - 1 )
lowerCAmelCase__ = self.evaluate(snake_case__ , snake_case__ )
lowerCAmelCase__ = {
"""step""": state_step.item(),
"""eval_loss""": eval_loss.item(),
"""tr_loss""": tr_loss,
"""lr""": lr.item(),
}
tqdm.write(str(snake_case__ ) )
self.logger.log(snake_case__ , commit=snake_case__ )
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Optional[Any] , snake_case__ : int ):
lowerCAmelCase__ = get_batched_dataset(snake_case__ , self.args.batch_size )
lowerCAmelCase__ = len(snake_case__ ) // self.args.batch_size
lowerCAmelCase__ = jnp.array(0 , dtype=jnp.floataa )
lowerCAmelCase__ = 0
for batch in tqdm(snake_case__ , total=snake_case__ , desc="""Evaluating ... """ ):
lowerCAmelCase__ = self.data_collator(snake_case__ )
lowerCAmelCase__ = self.val_step_fn(snake_case__ , **snake_case__ )
running_loss += jax_utils.unreplicate(metrics["""loss"""] )
i += 1
return running_loss / i
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Any , snake_case__ : Any ):
lowerCAmelCase__ = jax_utils.unreplicate(snake_case__ )
print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=""" ... """ )
self.model_save_fn(snake_case__ , params=state.params )
with open(os.path.join(snake_case__ , """opt_state.msgpack""" ) , """wb""" ) as f:
f.write(to_bytes(state.opt_state ) )
joblib.dump(self.args , os.path.join(snake_case__ , """args.joblib""" ) )
joblib.dump(self.data_collator , os.path.join(snake_case__ , """data_collator.joblib""" ) )
with open(os.path.join(snake_case__ , """training_state.json""" ) , """w""" ) as f:
json.dump({"""step""": state.step.item()} , snake_case__ )
print("""DONE""" )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
print(f"""RESTORING CHECKPOINT FROM {save_dir}""" , end=""" ... """ )
with open(os.path.join(lowerCamelCase__ , """flax_model.msgpack""" ) , """rb""" ) as f:
lowerCAmelCase__ = from_bytes(state.params , f.read() )
with open(os.path.join(lowerCamelCase__ , """opt_state.msgpack""" ) , """rb""" ) as f:
lowerCAmelCase__ = from_bytes(state.opt_state , f.read() )
lowerCAmelCase__ = joblib.load(os.path.join(lowerCamelCase__ , """args.joblib""" ) )
lowerCAmelCase__ = joblib.load(os.path.join(lowerCamelCase__ , """data_collator.joblib""" ) )
with open(os.path.join(lowerCamelCase__ , """training_state.json""" ) , """r""" ) as f:
lowerCAmelCase__ = json.load(lowerCamelCase__ )
lowerCAmelCase__ = training_state["""step"""]
print("""DONE""" )
return params, opt_state, step, args, data_collator
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = num_train_steps - warmup_steps
lowerCAmelCase__ = optax.linear_schedule(init_value=lowerCamelCase__ , end_value=lowerCamelCase__ , transition_steps=lowerCamelCase__ )
lowerCAmelCase__ = optax.linear_schedule(init_value=lowerCamelCase__ , end_value=1e-7 , transition_steps=lowerCamelCase__ )
lowerCAmelCase__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
def weight_decay_mask(lowerCamelCase__ ):
lowerCAmelCase__ = traverse_util.flatten_dict(lowerCamelCase__ )
lowerCAmelCase__ = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()}
return traverse_util.unflatten_dict(lowerCamelCase__ )
lowerCAmelCase__ = scheduler_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = optax.adamw(learning_rate=lowerCamelCase__ , weight_decay=lowerCamelCase__ , mask=lowerCamelCase__ )
return tx, lr
| 674 | """simple docstring"""
from binascii import hexlify
from hashlib import shaaaa
from os import urandom
# RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for
# Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526
__lowerCAmelCase : Any = {
# 1536-bit
5: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 2048-bit
14: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AACAA68FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 3072-bit
15: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 4096-bit
16: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199"
+ "FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 6144-bit
17: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
+ "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
+ "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
+ "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
+ "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8"
+ "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C"
+ "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718"
+ "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D"
+ "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D"
+ "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226"
+ "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC"
+ "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26"
+ "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB"
+ "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2"
+ "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127"
+ "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406"
+ "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918"
+ "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151"
+ "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03"
+ "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F"
+ "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B"
+ "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632"
+ "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E"
+ "6DCC4024FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 8192-bit
18: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD"
+ "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831"
+ "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B"
+ "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF"
+ "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6"
+ "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3"
+ "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328"
+ "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C"
+ "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE"
+ "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4"
+ "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300"
+ "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568"
+ "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9"
+ "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B"
+ "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A"
+ "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36"
+ "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1"
+ "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92"
+ "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47"
+ "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71"
+ "60C980DD98EDD3DFFFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
}
class a_ :
def __init__( self : List[str] , snake_case__ : int = 14 ):
if group not in primes:
raise ValueError("""Unsupported Group""" )
lowerCAmelCase__ = primes[group]["""prime"""]
lowerCAmelCase__ = primes[group]["""generator"""]
lowerCAmelCase__ = int(hexlify(urandom(32 ) ) , base=16 )
def _SCREAMING_SNAKE_CASE ( self : Any ):
return hex(self.__private_key )[2:]
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = pow(self.generator , self.__private_key , self.prime )
return hex(snake_case__ )[2:]
def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : int ):
# check if the other public key is valid based on NIST SP800-56
return (
2 <= key <= self.prime - 2
and pow(snake_case__ , (self.prime - 1) // 2 , self.prime ) == 1
)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str ):
lowerCAmelCase__ = int(snake_case__ , base=16 )
if not self.is_valid_public_key(snake_case__ ):
raise ValueError("""Invalid public key""" )
lowerCAmelCase__ = pow(snake_case__ , self.__private_key , self.prime )
return shaaaa(str(snake_case__ ).encode() ).hexdigest()
@staticmethod
def _SCREAMING_SNAKE_CASE ( snake_case__ : int , snake_case__ : int ):
# check if the other public key is valid based on NIST SP800-56
return (
2 <= remote_public_key_str <= prime - 2
and pow(snake_case__ , (prime - 1) // 2 , snake_case__ ) == 1
)
@staticmethod
def _SCREAMING_SNAKE_CASE ( snake_case__ : str , snake_case__ : str , snake_case__ : int = 14 ):
lowerCAmelCase__ = int(snake_case__ , base=16 )
lowerCAmelCase__ = int(snake_case__ , base=16 )
lowerCAmelCase__ = primes[group]["""prime"""]
if not DiffieHellman.is_valid_public_key_static(snake_case__ , snake_case__ ):
raise ValueError("""Invalid public key""" )
lowerCAmelCase__ = pow(snake_case__ , snake_case__ , snake_case__ )
return shaaaa(str(snake_case__ ).encode() ).hexdigest()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 674 | 1 |
"""simple docstring"""
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = StableDiffusionPipeline.from_pretrained(lowerCamelCase__ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
lowerCAmelCase__ = load_file(lowerCamelCase__ )
lowerCAmelCase__ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
lowerCAmelCase__ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" )
lowerCAmelCase__ = pipeline.text_encoder
else:
lowerCAmelCase__ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" )
lowerCAmelCase__ = pipeline.unet
# find the target layer
lowerCAmelCase__ = layer_infos.pop(0 )
while len(lowerCamelCase__ ) > -1:
try:
lowerCAmelCase__ = curr_layer.__getattr__(lowerCamelCase__ )
if len(lowerCamelCase__ ) > 0:
lowerCAmelCase__ = layer_infos.pop(0 )
elif len(lowerCamelCase__ ) == 0:
break
except Exception:
if len(lowerCamelCase__ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
lowerCAmelCase__ = layer_infos.pop(0 )
lowerCAmelCase__ = []
if "lora_down" in key:
pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) )
pair_keys.append(lowerCamelCase__ )
else:
pair_keys.append(lowerCamelCase__ )
pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
lowerCAmelCase__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
lowerCAmelCase__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowerCamelCase__ , lowerCamelCase__ ).unsqueeze(2 ).unsqueeze(3 )
else:
lowerCAmelCase__ = state_dict[pair_keys[0]].to(torch.floataa )
lowerCAmelCase__ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowerCamelCase__ , lowerCamelCase__ )
# update visited list
for item in pair_keys:
visited.append(lowerCamelCase__ )
return pipeline
if __name__ == "__main__":
__lowerCAmelCase : Dict = argparse.ArgumentParser()
parser.add_argument(
"--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format."
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors"
)
parser.add_argument(
"--lora_prefix_text_encoder",
default="lora_te",
type=str,
help="The prefix of text encoder weight in safetensors",
)
parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW")
parser.add_argument(
"--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not."
)
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
__lowerCAmelCase : Any = parser.parse_args()
__lowerCAmelCase : str = args.base_model_path
__lowerCAmelCase : List[str] = args.checkpoint_path
__lowerCAmelCase : int = args.dump_path
__lowerCAmelCase : Optional[int] = args.lora_prefix_unet
__lowerCAmelCase : Union[str, Any] = args.lora_prefix_text_encoder
__lowerCAmelCase : Dict = args.alpha
__lowerCAmelCase : Optional[int] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
__lowerCAmelCase : str = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 674 | """simple docstring"""
import argparse
import pickle
import numpy as np
import torch
from torch import nn
from transformers import ReformerConfig, ReformerModelWithLMHead
from transformers.utils import logging
logging.set_verbosity_info()
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ):
"""simple docstring"""
assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match"""
lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ )
if bias is not None:
assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match"""
lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = np.asarray(weights[0] )
lowerCAmelCase__ = np.asarray(weights[1] )
lowerCAmelCase__ = np.asarray(weights[2] )
set_param(
torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , )
set_param(
torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = np.asarray(weights[0] )
lowerCAmelCase__ = np.asarray(weights[1] )
lowerCAmelCase__ = np.asarray(weights[2] )
lowerCAmelCase__ = np.asarray(weights[3] )
set_param(
torch_layer.self_attention.query , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , )
set_param(
torch_layer.self_attention.key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , )
set_param(
torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = weights[0][0][0]
lowerCAmelCase__ = np.asarray(layer_norm_a[0] )
lowerCAmelCase__ = np.asarray(layer_norm_a[1] )
set_param(
torch_block.attention.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , )
# lsh weights + output
lowerCAmelCase__ = weights[0][1]
if len(lowerCamelCase__ ) < 4:
set_layer_weights_in_torch_lsh(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ )
else:
set_layer_weights_in_torch_local(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ )
# intermediate weighs
lowerCAmelCase__ = weights[2][0][1][2]
# Chunked Feed Forward
if len(lowerCamelCase__ ) == 4:
lowerCAmelCase__ = intermediate_weights[2]
# layernorm 2
lowerCAmelCase__ = np.asarray(intermediate_weights[0][0] )
lowerCAmelCase__ = np.asarray(intermediate_weights[0][1] )
set_param(
torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , )
# intermediate dense
lowerCAmelCase__ = np.asarray(intermediate_weights[1][0] )
lowerCAmelCase__ = np.asarray(intermediate_weights[1][1] )
set_param(
torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , )
# intermediate out
lowerCAmelCase__ = np.asarray(intermediate_weights[4][0] )
lowerCAmelCase__ = np.asarray(intermediate_weights[4][1] )
set_param(
torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = torch_model.reformer
# word embeds
lowerCAmelCase__ = np.asarray(weights[1] )
set_param(
torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase__ ) , )
if isinstance(weights[3] , lowerCamelCase__ ):
lowerCAmelCase__ = torch_model_reformer.embeddings.position_embeddings
for emb_idx in range(len(position_embeddings.weights ) ):
lowerCAmelCase__ = np.asarray(weights[3][emb_idx][0] )
assert (
position_embeddings.weights[emb_idx].shape == emb_weights.shape
), f"""{position_embeddings[emb_idx]} emb does not match"""
lowerCAmelCase__ = nn.Parameter(torch.tensor(lowerCamelCase__ ) )
lowerCAmelCase__ = weights[5]
assert len(torch_model_reformer.encoder.layers ) * 4 == len(
lowerCamelCase__ ), "HF and trax model do not have the same number of layers"
for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ):
lowerCAmelCase__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
set_block_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# output layer norm
lowerCAmelCase__ = np.asarray(weights[7][0] )
lowerCAmelCase__ = np.asarray(weights[7][1] )
set_param(
torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , )
# output embeddings
lowerCAmelCase__ = np.asarray(weights[9][0] )
lowerCAmelCase__ = np.asarray(weights[9][1] )
set_param(
torch_model.lm_head.decoder , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = ReformerConfig.from_json_file(lowerCamelCase__ )
print(f"""Building PyTorch model from configuration: {config}""" )
lowerCAmelCase__ = ReformerModelWithLMHead(lowerCamelCase__ )
with open(lowerCamelCase__ , """rb""" ) as f:
lowerCAmelCase__ = pickle.load(lowerCamelCase__ )["""weights"""]
set_model_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , config.hidden_size )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , lowerCamelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained Reformer model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__lowerCAmelCase : Union[str, Any] = parser.parse_args()
convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
| 674 | 1 |
"""simple docstring"""
from __future__ import annotations
from typing import Generic, TypeVar
__lowerCAmelCase : int = TypeVar("T")
class a_ ( Generic[T] ):
def __init__( self : List[Any] , snake_case__ : T ):
lowerCAmelCase__ = data
lowerCAmelCase__ = self
lowerCAmelCase__ = 0
class a_ ( Generic[T] ):
def __init__( self : Optional[int] ):
# map from node name to the node object
lowerCAmelCase__ = {}
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : T ):
# create a new set with x as its member
lowerCAmelCase__ = DisjointSetTreeNode(snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : T ):
# find the set x belongs to (with path-compression)
lowerCAmelCase__ = self.map[data]
if elem_ref != elem_ref.parent:
lowerCAmelCase__ = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : DisjointSetTreeNode[T] , snake_case__ : DisjointSetTreeNode[T] ):
# helper function for union operation
if nodea.rank > nodea.rank:
lowerCAmelCase__ = nodea
else:
lowerCAmelCase__ = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : T , snake_case__ : T ):
# merge 2 disjoint sets
self.link(self.find_set(snake_case__ ) , self.find_set(snake_case__ ) )
class a_ ( Generic[T] ):
def __init__( self : List[Any] ):
# connections: map from the node to the neighbouring nodes (with weights)
lowerCAmelCase__ = {}
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : T ):
# add a node ONLY if its not present in the graph
if node not in self.connections:
lowerCAmelCase__ = {}
def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : T , snake_case__ : T , snake_case__ : int ):
# add an edge with the given weight
self.add_node(snake_case__ )
self.add_node(snake_case__ )
lowerCAmelCase__ = weight
lowerCAmelCase__ = weight
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = []
lowerCAmelCase__ = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda snake_case__ : x[2] )
# creating the disjoint set
lowerCAmelCase__ = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(snake_case__ )
# MST generation
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
lowerCAmelCase__ = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = edges[index]
index += 1
lowerCAmelCase__ = disjoint_set.find_set(snake_case__ )
lowerCAmelCase__ = disjoint_set.find_set(snake_case__ )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(snake_case__ , snake_case__ , snake_case__ )
disjoint_set.union(snake_case__ , snake_case__ )
return graph
| 674 | """simple docstring"""
import os
from math import logaa
def _UpperCAmelCase ( lowerCamelCase__ = "base_exp.txt" ):
"""simple docstring"""
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) ):
lowerCAmelCase__ , lowerCAmelCase__ = list(map(lowerCamelCase__ , line.split(""",""" ) ) )
if x * logaa(lowerCamelCase__ ) > largest:
lowerCAmelCase__ = x * logaa(lowerCamelCase__ )
lowerCAmelCase__ = i + 1
return result
if __name__ == "__main__":
print(solution())
| 674 | 1 |
"""simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ = 10**9 ):
"""simple docstring"""
lowerCAmelCase__ = 1
lowerCAmelCase__ = 2
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
lowerCAmelCase__ = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(F"{solution() = }")
| 674 | """simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
while b:
lowerCAmelCase__ , lowerCAmelCase__ = b, a % b
return a
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase__ , a % b )
def _UpperCAmelCase ( ):
"""simple docstring"""
print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" )
print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" )
print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" )
print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" )
print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" )
print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" )
print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" )
print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" )
if __name__ == "__main__":
main()
| 674 | 1 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import Optional
from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser
@dataclass
class a_ :
UpperCamelCase_ : str = field(
metadata={"help": "The output directory where the model will be written."} , )
UpperCamelCase_ : str = field(
metadata={
"help": (
"The encoder model checkpoint for weights initialization."
"Don't set if you want to train an encoder model from scratch."
)
} , )
UpperCamelCase_ : str = field(
metadata={
"help": (
"The decoder model checkpoint for weights initialization."
"Don't set if you want to train a decoder model from scratch."
)
} , )
UpperCamelCase_ : Optional[str] = field(
default=__UpperCamelCase , metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} )
UpperCamelCase_ : Optional[str] = field(
default=__UpperCamelCase , metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} )
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser((ModelArguments,) )
((lowerCAmelCase__) , ) = parser.parse_args_into_dataclasses()
# Load pretrained model and tokenizer
# Use explicit specified encoder config
if model_args.encoder_config_name:
lowerCAmelCase__ = AutoConfig.from_pretrained(model_args.encoder_config_name )
# Use pretrained encoder model's config
else:
lowerCAmelCase__ = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path )
# Use explicit specified decoder config
if model_args.decoder_config_name:
lowerCAmelCase__ = AutoConfig.from_pretrained(model_args.decoder_config_name )
# Use pretrained decoder model's config
else:
lowerCAmelCase__ = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path )
# necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed
lowerCAmelCase__ = True
lowerCAmelCase__ = True
lowerCAmelCase__ = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=lowerCamelCase__ , decoder_config=lowerCamelCase__ , )
# GPT2 only has bos/eos tokens but not decoder_start/pad tokens
lowerCAmelCase__ = decoder_config.decoder_start_token_id
lowerCAmelCase__ = decoder_config.pad_token_id
if decoder_start_token_id is None:
lowerCAmelCase__ = decoder_config.bos_token_id
if pad_token_id is None:
lowerCAmelCase__ = decoder_config.eos_token_id
# This is necessary to make Flax's generate() work
lowerCAmelCase__ = decoder_config.eos_token_id
lowerCAmelCase__ = decoder_start_token_id
lowerCAmelCase__ = pad_token_id
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path )
lowerCAmelCase__ = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path )
lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(model.config.pad_token_id )
model.save_pretrained(model_args.output_dir )
image_processor.save_pretrained(model_args.output_dir )
tokenizer.save_pretrained(model_args.output_dir )
if __name__ == "__main__":
main()
| 674 | """simple docstring"""
import os
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = os.path.dirname(os.path.realpath(lowerCamelCase__ ) )
lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """triangle.txt""" )
with open(lowerCamelCase__ ) as f:
lowerCAmelCase__ = f.readlines()
lowerCAmelCase__ = []
for line in triangle:
lowerCAmelCase__ = []
for number in line.strip().split(""" """ ):
numbers_from_line.append(int(lowerCamelCase__ ) )
a.append(lowerCamelCase__ )
for i in range(1 , len(lowerCamelCase__ ) ):
for j in range(len(a[i] ) ):
lowerCAmelCase__ = a[i - 1][j] if j != len(a[i - 1] ) else 0
lowerCAmelCase__ = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(lowerCamelCase__ , lowerCamelCase__ )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 674 | 1 |
"""simple docstring"""
__lowerCAmelCase : dict[tuple[int, int, int], int] = {}
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
lowerCAmelCase__ = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
lowerCAmelCase__ = _calculate(days - 1 , lowerCamelCase__ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
lowerCAmelCase__ = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
lowerCAmelCase__ = _calculate(days - 1 , lowerCamelCase__ , 0 )
lowerCAmelCase__ = state_late + state_absent + state_ontime
lowerCAmelCase__ = prizestrings
return prizestrings
def _UpperCAmelCase ( lowerCamelCase__ = 30 ):
"""simple docstring"""
return _calculate(lowerCamelCase__ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 674 | """simple docstring"""
import io
import json
import unittest
from parameterized import parameterized
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device
from utils import calculate_bleu
__lowerCAmelCase : Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json"
with io.open(filename, "r", encoding="utf-8") as f:
__lowerCAmelCase : Optional[int] = json.load(f)
@require_torch
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Dict ):
return FSMTTokenizer.from_pretrained(snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ):
lowerCAmelCase__ = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ )
if torch_device == "cuda":
model.half()
return model
@parameterized.expand(
[
["""en-ru""", 26.0],
["""ru-en""", 22.0],
["""en-de""", 22.0],
["""de-en""", 29.0],
] )
@slow
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Any , snake_case__ : int ):
# note: this test is not testing the best performance since it only evals a small batch
# but it should be enough to detect a regression in the output quality
lowerCAmelCase__ = F"""facebook/wmt19-{pair}"""
lowerCAmelCase__ = self.get_tokenizer(snake_case__ )
lowerCAmelCase__ = self.get_model(snake_case__ )
lowerCAmelCase__ = bleu_data[pair]["""src"""]
lowerCAmelCase__ = bleu_data[pair]["""tgt"""]
lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""pt""" , truncation=snake_case__ , padding="""longest""" ).to(snake_case__ )
lowerCAmelCase__ = model.generate(
input_ids=batch.input_ids , num_beams=8 , )
lowerCAmelCase__ = tokenizer.batch_decode(
snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ )
lowerCAmelCase__ = calculate_bleu(snake_case__ , snake_case__ )
print(snake_case__ )
self.assertGreaterEqual(scores["""bleu"""] , snake_case__ )
| 674 | 1 |
"""simple docstring"""
from __future__ import annotations
from math import gcd
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 3 , ):
"""simple docstring"""
if num < 2:
raise ValueError("""The input value cannot be less than 2""" )
# Because of the relationship between ``f(f(x))`` and ``f(x)``, this
# algorithm struggles to find factors that are divisible by two.
# As a workaround, we specifically check for two and even inputs.
# See: https://math.stackexchange.com/a/2856214/165820
if num > 2 and num % 2 == 0:
return 2
# Pollard's Rho algorithm requires a function that returns pseudorandom
# values between 0 <= X < ``num``. It doesn't need to be random in the
# sense that the output value is cryptographically secure or difficult
# to calculate, it only needs to be random in the sense that all output
# values should be equally likely to appear.
# For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num``
# However, the success of Pollard's algorithm isn't guaranteed and is
# determined in part by the initial seed and the chosen random function.
# To make retries easier, we will instead use ``f(x) = (x**2 + C) % num``
# where ``C`` is a value that we can modify between each attempt.
def rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int:
return (pow(lowerCamelCase__ , 2 ) + step) % modulus
for _ in range(lowerCamelCase__ ):
# These track the position within the cycle detection logic.
lowerCAmelCase__ = seed
lowerCAmelCase__ = seed
while True:
# At each iteration, the tortoise moves one step and the hare moves two.
lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# At some point both the tortoise and the hare will enter a cycle whose
# length ``p`` is a divisor of ``num``. Once in that cycle, at some point
# the tortoise and hare will end up on the same value modulo ``p``.
# We can detect when this happens because the position difference between
# the tortoise and the hare will share a common divisor with ``num``.
lowerCAmelCase__ = gcd(hare - tortoise , lowerCamelCase__ )
if divisor == 1:
# No common divisor yet, just keep searching.
continue
else:
# We found a common divisor!
if divisor == num:
# Unfortunately, the divisor is ``num`` itself and is useless.
break
else:
# The divisor is a nontrivial factor of ``num``!
return divisor
# If we made it here, then this attempt failed.
# We need to pick a new starting seed for the tortoise and hare
# in addition to a new step value for the random function.
# To keep this example implementation deterministic, the
# new values will be generated based on currently available
# values instead of using something like ``random.randint``.
# We can use the hare's position as the new seed.
# This is actually what Richard Brent's the "optimized" variant does.
lowerCAmelCase__ = hare
# The new step value for the random function can just be incremented.
# At first the results will be similar to what the old function would
# have produced, but the value will quickly diverge after a bit.
step += 1
# We haven't found a divisor within the requested number of attempts.
# We were unlucky or ``num`` itself is actually prime.
return None
if __name__ == "__main__":
import argparse
__lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"num",
type=int,
help="The value to find a divisor of",
)
parser.add_argument(
"--attempts",
type=int,
default=3,
help="The number of attempts before giving up",
)
__lowerCAmelCase : List[str] = parser.parse_args()
__lowerCAmelCase : Dict = pollard_rho(args.num, attempts=args.attempts)
if divisor is None:
print(F"{args.num} is probably prime")
else:
__lowerCAmelCase : List[str] = args.num // divisor
print(F"{args.num} = {divisor} * {quotient}")
| 674 | """simple docstring"""
import pprint
import requests
__lowerCAmelCase : Union[str, Any] = "https://zenquotes.io/api"
def _UpperCAmelCase ( ):
"""simple docstring"""
return requests.get(API_ENDPOINT_URL + """/today""" ).json()
def _UpperCAmelCase ( ):
"""simple docstring"""
return requests.get(API_ENDPOINT_URL + """/random""" ).json()
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] = random_quotes()
pprint.pprint(response)
| 674 | 1 |
"""simple docstring"""
import random
import unittest
import numpy as np
import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
if is_flax_available():
import os
import jax.numpy as jnp
from jax import jit
from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
__lowerCAmelCase : Optional[Any] = "0.12" # assumed parallelism: 8
if is_torch_available():
import torch
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ):
"""simple docstring"""
if rng is None:
lowerCAmelCase__ = random.Random()
lowerCAmelCase__ = 1
for dim in shape:
total_dims *= dim
lowerCAmelCase__ = []
for _ in range(lowerCamelCase__ ):
values.append(rng.randint(0 , vocab_size - 1 ) )
lowerCAmelCase__ = np.array(lowerCamelCase__ , dtype=jnp.intaa ).reshape(lowerCamelCase__ )
return output
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=None ):
"""simple docstring"""
lowerCAmelCase__ = ids_tensor(lowerCamelCase__ , vocab_size=2 , rng=lowerCamelCase__ )
# make sure that at least one token is attended to for each batch
lowerCAmelCase__ = 1
return attn_mask
@require_flax
class a_ :
UpperCamelCase_ : List[str] = None
UpperCamelCase_ : Any = ()
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
# cut to half length & take max batch_size 3
lowerCAmelCase__ = 2
lowerCAmelCase__ = inputs["""input_ids"""].shape[-1] // 2
lowerCAmelCase__ = inputs["""input_ids"""][:max_batch_size, :sequence_length]
lowerCAmelCase__ = jnp.ones_like(snake_case__ )
lowerCAmelCase__ = attention_mask[:max_batch_size, :sequence_length]
# generate max 5 tokens
lowerCAmelCase__ = input_ids.shape[-1] + 5
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
lowerCAmelCase__ = config.eos_token_id
return config, input_ids, attention_mask, max_length
@is_pt_flax_cross_test
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config()
lowerCAmelCase__ = False
lowerCAmelCase__ = max_length
lowerCAmelCase__ = 0
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
lowerCAmelCase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase__ = getattr(snake_case__ , snake_case__ )
lowerCAmelCase__ = pt_model_class(snake_case__ ).eval()
lowerCAmelCase__ = load_flax_weights_in_pytorch_model(snake_case__ , flax_model.params )
lowerCAmelCase__ = flax_model.generate(snake_case__ ).sequences
lowerCAmelCase__ = pt_model.generate(torch.tensor(snake_case__ , dtype=torch.long ) )
if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]:
lowerCAmelCase__ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]]
self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config()
lowerCAmelCase__ = False
lowerCAmelCase__ = max_length
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
lowerCAmelCase__ = model.generate(snake_case__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , snake_case__ )
lowerCAmelCase__ = jit(model.generate )
lowerCAmelCase__ = jit_generate(snake_case__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config()
lowerCAmelCase__ = True
lowerCAmelCase__ = max_length
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
lowerCAmelCase__ = model.generate(snake_case__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , snake_case__ )
lowerCAmelCase__ = jit(model.generate )
lowerCAmelCase__ = jit_generate(snake_case__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _SCREAMING_SNAKE_CASE ( self : str ):
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config()
lowerCAmelCase__ = False
lowerCAmelCase__ = max_length
lowerCAmelCase__ = 2
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
lowerCAmelCase__ = model.generate(snake_case__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , snake_case__ )
lowerCAmelCase__ = jit(model.generate )
lowerCAmelCase__ = jit_generate(snake_case__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config()
lowerCAmelCase__ = False
lowerCAmelCase__ = max_length
lowerCAmelCase__ = 2
lowerCAmelCase__ = 2
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
lowerCAmelCase__ = model.generate(snake_case__ ).sequences
self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences )
def _SCREAMING_SNAKE_CASE ( self : str ):
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config()
lowerCAmelCase__ = True
lowerCAmelCase__ = max_length
lowerCAmelCase__ = 0.8
lowerCAmelCase__ = 10
lowerCAmelCase__ = 0.3
lowerCAmelCase__ = 1
lowerCAmelCase__ = 8
lowerCAmelCase__ = 9
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
lowerCAmelCase__ = model.generate(snake_case__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , snake_case__ )
lowerCAmelCase__ = jit(model.generate )
lowerCAmelCase__ = jit_generate(snake_case__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config()
lowerCAmelCase__ = max_length
lowerCAmelCase__ = 1
lowerCAmelCase__ = 8
lowerCAmelCase__ = 9
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
lowerCAmelCase__ = model.generate(snake_case__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , snake_case__ )
lowerCAmelCase__ = jit(model.generate )
lowerCAmelCase__ = jit_generate(snake_case__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config()
lowerCAmelCase__ = max_length
lowerCAmelCase__ = 2
lowerCAmelCase__ = 1
lowerCAmelCase__ = 8
lowerCAmelCase__ = 9
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
lowerCAmelCase__ = model.generate(snake_case__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , snake_case__ )
lowerCAmelCase__ = jit(model.generate )
lowerCAmelCase__ = jit_generate(snake_case__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config()
# pad attention mask on the left
lowerCAmelCase__ = attention_mask.at[(0, 0)].set(0 )
lowerCAmelCase__ = False
lowerCAmelCase__ = max_length
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
lowerCAmelCase__ = model.generate(snake_case__ , attention_mask=snake_case__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , snake_case__ )
lowerCAmelCase__ = jit(model.generate )
lowerCAmelCase__ = jit_generate(snake_case__ , attention_mask=snake_case__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config()
# pad attention mask on the left
lowerCAmelCase__ = attention_mask.at[(0, 0)].set(0 )
lowerCAmelCase__ = True
lowerCAmelCase__ = max_length
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
lowerCAmelCase__ = model.generate(snake_case__ , attention_mask=snake_case__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , snake_case__ )
lowerCAmelCase__ = jit(model.generate )
lowerCAmelCase__ = jit_generate(snake_case__ , attention_mask=snake_case__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config()
# pad attention mask on the left
lowerCAmelCase__ = attention_mask.at[(0, 0)].set(0 )
lowerCAmelCase__ = 2
lowerCAmelCase__ = max_length
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
lowerCAmelCase__ = model.generate(snake_case__ , attention_mask=snake_case__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , snake_case__ )
lowerCAmelCase__ = jit(model.generate )
lowerCAmelCase__ = jit_generate(snake_case__ , attention_mask=snake_case__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
@require_flax
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" )
lowerCAmelCase__ = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" )
lowerCAmelCase__ = """Hello world"""
lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""np""" ).input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(snake_case__ , """do_samples""" ):
model.generate(snake_case__ , do_samples=snake_case__ )
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(snake_case__ , """foo""" ):
lowerCAmelCase__ = {"""foo""": """bar"""}
model.generate(snake_case__ , **snake_case__ )
| 674 | """simple docstring"""
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = 0
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
lowerCAmelCase__ = Path(snake_case__ ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
lowerCAmelCase__ = Path(snake_case__ ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = CLIPConfig()
# Create a dummy config file with image_proceesor_type
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
lowerCAmelCase__ = Path(snake_case__ ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ).to_dict()
config_dict.pop("""image_processor_type""" )
lowerCAmelCase__ = CLIPImageProcessor(**snake_case__ )
# save in new folder
model_config.save_pretrained(snake_case__ )
config.save_pretrained(snake_case__ )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
# make sure private variable is not incorrectly saved
lowerCAmelCase__ = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
with self.assertRaisesRegex(
snake_case__ , """clip-base is not a local folder and is not a valid model identifier""" ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""clip-base""" )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
with self.assertRaisesRegex(
snake_case__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , revision="""aaaaaa""" )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
with self.assertRaisesRegex(
snake_case__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" )
def _SCREAMING_SNAKE_CASE ( self : Any ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(snake_case__ ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(snake_case__ ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(snake_case__ )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , trust_remote_code=snake_case__ )
self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
try:
AutoConfig.register("""custom""" , snake_case__ )
AutoImageProcessor.register(snake_case__ , snake_case__ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(snake_case__ ):
AutoImageProcessor.register(snake_case__ , snake_case__ )
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
lowerCAmelCase__ = Path(snake_case__ ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) )
lowerCAmelCase__ = CustomImageProcessor.from_pretrained(snake_case__ )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(snake_case__ )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : Tuple = True
try:
AutoConfig.register("""custom""" , snake_case__ )
AutoImageProcessor.register(snake_case__ , snake_case__ )
# If remote code is not set, the default is to use local
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(not hasattr(snake_case__ , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 674 | 1 |
"""simple docstring"""
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetrImageProcessor
class a_ ( unittest.TestCase ):
def __init__( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Tuple=7 , snake_case__ : str=3 , snake_case__ : int=30 , snake_case__ : Dict=400 , snake_case__ : Optional[Any]=True , snake_case__ : int=None , snake_case__ : Any=True , snake_case__ : str=1 / 255 , snake_case__ : Tuple=True , snake_case__ : int=[0.5, 0.5, 0.5] , snake_case__ : List[str]=[0.5, 0.5, 0.5] , snake_case__ : Optional[int]=True , ):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
lowerCAmelCase__ = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333}
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = min_resolution
lowerCAmelCase__ = max_resolution
lowerCAmelCase__ = do_resize
lowerCAmelCase__ = size
lowerCAmelCase__ = do_rescale
lowerCAmelCase__ = rescale_factor
lowerCAmelCase__ = do_normalize
lowerCAmelCase__ = image_mean
lowerCAmelCase__ = image_std
lowerCAmelCase__ = do_pad
def _SCREAMING_SNAKE_CASE ( self : Dict ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_pad": self.do_pad,
}
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Union[str, Any] , snake_case__ : Dict=False ):
if not batched:
lowerCAmelCase__ = image_inputs[0]
if isinstance(snake_case__ , Image.Image ):
lowerCAmelCase__ , lowerCAmelCase__ = image.size
else:
lowerCAmelCase__ , lowerCAmelCase__ = image.shape[1], image.shape[2]
if w < h:
lowerCAmelCase__ = int(self.size["""shortest_edge"""] * h / w )
lowerCAmelCase__ = self.size["""shortest_edge"""]
elif w > h:
lowerCAmelCase__ = self.size["""shortest_edge"""]
lowerCAmelCase__ = int(self.size["""shortest_edge"""] * w / h )
else:
lowerCAmelCase__ = self.size["""shortest_edge"""]
lowerCAmelCase__ = self.size["""shortest_edge"""]
else:
lowerCAmelCase__ = []
for image in image_inputs:
lowerCAmelCase__ , lowerCAmelCase__ = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
lowerCAmelCase__ = max(snake_case__ , key=lambda snake_case__ : item[0] )[0]
lowerCAmelCase__ = max(snake_case__ , key=lambda snake_case__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class a_ ( __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : int = DetrImageProcessor if is_vision_available() else None
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = DetrImageProcessingTester(self )
@property
def _SCREAMING_SNAKE_CASE ( self : str ):
return self.image_processor_tester.prepare_image_processor_dict()
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(snake_case__ , """image_mean""" ) )
self.assertTrue(hasattr(snake_case__ , """image_std""" ) )
self.assertTrue(hasattr(snake_case__ , """do_normalize""" ) )
self.assertTrue(hasattr(snake_case__ , """do_rescale""" ) )
self.assertTrue(hasattr(snake_case__ , """rescale_factor""" ) )
self.assertTrue(hasattr(snake_case__ , """do_resize""" ) )
self.assertTrue(hasattr(snake_case__ , """size""" ) )
self.assertTrue(hasattr(snake_case__ , """do_pad""" ) )
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} )
self.assertEqual(image_processor.do_pad , snake_case__ )
lowerCAmelCase__ = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=snake_case__ )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} )
self.assertEqual(image_processor.do_pad , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
pass
def _SCREAMING_SNAKE_CASE ( self : Dict ):
# Initialize image_processing
lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , Image.Image )
# Test not batched input
lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ )
lowerCAmelCase__ = image_processing(snake_case__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
# Initialize image_processing
lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , np.ndarray )
# Test not batched input
lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase__ = image_processing(snake_case__ , return_tensors="""pt""" ).pixel_values
lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _SCREAMING_SNAKE_CASE ( self : int ):
# Initialize image_processing
lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , torch.Tensor )
# Test not batched input
lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase__ = image_processing(snake_case__ , return_tensors="""pt""" ).pixel_values
lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
# prepare image and target
lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f:
lowerCAmelCase__ = json.loads(f.read() )
lowerCAmelCase__ = {"""image_id""": 39769, """annotations""": target}
# encode them
lowerCAmelCase__ = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" )
lowerCAmelCase__ = image_processing(images=snake_case__ , annotations=snake_case__ , return_tensors="""pt""" )
# verify pixel values
lowerCAmelCase__ = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , snake_case__ )
lowerCAmelCase__ = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , snake_case__ , atol=1E-4 ) )
# verify area
lowerCAmelCase__ = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , snake_case__ ) )
# verify boxes
lowerCAmelCase__ = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , snake_case__ )
lowerCAmelCase__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , snake_case__ , atol=1E-3 ) )
# verify image_id
lowerCAmelCase__ = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , snake_case__ ) )
# verify is_crowd
lowerCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , snake_case__ ) )
# verify class_labels
lowerCAmelCase__ = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , snake_case__ ) )
# verify orig_size
lowerCAmelCase__ = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , snake_case__ ) )
# verify size
lowerCAmelCase__ = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , snake_case__ ) )
@slow
def _SCREAMING_SNAKE_CASE ( self : Dict ):
# prepare image, target and masks_path
lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f:
lowerCAmelCase__ = json.loads(f.read() )
lowerCAmelCase__ = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target}
lowerCAmelCase__ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" )
# encode them
lowerCAmelCase__ = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" )
lowerCAmelCase__ = image_processing(images=snake_case__ , annotations=snake_case__ , masks_path=snake_case__ , return_tensors="""pt""" )
# verify pixel values
lowerCAmelCase__ = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , snake_case__ )
lowerCAmelCase__ = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , snake_case__ , atol=1E-4 ) )
# verify area
lowerCAmelCase__ = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , snake_case__ ) )
# verify boxes
lowerCAmelCase__ = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , snake_case__ )
lowerCAmelCase__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , snake_case__ , atol=1E-3 ) )
# verify image_id
lowerCAmelCase__ = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , snake_case__ ) )
# verify is_crowd
lowerCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , snake_case__ ) )
# verify class_labels
lowerCAmelCase__ = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , snake_case__ ) )
# verify masks
lowerCAmelCase__ = 822873
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , snake_case__ )
# verify orig_size
lowerCAmelCase__ = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , snake_case__ ) )
# verify size
lowerCAmelCase__ = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , snake_case__ ) )
| 674 | """simple docstring"""
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class a_ :
def __init__( self : Optional[int] , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=64 , snake_case__ : Any=None ):
lowerCAmelCase__ = np.random.default_rng(snake_case__ )
lowerCAmelCase__ = length
lowerCAmelCase__ = rng.normal(size=(length,) ).astype(np.floataa )
lowerCAmelCase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self : Optional[Any] ):
return self.length
def __getitem__( self : List[str] , snake_case__ : Optional[int] ):
return {"x": self.x[i], "y": self.y[i]}
class a_ ( torch.nn.Module ):
def __init__( self : List[str] , snake_case__ : str=0 , snake_case__ : Dict=0 , snake_case__ : Any=False ):
super().__init__()
lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
lowerCAmelCase__ = True
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Any=None ):
if self.first_batch:
print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" )
lowerCAmelCase__ = False
return x * self.a[0] + self.b[0]
class a_ ( torch.nn.Module ):
def __init__( self : Any , snake_case__ : Union[str, Any]=0 , snake_case__ : Union[str, Any]=0 , snake_case__ : List[Any]=False ):
super().__init__()
lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() )
lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() )
lowerCAmelCase__ = True
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any]=None ):
if self.first_batch:
print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" )
lowerCAmelCase__ = False
return x * self.a + self.b
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 16 ):
"""simple docstring"""
from datasets import load_dataset
from transformers import AutoTokenizer
lowerCAmelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" )
lowerCAmelCase__ = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
lowerCAmelCase__ = load_dataset("""csv""" , data_files=lowerCamelCase__ )
lowerCAmelCase__ = datasets["""train"""].unique("""label""" )
lowerCAmelCase__ = {v: i for i, v in enumerate(lowerCamelCase__ )}
def tokenize_function(lowerCamelCase__ ):
# max_length=None => use the model max length (it's actually the default)
lowerCAmelCase__ = tokenizer(
examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" )
if "label" in examples:
lowerCAmelCase__ = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
lowerCAmelCase__ = datasets.map(
lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , )
def collate_fn(lowerCamelCase__ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
lowerCAmelCase__ = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=2 )
lowerCAmelCase__ = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 674 | 1 |
"""simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
if discount_rate < 0:
raise ValueError("""Discount rate cannot be negative""" )
if not cash_flows:
raise ValueError("""Cash flows list cannot be empty""" )
lowerCAmelCase__ = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) )
return round(lowerCamelCase__ , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 674 | """simple docstring"""
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = MobileBertConfig.from_json_file(lowerCamelCase__ )
print(f"""Building PyTorch model from configuration: {config}""" )
lowerCAmelCase__ = MobileBertForPreTraining(lowerCamelCase__ )
# Load weights from tf checkpoint
lowerCAmelCase__ = load_tf_weights_in_mobilebert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , lowerCamelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--mobilebert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained MobileBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__lowerCAmelCase : Optional[int] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 674 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionInstructPixaPixPipeline,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import floats_tensor, load_image, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class a_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : Dict = StableDiffusionInstructPixaPixPipeline
UpperCamelCase_ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"}
UpperCamelCase_ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
UpperCamelCase_ : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS
UpperCamelCase_ : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS
def _SCREAMING_SNAKE_CASE ( self : int ):
torch.manual_seed(0 )
lowerCAmelCase__ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
lowerCAmelCase__ = PNDMScheduler(skip_prk_steps=snake_case__ )
torch.manual_seed(0 )
lowerCAmelCase__ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
lowerCAmelCase__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
lowerCAmelCase__ = CLIPTextModel(snake_case__ )
lowerCAmelCase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
lowerCAmelCase__ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] , snake_case__ : List[str]=0 ):
lowerCAmelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ )
lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase__ = Image.fromarray(np.uinta(snake_case__ ) ).convert("""RGB""" )
if str(snake_case__ ).startswith("""mps""" ):
lowerCAmelCase__ = torch.manual_seed(snake_case__ )
else:
lowerCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ )
lowerCAmelCase__ = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""image_guidance_scale""": 1,
"""output_type""": """numpy""",
}
return inputs
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
lowerCAmelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase__ = self.get_dummy_components()
lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline(**snake_case__ )
lowerCAmelCase__ = sd_pipe.to(snake_case__ )
sd_pipe.set_progress_bar_config(disable=snake_case__ )
lowerCAmelCase__ = self.get_dummy_inputs(snake_case__ )
lowerCAmelCase__ = sd_pipe(**snake_case__ ).images
lowerCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
lowerCAmelCase__ = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase__ = self.get_dummy_components()
lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline(**snake_case__ )
lowerCAmelCase__ = sd_pipe.to(snake_case__ )
sd_pipe.set_progress_bar_config(disable=snake_case__ )
lowerCAmelCase__ = self.get_dummy_inputs(snake_case__ )
lowerCAmelCase__ = """french fries"""
lowerCAmelCase__ = sd_pipe(**snake_case__ , negative_prompt=snake_case__ )
lowerCAmelCase__ = output.images
lowerCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
lowerCAmelCase__ = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def _SCREAMING_SNAKE_CASE ( self : Any ):
lowerCAmelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase__ = self.get_dummy_components()
lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline(**snake_case__ )
lowerCAmelCase__ = sd_pipe.to(snake_case__ )
sd_pipe.set_progress_bar_config(disable=snake_case__ )
lowerCAmelCase__ = self.get_dummy_inputs(snake_case__ )
lowerCAmelCase__ = [inputs["""prompt"""]] * 2
lowerCAmelCase__ = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0
lowerCAmelCase__ = torch.from_numpy(snake_case__ ).unsqueeze(0 ).to(snake_case__ )
lowerCAmelCase__ = image / 2 + 0.5
lowerCAmelCase__ = image.permute(0 , 3 , 1 , 2 )
lowerCAmelCase__ = image.repeat(2 , 1 , 1 , 1 )
lowerCAmelCase__ = sd_pipe(**snake_case__ ).images
lowerCAmelCase__ = image[-1, -3:, -3:, -1]
assert image.shape == (2, 32, 32, 3)
lowerCAmelCase__ = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase__ = self.get_dummy_components()
lowerCAmelCase__ = EulerAncestralDiscreteScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" )
lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline(**snake_case__ )
lowerCAmelCase__ = sd_pipe.to(snake_case__ )
sd_pipe.set_progress_bar_config(disable=snake_case__ )
lowerCAmelCase__ = self.get_dummy_inputs(snake_case__ )
lowerCAmelCase__ = sd_pipe(**snake_case__ ).images
lowerCAmelCase__ = image[0, -3:, -3:, -1]
lowerCAmelCase__ = [round(snake_case__ , 4 ) for x in image_slice.flatten().tolist()]
print(""",""".join([str(snake_case__ ) for x in slice] ) )
assert image.shape == (1, 32, 32, 3)
lowerCAmelCase__ = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def _SCREAMING_SNAKE_CASE ( self : Dict ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
lowerCAmelCase__ = self.get_dummy_components()
lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline(**snake_case__ )
lowerCAmelCase__ = VaeImageProcessor(do_resize=snake_case__ , do_normalize=snake_case__ )
lowerCAmelCase__ = pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
lowerCAmelCase__ = pipe(**self.get_dummy_inputs_by_type(snake_case__ , input_image_type="""pt""" ) )[0]
lowerCAmelCase__ = components["""vae"""]
lowerCAmelCase__ = self.get_dummy_inputs_by_type(snake_case__ , input_image_type="""pt""" )
for image_param in self.image_latents_params:
if image_param in inputs.keys():
lowerCAmelCase__ = vae.encode(inputs[image_param] ).latent_dist.mode()
lowerCAmelCase__ = pipe(**snake_case__ )[0]
lowerCAmelCase__ = np.abs(out - out_latents_inputs ).max()
self.assertLess(snake_case__ , 1E-4 , """passing latents as image input generate different result from passing image""" )
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Any=0 ):
lowerCAmelCase__ = torch.manual_seed(snake_case__ )
lowerCAmelCase__ = load_image(
"""https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" )
lowerCAmelCase__ = {
"""prompt""": """turn him into a cyborg""",
"""image""": image,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 7.5,
"""image_guidance_scale""": 1.0,
"""output_type""": """numpy""",
}
return inputs
def _SCREAMING_SNAKE_CASE ( self : Any ):
lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=snake_case__ )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
pipe.enable_attention_slicing()
lowerCAmelCase__ = self.get_inputs()
lowerCAmelCase__ = pipe(**snake_case__ ).images
lowerCAmelCase__ = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
lowerCAmelCase__ = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] )
assert np.abs(expected_slice - image_slice ).max() < 1E-3
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=snake_case__ )
lowerCAmelCase__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
pipe.enable_attention_slicing()
lowerCAmelCase__ = self.get_inputs()
lowerCAmelCase__ = pipe(**snake_case__ ).images
lowerCAmelCase__ = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
lowerCAmelCase__ = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] )
assert np.abs(expected_slice - image_slice ).max() < 1E-3
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=snake_case__ )
lowerCAmelCase__ = DDIMScheduler.from_config(pipe.scheduler.config )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
pipe.enable_attention_slicing()
lowerCAmelCase__ = self.get_inputs()
lowerCAmelCase__ = pipe(**snake_case__ ).images
lowerCAmelCase__ = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
lowerCAmelCase__ = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] )
assert np.abs(expected_slice - image_slice ).max() < 1E-3
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = 0
def callback_fn(snake_case__ : int , snake_case__ : int , snake_case__ : torch.FloatTensor ) -> None:
lowerCAmelCase__ = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
lowerCAmelCase__ = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
lowerCAmelCase__ = latents[0, -3:, -3:, -1]
lowerCAmelCase__ = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2
elif step == 2:
lowerCAmelCase__ = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
lowerCAmelCase__ = latents[0, -3:, -3:, -1]
lowerCAmelCase__ = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2
lowerCAmelCase__ = False
lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=snake_case__ , torch_dtype=torch.floataa )
lowerCAmelCase__ = pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
pipe.enable_attention_slicing()
lowerCAmelCase__ = self.get_inputs()
pipe(**snake_case__ , callback=snake_case__ , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def _SCREAMING_SNAKE_CASE ( self : Any ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=snake_case__ , torch_dtype=torch.floataa )
lowerCAmelCase__ = pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
lowerCAmelCase__ = self.get_inputs()
lowerCAmelCase__ = pipe(**snake_case__ )
lowerCAmelCase__ = torch.cuda.max_memory_allocated()
# make sure that less than 2.2 GB is allocated
assert mem_bytes < 2.2 * 10**9
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = self.get_inputs()
# resize to resolution that is divisible by 8 but not 16 or 32
lowerCAmelCase__ = inputs["""image"""].resize((504, 504) )
lowerCAmelCase__ = """timbrooks/instruct-pix2pix"""
lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained(
snake_case__ , safety_checker=snake_case__ , )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
pipe.enable_attention_slicing()
lowerCAmelCase__ = pipe(**snake_case__ )
lowerCAmelCase__ = output.images[0]
lowerCAmelCase__ = image[255:258, 383:386, -1]
assert image.shape == (504, 504, 3)
lowerCAmelCase__ = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
| 674 | """simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), f"""The input value of [n={number}] is not an integer"""
if number == 1:
return 2
elif number < 1:
lowerCAmelCase__ = f"""The input value of [n={number}] has to be > 0"""
raise ValueError(lowerCamelCase__ )
else:
lowerCAmelCase__ = sylvester(number - 1 )
lowerCAmelCase__ = num - 1
lowerCAmelCase__ = num
return lower * upper + 1
if __name__ == "__main__":
print(F"The 8th number in Sylvester's sequence: {sylvester(8)}")
| 674 | 1 |
"""simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
if graph[path[curr_ind - 1]][next_ver] == 0:
return False
# 2. Validate that next vertex is not already in path
return not any(vertex == next_ver for vertex in path )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
if curr_ind == len(lowerCamelCase__ ):
# return whether path exists between current and starting vertices
return graph[path[curr_ind - 1]][path[0]] == 1
# Recursive Step
for next_ver in range(0 , len(lowerCamelCase__ ) ):
if valid_connection(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
# Insert current vertex into path as next transition
lowerCAmelCase__ = next_ver
# Validate created path
if util_hamilton_cycle(lowerCamelCase__ , lowerCamelCase__ , curr_ind + 1 ):
return True
# Backtrack
lowerCAmelCase__ = -1
return False
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 0 ):
"""simple docstring"""
lowerCAmelCase__ = [-1] * (len(lowerCamelCase__ ) + 1)
# initialize start and end of path with starting index
lowerCAmelCase__ = lowerCAmelCase__ = start_index
# evaluate and if we find answer return path either return empty array
return path if util_hamilton_cycle(lowerCamelCase__ , lowerCamelCase__ , 1 ) else []
| 674 | """simple docstring"""
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__lowerCAmelCase : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model")
@require_sentencepiece
@require_tokenizers
class a_ ( __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : Tuple = PegasusTokenizer
UpperCamelCase_ : Any = PegasusTokenizerFast
UpperCamelCase_ : int = True
UpperCamelCase_ : Any = True
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase__ = PegasusTokenizer(snake_case__ )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : Optional[Any] ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any] ):
return ("This is a test", "This is a test")
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = """</s>"""
lowerCAmelCase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(snake_case__ ) , 1103 )
def _SCREAMING_SNAKE_CASE ( self : Any ):
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowerCAmelCase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
lowerCAmelCase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1]
lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 96103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
lowerCAmelCase__ = """To ensure a smooth flow of bank resolutions."""
lowerCAmelCase__ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1]
lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = ["""This is going to be way too long.""" * 150, """short example"""]
lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""]
lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
lowerCAmelCase__ = self._large_tokenizer(
text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(snake_case__ ) == 2 # input_ids, attention_mask.
@slow
def _SCREAMING_SNAKE_CASE ( self : str ):
# fmt: off
lowerCAmelCase__ = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class a_ ( __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : str = PegasusTokenizer
UpperCamelCase_ : Optional[int] = PegasusTokenizerFast
UpperCamelCase_ : Union[str, Any] = True
UpperCamelCase_ : Optional[int] = True
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase__ = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Dict ):
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : List[Any] ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Dict ):
return ("This is a test", "This is a test")
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
@require_torch
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = ["""This is going to be way too long.""" * 1000, """short example"""]
lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""]
lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
lowerCAmelCase__ = self._large_tokenizer(
text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(snake_case__ ) == 2 # input_ids, attention_mask.
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
lowerCAmelCase__ = self._large_tokenizer(snake_case__ ).input_ids
self.assertListEqual(
snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
| 674 | 1 |
"""simple docstring"""
__lowerCAmelCase : List[Any] = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
__lowerCAmelCase : Optional[int] = [{"type": "code", "content": INSTALL_CONTENT}]
__lowerCAmelCase : str = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 674 | """simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , )
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue_model_parallelism.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
] )
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : int ):
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case__ , )
assert hasattr(self , """env""" )
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] ):
# configuration for running training on smdistributed Model Parallel
lowerCAmelCase__ = {
"""enabled""": True,
"""processes_per_host""": 8,
}
lowerCAmelCase__ = {
"""enabled""": True,
"""parameters""": {
"""microbatches""": 4,
"""placement_strategy""": """spread""",
"""pipeline""": """interleaved""",
"""optimize""": """speed""",
"""partitions""": 4,
"""ddp""": True,
},
}
lowerCAmelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options}
lowerCAmelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer"""
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={
**self.env.hyperparameters,
"""model_name_or_path""": self.model_name_or_path,
"""max_steps""": 500,
} , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="""py36""" , )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str ):
TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] ):
# create estimator
lowerCAmelCase__ = self.create_estimator(snake_case__ )
# run training
estimator.fit()
# result dataframe
lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] )
lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
lowerCAmelCase__ = (
Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy )
assert all(t <= self.results["""eval_loss"""] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile:
json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case__ )
| 674 | 1 |
"""simple docstring"""
from typing import List
import numpy as np
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = {key: len(lowerCamelCase__ ) for key, value in gen_kwargs.items() if isinstance(lowerCamelCase__ , lowerCamelCase__ )}
if len(set(lists_lengths.values() ) ) > 1:
raise RuntimeError(
(
"""Sharding is ambiguous for this dataset: """
+ """we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n"""
+ """\n""".join(f"""\t- key {key} has length {length}""" for key, length in lists_lengths.items() )
+ """\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, """
+ """and use tuples otherwise. In the end there should only be one single list, or several lists with the same length."""
) )
lowerCAmelCase__ = max(lists_lengths.values() , default=0 )
return max(1 , lowerCamelCase__ )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = []
for group_idx in range(lowerCamelCase__ ):
lowerCAmelCase__ = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs))
if num_shards_to_add == 0:
break
lowerCAmelCase__ = shards_indices_per_group[-1].stop if shards_indices_per_group else 0
lowerCAmelCase__ = range(lowerCamelCase__ , start + num_shards_to_add )
shards_indices_per_group.append(lowerCamelCase__ )
return shards_indices_per_group
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = _number_of_shards_in_gen_kwargs(lowerCamelCase__ )
if num_shards == 1:
return [dict(lowerCamelCase__ )]
else:
lowerCAmelCase__ = _distribute_shards(num_shards=lowerCamelCase__ , max_num_jobs=lowerCamelCase__ )
return [
{
key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]]
if isinstance(lowerCamelCase__ , lowerCamelCase__ )
else value
for key, value in gen_kwargs.items()
}
for group_idx in range(len(lowerCamelCase__ ) )
]
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
return {
key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]]
if isinstance(gen_kwargs_list[0][key] , lowerCamelCase__ )
else gen_kwargs_list[0][key]
for key in gen_kwargs_list[0]
}
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = {len(lowerCamelCase__ ) for value in gen_kwargs.values() if isinstance(lowerCamelCase__ , lowerCamelCase__ )}
lowerCAmelCase__ = {}
for size in list_sizes:
lowerCAmelCase__ = list(range(lowerCamelCase__ ) )
rng.shuffle(indices_per_size[size] )
# Now let's copy the gen_kwargs and shuffle the lists based on their sizes
lowerCAmelCase__ = dict(lowerCamelCase__ )
for key, value in shuffled_kwargs.items():
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
lowerCAmelCase__ = [value[i] for i in indices_per_size[len(lowerCamelCase__ )]]
return shuffled_kwargs
| 674 | """simple docstring"""
from math import pi, sqrt
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
if num <= 0:
raise ValueError("""math domain error""" )
if num > 1_71.5:
raise OverflowError("""math range error""" )
elif num - int(lowerCamelCase__ ) not in (0, 0.5):
raise NotImplementedError("""num must be an integer or a half-integer""" )
elif num == 0.5:
return sqrt(lowerCamelCase__ )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def _UpperCAmelCase ( ):
"""simple docstring"""
assert gamma(0.5 ) == sqrt(lowerCamelCase__ )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
__lowerCAmelCase : Dict = 1.0
while num:
__lowerCAmelCase : Any = float(input("Gamma of: "))
print(F"gamma({num}) = {gamma(num)}")
print("\nEnter 0 to exit...")
| 674 | 1 |
"""simple docstring"""
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class a_ :
def __init__( self : Dict , snake_case__ : Dict , snake_case__ : List[Any]=3 , snake_case__ : Any=32 , snake_case__ : List[Any]=3 , snake_case__ : Any=10 , snake_case__ : Optional[int]=[8, 16, 32, 64] , snake_case__ : Optional[int]=[1, 1, 2, 1] , snake_case__ : Any=True , snake_case__ : Union[str, Any]=True , snake_case__ : Dict="relu" , snake_case__ : str=3 , snake_case__ : Tuple=None , snake_case__ : Any=["stage2", "stage3", "stage4"] , snake_case__ : str=[2, 3, 4] , snake_case__ : Optional[Any]=1 , ):
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = image_size
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = embeddings_size
lowerCAmelCase__ = hidden_sizes
lowerCAmelCase__ = depths
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = num_labels
lowerCAmelCase__ = scope
lowerCAmelCase__ = len(snake_case__ )
lowerCAmelCase__ = out_features
lowerCAmelCase__ = out_indices
lowerCAmelCase__ = num_groups
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase__ = None
if self.use_labels:
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels )
lowerCAmelCase__ = self.get_config()
return config, pixel_values, labels
def _SCREAMING_SNAKE_CASE ( self : Dict ):
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : Union[str, Any] ):
lowerCAmelCase__ = BitModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
lowerCAmelCase__ = model(snake_case__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : Optional[Any] ):
lowerCAmelCase__ = self.num_labels
lowerCAmelCase__ = BitForImageClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : Optional[int] ):
lowerCAmelCase__ = BitBackbone(config=snake_case__ )
model.to(snake_case__ )
model.eval()
lowerCAmelCase__ = model(snake_case__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
lowerCAmelCase__ = None
lowerCAmelCase__ = BitBackbone(config=snake_case__ )
model.to(snake_case__ )
model.eval()
lowerCAmelCase__ = model(snake_case__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
lowerCAmelCase__ = self.prepare_config_and_inputs()
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs
lowerCAmelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : Optional[int] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
UpperCamelCase_ : List[str] = (
{"feature-extraction": BitModel, "image-classification": BitForImageClassification}
if is_torch_available()
else {}
)
UpperCamelCase_ : str = False
UpperCamelCase_ : Union[str, Any] = False
UpperCamelCase_ : List[str] = False
UpperCamelCase_ : Tuple = False
UpperCamelCase_ : Optional[int] = False
def _SCREAMING_SNAKE_CASE ( self : Any ):
lowerCAmelCase__ = BitModelTester(self )
lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
return
@unittest.skip(reason="""Bit does not output attentions""" )
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
pass
@unittest.skip(reason="""Bit does not use inputs_embeds""" )
def _SCREAMING_SNAKE_CASE ( self : Any ):
pass
@unittest.skip(reason="""Bit does not support input and output embeddings""" )
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
pass
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
lowerCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase__ = [*signature.parameters.keys()]
lowerCAmelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ = model_class(config=snake_case__ )
for name, module in model.named_modules():
if isinstance(snake_case__ , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
def check_hidden_states_output(snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : Any ):
lowerCAmelCase__ = model_class(snake_case__ )
model.to(snake_case__ )
model.eval()
with torch.no_grad():
lowerCAmelCase__ = model(**self._prepare_for_class(snake_case__ , snake_case__ ) )
lowerCAmelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowerCAmelCase__ = self.model_tester.num_stages
self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase__ = ["""preactivation""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
lowerCAmelCase__ = layer_type
lowerCAmelCase__ = True
check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase__ = True
check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ )
@unittest.skip(reason="""Bit does not use feedforward chunking""" )
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
pass
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case__ )
@slow
def _SCREAMING_SNAKE_CASE ( self : int ):
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase__ = BitModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class a_ ( unittest.TestCase ):
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case__ )
lowerCAmelCase__ = self.default_image_processor
lowerCAmelCase__ = prepare_img()
lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors="""pt""" ).to(snake_case__ )
# forward pass
with torch.no_grad():
lowerCAmelCase__ = model(**snake_case__ )
# verify the logits
lowerCAmelCase__ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , snake_case__ )
lowerCAmelCase__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(snake_case__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
@require_torch
class a_ ( __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : Union[str, Any] = (BitBackbone,) if is_torch_available() else ()
UpperCamelCase_ : Tuple = BitConfig
UpperCamelCase_ : Optional[int] = False
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = BitModelTester(self )
| 674 | """simple docstring"""
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class a_ :
def __init__( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any=13 , snake_case__ : int=30 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : Dict=True , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=32 , snake_case__ : List[str]=2 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[int]=37 , snake_case__ : Tuple="gelu" , snake_case__ : str=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=10 , snake_case__ : Dict=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : str=None , snake_case__ : List[Any]=2 , ):
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = image_size
lowerCAmelCase__ = patch_size
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = type_sequence_label_size
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = scope
lowerCAmelCase__ = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
lowerCAmelCase__ = (image_size // patch_size) ** 2
lowerCAmelCase__ = num_patches + 2
def _SCREAMING_SNAKE_CASE ( self : Any ):
lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase__ = None
if self.use_labels:
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase__ = self.get_config()
return config, pixel_values, labels
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[str] ):
lowerCAmelCase__ = TFDeiTModel(config=snake_case__ )
lowerCAmelCase__ = model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict ):
lowerCAmelCase__ = TFDeiTForMaskedImageModeling(config=snake_case__ )
lowerCAmelCase__ = model(snake_case__ )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
lowerCAmelCase__ = 1
lowerCAmelCase__ = TFDeiTForMaskedImageModeling(snake_case__ )
lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCAmelCase__ = model(snake_case__ )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple ):
lowerCAmelCase__ = self.type_sequence_label_size
lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ )
lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
lowerCAmelCase__ = 1
lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ )
lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = self.prepare_config_and_inputs()
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs
lowerCAmelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : Optional[Any] = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
UpperCamelCase_ : Any = (
{
"feature-extraction": TFDeiTModel,
"image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
UpperCamelCase_ : Optional[Any] = False
UpperCamelCase_ : Optional[Any] = False
UpperCamelCase_ : Optional[int] = False
UpperCamelCase_ : int = False
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = TFDeiTModelTester(self )
lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""DeiT does not use inputs_embeds""" )
def _SCREAMING_SNAKE_CASE ( self : Any ):
pass
def _SCREAMING_SNAKE_CASE ( self : str ):
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
lowerCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Dense ) )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
lowerCAmelCase__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase__ = [*signature.parameters.keys()]
lowerCAmelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any]=False ):
lowerCAmelCase__ = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def _SCREAMING_SNAKE_CASE ( self : Any ):
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase__ = TFDeiTModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class a_ ( unittest.TestCase ):
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Any ):
return (
DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" )
if is_vision_available()
else None
)
@slow
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" )
lowerCAmelCase__ = self.default_image_processor
lowerCAmelCase__ = prepare_img()
lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors="""tf""" )
# forward pass
lowerCAmelCase__ = model(**snake_case__ )
# verify the logits
lowerCAmelCase__ = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , snake_case__ )
lowerCAmelCase__ = tf.constant([-1.0266, 0.1912, -1.2861] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
| 674 | 1 |
"""simple docstring"""
import argparse
import os
import pickle
import sys
import torch
from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl
from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils
from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
# We do this to be able to load python 2 datasets pickles
# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
__lowerCAmelCase : Optional[Any] = data_utils.TransfoXLTokenizer
__lowerCAmelCase : List[Any] = data_utils.TransfoXLCorpus
__lowerCAmelCase : List[Any] = data_utils
__lowerCAmelCase : Any = data_utils
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
if transfo_xl_dataset_file:
# Convert a pre-processed corpus (see original TensorFlow repo)
with open(lowerCamelCase__ , """rb""" ) as fp:
lowerCAmelCase__ = pickle.load(lowerCamelCase__ , encoding="""latin1""" )
# Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
lowerCAmelCase__ = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""]
print(f"""Save vocabulary to {pytorch_vocab_dump_path}""" )
lowerCAmelCase__ = corpus.vocab.__dict__
torch.save(lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = corpus.__dict__
corpus_dict_no_vocab.pop("""vocab""" , lowerCamelCase__ )
lowerCAmelCase__ = pytorch_dump_folder_path + """/""" + CORPUS_NAME
print(f"""Save dataset to {pytorch_dataset_dump_path}""" )
torch.save(lowerCamelCase__ , lowerCamelCase__ )
if tf_checkpoint_path:
# Convert a pre-trained TensorFlow model
lowerCAmelCase__ = os.path.abspath(lowerCamelCase__ )
lowerCAmelCase__ = os.path.abspath(lowerCamelCase__ )
print(f"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" )
# Initialise PyTorch model
if transfo_xl_config_file == "":
lowerCAmelCase__ = TransfoXLConfig()
else:
lowerCAmelCase__ = TransfoXLConfig.from_json_file(lowerCamelCase__ )
print(f"""Building PyTorch model from configuration: {config}""" )
lowerCAmelCase__ = TransfoXLLMHeadModel(lowerCamelCase__ )
lowerCAmelCase__ = load_tf_weights_in_transfo_xl(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# Save pytorch-model
lowerCAmelCase__ = os.path.join(lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = os.path.join(lowerCamelCase__ , lowerCamelCase__ )
print(f"""Save PyTorch model to {os.path.abspath(lowerCamelCase__ )}""" )
torch.save(model.state_dict() , lowerCamelCase__ )
print(f"""Save configuration file to {os.path.abspath(lowerCamelCase__ )}""" )
with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__lowerCAmelCase : List[str] = argparse.ArgumentParser()
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the folder to store the PyTorch model or dataset/vocab.",
)
parser.add_argument(
"--tf_checkpoint_path",
default="",
type=str,
help="An optional path to a TensorFlow checkpoint path to be converted.",
)
parser.add_argument(
"--transfo_xl_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--transfo_xl_dataset_file",
default="",
type=str,
help="An optional dataset file to be converted in a vocabulary.",
)
__lowerCAmelCase : str = parser.parse_args()
convert_transfo_xl_checkpoint_to_pytorch(
args.tf_checkpoint_path,
args.transfo_xl_config_file,
args.pytorch_dump_folder_path,
args.transfo_xl_dataset_file,
)
| 674 | """simple docstring"""
from __future__ import annotations
from math import gcd
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 3 , ):
"""simple docstring"""
if num < 2:
raise ValueError("""The input value cannot be less than 2""" )
# Because of the relationship between ``f(f(x))`` and ``f(x)``, this
# algorithm struggles to find factors that are divisible by two.
# As a workaround, we specifically check for two and even inputs.
# See: https://math.stackexchange.com/a/2856214/165820
if num > 2 and num % 2 == 0:
return 2
# Pollard's Rho algorithm requires a function that returns pseudorandom
# values between 0 <= X < ``num``. It doesn't need to be random in the
# sense that the output value is cryptographically secure or difficult
# to calculate, it only needs to be random in the sense that all output
# values should be equally likely to appear.
# For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num``
# However, the success of Pollard's algorithm isn't guaranteed and is
# determined in part by the initial seed and the chosen random function.
# To make retries easier, we will instead use ``f(x) = (x**2 + C) % num``
# where ``C`` is a value that we can modify between each attempt.
def rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int:
return (pow(lowerCamelCase__ , 2 ) + step) % modulus
for _ in range(lowerCamelCase__ ):
# These track the position within the cycle detection logic.
lowerCAmelCase__ = seed
lowerCAmelCase__ = seed
while True:
# At each iteration, the tortoise moves one step and the hare moves two.
lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# At some point both the tortoise and the hare will enter a cycle whose
# length ``p`` is a divisor of ``num``. Once in that cycle, at some point
# the tortoise and hare will end up on the same value modulo ``p``.
# We can detect when this happens because the position difference between
# the tortoise and the hare will share a common divisor with ``num``.
lowerCAmelCase__ = gcd(hare - tortoise , lowerCamelCase__ )
if divisor == 1:
# No common divisor yet, just keep searching.
continue
else:
# We found a common divisor!
if divisor == num:
# Unfortunately, the divisor is ``num`` itself and is useless.
break
else:
# The divisor is a nontrivial factor of ``num``!
return divisor
# If we made it here, then this attempt failed.
# We need to pick a new starting seed for the tortoise and hare
# in addition to a new step value for the random function.
# To keep this example implementation deterministic, the
# new values will be generated based on currently available
# values instead of using something like ``random.randint``.
# We can use the hare's position as the new seed.
# This is actually what Richard Brent's the "optimized" variant does.
lowerCAmelCase__ = hare
# The new step value for the random function can just be incremented.
# At first the results will be similar to what the old function would
# have produced, but the value will quickly diverge after a bit.
step += 1
# We haven't found a divisor within the requested number of attempts.
# We were unlucky or ``num`` itself is actually prime.
return None
if __name__ == "__main__":
import argparse
__lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"num",
type=int,
help="The value to find a divisor of",
)
parser.add_argument(
"--attempts",
type=int,
default=3,
help="The number of attempts before giving up",
)
__lowerCAmelCase : List[str] = parser.parse_args()
__lowerCAmelCase : Dict = pollard_rho(args.num, attempts=args.attempts)
if divisor is None:
print(F"{args.num} is probably prime")
else:
__lowerCAmelCase : List[str] = args.num // divisor
print(F"{args.num} = {divisor} * {quotient}")
| 674 | 1 |
"""simple docstring"""
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"""files""" , [
["""full:README.md""", """dataset_infos.json"""],
["""empty:README.md""", """dataset_infos.json"""],
["""dataset_infos.json"""],
["""full:README.md"""],
] , )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = tmp_path_factory.mktemp("""dset_infos_dir""" )
if "full:README.md" in files:
with open(dataset_infos_dir / """README.md""" , """w""" ) as f:
f.write("""---\ndataset_info:\n dataset_size: 42\n---""" )
if "empty:README.md" in files:
with open(dataset_infos_dir / """README.md""" , """w""" ) as f:
f.write("""""" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f:
f.write("""{\"default\": {\"dataset_size\": 42}}""" )
lowerCAmelCase__ = DatasetInfosDict.from_directory(lowerCamelCase__ )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
"""dataset_info""" , [
DatasetInfo(),
DatasetInfo(
description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ),
] , )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = str(lowerCamelCase__ )
dataset_info.write_to_directory(lowerCamelCase__ )
lowerCAmelCase__ = DatasetInfo.from_directory(lowerCamelCase__ )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(lowerCamelCase__ , """dataset_info.json""" ) )
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = DatasetInfo(
description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , )
lowerCAmelCase__ = dataset_info._to_yaml_dict()
assert sorted(lowerCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) )
lowerCAmelCase__ = yaml.safe_dump(lowerCamelCase__ )
lowerCAmelCase__ = yaml.safe_load(lowerCamelCase__ )
assert dataset_info_yaml_dict == reloaded
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = DatasetInfo()
lowerCAmelCase__ = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"""dataset_infos_dict""" , [
DatasetInfosDict(),
DatasetInfosDict({"""default""": DatasetInfo()} ),
DatasetInfosDict({"""my_config_name""": DatasetInfo()} ),
DatasetInfosDict(
{
"""default""": DatasetInfo(
description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , )
} ),
DatasetInfosDict(
{
"""v1""": DatasetInfo(dataset_size=42 ),
"""v2""": DatasetInfo(dataset_size=1337 ),
} ),
] , )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = str(lowerCamelCase__ )
dataset_infos_dict.write_to_directory(lowerCamelCase__ )
lowerCAmelCase__ = DatasetInfosDict.from_directory(lowerCamelCase__ )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
lowerCAmelCase__ = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
lowerCAmelCase__ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(lowerCamelCase__ , """README.md""" ) )
| 674 | """simple docstring"""
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = TapasConfig.from_json_file(lowerCamelCase__ )
# set absolute/relative position embeddings parameter
lowerCAmelCase__ = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ )
elif task == "WTQ":
# run_task_main.py hparams
lowerCAmelCase__ = 4
lowerCAmelCase__ = True
# hparam_utils.py hparams
lowerCAmelCase__ = 0.66_46_94
lowerCAmelCase__ = 0.20_79_51
lowerCAmelCase__ = 0.12_11_94
lowerCAmelCase__ = True
lowerCAmelCase__ = True
lowerCAmelCase__ = False
lowerCAmelCase__ = 0.0_35_25_13
lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
lowerCAmelCase__ = 4
lowerCAmelCase__ = False
# hparam_utils.py hparams
lowerCAmelCase__ = 36.45_19
lowerCAmelCase__ = 0.90_34_21
lowerCAmelCase__ = 2_22.0_88
lowerCAmelCase__ = True
lowerCAmelCase__ = True
lowerCAmelCase__ = True
lowerCAmelCase__ = 0.76_31_41
lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ )
elif task == "TABFACT":
lowerCAmelCase__ = TapasForSequenceClassification(config=lowerCamelCase__ )
elif task == "MLM":
lowerCAmelCase__ = TapasForMaskedLM(config=lowerCamelCase__ )
elif task == "INTERMEDIATE_PRETRAINING":
lowerCAmelCase__ = TapasModel(config=lowerCamelCase__ )
else:
raise ValueError(f"""Task {task} not supported.""" )
print(f"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# Save pytorch-model (weights and configuration)
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(lowerCamelCase__ )
# Save tokenizer files
print(f"""Save tokenizer files to {pytorch_dump_path}""" )
lowerCAmelCase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 )
tokenizer.save_pretrained(lowerCamelCase__ )
print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
__lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA."
)
parser.add_argument(
"--reset_position_index_per_cell",
default=False,
action="store_true",
help="Whether to use relative position embeddings or not. Defaults to True.",
)
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--tapas_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained TAPAS model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__lowerCAmelCase : Union[str, Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 674 | 1 |
"""simple docstring"""
__lowerCAmelCase : Optional[Any] = {
"A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.",
"H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.",
"O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-",
"V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----",
"2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...",
"8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.",
":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.",
"?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-",
"(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/"
} # Exclamation mark is not in ITU-R recommendation
# fmt: on
__lowerCAmelCase : Dict = {value: key for key, value in MORSE_CODE_DICT.items()}
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
return " ".join(MORSE_CODE_DICT[char] for char in message.upper() )
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
return "".join(REVERSE_DICT[char] for char in message.split() )
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = """Morse code here!"""
print(lowerCamelCase__ )
lowerCAmelCase__ = encrypt(lowerCamelCase__ )
print(lowerCamelCase__ )
lowerCAmelCase__ = decrypt(lowerCamelCase__ )
print(lowerCamelCase__ )
if __name__ == "__main__":
main()
| 674 | """simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ = 50 ):
"""simple docstring"""
lowerCAmelCase__ = [[0] * 3 for _ in range(length + 1 )]
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
different_colour_ways_number[row_length][tile_length - 2] += (
different_colour_ways_number[row_length - tile_start - tile_length][
tile_length - 2
]
+ 1
)
return sum(different_colour_ways_number[length] )
if __name__ == "__main__":
print(F"{solution() = }")
| 674 | 1 |
"""simple docstring"""
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class a_ ( __UpperCamelCase ):
@require_torch
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
lowerCAmelCase__ = """
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
"""
lowerCAmelCase__ = """
mname = \"hf-internal-testing/tiny-random-bert\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task=\"fill-mask\", model=mname)
print(\"success\")
"""
lowerCAmelCase__ = """
import socket
def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")
socket.socket = offline_socket
"""
# Force fetching the files so that we can use the cache
lowerCAmelCase__ = """hf-internal-testing/tiny-random-bert"""
BertConfig.from_pretrained(snake_case__ )
BertModel.from_pretrained(snake_case__ )
BertTokenizer.from_pretrained(snake_case__ )
pipeline(task="""fill-mask""" , model=snake_case__ )
# baseline - just load from_pretrained with normal network
lowerCAmelCase__ = [sys.executable, """-c""", """\n""".join([load, run, mock] )]
# should succeed
lowerCAmelCase__ = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
lowerCAmelCase__ = """1"""
lowerCAmelCase__ = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn("""success""" , result.stdout.decode() )
@require_torch
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
lowerCAmelCase__ = """
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
"""
lowerCAmelCase__ = """
mname = \"hf-internal-testing/tiny-random-bert\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task=\"fill-mask\", model=mname)
print(\"success\")
"""
lowerCAmelCase__ = """
import socket
def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")
socket.socket = offline_socket
"""
# Force fetching the files so that we can use the cache
lowerCAmelCase__ = """hf-internal-testing/tiny-random-bert"""
BertConfig.from_pretrained(snake_case__ )
BertModel.from_pretrained(snake_case__ )
BertTokenizer.from_pretrained(snake_case__ )
pipeline(task="""fill-mask""" , model=snake_case__ )
# baseline - just load from_pretrained with normal network
lowerCAmelCase__ = [sys.executable, """-c""", """\n""".join([load, run, mock] )]
# should succeed
lowerCAmelCase__ = self.get_env()
lowerCAmelCase__ = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn("""success""" , result.stdout.decode() )
@require_torch
def _SCREAMING_SNAKE_CASE ( self : int ):
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
lowerCAmelCase__ = """
from transformers import BertConfig, BertModel, BertTokenizer
"""
lowerCAmelCase__ = """
mname = \"hf-internal-testing/tiny-random-bert-sharded\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print(\"success\")
"""
lowerCAmelCase__ = """
import socket
def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")
socket.socket = offline_socket
"""
# baseline - just load from_pretrained with normal network
lowerCAmelCase__ = [sys.executable, """-c""", """\n""".join([load, run] )]
# should succeed
lowerCAmelCase__ = self.get_env()
lowerCAmelCase__ = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn("""success""" , result.stdout.decode() )
# next emulate no network
lowerCAmelCase__ = [sys.executable, """-c""", """\n""".join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
lowerCAmelCase__ = """1"""
lowerCAmelCase__ = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn("""success""" , result.stdout.decode() )
@require_torch
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = """
from transformers import pipeline
"""
lowerCAmelCase__ = """
mname = \"hf-internal-testing/tiny-random-bert\"
pipe = pipeline(model=mname)
"""
lowerCAmelCase__ = """
import socket
def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")
socket.socket = offline_socket
"""
lowerCAmelCase__ = self.get_env()
lowerCAmelCase__ = """1"""
lowerCAmelCase__ = [sys.executable, """-c""", """\n""".join([load, mock, run] )]
lowerCAmelCase__ = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
"""You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , )
@require_torch
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = """
from transformers import AutoModel
"""
lowerCAmelCase__ = """
mname = \"hf-internal-testing/test_dynamic_model\"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print(\"success\")
"""
# baseline - just load from_pretrained with normal network
lowerCAmelCase__ = [sys.executable, """-c""", """\n""".join([load, run] )]
# should succeed
lowerCAmelCase__ = self.get_env()
lowerCAmelCase__ = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn("""success""" , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
lowerCAmelCase__ = """1"""
lowerCAmelCase__ = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn("""success""" , result.stdout.decode() )
| 674 | """simple docstring"""
import argparse
import os
import gluonnlp as nlp
import mxnet as mx
import numpy as np
import torch
from gluonnlp.base import get_home_dir
from gluonnlp.model.bert import BERTEncoder
from gluonnlp.model.utils import _load_vocab
from gluonnlp.vocab import Vocab
from packaging import version
from torch import nn
from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
if version.parse(nlp.__version__) != version.parse("0.8.3"):
raise Exception("requires gluonnlp == 0.8.3")
if version.parse(mx.__version__) != version.parse("1.5.0"):
raise Exception("requires mxnet == 1.5.0")
logging.set_verbosity_info()
__lowerCAmelCase : Any = logging.get_logger(__name__)
__lowerCAmelCase : Any = "The Nymphenburg Palace is a beautiful palace in Munich!"
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = {
"""attention_cell""": """multi_head""",
"""num_layers""": 4,
"""units""": 1024,
"""hidden_size""": 768,
"""max_length""": 512,
"""num_heads""": 8,
"""scaled""": True,
"""dropout""": 0.1,
"""use_residual""": True,
"""embed_size""": 1024,
"""embed_dropout""": 0.1,
"""word_embed""": None,
"""layer_norm_eps""": 1e-5,
"""token_type_vocab_size""": 2,
}
lowerCAmelCase__ = bort_4_8_768_1024_hparams
# Let's construct the original Bort model here
# Taken from official BERT implementation, see:
# https://github.com/alexa/bort/blob/master/bort/bort.py
lowerCAmelCase__ = BERTEncoder(
attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCamelCase__ , output_all_encodings=lowerCamelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCamelCase__ ) , )
# Vocab information needs to be fetched first
# It's the same as RoBERTa, so RobertaTokenizer can be used later
lowerCAmelCase__ = """openwebtext_ccnews_stories_books_cased"""
# Specify download folder to Gluonnlp's vocab
lowerCAmelCase__ = os.path.join(get_home_dir() , """models""" )
lowerCAmelCase__ = _load_vocab(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , cls=lowerCamelCase__ )
lowerCAmelCase__ = nlp.model.BERTModel(
lowerCamelCase__ , len(lowerCamelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCamelCase__ , use_token_type_embed=lowerCamelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCamelCase__ , use_decoder=lowerCamelCase__ , )
original_bort.load_parameters(lowerCamelCase__ , cast_dtype=lowerCamelCase__ , ignore_extra=lowerCamelCase__ )
lowerCAmelCase__ = original_bort._collect_params_with_prefix()
# Build our config 🤗
lowerCAmelCase__ = {
"""architectures""": ["""BertForMaskedLM"""],
"""attention_probs_dropout_prob""": predefined_args["""dropout"""],
"""hidden_act""": """gelu""",
"""hidden_dropout_prob""": predefined_args["""dropout"""],
"""hidden_size""": predefined_args["""embed_size"""],
"""initializer_range""": 0.02,
"""intermediate_size""": predefined_args["""hidden_size"""],
"""layer_norm_eps""": predefined_args["""layer_norm_eps"""],
"""max_position_embeddings""": predefined_args["""max_length"""],
"""model_type""": """bort""",
"""num_attention_heads""": predefined_args["""num_heads"""],
"""num_hidden_layers""": predefined_args["""num_layers"""],
"""pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa
"""type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa
"""vocab_size""": len(lowerCamelCase__ ),
}
lowerCAmelCase__ = BertConfig.from_dict(lowerCamelCase__ )
lowerCAmelCase__ = BertForMaskedLM(lowerCamelCase__ )
hf_bort_model.eval()
# Parameter mapping table (Gluonnlp to Transformers)
# * denotes layer index
#
# | Gluon Parameter | Transformers Parameter
# | -------------------------------------------------------------- | ----------------------
# | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias`
# | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight`
# | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight`
# | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight`
# | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight`
# | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight`
# | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias`
# | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight`
# Helper function to convert MXNET Arrays to PyTorch
def to_torch(lowerCamelCase__ ) -> nn.Parameter:
return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) )
# Check param shapes and map new HF param back
def check_and_map_params(lowerCamelCase__ , lowerCamelCase__ ):
lowerCAmelCase__ = hf_param.shape
lowerCAmelCase__ = to_torch(params[gluon_param] )
lowerCAmelCase__ = gluon_param.shape
assert (
shape_hf == shape_gluon
), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers"""
return gluon_param
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" )
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" )
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" )
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" )
# Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them)
lowerCAmelCase__ = torch.zeros_like(
hf_bort_model.bert.embeddings.token_type_embeddings.weight.data )
for i in range(hf_bort_config.num_hidden_layers ):
lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i]
# self attention
lowerCAmelCase__ = layer.attention.self
lowerCAmelCase__ = check_and_map_params(
self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" )
# self attention output
lowerCAmelCase__ = layer.attention.output
lowerCAmelCase__ = check_and_map_params(
self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" )
lowerCAmelCase__ = check_and_map_params(
self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" )
lowerCAmelCase__ = check_and_map_params(
self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" )
# intermediate
lowerCAmelCase__ = layer.intermediate
lowerCAmelCase__ = check_and_map_params(
intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" )
lowerCAmelCase__ = check_and_map_params(
intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" )
# output
lowerCAmelCase__ = layer.output
lowerCAmelCase__ = check_and_map_params(
bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" )
lowerCAmelCase__ = check_and_map_params(
bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" )
lowerCAmelCase__ = check_and_map_params(
bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" )
lowerCAmelCase__ = check_and_map_params(
bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" )
# Save space and energy 🎄
hf_bort_model.half()
# Compare output of both models
lowerCAmelCase__ = RobertaTokenizer.from_pretrained("""roberta-base""" )
lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ )["""input_ids"""]
# Get gluon output
lowerCAmelCase__ = mx.nd.array([input_ids] )
lowerCAmelCase__ = original_bort(inputs=lowerCamelCase__ , token_types=[] )
# Get Transformer output (save and reload model again)
hf_bort_model.save_pretrained(lowerCamelCase__ )
lowerCAmelCase__ = BertModel.from_pretrained(lowerCamelCase__ )
hf_bort_model.eval()
lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" )
lowerCAmelCase__ = hf_bort_model(**lowerCamelCase__ )[0]
lowerCAmelCase__ = output_gluon[0].asnumpy()
lowerCAmelCase__ = output_hf[0].detach().numpy()
lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item()
lowerCAmelCase__ = np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 )
if success:
print("""✔️ Both model do output the same tensors""" )
else:
print("""❌ Both model do **NOT** output the same tensors""" )
print("""Absolute difference is:""" , lowerCamelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__lowerCAmelCase : str = parser.parse_args()
convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
| 674 | 1 |
"""simple docstring"""
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = 0
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
lowerCAmelCase__ = Path(snake_case__ ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
lowerCAmelCase__ = Path(snake_case__ ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = CLIPConfig()
# Create a dummy config file with image_proceesor_type
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
lowerCAmelCase__ = Path(snake_case__ ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ).to_dict()
config_dict.pop("""image_processor_type""" )
lowerCAmelCase__ = CLIPImageProcessor(**snake_case__ )
# save in new folder
model_config.save_pretrained(snake_case__ )
config.save_pretrained(snake_case__ )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
# make sure private variable is not incorrectly saved
lowerCAmelCase__ = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
with self.assertRaisesRegex(
snake_case__ , """clip-base is not a local folder and is not a valid model identifier""" ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""clip-base""" )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
with self.assertRaisesRegex(
snake_case__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , revision="""aaaaaa""" )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
with self.assertRaisesRegex(
snake_case__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" )
def _SCREAMING_SNAKE_CASE ( self : Any ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(snake_case__ ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(snake_case__ ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(snake_case__ )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , trust_remote_code=snake_case__ )
self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
try:
AutoConfig.register("""custom""" , snake_case__ )
AutoImageProcessor.register(snake_case__ , snake_case__ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(snake_case__ ):
AutoImageProcessor.register(snake_case__ , snake_case__ )
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
lowerCAmelCase__ = Path(snake_case__ ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) )
lowerCAmelCase__ = CustomImageProcessor.from_pretrained(snake_case__ )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(snake_case__ )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : Tuple = True
try:
AutoConfig.register("""custom""" , snake_case__ )
AutoImageProcessor.register(snake_case__ , snake_case__ )
# If remote code is not set, the default is to use local
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(not hasattr(snake_case__ , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 674 | """simple docstring"""
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class a_ :
def __init__( self : Optional[int] ):
lowerCAmelCase__ = """"""
lowerCAmelCase__ = """"""
lowerCAmelCase__ = []
lowerCAmelCase__ = 0
lowerCAmelCase__ = 256
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] ):
lowerCAmelCase__ = cva.imread(snake_case__ , 0 )
lowerCAmelCase__ = copy.deepcopy(self.img )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" )
lowerCAmelCase__ = np.sum(snake_case__ )
for i in range(len(snake_case__ ) ):
lowerCAmelCase__ = x[i] / self.k
self.sk += prk
lowerCAmelCase__ = (self.L - 1) * self.sk
if self.rem != 0:
lowerCAmelCase__ = int(last % last )
lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(snake_case__ )
lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size )
lowerCAmelCase__ = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
lowerCAmelCase__ = self.img[j][i]
if num != self.last_list[num]:
lowerCAmelCase__ = self.last_list[num]
cva.imwrite("""output_data/output.jpg""" , self.img )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
plt.hist(self.img.ravel() , 256 , [0, 256] )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
cva.imshow("""Output-Image""" , self.img )
cva.imshow("""Input-Image""" , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
__lowerCAmelCase : Dict = os.path.join(os.path.basename(__file__), "image_data/input.jpg")
__lowerCAmelCase : Optional[int] = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 674 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__lowerCAmelCase : str = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Tuple = [
"SEW_PRETRAINED_MODEL_ARCHIVE_LIST",
"SEWForCTC",
"SEWForSequenceClassification",
"SEWModel",
"SEWPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_sew import (
SEW_PRETRAINED_MODEL_ARCHIVE_LIST,
SEWForCTC,
SEWForSequenceClassification,
SEWModel,
SEWPreTrainedModel,
)
else:
import sys
__lowerCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 674 | """simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from ..models.clipseg import CLIPSegForImageSegmentation
from ..utils import is_vision_available, requires_backends
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : List[str] = (
"This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image."
"It takes two arguments named `image` which should be the original image, and `label` which should be a text "
"describing the elements what should be identified in the segmentation mask. The tool returns the mask."
)
UpperCamelCase_ : str = "CIDAS/clipseg-rd64-refined"
UpperCamelCase_ : Any = "image_segmenter"
UpperCamelCase_ : Optional[Any] = CLIPSegForImageSegmentation
UpperCamelCase_ : List[str] = ["image", "text"]
UpperCamelCase_ : int = ["image"]
def __init__( self : Tuple , *snake_case__ : str , **snake_case__ : Optional[Any] ):
requires_backends(self , ["""vision"""] )
super().__init__(*snake_case__ , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : "Image" , snake_case__ : str ):
return self.pre_processor(text=[label] , images=[image] , padding=snake_case__ , return_tensors="""pt""" )
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple ):
with torch.no_grad():
lowerCAmelCase__ = self.model(**snake_case__ ).logits
return logits
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] ):
lowerCAmelCase__ = outputs.cpu().detach().numpy()
lowerCAmelCase__ = 0
lowerCAmelCase__ = 1
return Image.fromarray((array * 255).astype(np.uinta ) )
| 674 | 1 |
"""simple docstring"""
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
__lowerCAmelCase : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name
__lowerCAmelCase : List[Any] = "\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n"
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=8 ):
"""simple docstring"""
lowerCAmelCase__ = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
lowerCAmelCase__ = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class a_ ( __UpperCamelCase ):
def __init__( self : int , snake_case__ : UNetaDConditionModel , snake_case__ : DDPMScheduler , snake_case__ : VQModel , ):
super().__init__()
self.register_modules(
unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , )
lowerCAmelCase__ = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Any , snake_case__ : str , snake_case__ : Union[str, Any] ):
if latents is None:
lowerCAmelCase__ = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ )
else:
if latents.shape != shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" )
lowerCAmelCase__ = latents.to(snake_case__ )
lowerCAmelCase__ = latents * scheduler.init_noise_sigma
return latents
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str=0 ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
lowerCAmelCase__ = torch.device(F"""cuda:{gpu_id}""" )
lowerCAmelCase__ = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : List[Any]=0 ):
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" )
lowerCAmelCase__ = torch.device(F"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=snake_case__ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
lowerCAmelCase__ = None
for cpu_offloaded_model in [self.unet, self.movq]:
lowerCAmelCase__ , lowerCAmelCase__ = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ )
# We'll offload the last model manually.
lowerCAmelCase__ = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
if not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(snake_case__ , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(snake_case__ )
def __call__( self : Optional[int] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : torch.FloatTensor , snake_case__ : int = 512 , snake_case__ : int = 512 , snake_case__ : int = 100 , snake_case__ : float = 4.0 , snake_case__ : int = 1 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , ):
lowerCAmelCase__ = self._execution_device
lowerCAmelCase__ = guidance_scale > 1.0
if isinstance(snake_case__ , snake_case__ ):
lowerCAmelCase__ = torch.cat(snake_case__ , dim=0 )
if isinstance(snake_case__ , snake_case__ ):
lowerCAmelCase__ = torch.cat(snake_case__ , dim=0 )
if isinstance(snake_case__ , snake_case__ ):
lowerCAmelCase__ = torch.cat(snake_case__ , dim=0 )
lowerCAmelCase__ = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
lowerCAmelCase__ = image_embeds.repeat_interleave(snake_case__ , dim=0 )
lowerCAmelCase__ = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 )
lowerCAmelCase__ = hint.repeat_interleave(snake_case__ , dim=0 )
lowerCAmelCase__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case__ )
lowerCAmelCase__ = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case__ )
self.scheduler.set_timesteps(snake_case__ , device=snake_case__ )
lowerCAmelCase__ = self.scheduler.timesteps
lowerCAmelCase__ = self.movq.config.latent_channels
lowerCAmelCase__ , lowerCAmelCase__ = downscale_height_and_width(snake_case__ , snake_case__ , self.movq_scale_factor )
# create initial latent
lowerCAmelCase__ = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , snake_case__ , snake_case__ , snake_case__ , self.scheduler , )
for i, t in enumerate(self.progress_bar(snake_case__ ) ):
# expand the latents if we are doing classifier free guidance
lowerCAmelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
lowerCAmelCase__ = {"""image_embeds""": image_embeds, """hint""": hint}
lowerCAmelCase__ = self.unet(
sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0]
if do_classifier_free_guidance:
lowerCAmelCase__ , lowerCAmelCase__ = noise_pred.split(latents.shape[1] , dim=1 )
lowerCAmelCase__ , lowerCAmelCase__ = noise_pred.chunk(2 )
lowerCAmelCase__ , lowerCAmelCase__ = variance_pred.chunk(2 )
lowerCAmelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
lowerCAmelCase__ = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , """variance_type""" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
lowerCAmelCase__ , lowerCAmelCase__ = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
lowerCAmelCase__ = self.scheduler.step(
snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , )[0]
# post-processing
lowerCAmelCase__ = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )["""sample"""]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
lowerCAmelCase__ = image * 0.5 + 0.5
lowerCAmelCase__ = image.clamp(0 , 1 )
lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
lowerCAmelCase__ = self.numpy_to_pil(snake_case__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=snake_case__ )
| 674 | """simple docstring"""
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class a_ ( __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : str = LayoutLMTokenizer
UpperCamelCase_ : List[Any] = LayoutLMTokenizerFast
UpperCamelCase_ : Dict = True
UpperCamelCase_ : Any = True
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
super().setUp()
lowerCAmelCase__ = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : Union[str, Any] ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Tuple ):
lowerCAmelCase__ = """UNwant\u00E9d,running"""
lowerCAmelCase__ = """unwanted, running"""
return input_text, output_text
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = self.tokenizer_class(self.vocab_file )
lowerCAmelCase__ = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(snake_case__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [7, 4, 5, 10, 8, 9] )
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
pass
| 674 | 1 |
"""simple docstring"""
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__lowerCAmelCase : Any = "platform"
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , ):
"""simple docstring"""
if attention_mask is None:
lowerCAmelCase__ = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
lowerCAmelCase__ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
lowerCAmelCase__ = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowerCAmelCase__ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowerCAmelCase__ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class a_ :
def __init__( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : List[Any]=13 , snake_case__ : List[str]=7 , snake_case__ : Optional[int]=True , snake_case__ : Optional[int]=False , snake_case__ : Any=99 , snake_case__ : List[str]=16 , snake_case__ : Dict=2 , snake_case__ : Union[str, Any]=4 , snake_case__ : Dict=4 , snake_case__ : Dict="gelu" , snake_case__ : Any=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : Any=32 , snake_case__ : Tuple=2 , snake_case__ : List[str]=1 , snake_case__ : Dict=0 , snake_case__ : Optional[int]=0.02 , ):
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = seq_length
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = eos_token_id
lowerCAmelCase__ = pad_token_id
lowerCAmelCase__ = bos_token_id
lowerCAmelCase__ = initializer_range
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
lowerCAmelCase__ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
lowerCAmelCase__ = shift_tokens_right(snake_case__ , 1 , 2 )
lowerCAmelCase__ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=snake_case__ , )
lowerCAmelCase__ = prepare_blenderbot_inputs_dict(snake_case__ , snake_case__ , snake_case__ )
return config, inputs_dict
def _SCREAMING_SNAKE_CASE ( self : str ):
lowerCAmelCase__ , lowerCAmelCase__ = self.prepare_config_and_inputs()
return config, inputs_dict
def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[Any] ):
lowerCAmelCase__ = 20
lowerCAmelCase__ = model_class_name(snake_case__ )
lowerCAmelCase__ = model.encode(inputs_dict["""input_ids"""] )
lowerCAmelCase__ , lowerCAmelCase__ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowerCAmelCase__ = model.init_cache(decoder_input_ids.shape[0] , snake_case__ , snake_case__ )
lowerCAmelCase__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
lowerCAmelCase__ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCAmelCase__ = model.decode(
decoder_input_ids[:, :-1] , snake_case__ , decoder_attention_mask=snake_case__ , past_key_values=snake_case__ , decoder_position_ids=snake_case__ , )
lowerCAmelCase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase__ = model.decode(
decoder_input_ids[:, -1:] , snake_case__ , decoder_attention_mask=snake_case__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=snake_case__ , )
lowerCAmelCase__ = model.decode(snake_case__ , snake_case__ )
lowerCAmelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" )
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple ):
lowerCAmelCase__ = 20
lowerCAmelCase__ = model_class_name(snake_case__ )
lowerCAmelCase__ = model.encode(inputs_dict["""input_ids"""] )
lowerCAmelCase__ , lowerCAmelCase__ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowerCAmelCase__ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
lowerCAmelCase__ = model.init_cache(decoder_input_ids.shape[0] , snake_case__ , snake_case__ )
lowerCAmelCase__ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCAmelCase__ = model.decode(
decoder_input_ids[:, :-1] , snake_case__ , decoder_attention_mask=snake_case__ , past_key_values=snake_case__ , decoder_position_ids=snake_case__ , )
lowerCAmelCase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase__ = model.decode(
decoder_input_ids[:, -1:] , snake_case__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=snake_case__ , decoder_position_ids=snake_case__ , )
lowerCAmelCase__ = model.decode(snake_case__ , snake_case__ , decoder_attention_mask=snake_case__ )
lowerCAmelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" )
@require_flax
class a_ ( unittest.TestCase ):
UpperCamelCase_ : int = 99
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
lowerCAmelCase__ = input_ids.shape[0]
lowerCAmelCase__ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_config_and_data()
lowerCAmelCase__ = FlaxBlenderbotForConditionalGeneration(snake_case__ )
lowerCAmelCase__ = lm_model(input_ids=snake_case__ )
lowerCAmelCase__ = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Any ):
lowerCAmelCase__ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
lowerCAmelCase__ = FlaxBlenderbotForConditionalGeneration(snake_case__ )
lowerCAmelCase__ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
lowerCAmelCase__ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
lowerCAmelCase__ = lm_model(input_ids=snake_case__ , decoder_input_ids=snake_case__ )
lowerCAmelCase__ = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
lowerCAmelCase__ = shift_tokens_right(snake_case__ , 1 , 2 )
lowerCAmelCase__ = np.equal(snake_case__ , 1 ).astype(np.floataa ).sum()
lowerCAmelCase__ = np.equal(snake_case__ , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(snake_case__ , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class a_ ( __UpperCamelCase , unittest.TestCase , __UpperCamelCase ):
UpperCamelCase_ : Optional[int] = True
UpperCamelCase_ : Union[str, Any] = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
UpperCamelCase_ : Optional[int] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def _SCREAMING_SNAKE_CASE ( self : Any ):
lowerCAmelCase__ = FlaxBlenderbotModelTester(self )
def _SCREAMING_SNAKE_CASE ( self : str ):
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(snake_case__ , snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : str ):
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(snake_case__ , snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Any ):
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ )
lowerCAmelCase__ = model_class(snake_case__ )
@jax.jit
def encode_jitted(snake_case__ : List[Any] , snake_case__ : Any=None , **snake_case__ : Any ):
return model.encode(input_ids=snake_case__ , attention_mask=snake_case__ )
with self.subTest("""JIT Enabled""" ):
lowerCAmelCase__ = encode_jitted(**snake_case__ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
lowerCAmelCase__ = encode_jitted(**snake_case__ ).to_tuple()
self.assertEqual(len(snake_case__ ) , len(snake_case__ ) )
for jitted_output, output in zip(snake_case__ , snake_case__ ):
self.assertEqual(jitted_output.shape , output.shape )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowerCAmelCase__ = model_class(snake_case__ )
lowerCAmelCase__ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
lowerCAmelCase__ = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : List[Any] ):
return model.decode(
decoder_input_ids=snake_case__ , decoder_attention_mask=snake_case__ , encoder_outputs=snake_case__ , )
with self.subTest("""JIT Enabled""" ):
lowerCAmelCase__ = decode_jitted(**snake_case__ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
lowerCAmelCase__ = decode_jitted(**snake_case__ ).to_tuple()
self.assertEqual(len(snake_case__ ) , len(snake_case__ ) )
for jitted_output, output in zip(snake_case__ , snake_case__ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _SCREAMING_SNAKE_CASE ( self : int ):
for model_class_name in self.all_model_classes:
lowerCAmelCase__ = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
lowerCAmelCase__ = np.ones((1, 1) ) * model.config.eos_token_id
lowerCAmelCase__ = model(snake_case__ )
self.assertIsNotNone(snake_case__ )
@unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" )
@slow
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25}
lowerCAmelCase__ = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True}
lowerCAmelCase__ = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=snake_case__ )
lowerCAmelCase__ = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" )
lowerCAmelCase__ = ["""Sam"""]
lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""jax""" )
lowerCAmelCase__ = model.generate(**snake_case__ , **snake_case__ )
lowerCAmelCase__ = """Sam is a great name. It means \"sun\" in Gaelic."""
lowerCAmelCase__ = tokenizer.batch_decode(snake_case__ , **snake_case__ )
assert generated_txt[0].strip() == tgt_text
| 674 | """simple docstring"""
from binascii import hexlify
from hashlib import shaaaa
from os import urandom
# RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for
# Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526
__lowerCAmelCase : Any = {
# 1536-bit
5: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 2048-bit
14: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AACAA68FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 3072-bit
15: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 4096-bit
16: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199"
+ "FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 6144-bit
17: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
+ "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
+ "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
+ "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
+ "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8"
+ "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C"
+ "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718"
+ "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D"
+ "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D"
+ "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226"
+ "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC"
+ "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26"
+ "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB"
+ "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2"
+ "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127"
+ "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406"
+ "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918"
+ "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151"
+ "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03"
+ "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F"
+ "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B"
+ "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632"
+ "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E"
+ "6DCC4024FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 8192-bit
18: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD"
+ "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831"
+ "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B"
+ "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF"
+ "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6"
+ "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3"
+ "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328"
+ "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C"
+ "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE"
+ "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4"
+ "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300"
+ "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568"
+ "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9"
+ "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B"
+ "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A"
+ "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36"
+ "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1"
+ "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92"
+ "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47"
+ "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71"
+ "60C980DD98EDD3DFFFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
}
class a_ :
def __init__( self : List[str] , snake_case__ : int = 14 ):
if group not in primes:
raise ValueError("""Unsupported Group""" )
lowerCAmelCase__ = primes[group]["""prime"""]
lowerCAmelCase__ = primes[group]["""generator"""]
lowerCAmelCase__ = int(hexlify(urandom(32 ) ) , base=16 )
def _SCREAMING_SNAKE_CASE ( self : Any ):
return hex(self.__private_key )[2:]
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = pow(self.generator , self.__private_key , self.prime )
return hex(snake_case__ )[2:]
def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : int ):
# check if the other public key is valid based on NIST SP800-56
return (
2 <= key <= self.prime - 2
and pow(snake_case__ , (self.prime - 1) // 2 , self.prime ) == 1
)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str ):
lowerCAmelCase__ = int(snake_case__ , base=16 )
if not self.is_valid_public_key(snake_case__ ):
raise ValueError("""Invalid public key""" )
lowerCAmelCase__ = pow(snake_case__ , self.__private_key , self.prime )
return shaaaa(str(snake_case__ ).encode() ).hexdigest()
@staticmethod
def _SCREAMING_SNAKE_CASE ( snake_case__ : int , snake_case__ : int ):
# check if the other public key is valid based on NIST SP800-56
return (
2 <= remote_public_key_str <= prime - 2
and pow(snake_case__ , (prime - 1) // 2 , snake_case__ ) == 1
)
@staticmethod
def _SCREAMING_SNAKE_CASE ( snake_case__ : str , snake_case__ : str , snake_case__ : int = 14 ):
lowerCAmelCase__ = int(snake_case__ , base=16 )
lowerCAmelCase__ = int(snake_case__ , base=16 )
lowerCAmelCase__ = primes[group]["""prime"""]
if not DiffieHellman.is_valid_public_key_static(snake_case__ , snake_case__ ):
raise ValueError("""Invalid public key""" )
lowerCAmelCase__ = pow(snake_case__ , snake_case__ , snake_case__ )
return shaaaa(str(snake_case__ ).encode() ).hexdigest()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 674 | 1 |
"""simple docstring"""
import argparse
import os
import gluonnlp as nlp
import mxnet as mx
import numpy as np
import torch
from gluonnlp.base import get_home_dir
from gluonnlp.model.bert import BERTEncoder
from gluonnlp.model.utils import _load_vocab
from gluonnlp.vocab import Vocab
from packaging import version
from torch import nn
from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
if version.parse(nlp.__version__) != version.parse("0.8.3"):
raise Exception("requires gluonnlp == 0.8.3")
if version.parse(mx.__version__) != version.parse("1.5.0"):
raise Exception("requires mxnet == 1.5.0")
logging.set_verbosity_info()
__lowerCAmelCase : Any = logging.get_logger(__name__)
__lowerCAmelCase : Any = "The Nymphenburg Palace is a beautiful palace in Munich!"
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = {
"""attention_cell""": """multi_head""",
"""num_layers""": 4,
"""units""": 1024,
"""hidden_size""": 768,
"""max_length""": 512,
"""num_heads""": 8,
"""scaled""": True,
"""dropout""": 0.1,
"""use_residual""": True,
"""embed_size""": 1024,
"""embed_dropout""": 0.1,
"""word_embed""": None,
"""layer_norm_eps""": 1e-5,
"""token_type_vocab_size""": 2,
}
lowerCAmelCase__ = bort_4_8_768_1024_hparams
# Let's construct the original Bort model here
# Taken from official BERT implementation, see:
# https://github.com/alexa/bort/blob/master/bort/bort.py
lowerCAmelCase__ = BERTEncoder(
attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCamelCase__ , output_all_encodings=lowerCamelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCamelCase__ ) , )
# Vocab information needs to be fetched first
# It's the same as RoBERTa, so RobertaTokenizer can be used later
lowerCAmelCase__ = """openwebtext_ccnews_stories_books_cased"""
# Specify download folder to Gluonnlp's vocab
lowerCAmelCase__ = os.path.join(get_home_dir() , """models""" )
lowerCAmelCase__ = _load_vocab(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , cls=lowerCamelCase__ )
lowerCAmelCase__ = nlp.model.BERTModel(
lowerCamelCase__ , len(lowerCamelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCamelCase__ , use_token_type_embed=lowerCamelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCamelCase__ , use_decoder=lowerCamelCase__ , )
original_bort.load_parameters(lowerCamelCase__ , cast_dtype=lowerCamelCase__ , ignore_extra=lowerCamelCase__ )
lowerCAmelCase__ = original_bort._collect_params_with_prefix()
# Build our config 🤗
lowerCAmelCase__ = {
"""architectures""": ["""BertForMaskedLM"""],
"""attention_probs_dropout_prob""": predefined_args["""dropout"""],
"""hidden_act""": """gelu""",
"""hidden_dropout_prob""": predefined_args["""dropout"""],
"""hidden_size""": predefined_args["""embed_size"""],
"""initializer_range""": 0.02,
"""intermediate_size""": predefined_args["""hidden_size"""],
"""layer_norm_eps""": predefined_args["""layer_norm_eps"""],
"""max_position_embeddings""": predefined_args["""max_length"""],
"""model_type""": """bort""",
"""num_attention_heads""": predefined_args["""num_heads"""],
"""num_hidden_layers""": predefined_args["""num_layers"""],
"""pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa
"""type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa
"""vocab_size""": len(lowerCamelCase__ ),
}
lowerCAmelCase__ = BertConfig.from_dict(lowerCamelCase__ )
lowerCAmelCase__ = BertForMaskedLM(lowerCamelCase__ )
hf_bort_model.eval()
# Parameter mapping table (Gluonnlp to Transformers)
# * denotes layer index
#
# | Gluon Parameter | Transformers Parameter
# | -------------------------------------------------------------- | ----------------------
# | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias`
# | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight`
# | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight`
# | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight`
# | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight`
# | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight`
# | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias`
# | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight`
# Helper function to convert MXNET Arrays to PyTorch
def to_torch(lowerCamelCase__ ) -> nn.Parameter:
return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) )
# Check param shapes and map new HF param back
def check_and_map_params(lowerCamelCase__ , lowerCamelCase__ ):
lowerCAmelCase__ = hf_param.shape
lowerCAmelCase__ = to_torch(params[gluon_param] )
lowerCAmelCase__ = gluon_param.shape
assert (
shape_hf == shape_gluon
), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers"""
return gluon_param
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" )
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" )
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" )
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" )
# Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them)
lowerCAmelCase__ = torch.zeros_like(
hf_bort_model.bert.embeddings.token_type_embeddings.weight.data )
for i in range(hf_bort_config.num_hidden_layers ):
lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i]
# self attention
lowerCAmelCase__ = layer.attention.self
lowerCAmelCase__ = check_and_map_params(
self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" )
# self attention output
lowerCAmelCase__ = layer.attention.output
lowerCAmelCase__ = check_and_map_params(
self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" )
lowerCAmelCase__ = check_and_map_params(
self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" )
lowerCAmelCase__ = check_and_map_params(
self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" )
# intermediate
lowerCAmelCase__ = layer.intermediate
lowerCAmelCase__ = check_and_map_params(
intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" )
lowerCAmelCase__ = check_and_map_params(
intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" )
# output
lowerCAmelCase__ = layer.output
lowerCAmelCase__ = check_and_map_params(
bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" )
lowerCAmelCase__ = check_and_map_params(
bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" )
lowerCAmelCase__ = check_and_map_params(
bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" )
lowerCAmelCase__ = check_and_map_params(
bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" )
# Save space and energy 🎄
hf_bort_model.half()
# Compare output of both models
lowerCAmelCase__ = RobertaTokenizer.from_pretrained("""roberta-base""" )
lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ )["""input_ids"""]
# Get gluon output
lowerCAmelCase__ = mx.nd.array([input_ids] )
lowerCAmelCase__ = original_bort(inputs=lowerCamelCase__ , token_types=[] )
# Get Transformer output (save and reload model again)
hf_bort_model.save_pretrained(lowerCamelCase__ )
lowerCAmelCase__ = BertModel.from_pretrained(lowerCamelCase__ )
hf_bort_model.eval()
lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" )
lowerCAmelCase__ = hf_bort_model(**lowerCamelCase__ )[0]
lowerCAmelCase__ = output_gluon[0].asnumpy()
lowerCAmelCase__ = output_hf[0].detach().numpy()
lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item()
lowerCAmelCase__ = np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 )
if success:
print("""✔️ Both model do output the same tensors""" )
else:
print("""❌ Both model do **NOT** output the same tensors""" )
print("""Absolute difference is:""" , lowerCamelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__lowerCAmelCase : str = parser.parse_args()
convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
| 674 | """simple docstring"""
import argparse
import pickle
import numpy as np
import torch
from torch import nn
from transformers import ReformerConfig, ReformerModelWithLMHead
from transformers.utils import logging
logging.set_verbosity_info()
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ):
"""simple docstring"""
assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match"""
lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ )
if bias is not None:
assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match"""
lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = np.asarray(weights[0] )
lowerCAmelCase__ = np.asarray(weights[1] )
lowerCAmelCase__ = np.asarray(weights[2] )
set_param(
torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , )
set_param(
torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = np.asarray(weights[0] )
lowerCAmelCase__ = np.asarray(weights[1] )
lowerCAmelCase__ = np.asarray(weights[2] )
lowerCAmelCase__ = np.asarray(weights[3] )
set_param(
torch_layer.self_attention.query , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , )
set_param(
torch_layer.self_attention.key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , )
set_param(
torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = weights[0][0][0]
lowerCAmelCase__ = np.asarray(layer_norm_a[0] )
lowerCAmelCase__ = np.asarray(layer_norm_a[1] )
set_param(
torch_block.attention.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , )
# lsh weights + output
lowerCAmelCase__ = weights[0][1]
if len(lowerCamelCase__ ) < 4:
set_layer_weights_in_torch_lsh(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ )
else:
set_layer_weights_in_torch_local(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ )
# intermediate weighs
lowerCAmelCase__ = weights[2][0][1][2]
# Chunked Feed Forward
if len(lowerCamelCase__ ) == 4:
lowerCAmelCase__ = intermediate_weights[2]
# layernorm 2
lowerCAmelCase__ = np.asarray(intermediate_weights[0][0] )
lowerCAmelCase__ = np.asarray(intermediate_weights[0][1] )
set_param(
torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , )
# intermediate dense
lowerCAmelCase__ = np.asarray(intermediate_weights[1][0] )
lowerCAmelCase__ = np.asarray(intermediate_weights[1][1] )
set_param(
torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , )
# intermediate out
lowerCAmelCase__ = np.asarray(intermediate_weights[4][0] )
lowerCAmelCase__ = np.asarray(intermediate_weights[4][1] )
set_param(
torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = torch_model.reformer
# word embeds
lowerCAmelCase__ = np.asarray(weights[1] )
set_param(
torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase__ ) , )
if isinstance(weights[3] , lowerCamelCase__ ):
lowerCAmelCase__ = torch_model_reformer.embeddings.position_embeddings
for emb_idx in range(len(position_embeddings.weights ) ):
lowerCAmelCase__ = np.asarray(weights[3][emb_idx][0] )
assert (
position_embeddings.weights[emb_idx].shape == emb_weights.shape
), f"""{position_embeddings[emb_idx]} emb does not match"""
lowerCAmelCase__ = nn.Parameter(torch.tensor(lowerCamelCase__ ) )
lowerCAmelCase__ = weights[5]
assert len(torch_model_reformer.encoder.layers ) * 4 == len(
lowerCamelCase__ ), "HF and trax model do not have the same number of layers"
for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ):
lowerCAmelCase__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
set_block_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# output layer norm
lowerCAmelCase__ = np.asarray(weights[7][0] )
lowerCAmelCase__ = np.asarray(weights[7][1] )
set_param(
torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , )
# output embeddings
lowerCAmelCase__ = np.asarray(weights[9][0] )
lowerCAmelCase__ = np.asarray(weights[9][1] )
set_param(
torch_model.lm_head.decoder , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = ReformerConfig.from_json_file(lowerCamelCase__ )
print(f"""Building PyTorch model from configuration: {config}""" )
lowerCAmelCase__ = ReformerModelWithLMHead(lowerCamelCase__ )
with open(lowerCamelCase__ , """rb""" ) as f:
lowerCAmelCase__ = pickle.load(lowerCamelCase__ )["""weights"""]
set_model_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , config.hidden_size )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , lowerCamelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained Reformer model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__lowerCAmelCase : Union[str, Any] = parser.parse_args()
convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
| 674 | 1 |
"""simple docstring"""
import os
import re
import warnings
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
if TYPE_CHECKING:
from ...tokenization_utils_base import TextInput
from ...utils import logging
__lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
__lowerCAmelCase : str = {"vocab_file": "spiece.model"}
__lowerCAmelCase : Union[str, Any] = {
"vocab_file": {
"t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model",
"t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model",
"t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model",
}
}
# TODO(PVP) - this should be removed in Transformers v5
__lowerCAmelCase : str = {
"t5-small": 5_12,
"t5-base": 5_12,
"t5-large": 5_12,
"t5-3b": 5_12,
"t5-11b": 5_12,
}
__lowerCAmelCase : int = "▁"
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : str = VOCAB_FILES_NAMES
UpperCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ : List[Any] = ["input_ids", "attention_mask"]
def __init__( self : str , snake_case__ : List[Any] , snake_case__ : Optional[int]="</s>" , snake_case__ : List[str]="<unk>" , snake_case__ : Union[str, Any]="<pad>" , snake_case__ : Tuple=100 , snake_case__ : Dict=None , snake_case__ : Optional[Dict[str, Any]] = None , snake_case__ : Union[str, Any]=True , **snake_case__ : Tuple , ):
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
lowerCAmelCase__ = [F"""<extra_id_{i}>""" for i in range(snake_case__ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
lowerCAmelCase__ = len(set(filter(lambda snake_case__ : bool("""extra_id""" in str(snake_case__ ) ) , snake_case__ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"""
""" provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids"""
""" tokens""" )
if legacy:
logger.warning_once(
F"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to"""
""" read the related pull request available at https://github.com/huggingface/transformers/pull/24565""" )
lowerCAmelCase__ = legacy
lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , extra_ids=snake_case__ , additional_special_tokens=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , legacy=snake_case__ , **snake_case__ , )
lowerCAmelCase__ = vocab_file
lowerCAmelCase__ = extra_ids
lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(snake_case__ )
@staticmethod
def _SCREAMING_SNAKE_CASE ( snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : str ):
if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes:
lowerCAmelCase__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
"""This tokenizer was incorrectly instantiated with a model max length of"""
F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this"""
""" behavior is kept to avoid breaking backwards compatibility when padding/encoding with"""
""" `truncation is True`.\n- Be aware that you SHOULD NOT rely on"""
F""" {pretrained_model_name_or_path} automatically truncating your input to"""
F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences"""
F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with"""
""" `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please"""
""" instantiate this tokenizer with `model_max_length` set to your preferred value.""" , snake_case__ , )
return max_model_length
@property
def _SCREAMING_SNAKE_CASE ( self : str ):
return self.sp_model.get_piece_size() + self._extra_ids
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(snake_case__ )) + [1]
return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1]
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
return list(
set(filter(lambda snake_case__ : bool(re.search(R"""<extra_id_\d+>""" , snake_case__ ) ) is not None , self.additional_special_tokens ) ) )
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
return [self._convert_token_to_id(snake_case__ ) for token in self.get_sentinel_tokens()]
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : List[int] ):
if len(snake_case__ ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"""
""" eos tokens being added.""" )
return token_ids
else:
return token_ids + [self.eos_token_id]
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ):
lowerCAmelCase__ = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ):
lowerCAmelCase__ = self._add_eos_if_not_present(snake_case__ )
if token_ids_a is None:
return token_ids_a
else:
lowerCAmelCase__ = self._add_eos_if_not_present(snake_case__ )
return token_ids_a + token_ids_a
def __getstate__( self : str ):
lowerCAmelCase__ = self.__dict__.copy()
lowerCAmelCase__ = None
return state
def __setstate__( self : Dict , snake_case__ : Tuple ):
lowerCAmelCase__ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
lowerCAmelCase__ = {}
lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : "TextInput" , **snake_case__ : Any ):
# Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at
# the beginning of the text
if not self.legacy:
lowerCAmelCase__ = SPIECE_UNDERLINE + text.replace(snake_case__ , """ """ )
return super().tokenize(snake_case__ , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Dict , **snake_case__ : Optional[Any] ):
if not self.legacy:
lowerCAmelCase__ = text.startswith(snake_case__ )
if is_first:
lowerCAmelCase__ = text[1:]
lowerCAmelCase__ = self.sp_model.encode(snake_case__ , out_type=snake_case__ )
if not self.legacy and not is_first and not text.startswith(""" """ ) and tokens[0].startswith(snake_case__ ):
lowerCAmelCase__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:]
return tokens
def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : str ):
if token.startswith("""<extra_id_""" ):
lowerCAmelCase__ = re.match(R"""<extra_id_(\d+)>""" , snake_case__ )
lowerCAmelCase__ = int(match.group(1 ) )
return self.vocab_size - num - 1
return self.sp_model.piece_to_id(snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Dict ):
if index < self.sp_model.get_piece_size():
lowerCAmelCase__ = self.sp_model.IdToPiece(snake_case__ )
else:
lowerCAmelCase__ = F"""<extra_id_{self.vocab_size - 1 - index}>"""
return token
def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Optional[int] ):
lowerCAmelCase__ = []
lowerCAmelCase__ = """"""
lowerCAmelCase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(snake_case__ ) + token
lowerCAmelCase__ = True
lowerCAmelCase__ = []
else:
current_sub_tokens.append(snake_case__ )
lowerCAmelCase__ = False
out_string += self.sp_model.decode(snake_case__ )
return out_string.strip()
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : str , snake_case__ : Optional[str] = None ):
if not os.path.isdir(snake_case__ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowerCAmelCase__ = os.path.join(
snake_case__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , snake_case__ )
elif not os.path.isfile(self.vocab_file ):
with open(snake_case__ , """wb""" ) as fi:
lowerCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(snake_case__ )
return (out_vocab_file,)
| 674 | """simple docstring"""
import os
from math import logaa
def _UpperCAmelCase ( lowerCamelCase__ = "base_exp.txt" ):
"""simple docstring"""
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) ):
lowerCAmelCase__ , lowerCAmelCase__ = list(map(lowerCamelCase__ , line.split(""",""" ) ) )
if x * logaa(lowerCamelCase__ ) > largest:
lowerCAmelCase__ = x * logaa(lowerCamelCase__ )
lowerCAmelCase__ = i + 1
return result
if __name__ == "__main__":
print(solution())
| 674 | 1 |
"""simple docstring"""
class a_ :
def __init__( self : Optional[Any] , snake_case__ : int ):
lowerCAmelCase__ = n
lowerCAmelCase__ = [None] * self.n
lowerCAmelCase__ = 0 # index of the first element
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
def __len__( self : int ):
return self.size
def _SCREAMING_SNAKE_CASE ( self : Any ):
return self.size == 0
def _SCREAMING_SNAKE_CASE ( self : Dict ):
return False if self.is_empty() else self.array[self.front]
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : List[str] ):
if self.size >= self.n:
raise Exception("""QUEUE IS FULL""" )
lowerCAmelCase__ = data
lowerCAmelCase__ = (self.rear + 1) % self.n
self.size += 1
return self
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
if self.size == 0:
raise Exception("""UNDERFLOW""" )
lowerCAmelCase__ = self.array[self.front]
lowerCAmelCase__ = None
lowerCAmelCase__ = (self.front + 1) % self.n
self.size -= 1
return temp
| 674 | """simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
while b:
lowerCAmelCase__ , lowerCAmelCase__ = b, a % b
return a
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase__ , a % b )
def _UpperCAmelCase ( ):
"""simple docstring"""
print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" )
print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" )
print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" )
print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" )
print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" )
print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" )
print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" )
print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" )
if __name__ == "__main__":
main()
| 674 | 1 |
"""simple docstring"""
from collections.abc import Callable
import numpy as np
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = int(np.ceil((x_end - xa) / step_size ) )
lowerCAmelCase__ = np.zeros((n + 1,) )
lowerCAmelCase__ = ya
lowerCAmelCase__ = xa
for k in range(lowerCamelCase__ ):
lowerCAmelCase__ = y[k] + step_size * ode_func(lowerCamelCase__ , y[k] )
lowerCAmelCase__ = y[k] + (
(step_size / 2) * (ode_func(lowerCamelCase__ , y[k] ) + ode_func(x + step_size , lowerCamelCase__ ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 674 | """simple docstring"""
import os
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = os.path.dirname(os.path.realpath(lowerCamelCase__ ) )
lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """triangle.txt""" )
with open(lowerCamelCase__ ) as f:
lowerCAmelCase__ = f.readlines()
lowerCAmelCase__ = []
for line in triangle:
lowerCAmelCase__ = []
for number in line.strip().split(""" """ ):
numbers_from_line.append(int(lowerCamelCase__ ) )
a.append(lowerCamelCase__ )
for i in range(1 , len(lowerCamelCase__ ) ):
for j in range(len(a[i] ) ):
lowerCAmelCase__ = a[i - 1][j] if j != len(a[i - 1] ) else 0
lowerCAmelCase__ = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(lowerCamelCase__ , lowerCamelCase__ )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 674 | 1 |
"""simple docstring"""
import argparse
import collections
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="attention" ):
"""simple docstring"""
lowerCAmelCase__ = params[f"""{prefix}/layers_{i}/{layer_name}/key/kernel"""]
lowerCAmelCase__ = params[f"""{prefix}/layers_{i}/{layer_name}/out/kernel"""]
lowerCAmelCase__ = params[f"""{prefix}/layers_{i}/{layer_name}/query/kernel"""]
lowerCAmelCase__ = params[f"""{prefix}/layers_{i}/{layer_name}/value/kernel"""]
return k, o, q, v
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ):
"""simple docstring"""
if split_mlp_wi:
lowerCAmelCase__ = params[f"""{prefix}/layers_{i}/mlp/wi_0/kernel"""]
lowerCAmelCase__ = params[f"""{prefix}/layers_{i}/mlp/wi_1/kernel"""]
lowerCAmelCase__ = (wi_a, wi_a)
else:
lowerCAmelCase__ = params[f"""{prefix}/layers_{i}/mlp/wi/kernel"""]
lowerCAmelCase__ = params[f"""{prefix}/layers_{i}/mlp/wo/kernel"""]
return wi, wo
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
return params[f"""{prefix}/layers_{i}/{layer_name}/scale"""]
def _UpperCAmelCase ( lowerCamelCase__ , *, lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = traverse_util.flatten_dict(variables["""target"""] )
lowerCAmelCase__ = {"""/""".join(lowerCamelCase__ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
lowerCAmelCase__ = """encoder/layers_0/mlp/wi_0/kernel""" in old
print("""Split MLP:""" , lowerCamelCase__ )
lowerCAmelCase__ = collections.OrderedDict()
# Shared embeddings.
lowerCAmelCase__ = old["""token_embedder/embedding"""]
# Encoder.
for i in range(lowerCamelCase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase__ = tax_layer_norm_lookup(lowerCamelCase__ , lowerCamelCase__ , """encoder""" , """pre_attention_layer_norm""" )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = tax_attention_lookup(lowerCamelCase__ , lowerCamelCase__ , """encoder""" , """attention""" )
lowerCAmelCase__ = layer_norm
lowerCAmelCase__ = k.T
lowerCAmelCase__ = o.T
lowerCAmelCase__ = q.T
lowerCAmelCase__ = v.T
# Block i, layer 1 (MLP).
lowerCAmelCase__ = tax_layer_norm_lookup(lowerCamelCase__ , lowerCamelCase__ , """encoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase__ , lowerCAmelCase__ = tax_mlp_lookup(lowerCamelCase__ , lowerCamelCase__ , """encoder""" , lowerCamelCase__ )
lowerCAmelCase__ = layer_norm
if split_mlp_wi:
lowerCAmelCase__ = wi[0].T
lowerCAmelCase__ = wi[1].T
else:
lowerCAmelCase__ = wi.T
lowerCAmelCase__ = wo.T
lowerCAmelCase__ = old[
"""encoder/relpos_bias/rel_embedding"""
].T
lowerCAmelCase__ = old["""encoder/encoder_norm/scale"""]
if not is_encoder_only:
# Decoder.
for i in range(lowerCamelCase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase__ = tax_layer_norm_lookup(lowerCamelCase__ , lowerCamelCase__ , """decoder""" , """pre_self_attention_layer_norm""" )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = tax_attention_lookup(lowerCamelCase__ , lowerCamelCase__ , """decoder""" , """self_attention""" )
lowerCAmelCase__ = layer_norm
lowerCAmelCase__ = k.T
lowerCAmelCase__ = o.T
lowerCAmelCase__ = q.T
lowerCAmelCase__ = v.T
# Block i, layer 1 (Cross Attention).
lowerCAmelCase__ = tax_layer_norm_lookup(lowerCamelCase__ , lowerCamelCase__ , """decoder""" , """pre_cross_attention_layer_norm""" )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = tax_attention_lookup(lowerCamelCase__ , lowerCamelCase__ , """decoder""" , """encoder_decoder_attention""" )
lowerCAmelCase__ = layer_norm
lowerCAmelCase__ = k.T
lowerCAmelCase__ = o.T
lowerCAmelCase__ = q.T
lowerCAmelCase__ = v.T
# Block i, layer 2 (MLP).
lowerCAmelCase__ = tax_layer_norm_lookup(lowerCamelCase__ , lowerCamelCase__ , """decoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase__ , lowerCAmelCase__ = tax_mlp_lookup(lowerCamelCase__ , lowerCamelCase__ , """decoder""" , lowerCamelCase__ )
lowerCAmelCase__ = layer_norm
if split_mlp_wi:
lowerCAmelCase__ = wi[0].T
lowerCAmelCase__ = wi[1].T
else:
lowerCAmelCase__ = wi.T
lowerCAmelCase__ = wo.T
lowerCAmelCase__ = old["""decoder/decoder_norm/scale"""]
lowerCAmelCase__ = old[
"""decoder/relpos_bias/rel_embedding"""
].T
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
lowerCAmelCase__ = old["""decoder/logits_dense/kernel"""].T
return new
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase__ = state_dict["""shared.weight"""]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase__ = state_dict["""shared.weight"""]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("""Using shared word embeddings as lm_head.""" )
lowerCAmelCase__ = state_dict["""shared.weight"""]
return state_dict
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = checkpoints.load_tax_checkpoint(lowerCamelCase__ )
lowerCAmelCase__ = convert_tax_to_pytorch(lowerCamelCase__ , num_layers=config.num_layers , is_encoder_only=lowerCamelCase__ )
lowerCAmelCase__ = make_state_dict(lowerCamelCase__ , lowerCamelCase__ )
model.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ):
"""simple docstring"""
lowerCAmelCase__ = TaConfig.from_json_file(lowerCamelCase__ )
print(f"""Building PyTorch model from configuration: {config}""" )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
lowerCAmelCase__ = TaEncoderModel(lowerCamelCase__ )
else:
lowerCAmelCase__ = TaForConditionalGeneration(lowerCamelCase__ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(lowerCamelCase__ )
# Verify that we can load the checkpoint.
model.from_pretrained(lowerCamelCase__ )
print("""Done""" )
if __name__ == "__main__":
__lowerCAmelCase : List[Any] = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.")
# Required parameters
parser.add_argument(
"--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False
)
__lowerCAmelCase : Any = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only
)
| 674 | """simple docstring"""
import io
import json
import unittest
from parameterized import parameterized
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device
from utils import calculate_bleu
__lowerCAmelCase : Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json"
with io.open(filename, "r", encoding="utf-8") as f:
__lowerCAmelCase : Optional[int] = json.load(f)
@require_torch
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Dict ):
return FSMTTokenizer.from_pretrained(snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ):
lowerCAmelCase__ = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ )
if torch_device == "cuda":
model.half()
return model
@parameterized.expand(
[
["""en-ru""", 26.0],
["""ru-en""", 22.0],
["""en-de""", 22.0],
["""de-en""", 29.0],
] )
@slow
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Any , snake_case__ : int ):
# note: this test is not testing the best performance since it only evals a small batch
# but it should be enough to detect a regression in the output quality
lowerCAmelCase__ = F"""facebook/wmt19-{pair}"""
lowerCAmelCase__ = self.get_tokenizer(snake_case__ )
lowerCAmelCase__ = self.get_model(snake_case__ )
lowerCAmelCase__ = bleu_data[pair]["""src"""]
lowerCAmelCase__ = bleu_data[pair]["""tgt"""]
lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""pt""" , truncation=snake_case__ , padding="""longest""" ).to(snake_case__ )
lowerCAmelCase__ = model.generate(
input_ids=batch.input_ids , num_beams=8 , )
lowerCAmelCase__ = tokenizer.batch_decode(
snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ )
lowerCAmelCase__ = calculate_bleu(snake_case__ , snake_case__ )
print(snake_case__ )
self.assertGreaterEqual(scores["""bleu"""] , snake_case__ )
| 674 | 1 |
"""simple docstring"""
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__lowerCAmelCase : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model")
@require_sentencepiece
@require_tokenizers
class a_ ( __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : Tuple = PegasusTokenizer
UpperCamelCase_ : Any = PegasusTokenizerFast
UpperCamelCase_ : int = True
UpperCamelCase_ : Any = True
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase__ = PegasusTokenizer(snake_case__ )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : Optional[Any] ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any] ):
return ("This is a test", "This is a test")
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = """</s>"""
lowerCAmelCase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(snake_case__ ) , 1103 )
def _SCREAMING_SNAKE_CASE ( self : Any ):
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowerCAmelCase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
lowerCAmelCase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1]
lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 96103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
lowerCAmelCase__ = """To ensure a smooth flow of bank resolutions."""
lowerCAmelCase__ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1]
lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = ["""This is going to be way too long.""" * 150, """short example"""]
lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""]
lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
lowerCAmelCase__ = self._large_tokenizer(
text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(snake_case__ ) == 2 # input_ids, attention_mask.
@slow
def _SCREAMING_SNAKE_CASE ( self : str ):
# fmt: off
lowerCAmelCase__ = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class a_ ( __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : str = PegasusTokenizer
UpperCamelCase_ : Optional[int] = PegasusTokenizerFast
UpperCamelCase_ : Union[str, Any] = True
UpperCamelCase_ : Optional[int] = True
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase__ = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Dict ):
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : List[Any] ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Dict ):
return ("This is a test", "This is a test")
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
@require_torch
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = ["""This is going to be way too long.""" * 1000, """short example"""]
lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""]
lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
lowerCAmelCase__ = self._large_tokenizer(
text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(snake_case__ ) == 2 # input_ids, attention_mask.
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
lowerCAmelCase__ = self._large_tokenizer(snake_case__ ).input_ids
self.assertListEqual(
snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
| 674 | """simple docstring"""
import pprint
import requests
__lowerCAmelCase : Union[str, Any] = "https://zenquotes.io/api"
def _UpperCAmelCase ( ):
"""simple docstring"""
return requests.get(API_ENDPOINT_URL + """/today""" ).json()
def _UpperCAmelCase ( ):
"""simple docstring"""
return requests.get(API_ENDPOINT_URL + """/random""" ).json()
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] = random_quotes()
pprint.pprint(response)
| 674 | 1 |
"""simple docstring"""
import copy
import os
from typing import TYPE_CHECKING, List, Union
if TYPE_CHECKING:
pass
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
__lowerCAmelCase : List[Any] = {
"kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json",
}
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : Optional[int] = "align_text_model"
def __init__( self : Optional[Any] , snake_case__ : Optional[Any]=30522 , snake_case__ : Tuple=768 , snake_case__ : Union[str, Any]=12 , snake_case__ : Tuple=12 , snake_case__ : Dict=3072 , snake_case__ : int="gelu" , snake_case__ : Tuple=0.1 , snake_case__ : Any=0.1 , snake_case__ : List[Any]=512 , snake_case__ : str=2 , snake_case__ : List[str]=0.02 , snake_case__ : Tuple=1E-12 , snake_case__ : Dict=0 , snake_case__ : str="absolute" , snake_case__ : str=True , **snake_case__ : Dict , ):
super().__init__(**snake_case__ )
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = type_vocab_size
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = position_embedding_type
lowerCAmelCase__ = use_cache
lowerCAmelCase__ = pad_token_id
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Dict , snake_case__ : Union[str, os.PathLike] , **snake_case__ : Tuple ):
cls._set_token_in_kwargs(snake_case__ )
lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(snake_case__ , **snake_case__ )
# get the text config dict if we are loading from AlignConfig
if config_dict.get("""model_type""" ) == "align":
lowerCAmelCase__ = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(snake_case__ , **snake_case__ )
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : Any = "align_vision_model"
def __init__( self : Tuple , snake_case__ : int = 3 , snake_case__ : int = 600 , snake_case__ : float = 2.0 , snake_case__ : float = 3.1 , snake_case__ : int = 8 , snake_case__ : List[int] = [3, 3, 5, 3, 5, 5, 3] , snake_case__ : List[int] = [32, 16, 24, 40, 80, 112, 192] , snake_case__ : List[int] = [16, 24, 40, 80, 112, 192, 320] , snake_case__ : List[int] = [] , snake_case__ : List[int] = [1, 2, 2, 2, 1, 2, 1] , snake_case__ : List[int] = [1, 2, 2, 3, 3, 4, 1] , snake_case__ : List[int] = [1, 6, 6, 6, 6, 6, 6] , snake_case__ : float = 0.25 , snake_case__ : str = "swish" , snake_case__ : int = 2560 , snake_case__ : str = "mean" , snake_case__ : float = 0.02 , snake_case__ : float = 0.001 , snake_case__ : float = 0.99 , snake_case__ : float = 0.2 , **snake_case__ : Union[str, Any] , ):
super().__init__(**snake_case__ )
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = image_size
lowerCAmelCase__ = width_coefficient
lowerCAmelCase__ = depth_coefficient
lowerCAmelCase__ = depth_divisor
lowerCAmelCase__ = kernel_sizes
lowerCAmelCase__ = in_channels
lowerCAmelCase__ = out_channels
lowerCAmelCase__ = depthwise_padding
lowerCAmelCase__ = strides
lowerCAmelCase__ = num_block_repeats
lowerCAmelCase__ = expand_ratios
lowerCAmelCase__ = squeeze_expansion_ratio
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = hidden_dim
lowerCAmelCase__ = pooling_type
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = batch_norm_eps
lowerCAmelCase__ = batch_norm_momentum
lowerCAmelCase__ = drop_connect_rate
lowerCAmelCase__ = sum(snake_case__ ) * 4
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : int , snake_case__ : Union[str, os.PathLike] , **snake_case__ : Optional[Any] ):
cls._set_token_in_kwargs(snake_case__ )
lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(snake_case__ , **snake_case__ )
# get the vision config dict if we are loading from AlignConfig
if config_dict.get("""model_type""" ) == "align":
lowerCAmelCase__ = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(snake_case__ , **snake_case__ )
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : int = "align"
UpperCamelCase_ : Any = True
def __init__( self : Union[str, Any] , snake_case__ : Dict=None , snake_case__ : List[Any]=None , snake_case__ : Union[str, Any]=640 , snake_case__ : Optional[Any]=1.0 , snake_case__ : Any=0.02 , **snake_case__ : Any , ):
super().__init__(**snake_case__ )
if text_config is None:
lowerCAmelCase__ = {}
logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" )
if vision_config is None:
lowerCAmelCase__ = {}
logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" )
lowerCAmelCase__ = AlignTextConfig(**snake_case__ )
lowerCAmelCase__ = AlignVisionConfig(**snake_case__ )
lowerCAmelCase__ = projection_dim
lowerCAmelCase__ = temperature_init_value
lowerCAmelCase__ = initializer_range
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , snake_case__ : AlignTextConfig , snake_case__ : AlignVisionConfig , **snake_case__ : List[str] ):
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
lowerCAmelCase__ = copy.deepcopy(self.__dict__ )
lowerCAmelCase__ = self.text_config.to_dict()
lowerCAmelCase__ = self.vision_config.to_dict()
lowerCAmelCase__ = self.__class__.model_type
return output
| 674 | """simple docstring"""
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = 0
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
lowerCAmelCase__ = Path(snake_case__ ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
lowerCAmelCase__ = Path(snake_case__ ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = CLIPConfig()
# Create a dummy config file with image_proceesor_type
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
lowerCAmelCase__ = Path(snake_case__ ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ).to_dict()
config_dict.pop("""image_processor_type""" )
lowerCAmelCase__ = CLIPImageProcessor(**snake_case__ )
# save in new folder
model_config.save_pretrained(snake_case__ )
config.save_pretrained(snake_case__ )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
# make sure private variable is not incorrectly saved
lowerCAmelCase__ = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
with self.assertRaisesRegex(
snake_case__ , """clip-base is not a local folder and is not a valid model identifier""" ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""clip-base""" )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
with self.assertRaisesRegex(
snake_case__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , revision="""aaaaaa""" )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
with self.assertRaisesRegex(
snake_case__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" )
def _SCREAMING_SNAKE_CASE ( self : Any ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(snake_case__ ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(snake_case__ ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(snake_case__ )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , trust_remote_code=snake_case__ )
self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
try:
AutoConfig.register("""custom""" , snake_case__ )
AutoImageProcessor.register(snake_case__ , snake_case__ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(snake_case__ ):
AutoImageProcessor.register(snake_case__ , snake_case__ )
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
lowerCAmelCase__ = Path(snake_case__ ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) )
lowerCAmelCase__ = CustomImageProcessor.from_pretrained(snake_case__ )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(snake_case__ )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : Tuple = True
try:
AutoConfig.register("""custom""" , snake_case__ )
AutoImageProcessor.register(snake_case__ , snake_case__ )
# If remote code is not set, the default is to use local
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(not hasattr(snake_case__ , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 674 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCAmelCase : Tuple = logging.get_logger(__name__)
__lowerCAmelCase : str = {
"abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json",
}
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : Union[str, Any] = "gpt_neox_japanese"
def __init__( self : List[str] , snake_case__ : Tuple=32000 , snake_case__ : int=2560 , snake_case__ : str=32 , snake_case__ : Union[str, Any]=32 , snake_case__ : Any=4 , snake_case__ : Optional[int]="gelu" , snake_case__ : str=1.00 , snake_case__ : Dict=10000 , snake_case__ : Optional[int]=2048 , snake_case__ : Any=0.02 , snake_case__ : List[str]=1E-5 , snake_case__ : str=True , snake_case__ : int=31996 , snake_case__ : Any=31999 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Optional[int]=0.0 , **snake_case__ : Optional[Any] , ):
super().__init__(bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = intermediate_multiple_size
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = rotary_pct
lowerCAmelCase__ = rotary_emb_base
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = use_cache
lowerCAmelCase__ = attention_dropout
lowerCAmelCase__ = hidden_dropout
| 674 | """simple docstring"""
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class a_ :
def __init__( self : Optional[int] , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=64 , snake_case__ : Any=None ):
lowerCAmelCase__ = np.random.default_rng(snake_case__ )
lowerCAmelCase__ = length
lowerCAmelCase__ = rng.normal(size=(length,) ).astype(np.floataa )
lowerCAmelCase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self : Optional[Any] ):
return self.length
def __getitem__( self : List[str] , snake_case__ : Optional[int] ):
return {"x": self.x[i], "y": self.y[i]}
class a_ ( torch.nn.Module ):
def __init__( self : List[str] , snake_case__ : str=0 , snake_case__ : Dict=0 , snake_case__ : Any=False ):
super().__init__()
lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
lowerCAmelCase__ = True
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Any=None ):
if self.first_batch:
print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" )
lowerCAmelCase__ = False
return x * self.a[0] + self.b[0]
class a_ ( torch.nn.Module ):
def __init__( self : Any , snake_case__ : Union[str, Any]=0 , snake_case__ : Union[str, Any]=0 , snake_case__ : List[Any]=False ):
super().__init__()
lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() )
lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() )
lowerCAmelCase__ = True
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any]=None ):
if self.first_batch:
print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" )
lowerCAmelCase__ = False
return x * self.a + self.b
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 16 ):
"""simple docstring"""
from datasets import load_dataset
from transformers import AutoTokenizer
lowerCAmelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" )
lowerCAmelCase__ = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
lowerCAmelCase__ = load_dataset("""csv""" , data_files=lowerCamelCase__ )
lowerCAmelCase__ = datasets["""train"""].unique("""label""" )
lowerCAmelCase__ = {v: i for i, v in enumerate(lowerCamelCase__ )}
def tokenize_function(lowerCamelCase__ ):
# max_length=None => use the model max length (it's actually the default)
lowerCAmelCase__ = tokenizer(
examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" )
if "label" in examples:
lowerCAmelCase__ = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
lowerCAmelCase__ = datasets.map(
lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , )
def collate_fn(lowerCamelCase__ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
lowerCAmelCase__ = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=2 )
lowerCAmelCase__ = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 674 | 1 |
"""simple docstring"""
from math import pi, sqrt
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
if num <= 0:
raise ValueError("""math domain error""" )
if num > 1_71.5:
raise OverflowError("""math range error""" )
elif num - int(lowerCamelCase__ ) not in (0, 0.5):
raise NotImplementedError("""num must be an integer or a half-integer""" )
elif num == 0.5:
return sqrt(lowerCamelCase__ )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def _UpperCAmelCase ( ):
"""simple docstring"""
assert gamma(0.5 ) == sqrt(lowerCamelCase__ )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
__lowerCAmelCase : Dict = 1.0
while num:
__lowerCAmelCase : Any = float(input("Gamma of: "))
print(F"gamma({num}) = {gamma(num)}")
print("\nEnter 0 to exit...")
| 674 | """simple docstring"""
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = MobileBertConfig.from_json_file(lowerCamelCase__ )
print(f"""Building PyTorch model from configuration: {config}""" )
lowerCAmelCase__ = MobileBertForPreTraining(lowerCamelCase__ )
# Load weights from tf checkpoint
lowerCAmelCase__ = load_tf_weights_in_mobilebert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , lowerCamelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--mobilebert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained MobileBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__lowerCAmelCase : Optional[int] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 674 | 1 |
"""simple docstring"""
import re
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
return [char.split() for char in re.split(r"""[^ a-z A-Z 0-9 \s]""" , str_ )]
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = split_input(str_ )
return "".join(
["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
try:
lowerCAmelCase__ = split_input(lowerCamelCase__ )
if upper:
lowerCAmelCase__ = """""".join(
[
separator.join([char.upper() for char in sub_str] )
for sub_str in string_split
] )
else:
lowerCAmelCase__ = """""".join(
[
separator.join([char.lower() for char in sub_str] )
for sub_str in string_split
] )
return res_str
except IndexError:
return "not valid string"
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
return to_simple_case(lowerCamelCase__ )
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
try:
lowerCAmelCase__ = to_simple_case(lowerCamelCase__ )
return res_str[0].lower() + res_str[1:]
except IndexError:
return "not valid string"
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
return to_complex_case(lowerCamelCase__ , lowerCamelCase__ , """_""" )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
return to_complex_case(lowerCamelCase__ , lowerCamelCase__ , """-""" )
if __name__ == "__main__":
__import__("doctest").testmod()
| 674 | """simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), f"""The input value of [n={number}] is not an integer"""
if number == 1:
return 2
elif number < 1:
lowerCAmelCase__ = f"""The input value of [n={number}] has to be > 0"""
raise ValueError(lowerCamelCase__ )
else:
lowerCAmelCase__ = sylvester(number - 1 )
lowerCAmelCase__ = num - 1
lowerCAmelCase__ = num
return lower * upper + 1
if __name__ == "__main__":
print(F"The 8th number in Sylvester's sequence: {sylvester(8)}")
| 674 | 1 |
"""simple docstring"""
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = """ylacombe/bark-small"""
lowerCAmelCase__ = tempfile.mkdtemp()
lowerCAmelCase__ = """en_speaker_1"""
lowerCAmelCase__ = """This is a test string"""
lowerCAmelCase__ = """speaker_embeddings_path.json"""
lowerCAmelCase__ = """speaker_embeddings"""
def _SCREAMING_SNAKE_CASE ( self : List[str] , **snake_case__ : Any ):
return AutoTokenizer.from_pretrained(self.checkpoint , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Any ):
shutil.rmtree(self.tmpdirname )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = BarkProcessor(tokenizer=snake_case__ )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
lowerCAmelCase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
lowerCAmelCase__ = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
lowerCAmelCase__ = 35
lowerCAmelCase__ = 2
lowerCAmelCase__ = 8
lowerCAmelCase__ = {
"""semantic_prompt""": np.ones(snake_case__ ),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
lowerCAmelCase__ = processor(text=self.input_string , voice_preset=snake_case__ )
lowerCAmelCase__ = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(snake_case__ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
lowerCAmelCase__ = os.path.join(self.tmpdirname , """file.npz""" )
np.savez(snake_case__ , **snake_case__ )
lowerCAmelCase__ = processor(text=self.input_string , voice_preset=snake_case__ )
lowerCAmelCase__ = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(snake_case__ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
lowerCAmelCase__ = processor(text=self.input_string , voice_preset=self.voice_preset )
def _SCREAMING_SNAKE_CASE ( self : str ):
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = BarkProcessor(tokenizer=snake_case__ )
lowerCAmelCase__ = processor(text=self.input_string )
lowerCAmelCase__ = tokenizer(
self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=snake_case__ , return_attention_mask=snake_case__ , return_token_type_ids=snake_case__ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 674 | """simple docstring"""
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__lowerCAmelCase : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model")
@require_sentencepiece
@require_tokenizers
class a_ ( __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : Tuple = PegasusTokenizer
UpperCamelCase_ : Any = PegasusTokenizerFast
UpperCamelCase_ : int = True
UpperCamelCase_ : Any = True
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase__ = PegasusTokenizer(snake_case__ )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : Optional[Any] ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any] ):
return ("This is a test", "This is a test")
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = """</s>"""
lowerCAmelCase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(snake_case__ ) , 1103 )
def _SCREAMING_SNAKE_CASE ( self : Any ):
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowerCAmelCase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
lowerCAmelCase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1]
lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 96103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
lowerCAmelCase__ = """To ensure a smooth flow of bank resolutions."""
lowerCAmelCase__ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1]
lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = ["""This is going to be way too long.""" * 150, """short example"""]
lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""]
lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
lowerCAmelCase__ = self._large_tokenizer(
text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(snake_case__ ) == 2 # input_ids, attention_mask.
@slow
def _SCREAMING_SNAKE_CASE ( self : str ):
# fmt: off
lowerCAmelCase__ = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class a_ ( __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : str = PegasusTokenizer
UpperCamelCase_ : Optional[int] = PegasusTokenizerFast
UpperCamelCase_ : Union[str, Any] = True
UpperCamelCase_ : Optional[int] = True
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase__ = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Dict ):
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : List[Any] ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Dict ):
return ("This is a test", "This is a test")
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
@require_torch
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = ["""This is going to be way too long.""" * 1000, """short example"""]
lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""]
lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
lowerCAmelCase__ = self._large_tokenizer(
text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(snake_case__ ) == 2 # input_ids, attention_mask.
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
lowerCAmelCase__ = self._large_tokenizer(snake_case__ ).input_ids
self.assertListEqual(
snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
| 674 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class a_ ( unittest.TestCase ):
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = ort.SessionOptions()
lowerCAmelCase__ = False
return options
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
lowerCAmelCase__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
lowerCAmelCase__ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" )
# using the PNDM scheduler by default
lowerCAmelCase__ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=snake_case__ )
lowerCAmelCase__ = """A red cat sitting on a park bench"""
lowerCAmelCase__ = np.random.RandomState(0 )
lowerCAmelCase__ = pipe(
prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=snake_case__ , output_type="""np""" , )
lowerCAmelCase__ = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1E-2
| 674 | """simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , )
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue_model_parallelism.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
] )
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : int ):
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case__ , )
assert hasattr(self , """env""" )
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] ):
# configuration for running training on smdistributed Model Parallel
lowerCAmelCase__ = {
"""enabled""": True,
"""processes_per_host""": 8,
}
lowerCAmelCase__ = {
"""enabled""": True,
"""parameters""": {
"""microbatches""": 4,
"""placement_strategy""": """spread""",
"""pipeline""": """interleaved""",
"""optimize""": """speed""",
"""partitions""": 4,
"""ddp""": True,
},
}
lowerCAmelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options}
lowerCAmelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer"""
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={
**self.env.hyperparameters,
"""model_name_or_path""": self.model_name_or_path,
"""max_steps""": 500,
} , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="""py36""" , )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str ):
TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] ):
# create estimator
lowerCAmelCase__ = self.create_estimator(snake_case__ )
# run training
estimator.fit()
# result dataframe
lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] )
lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
lowerCAmelCase__ = (
Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy )
assert all(t <= self.results["""eval_loss"""] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile:
json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case__ )
| 674 | 1 |
"""simple docstring"""
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
__lowerCAmelCase : Any = False
class a_ ( unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
lowerCAmelCase__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" )
lowerCAmelCase__ = torch.manual_seed(0 )
lowerCAmelCase__ = pipe.dual_guided(
prompt="""first prompt""" , image=snake_case__ , text_to_image_strength=0.75 , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(snake_case__ )
lowerCAmelCase__ = VersatileDiffusionPipeline.from_pretrained(snake_case__ , torch_dtype=torch.floataa )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
lowerCAmelCase__ = generator.manual_seed(0 )
lowerCAmelCase__ = pipe.dual_guided(
prompt="""first prompt""" , image=snake_case__ , text_to_image_strength=0.75 , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images
assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass"
def _SCREAMING_SNAKE_CASE ( self : Any ):
lowerCAmelCase__ = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
lowerCAmelCase__ = """cyberpunk 2077"""
lowerCAmelCase__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" )
lowerCAmelCase__ = torch.manual_seed(0 )
lowerCAmelCase__ = pipe.dual_guided(
prompt=snake_case__ , image=snake_case__ , text_to_image_strength=0.75 , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images
lowerCAmelCase__ = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
lowerCAmelCase__ = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
lowerCAmelCase__ = """A painting of a squirrel eating a burger """
lowerCAmelCase__ = torch.manual_seed(0 )
lowerCAmelCase__ = pipe.text_to_image(
prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images
lowerCAmelCase__ = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
lowerCAmelCase__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
lowerCAmelCase__ = pipe.image_variation(snake_case__ , generator=snake_case__ , output_type="""numpy""" ).images
lowerCAmelCase__ = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
lowerCAmelCase__ = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
| 674 | """simple docstring"""
from math import pi, sqrt
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
if num <= 0:
raise ValueError("""math domain error""" )
if num > 1_71.5:
raise OverflowError("""math range error""" )
elif num - int(lowerCamelCase__ ) not in (0, 0.5):
raise NotImplementedError("""num must be an integer or a half-integer""" )
elif num == 0.5:
return sqrt(lowerCamelCase__ )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def _UpperCAmelCase ( ):
"""simple docstring"""
assert gamma(0.5 ) == sqrt(lowerCamelCase__ )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
__lowerCAmelCase : Dict = 1.0
while num:
__lowerCAmelCase : Any = float(input("Gamma of: "))
print(F"gamma({num}) = {gamma(num)}")
print("\nEnter 0 to exit...")
| 674 | 1 |
"""simple docstring"""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : torch.FloatTensor
UpperCamelCase_ : Optional[torch.FloatTensor] = None
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=0.9_99 , lowerCamelCase__="cosine" , ):
"""simple docstring"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(lowerCamelCase__ ):
return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(lowerCamelCase__ ):
return math.exp(t * -12.0 )
else:
raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" )
lowerCAmelCase__ = []
for i in range(lowerCamelCase__ ):
lowerCAmelCase__ = i / num_diffusion_timesteps
lowerCAmelCase__ = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ) , lowerCamelCase__ ) )
return torch.tensor(lowerCamelCase__ , dtype=torch.floataa )
class a_ ( __UpperCamelCase , __UpperCamelCase ):
@register_to_config
def __init__( self : List[Any] , snake_case__ : int = 1000 , snake_case__ : str = "fixed_small_log" , snake_case__ : bool = True , snake_case__ : Optional[float] = 1.0 , snake_case__ : str = "epsilon" , snake_case__ : str = "squaredcos_cap_v2" , ):
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" )
lowerCAmelCase__ = betas_for_alpha_bar(snake_case__ )
lowerCAmelCase__ = 1.0 - self.betas
lowerCAmelCase__ = torch.cumprod(self.alphas , dim=0 )
lowerCAmelCase__ = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
lowerCAmelCase__ = 1.0
# setable values
lowerCAmelCase__ = None
lowerCAmelCase__ = torch.from_numpy(np.arange(0 , snake_case__ )[::-1].copy() )
lowerCAmelCase__ = variance_type
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : torch.FloatTensor , snake_case__ : Optional[int] = None ):
return sample
def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : int , snake_case__ : Union[str, torch.device] = None ):
lowerCAmelCase__ = num_inference_steps
lowerCAmelCase__ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
lowerCAmelCase__ = (np.arange(0 , snake_case__ ) * step_ratio).round()[::-1].copy().astype(np.intaa )
lowerCAmelCase__ = torch.from_numpy(snake_case__ ).to(snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : Optional[int] , snake_case__ : List[str]=None , snake_case__ : Optional[int]=None , snake_case__ : Tuple=None ):
if prev_timestep is None:
lowerCAmelCase__ = t - 1
lowerCAmelCase__ = self.alphas_cumprod[t]
lowerCAmelCase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
lowerCAmelCase__ = 1 - alpha_prod_t
lowerCAmelCase__ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
lowerCAmelCase__ = self.betas[t]
else:
lowerCAmelCase__ = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
lowerCAmelCase__ = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
lowerCAmelCase__ = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
lowerCAmelCase__ = torch.log(torch.clamp(snake_case__ , min=1E-20 ) )
lowerCAmelCase__ = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
lowerCAmelCase__ = variance.log()
lowerCAmelCase__ = beta.log()
lowerCAmelCase__ = (predicted_variance + 1) / 2
lowerCAmelCase__ = frac * max_log + (1 - frac) * min_log
return variance
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Optional[int] = None , snake_case__ : Optional[int]=None , snake_case__ : bool = True , ):
lowerCAmelCase__ = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
lowerCAmelCase__ , lowerCAmelCase__ = torch.split(snake_case__ , sample.shape[1] , dim=1 )
else:
lowerCAmelCase__ = None
# 1. compute alphas, betas
if prev_timestep is None:
lowerCAmelCase__ = t - 1
lowerCAmelCase__ = self.alphas_cumprod[t]
lowerCAmelCase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
lowerCAmelCase__ = 1 - alpha_prod_t
lowerCAmelCase__ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
lowerCAmelCase__ = self.betas[t]
lowerCAmelCase__ = self.alphas[t]
else:
lowerCAmelCase__ = 1 - alpha_prod_t / alpha_prod_t_prev
lowerCAmelCase__ = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
lowerCAmelCase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
lowerCAmelCase__ = model_output
else:
raise ValueError(
F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`"""
""" for the UnCLIPScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
lowerCAmelCase__ = torch.clamp(
snake_case__ , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
lowerCAmelCase__ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
lowerCAmelCase__ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
lowerCAmelCase__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
lowerCAmelCase__ = 0
if t > 0:
lowerCAmelCase__ = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=snake_case__ , device=model_output.device )
lowerCAmelCase__ = self._get_variance(
snake_case__ , predicted_variance=snake_case__ , prev_timestep=snake_case__ , )
if self.variance_type == "fixed_small_log":
lowerCAmelCase__ = variance
elif self.variance_type == "learned_range":
lowerCAmelCase__ = (0.5 * variance).exp()
else:
raise ValueError(
F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`"""
""" for the UnCLIPScheduler.""" )
lowerCAmelCase__ = variance * variance_noise
lowerCAmelCase__ = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : torch.IntTensor , ):
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
lowerCAmelCase__ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
lowerCAmelCase__ = timesteps.to(original_samples.device )
lowerCAmelCase__ = alphas_cumprod[timesteps] ** 0.5
lowerCAmelCase__ = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
lowerCAmelCase__ = sqrt_alpha_prod.unsqueeze(-1 )
lowerCAmelCase__ = (1 - alphas_cumprod[timesteps]) ** 0.5
lowerCAmelCase__ = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
lowerCAmelCase__ = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
lowerCAmelCase__ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 674 | """simple docstring"""
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class a_ :
def __init__( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any=13 , snake_case__ : int=30 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : Dict=True , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=32 , snake_case__ : List[str]=2 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[int]=37 , snake_case__ : Tuple="gelu" , snake_case__ : str=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=10 , snake_case__ : Dict=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : str=None , snake_case__ : List[Any]=2 , ):
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = image_size
lowerCAmelCase__ = patch_size
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = type_sequence_label_size
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = scope
lowerCAmelCase__ = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
lowerCAmelCase__ = (image_size // patch_size) ** 2
lowerCAmelCase__ = num_patches + 2
def _SCREAMING_SNAKE_CASE ( self : Any ):
lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase__ = None
if self.use_labels:
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase__ = self.get_config()
return config, pixel_values, labels
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[str] ):
lowerCAmelCase__ = TFDeiTModel(config=snake_case__ )
lowerCAmelCase__ = model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict ):
lowerCAmelCase__ = TFDeiTForMaskedImageModeling(config=snake_case__ )
lowerCAmelCase__ = model(snake_case__ )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
lowerCAmelCase__ = 1
lowerCAmelCase__ = TFDeiTForMaskedImageModeling(snake_case__ )
lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCAmelCase__ = model(snake_case__ )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple ):
lowerCAmelCase__ = self.type_sequence_label_size
lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ )
lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
lowerCAmelCase__ = 1
lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ )
lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = self.prepare_config_and_inputs()
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs
lowerCAmelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : Optional[Any] = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
UpperCamelCase_ : Any = (
{
"feature-extraction": TFDeiTModel,
"image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
UpperCamelCase_ : Optional[Any] = False
UpperCamelCase_ : Optional[Any] = False
UpperCamelCase_ : Optional[int] = False
UpperCamelCase_ : int = False
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = TFDeiTModelTester(self )
lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""DeiT does not use inputs_embeds""" )
def _SCREAMING_SNAKE_CASE ( self : Any ):
pass
def _SCREAMING_SNAKE_CASE ( self : str ):
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
lowerCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Dense ) )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
lowerCAmelCase__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase__ = [*signature.parameters.keys()]
lowerCAmelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any]=False ):
lowerCAmelCase__ = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def _SCREAMING_SNAKE_CASE ( self : Any ):
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase__ = TFDeiTModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class a_ ( unittest.TestCase ):
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Any ):
return (
DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" )
if is_vision_available()
else None
)
@slow
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" )
lowerCAmelCase__ = self.default_image_processor
lowerCAmelCase__ = prepare_img()
lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors="""tf""" )
# forward pass
lowerCAmelCase__ = model(**snake_case__ )
# verify the logits
lowerCAmelCase__ = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , snake_case__ )
lowerCAmelCase__ = tf.constant([-1.0266, 0.1912, -1.2861] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
| 674 | 1 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
lowerCAmelCase__ = tempfile.mkdtemp()
# fmt: off
lowerCAmelCase__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""]
# fmt: on
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
lowerCAmelCase__ = {
"""do_resize""": True,
"""size""": {"""height""": 18, """width""": 18},
"""do_normalize""": True,
"""image_mean""": [0.5, 0.5, 0.5],
"""image_std""": [0.5, 0.5, 0.5],
}
lowerCAmelCase__ = os.path.join(self.tmpdirname , snake_case__ )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Dict , **snake_case__ : str ):
return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple , **snake_case__ : Dict ):
return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
shutil.rmtree(self.tmpdirname )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCAmelCase__ = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Any ):
lowerCAmelCase__ = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
lowerCAmelCase__ = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 )
lowerCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = image_processor(snake_case__ , return_tensors="""np""" )
lowerCAmelCase__ = processor(images=snake_case__ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
lowerCAmelCase__ = """lower newer"""
lowerCAmelCase__ = processor(text=snake_case__ )
lowerCAmelCase__ = tokenizer(snake_case__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
lowerCAmelCase__ = """lower newer"""
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = processor(text=snake_case__ , images=snake_case__ )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with self.assertRaises(snake_case__ ):
processor()
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase__ = processor.batch_decode(snake_case__ )
lowerCAmelCase__ = tokenizer.batch_decode(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
lowerCAmelCase__ = """lower newer"""
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = processor(text=snake_case__ , images=snake_case__ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 674 | """simple docstring"""
from __future__ import annotations
from math import gcd
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 3 , ):
"""simple docstring"""
if num < 2:
raise ValueError("""The input value cannot be less than 2""" )
# Because of the relationship between ``f(f(x))`` and ``f(x)``, this
# algorithm struggles to find factors that are divisible by two.
# As a workaround, we specifically check for two and even inputs.
# See: https://math.stackexchange.com/a/2856214/165820
if num > 2 and num % 2 == 0:
return 2
# Pollard's Rho algorithm requires a function that returns pseudorandom
# values between 0 <= X < ``num``. It doesn't need to be random in the
# sense that the output value is cryptographically secure or difficult
# to calculate, it only needs to be random in the sense that all output
# values should be equally likely to appear.
# For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num``
# However, the success of Pollard's algorithm isn't guaranteed and is
# determined in part by the initial seed and the chosen random function.
# To make retries easier, we will instead use ``f(x) = (x**2 + C) % num``
# where ``C`` is a value that we can modify between each attempt.
def rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int:
return (pow(lowerCamelCase__ , 2 ) + step) % modulus
for _ in range(lowerCamelCase__ ):
# These track the position within the cycle detection logic.
lowerCAmelCase__ = seed
lowerCAmelCase__ = seed
while True:
# At each iteration, the tortoise moves one step and the hare moves two.
lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# At some point both the tortoise and the hare will enter a cycle whose
# length ``p`` is a divisor of ``num``. Once in that cycle, at some point
# the tortoise and hare will end up on the same value modulo ``p``.
# We can detect when this happens because the position difference between
# the tortoise and the hare will share a common divisor with ``num``.
lowerCAmelCase__ = gcd(hare - tortoise , lowerCamelCase__ )
if divisor == 1:
# No common divisor yet, just keep searching.
continue
else:
# We found a common divisor!
if divisor == num:
# Unfortunately, the divisor is ``num`` itself and is useless.
break
else:
# The divisor is a nontrivial factor of ``num``!
return divisor
# If we made it here, then this attempt failed.
# We need to pick a new starting seed for the tortoise and hare
# in addition to a new step value for the random function.
# To keep this example implementation deterministic, the
# new values will be generated based on currently available
# values instead of using something like ``random.randint``.
# We can use the hare's position as the new seed.
# This is actually what Richard Brent's the "optimized" variant does.
lowerCAmelCase__ = hare
# The new step value for the random function can just be incremented.
# At first the results will be similar to what the old function would
# have produced, but the value will quickly diverge after a bit.
step += 1
# We haven't found a divisor within the requested number of attempts.
# We were unlucky or ``num`` itself is actually prime.
return None
if __name__ == "__main__":
import argparse
__lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"num",
type=int,
help="The value to find a divisor of",
)
parser.add_argument(
"--attempts",
type=int,
default=3,
help="The number of attempts before giving up",
)
__lowerCAmelCase : List[str] = parser.parse_args()
__lowerCAmelCase : Dict = pollard_rho(args.num, attempts=args.attempts)
if divisor is None:
print(F"{args.num} is probably prime")
else:
__lowerCAmelCase : List[str] = args.num // divisor
print(F"{args.num} = {divisor} * {quotient}")
| 674 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__lowerCAmelCase : List[str] = logging.get_logger(__name__)
__lowerCAmelCase : Tuple = {
"facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json",
}
class a_ ( __UpperCamelCase , __UpperCamelCase ):
UpperCamelCase_ : Optional[int] = "convnextv2"
def __init__( self : str , snake_case__ : Any=3 , snake_case__ : List[Any]=4 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[int]=None , snake_case__ : Tuple=None , snake_case__ : int="gelu" , snake_case__ : Any=0.02 , snake_case__ : Optional[Any]=1E-12 , snake_case__ : Dict=0.0 , snake_case__ : List[str]=224 , snake_case__ : List[Any]=None , snake_case__ : Any=None , **snake_case__ : Union[str, Any] , ):
super().__init__(**snake_case__ )
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = patch_size
lowerCAmelCase__ = num_stages
lowerCAmelCase__ = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes
lowerCAmelCase__ = [3, 3, 9, 3] if depths is None else depths
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = drop_path_rate
lowerCAmelCase__ = image_size
lowerCAmelCase__ = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )]
lowerCAmelCase__ , lowerCAmelCase__ = get_aligned_output_features_output_indices(
out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
| 674 | """simple docstring"""
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = TapasConfig.from_json_file(lowerCamelCase__ )
# set absolute/relative position embeddings parameter
lowerCAmelCase__ = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ )
elif task == "WTQ":
# run_task_main.py hparams
lowerCAmelCase__ = 4
lowerCAmelCase__ = True
# hparam_utils.py hparams
lowerCAmelCase__ = 0.66_46_94
lowerCAmelCase__ = 0.20_79_51
lowerCAmelCase__ = 0.12_11_94
lowerCAmelCase__ = True
lowerCAmelCase__ = True
lowerCAmelCase__ = False
lowerCAmelCase__ = 0.0_35_25_13
lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
lowerCAmelCase__ = 4
lowerCAmelCase__ = False
# hparam_utils.py hparams
lowerCAmelCase__ = 36.45_19
lowerCAmelCase__ = 0.90_34_21
lowerCAmelCase__ = 2_22.0_88
lowerCAmelCase__ = True
lowerCAmelCase__ = True
lowerCAmelCase__ = True
lowerCAmelCase__ = 0.76_31_41
lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ )
elif task == "TABFACT":
lowerCAmelCase__ = TapasForSequenceClassification(config=lowerCamelCase__ )
elif task == "MLM":
lowerCAmelCase__ = TapasForMaskedLM(config=lowerCamelCase__ )
elif task == "INTERMEDIATE_PRETRAINING":
lowerCAmelCase__ = TapasModel(config=lowerCamelCase__ )
else:
raise ValueError(f"""Task {task} not supported.""" )
print(f"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# Save pytorch-model (weights and configuration)
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(lowerCamelCase__ )
# Save tokenizer files
print(f"""Save tokenizer files to {pytorch_dump_path}""" )
lowerCAmelCase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 )
tokenizer.save_pretrained(lowerCamelCase__ )
print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
__lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA."
)
parser.add_argument(
"--reset_position_index_per_cell",
default=False,
action="store_true",
help="Whether to use relative position embeddings or not. Defaults to True.",
)
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--tapas_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained TAPAS model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__lowerCAmelCase : Union[str, Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 674 | 1 |
"""simple docstring"""
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class a_ :
UpperCamelCase_ : Optional[Union[str, Path]] = None
UpperCamelCase_ : bool = False
UpperCamelCase_ : bool = False
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[Dict] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : bool = False
UpperCamelCase_ : bool = False
UpperCamelCase_ : bool = False
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[int] = None
UpperCamelCase_ : int = 1
UpperCamelCase_ : Optional[Union[str, bool]] = None
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[Dict] = None
UpperCamelCase_ : Optional[str] = None
def _SCREAMING_SNAKE_CASE ( self : str ):
return self.__class__(**{k: copy.deepcopy(snake_case__ ) for k, v in self.__dict__.items()} )
| 674 | """simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ = 50 ):
"""simple docstring"""
lowerCAmelCase__ = [[0] * 3 for _ in range(length + 1 )]
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
different_colour_ways_number[row_length][tile_length - 2] += (
different_colour_ways_number[row_length - tile_start - tile_length][
tile_length - 2
]
+ 1
)
return sum(different_colour_ways_number[length] )
if __name__ == "__main__":
print(F"{solution() = }")
| 674 | 1 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
__lowerCAmelCase : Tuple = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
__lowerCAmelCase : Tuple = 25_00_04
__lowerCAmelCase : Any = 25_00_20
@require_sentencepiece
@require_tokenizers
class a_ ( __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : Dict = MBartTokenizer
UpperCamelCase_ : Optional[int] = MBartTokenizerFast
UpperCamelCase_ : Tuple = True
UpperCamelCase_ : Tuple = True
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase__ = MBartTokenizer(snake_case__ , keep_accents=snake_case__ )
tokenizer.save_pretrained(self.tmpdirname )
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = MBartTokenizer(snake_case__ , keep_accents=snake_case__ )
lowerCAmelCase__ = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(snake_case__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
lowerCAmelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
snake_case__ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(snake_case__ )
self.assertListEqual(
snake_case__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(snake_case__ )
self.assertListEqual(
snake_case__ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
def _SCREAMING_SNAKE_CASE ( self : str ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
lowerCAmelCase__ = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ )
lowerCAmelCase__ = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ )
lowerCAmelCase__ = tempfile.mkdtemp()
lowerCAmelCase__ = tokenizer_r.save_pretrained(snake_case__ )
lowerCAmelCase__ = tokenizer_p.save_pretrained(snake_case__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
lowerCAmelCase__ = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f )
self.assertSequenceEqual(snake_case__ , snake_case__ )
# Checks everything loads correctly in the same way
lowerCAmelCase__ = tokenizer_r.from_pretrained(snake_case__ )
lowerCAmelCase__ = tokenizer_p.from_pretrained(snake_case__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case__ , snake_case__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(snake_case__ )
# Save tokenizer rust, legacy_format=True
lowerCAmelCase__ = tempfile.mkdtemp()
lowerCAmelCase__ = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ )
lowerCAmelCase__ = tokenizer_p.save_pretrained(snake_case__ )
# Checks it save with the same files
self.assertSequenceEqual(snake_case__ , snake_case__ )
# Checks everything loads correctly in the same way
lowerCAmelCase__ = tokenizer_r.from_pretrained(snake_case__ )
lowerCAmelCase__ = tokenizer_p.from_pretrained(snake_case__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case__ , snake_case__ ) )
shutil.rmtree(snake_case__ )
# Save tokenizer rust, legacy_format=False
lowerCAmelCase__ = tempfile.mkdtemp()
lowerCAmelCase__ = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ )
lowerCAmelCase__ = tokenizer_p.save_pretrained(snake_case__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
lowerCAmelCase__ = tokenizer_r.from_pretrained(snake_case__ )
lowerCAmelCase__ = tokenizer_p.from_pretrained(snake_case__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case__ , snake_case__ ) )
shutil.rmtree(snake_case__ )
@require_torch
@require_sentencepiece
@require_tokenizers
class a_ ( unittest.TestCase ):
UpperCamelCase_ : Any = "facebook/mbart-large-en-ro"
UpperCamelCase_ : str = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
UpperCamelCase_ : Optional[Any] = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
UpperCamelCase_ : Optional[Any] = [8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2, EN_CODE]
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] ):
lowerCAmelCase__ = MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" )
lowerCAmelCase__ = 1
return cls
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250020 )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
self.assertIn(snake_case__ , self.tokenizer.all_special_ids )
lowerCAmelCase__ = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
lowerCAmelCase__ = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ )
lowerCAmelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
self.assertNotIn(self.tokenizer.eos_token , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = ["""this is gunna be a long sentence """ * 20]
assert isinstance(src_text[0] , snake_case__ )
lowerCAmelCase__ = 10
lowerCAmelCase__ = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , snake_case__ )
self.assertEqual(len(snake_case__ ) , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250026, 250001] )
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = tempfile.mkdtemp()
lowerCAmelCase__ = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(snake_case__ )
lowerCAmelCase__ = MBartTokenizer.from_pretrained(snake_case__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ )
@require_torch
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors="""pt""" )
lowerCAmelCase__ = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
lowerCAmelCase__ = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , )
lowerCAmelCase__ = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
self.assertIsInstance(snake_case__ , snake_case__ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
lowerCAmelCase__ = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , snake_case__ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors="""pt""" )
lowerCAmelCase__ = self.tokenizer(
text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors="""pt""" )
lowerCAmelCase__ = targets["""input_ids"""]
lowerCAmelCase__ = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = self.tokenizer._build_translation_inputs(
"""A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" )
self.assertEqual(
nested_simplify(snake_case__ ) , {
# A, test, EOS, en_XX
"""input_ids""": [[62, 3034, 2, 250004]],
"""attention_mask""": [[1, 1, 1, 1]],
# ar_AR
"""forced_bos_token_id""": 250001,
} , )
| 674 | """simple docstring"""
import argparse
import os
import gluonnlp as nlp
import mxnet as mx
import numpy as np
import torch
from gluonnlp.base import get_home_dir
from gluonnlp.model.bert import BERTEncoder
from gluonnlp.model.utils import _load_vocab
from gluonnlp.vocab import Vocab
from packaging import version
from torch import nn
from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
if version.parse(nlp.__version__) != version.parse("0.8.3"):
raise Exception("requires gluonnlp == 0.8.3")
if version.parse(mx.__version__) != version.parse("1.5.0"):
raise Exception("requires mxnet == 1.5.0")
logging.set_verbosity_info()
__lowerCAmelCase : Any = logging.get_logger(__name__)
__lowerCAmelCase : Any = "The Nymphenburg Palace is a beautiful palace in Munich!"
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = {
"""attention_cell""": """multi_head""",
"""num_layers""": 4,
"""units""": 1024,
"""hidden_size""": 768,
"""max_length""": 512,
"""num_heads""": 8,
"""scaled""": True,
"""dropout""": 0.1,
"""use_residual""": True,
"""embed_size""": 1024,
"""embed_dropout""": 0.1,
"""word_embed""": None,
"""layer_norm_eps""": 1e-5,
"""token_type_vocab_size""": 2,
}
lowerCAmelCase__ = bort_4_8_768_1024_hparams
# Let's construct the original Bort model here
# Taken from official BERT implementation, see:
# https://github.com/alexa/bort/blob/master/bort/bort.py
lowerCAmelCase__ = BERTEncoder(
attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCamelCase__ , output_all_encodings=lowerCamelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCamelCase__ ) , )
# Vocab information needs to be fetched first
# It's the same as RoBERTa, so RobertaTokenizer can be used later
lowerCAmelCase__ = """openwebtext_ccnews_stories_books_cased"""
# Specify download folder to Gluonnlp's vocab
lowerCAmelCase__ = os.path.join(get_home_dir() , """models""" )
lowerCAmelCase__ = _load_vocab(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , cls=lowerCamelCase__ )
lowerCAmelCase__ = nlp.model.BERTModel(
lowerCamelCase__ , len(lowerCamelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCamelCase__ , use_token_type_embed=lowerCamelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCamelCase__ , use_decoder=lowerCamelCase__ , )
original_bort.load_parameters(lowerCamelCase__ , cast_dtype=lowerCamelCase__ , ignore_extra=lowerCamelCase__ )
lowerCAmelCase__ = original_bort._collect_params_with_prefix()
# Build our config 🤗
lowerCAmelCase__ = {
"""architectures""": ["""BertForMaskedLM"""],
"""attention_probs_dropout_prob""": predefined_args["""dropout"""],
"""hidden_act""": """gelu""",
"""hidden_dropout_prob""": predefined_args["""dropout"""],
"""hidden_size""": predefined_args["""embed_size"""],
"""initializer_range""": 0.02,
"""intermediate_size""": predefined_args["""hidden_size"""],
"""layer_norm_eps""": predefined_args["""layer_norm_eps"""],
"""max_position_embeddings""": predefined_args["""max_length"""],
"""model_type""": """bort""",
"""num_attention_heads""": predefined_args["""num_heads"""],
"""num_hidden_layers""": predefined_args["""num_layers"""],
"""pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa
"""type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa
"""vocab_size""": len(lowerCamelCase__ ),
}
lowerCAmelCase__ = BertConfig.from_dict(lowerCamelCase__ )
lowerCAmelCase__ = BertForMaskedLM(lowerCamelCase__ )
hf_bort_model.eval()
# Parameter mapping table (Gluonnlp to Transformers)
# * denotes layer index
#
# | Gluon Parameter | Transformers Parameter
# | -------------------------------------------------------------- | ----------------------
# | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias`
# | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight`
# | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight`
# | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight`
# | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight`
# | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight`
# | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias`
# | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight`
# Helper function to convert MXNET Arrays to PyTorch
def to_torch(lowerCamelCase__ ) -> nn.Parameter:
return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) )
# Check param shapes and map new HF param back
def check_and_map_params(lowerCamelCase__ , lowerCamelCase__ ):
lowerCAmelCase__ = hf_param.shape
lowerCAmelCase__ = to_torch(params[gluon_param] )
lowerCAmelCase__ = gluon_param.shape
assert (
shape_hf == shape_gluon
), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers"""
return gluon_param
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" )
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" )
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" )
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" )
# Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them)
lowerCAmelCase__ = torch.zeros_like(
hf_bort_model.bert.embeddings.token_type_embeddings.weight.data )
for i in range(hf_bort_config.num_hidden_layers ):
lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i]
# self attention
lowerCAmelCase__ = layer.attention.self
lowerCAmelCase__ = check_and_map_params(
self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" )
# self attention output
lowerCAmelCase__ = layer.attention.output
lowerCAmelCase__ = check_and_map_params(
self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" )
lowerCAmelCase__ = check_and_map_params(
self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" )
lowerCAmelCase__ = check_and_map_params(
self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" )
# intermediate
lowerCAmelCase__ = layer.intermediate
lowerCAmelCase__ = check_and_map_params(
intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" )
lowerCAmelCase__ = check_and_map_params(
intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" )
# output
lowerCAmelCase__ = layer.output
lowerCAmelCase__ = check_and_map_params(
bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" )
lowerCAmelCase__ = check_and_map_params(
bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" )
lowerCAmelCase__ = check_and_map_params(
bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" )
lowerCAmelCase__ = check_and_map_params(
bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" )
# Save space and energy 🎄
hf_bort_model.half()
# Compare output of both models
lowerCAmelCase__ = RobertaTokenizer.from_pretrained("""roberta-base""" )
lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ )["""input_ids"""]
# Get gluon output
lowerCAmelCase__ = mx.nd.array([input_ids] )
lowerCAmelCase__ = original_bort(inputs=lowerCamelCase__ , token_types=[] )
# Get Transformer output (save and reload model again)
hf_bort_model.save_pretrained(lowerCamelCase__ )
lowerCAmelCase__ = BertModel.from_pretrained(lowerCamelCase__ )
hf_bort_model.eval()
lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" )
lowerCAmelCase__ = hf_bort_model(**lowerCamelCase__ )[0]
lowerCAmelCase__ = output_gluon[0].asnumpy()
lowerCAmelCase__ = output_hf[0].detach().numpy()
lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item()
lowerCAmelCase__ = np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 )
if success:
print("""✔️ Both model do output the same tensors""" )
else:
print("""❌ Both model do **NOT** output the same tensors""" )
print("""Absolute difference is:""" , lowerCamelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__lowerCAmelCase : str = parser.parse_args()
convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
| 674 | 1 |
"""simple docstring"""
import numpy as np
import torch
from imwatermark import WatermarkEncoder
# Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66
__lowerCAmelCase : Optional[int] = 0b101100111110110010010000011110111011000110011110
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
__lowerCAmelCase : str = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
class a_ :
def __init__( self : Union[str, Any] ):
lowerCAmelCase__ = WATERMARK_BITS
lowerCAmelCase__ = WatermarkEncoder()
self.encoder.set_watermark("""bits""" , self.watermark )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : torch.FloatTensor ):
# can't encode images that are smaller than 256
if images.shape[-1] < 256:
return images
lowerCAmelCase__ = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
lowerCAmelCase__ = [self.encoder.encode(snake_case__ , """dwtDct""" ) for image in images]
lowerCAmelCase__ = torch.from_numpy(np.array(snake_case__ ) ).permute(0 , 3 , 1 , 2 )
lowerCAmelCase__ = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 )
return images
| 674 | """simple docstring"""
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class a_ :
def __init__( self : Optional[int] ):
lowerCAmelCase__ = """"""
lowerCAmelCase__ = """"""
lowerCAmelCase__ = []
lowerCAmelCase__ = 0
lowerCAmelCase__ = 256
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] ):
lowerCAmelCase__ = cva.imread(snake_case__ , 0 )
lowerCAmelCase__ = copy.deepcopy(self.img )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" )
lowerCAmelCase__ = np.sum(snake_case__ )
for i in range(len(snake_case__ ) ):
lowerCAmelCase__ = x[i] / self.k
self.sk += prk
lowerCAmelCase__ = (self.L - 1) * self.sk
if self.rem != 0:
lowerCAmelCase__ = int(last % last )
lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(snake_case__ )
lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size )
lowerCAmelCase__ = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
lowerCAmelCase__ = self.img[j][i]
if num != self.last_list[num]:
lowerCAmelCase__ = self.last_list[num]
cva.imwrite("""output_data/output.jpg""" , self.img )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
plt.hist(self.img.ravel() , 256 , [0, 256] )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
cva.imshow("""Output-Image""" , self.img )
cva.imshow("""Input-Image""" , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
__lowerCAmelCase : Dict = os.path.join(os.path.basename(__file__), "image_data/input.jpg")
__lowerCAmelCase : Optional[int] = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 674 | 1 |
"""simple docstring"""
__lowerCAmelCase : Tuple = "Alexander Joslin"
import operator as op
from .stack import Stack
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub}
lowerCAmelCase__ = Stack()
lowerCAmelCase__ = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(lowerCamelCase__ ) )
elif i in operators:
# RULE 2
operator_stack.push(lowerCamelCase__ )
elif i == ")":
# RULE 4
lowerCAmelCase__ = operator_stack.peek()
operator_stack.pop()
lowerCAmelCase__ = operand_stack.peek()
operand_stack.pop()
lowerCAmelCase__ = operand_stack.peek()
operand_stack.pop()
lowerCAmelCase__ = operators[opr](lowerCamelCase__ , lowerCamelCase__ )
operand_stack.push(lowerCamelCase__ )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
__lowerCAmelCase : Optional[Any] = "(5 + ((4 * 2) * (2 + 3)))"
# answer = 45
print(F"{equation} = {dijkstras_two_stack_algorithm(equation)}")
| 674 | """simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from ..models.clipseg import CLIPSegForImageSegmentation
from ..utils import is_vision_available, requires_backends
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : List[str] = (
"This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image."
"It takes two arguments named `image` which should be the original image, and `label` which should be a text "
"describing the elements what should be identified in the segmentation mask. The tool returns the mask."
)
UpperCamelCase_ : str = "CIDAS/clipseg-rd64-refined"
UpperCamelCase_ : Any = "image_segmenter"
UpperCamelCase_ : Optional[Any] = CLIPSegForImageSegmentation
UpperCamelCase_ : List[str] = ["image", "text"]
UpperCamelCase_ : int = ["image"]
def __init__( self : Tuple , *snake_case__ : str , **snake_case__ : Optional[Any] ):
requires_backends(self , ["""vision"""] )
super().__init__(*snake_case__ , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : "Image" , snake_case__ : str ):
return self.pre_processor(text=[label] , images=[image] , padding=snake_case__ , return_tensors="""pt""" )
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple ):
with torch.no_grad():
lowerCAmelCase__ = self.model(**snake_case__ ).logits
return logits
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] ):
lowerCAmelCase__ = outputs.cpu().detach().numpy()
lowerCAmelCase__ = 0
lowerCAmelCase__ = 1
return Image.fromarray((array * 255).astype(np.uinta ) )
| 674 | 1 |
"""simple docstring"""
import os
from tempfile import TemporaryDirectory
from unittest import TestCase
import pytest
from absl.testing import parameterized
from datasets import config
from datasets.arrow_reader import HF_GCP_BASE_URL
from datasets.builder import DatasetBuilder
from datasets.dataset_dict import IterableDatasetDict
from datasets.iterable_dataset import IterableDataset
from datasets.load import dataset_module_factory, import_main_class
from datasets.utils.file_utils import cached_path
__lowerCAmelCase : Union[str, Any] = [
{"dataset": "wikipedia", "config_name": "20220301.de"},
{"dataset": "wikipedia", "config_name": "20220301.en"},
{"dataset": "wikipedia", "config_name": "20220301.fr"},
{"dataset": "wikipedia", "config_name": "20220301.frr"},
{"dataset": "wikipedia", "config_name": "20220301.it"},
{"dataset": "wikipedia", "config_name": "20220301.simple"},
{"dataset": "snli", "config_name": "plain_text"},
{"dataset": "eli5", "config_name": "LFQA_reddit"},
{"dataset": "wiki40b", "config_name": "en"},
{"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"},
{"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"},
{"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"},
{"dataset": "natural_questions", "config_name": "default"},
]
def _UpperCAmelCase ( lowerCamelCase__=True ):
"""simple docstring"""
if with_config:
return [
{
"testcase_name": d["dataset"] + "/" + d["config_name"],
"dataset": d["dataset"],
"config_name": d["config_name"],
}
for d in DATASETS_ON_HF_GCP
]
else:
return [
{"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP}
]
@parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__UpperCamelCase ) )
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : Dict = None
UpperCamelCase_ : Dict = None
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Any , snake_case__ : Tuple ):
with TemporaryDirectory() as tmp_dir:
lowerCAmelCase__ = dataset_module_factory(snake_case__ , cache_dir=snake_case__ )
lowerCAmelCase__ = import_main_class(dataset_module.module_path , dataset=snake_case__ )
lowerCAmelCase__ = builder_cls(
cache_dir=snake_case__ , config_name=snake_case__ , hash=dataset_module.hash , )
lowerCAmelCase__ = """/""".join(
[
HF_GCP_BASE_URL,
builder_instance._relative_data_dir(with_hash=snake_case__ ).replace(os.sep , """/""" ),
config.DATASET_INFO_FILENAME,
] )
lowerCAmelCase__ = cached_path(snake_case__ , cache_dir=snake_case__ )
self.assertTrue(os.path.exists(snake_case__ ) )
@pytest.mark.integration
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple"""
lowerCAmelCase__ = dataset_module_factory("""wikipedia""" , cache_dir=lowerCamelCase__ )
lowerCAmelCase__ = import_main_class(dataset_module.module_path )
lowerCAmelCase__ = builder_cls(
cache_dir=lowerCamelCase__ , config_name="""20220301.frr""" , hash=dataset_module.hash , )
# use the HF cloud storage, not the original download_and_prepare that uses apache-beam
lowerCAmelCase__ = None
builder_instance.download_and_prepare()
lowerCAmelCase__ = builder_instance.as_dataset()
assert ds
@pytest.mark.integration
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = dataset_module_factory("""wikipedia""" , cache_dir=lowerCamelCase__ )
lowerCAmelCase__ = import_main_class(dataset_module.module_path , dataset=lowerCamelCase__ )
lowerCAmelCase__ = builder_cls(
cache_dir=lowerCamelCase__ , config_name="""20220301.frr""" , hash=dataset_module.hash , )
lowerCAmelCase__ = builder_instance.as_streaming_dataset()
assert ds
assert isinstance(lowerCamelCase__ , lowerCamelCase__ )
assert "train" in ds
assert isinstance(ds["""train"""] , lowerCamelCase__ )
assert next(iter(ds["""train"""] ) )
| 674 | """simple docstring"""
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class a_ ( __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : str = LayoutLMTokenizer
UpperCamelCase_ : List[Any] = LayoutLMTokenizerFast
UpperCamelCase_ : Dict = True
UpperCamelCase_ : Any = True
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
super().setUp()
lowerCAmelCase__ = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : Union[str, Any] ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Tuple ):
lowerCAmelCase__ = """UNwant\u00E9d,running"""
lowerCAmelCase__ = """unwanted, running"""
return input_text, output_text
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = self.tokenizer_class(self.vocab_file )
lowerCAmelCase__ = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(snake_case__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [7, 4, 5, 10, 8, 9] )
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
pass
| 674 | 1 |
"""simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = []
for data in source_data:
for i, el in enumerate(lowerCamelCase__ ):
if len(lowerCamelCase__ ) < i + 1:
data_lists.append([] )
data_lists[i].append(float(lowerCamelCase__ ) )
return data_lists
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = []
for dlist, weight in zip(lowerCamelCase__ , lowerCamelCase__ ):
lowerCAmelCase__ = min(lowerCamelCase__ )
lowerCAmelCase__ = max(lowerCamelCase__ )
lowerCAmelCase__ = []
# for weight 0 score is 1 - actual score
if weight == 0:
for item in dlist:
try:
score.append(1 - ((item - mind) / (maxd - mind)) )
except ZeroDivisionError:
score.append(1 )
elif weight == 1:
for item in dlist:
try:
score.append((item - mind) / (maxd - mind) )
except ZeroDivisionError:
score.append(0 )
# weight not 0 or 1
else:
lowerCAmelCase__ = f"""Invalid weight of {weight:f} provided"""
raise ValueError(lowerCamelCase__ )
score_lists.append(lowerCamelCase__ )
return score_lists
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = [0 for i in range(len(score_lists[0] ) )]
for slist in score_lists:
for j, ele in enumerate(lowerCamelCase__ ):
lowerCAmelCase__ = final_scores[j] + ele
return final_scores
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = get_data(lowerCamelCase__ )
lowerCAmelCase__ = calculate_each_score(lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = generate_final_scores(lowerCamelCase__ )
# append scores to source data
for i, ele in enumerate(lowerCamelCase__ ):
source_data[i].append(lowerCamelCase__ )
return source_data
| 674 | """simple docstring"""
from binascii import hexlify
from hashlib import shaaaa
from os import urandom
# RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for
# Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526
__lowerCAmelCase : Any = {
# 1536-bit
5: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 2048-bit
14: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AACAA68FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 3072-bit
15: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 4096-bit
16: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199"
+ "FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 6144-bit
17: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
+ "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
+ "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
+ "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
+ "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8"
+ "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C"
+ "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718"
+ "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D"
+ "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D"
+ "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226"
+ "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC"
+ "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26"
+ "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB"
+ "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2"
+ "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127"
+ "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406"
+ "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918"
+ "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151"
+ "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03"
+ "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F"
+ "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B"
+ "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632"
+ "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E"
+ "6DCC4024FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 8192-bit
18: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD"
+ "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831"
+ "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B"
+ "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF"
+ "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6"
+ "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3"
+ "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328"
+ "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C"
+ "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE"
+ "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4"
+ "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300"
+ "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568"
+ "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9"
+ "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B"
+ "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A"
+ "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36"
+ "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1"
+ "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92"
+ "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47"
+ "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71"
+ "60C980DD98EDD3DFFFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
}
class a_ :
def __init__( self : List[str] , snake_case__ : int = 14 ):
if group not in primes:
raise ValueError("""Unsupported Group""" )
lowerCAmelCase__ = primes[group]["""prime"""]
lowerCAmelCase__ = primes[group]["""generator"""]
lowerCAmelCase__ = int(hexlify(urandom(32 ) ) , base=16 )
def _SCREAMING_SNAKE_CASE ( self : Any ):
return hex(self.__private_key )[2:]
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = pow(self.generator , self.__private_key , self.prime )
return hex(snake_case__ )[2:]
def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : int ):
# check if the other public key is valid based on NIST SP800-56
return (
2 <= key <= self.prime - 2
and pow(snake_case__ , (self.prime - 1) // 2 , self.prime ) == 1
)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str ):
lowerCAmelCase__ = int(snake_case__ , base=16 )
if not self.is_valid_public_key(snake_case__ ):
raise ValueError("""Invalid public key""" )
lowerCAmelCase__ = pow(snake_case__ , self.__private_key , self.prime )
return shaaaa(str(snake_case__ ).encode() ).hexdigest()
@staticmethod
def _SCREAMING_SNAKE_CASE ( snake_case__ : int , snake_case__ : int ):
# check if the other public key is valid based on NIST SP800-56
return (
2 <= remote_public_key_str <= prime - 2
and pow(snake_case__ , (prime - 1) // 2 , snake_case__ ) == 1
)
@staticmethod
def _SCREAMING_SNAKE_CASE ( snake_case__ : str , snake_case__ : str , snake_case__ : int = 14 ):
lowerCAmelCase__ = int(snake_case__ , base=16 )
lowerCAmelCase__ = int(snake_case__ , base=16 )
lowerCAmelCase__ = primes[group]["""prime"""]
if not DiffieHellman.is_valid_public_key_static(snake_case__ , snake_case__ ):
raise ValueError("""Invalid public key""" )
lowerCAmelCase__ = pow(snake_case__ , snake_case__ , snake_case__ )
return shaaaa(str(snake_case__ ).encode() ).hexdigest()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 674 | 1 |
"""simple docstring"""
import random
import timeit
from functools import wraps
from typing import Callable, Optional
from ..configuration_utils import PretrainedConfig
from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
from ..utils import is_pyanvml_available, is_tf_available, logging
from .benchmark_utils import (
Benchmark,
Memory,
MemorySummary,
measure_peak_memory_cpu,
start_memory_tracing,
stop_memory_tracing,
)
if is_tf_available():
import tensorflow as tf
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
from .benchmark_args_tf import TensorFlowBenchmarkArguments
if is_pyanvml_available():
import pyanvml.pyanvml as nvml
__lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
def run_func(lowerCamelCase__ ):
@wraps(lowerCamelCase__ )
def run_in_eager_mode(*lowerCamelCase__ , **lowerCamelCase__ ):
return func(*lowerCamelCase__ , **lowerCamelCase__ )
@wraps(lowerCamelCase__ )
@tf.function(experimental_compile=lowerCamelCase__ )
def run_in_graph_mode(*lowerCamelCase__ , **lowerCamelCase__ ):
return func(*lowerCamelCase__ , **lowerCamelCase__ )
if do_eager_mode is True:
if use_xla is not False:
raise ValueError(
"""Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" )
return run_in_eager_mode
else:
return run_in_graph_mode
return run_func
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = random.Random()
lowerCAmelCase__ = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )]
return tf.constant(lowerCamelCase__ , shape=(batch_size, sequence_length) , dtype=tf.intaa )
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : TensorFlowBenchmarkArguments
UpperCamelCase_ : PretrainedConfig
UpperCamelCase_ : str = "TensorFlow"
@property
def _SCREAMING_SNAKE_CASE ( self : Any ):
return tf.__version__
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str , snake_case__ : int , snake_case__ : int ):
# initialize GPU on separate process
lowerCAmelCase__ = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
lowerCAmelCase__ = self._prepare_inference_func(snake_case__ , snake_case__ , snake_case__ )
return self._measure_speed(_inference )
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : str , snake_case__ : int , snake_case__ : int ):
lowerCAmelCase__ = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
lowerCAmelCase__ = self._prepare_train_func(snake_case__ , snake_case__ , snake_case__ )
return self._measure_speed(_train )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str , snake_case__ : int , snake_case__ : int ):
# initialize GPU on separate process
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , snake_case__ )
lowerCAmelCase__ = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
lowerCAmelCase__ = self._prepare_inference_func(snake_case__ , snake_case__ , snake_case__ )
return self._measure_memory(_inference )
def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : str , snake_case__ : int , snake_case__ : int ):
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , snake_case__ )
lowerCAmelCase__ = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
lowerCAmelCase__ = self._prepare_train_func(snake_case__ , snake_case__ , snake_case__ )
return self._measure_memory(_train )
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : str , snake_case__ : int , snake_case__ : int ):
lowerCAmelCase__ = self.config_dict[model_name]
if self.args.fpaa:
raise NotImplementedError("""Mixed precision is currently not supported.""" )
lowerCAmelCase__ = (
hasattr(snake_case__ , """architectures""" )
and isinstance(config.architectures , snake_case__ )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
lowerCAmelCase__ = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model
lowerCAmelCase__ = __import__("""transformers""" , fromlist=[model_class] )
lowerCAmelCase__ = getattr(snake_case__ , snake_case__ )
lowerCAmelCase__ = model_cls(snake_case__ )
except ImportError:
raise ImportError(
F"""{model_class} does not exist. If you just want to test the pretrained model, you might want to"""
""" set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" )
else:
lowerCAmelCase__ = TF_MODEL_MAPPING[config.__class__](snake_case__ )
# encoder-decoder has vocab size saved differently
lowerCAmelCase__ = config.vocab_size if hasattr(snake_case__ , """vocab_size""" ) else config.encoder.vocab_size
lowerCAmelCase__ = random_input_ids(snake_case__ , snake_case__ , snake_case__ )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_forward():
return model(snake_case__ , decoder_input_ids=snake_case__ , training=snake_case__ )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_forward():
return model(snake_case__ , training=snake_case__ )
lowerCAmelCase__ = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
return _inference
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : str , snake_case__ : int , snake_case__ : int ):
lowerCAmelCase__ = self.config_dict[model_name]
if self.args.eager_mode is not False:
raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" )
if self.args.fpaa:
raise NotImplementedError("""Mixed precision is currently not supported.""" )
lowerCAmelCase__ = (
hasattr(snake_case__ , """architectures""" )
and isinstance(config.architectures , snake_case__ )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
lowerCAmelCase__ = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model
lowerCAmelCase__ = __import__("""transformers""" , fromlist=[model_class] )
lowerCAmelCase__ = getattr(snake_case__ , snake_case__ )
lowerCAmelCase__ = model_cls(snake_case__ )
except ImportError:
raise ImportError(
F"""{model_class} does not exist. If you just want to test the pretrained model, you might want to"""
""" set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" )
else:
lowerCAmelCase__ = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](snake_case__ )
# encoder-decoder has vocab size saved differently
lowerCAmelCase__ = config.vocab_size if hasattr(snake_case__ , """vocab_size""" ) else config.encoder.vocab_size
lowerCAmelCase__ = random_input_ids(snake_case__ , snake_case__ , snake_case__ )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_train():
lowerCAmelCase__ = model(snake_case__ , decoder_input_ids=snake_case__ , labels=snake_case__ , training=snake_case__ )[0]
lowerCAmelCase__ = tf.gradients(snake_case__ , model.trainable_variables )
return gradients
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_train():
lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ , training=snake_case__ )[0]
lowerCAmelCase__ = tf.gradients(snake_case__ , model.trainable_variables )
return gradients
lowerCAmelCase__ = encoder_decoder_train if config.is_encoder_decoder else encoder_train
return _train
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Union[str, Any] ):
with self.args.strategy.scope():
try:
if self.args.is_tpu or self.args.use_xla:
# run additional 10 times to stabilize compilation for tpu
logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" )
timeit.repeat(snake_case__ , repeat=1 , number=5 )
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
lowerCAmelCase__ = timeit.repeat(
snake_case__ , repeat=self.args.repeat , number=10 , )
return min(snake_case__ ) / 10.0
except ResourceExhaustedError as e:
self.print_fn(F"""Doesn't fit on GPU. {e}""" )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Callable[[], None] ):
logger.info(
"""Note that TensorFlow allocates more memory than """
"""it might need to speed up computation. """
"""The memory reported here corresponds to the memory """
"""reported by `nvidia-smi`, which can vary depending """
"""on total available memory on the GPU that is used.""" )
with self.args.strategy.scope():
try:
if self.args.trace_memory_line_by_line:
if not self.args.eager_mode:
raise ValueError(
"""`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory"""
""" consumption line by line.""" )
lowerCAmelCase__ = start_memory_tracing("""transformers""" )
if self.args.is_tpu:
# tpu
raise NotImplementedError(
"""Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking"""
""" with `args.memory=False`""" )
elif self.args.is_gpu:
# gpu
if not is_pyanvml_available():
logger.warning(
"""py3nvml not installed, we won't log GPU memory usage. """
"""Install py3nvml (pip install py3nvml) to log information about GPU.""" )
lowerCAmelCase__ = """N/A"""
else:
logger.info(
"""Measuring total GPU usage on GPU device. Make sure to not have additional processes"""
""" running on the same GPU.""" )
# init nvml
nvml.nvmlInit()
func()
lowerCAmelCase__ = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx )
lowerCAmelCase__ = nvml.nvmlDeviceGetMemoryInfo(snake_case__ )
lowerCAmelCase__ = meminfo.used
lowerCAmelCase__ = Memory(snake_case__ )
# shutdown nvml
nvml.nvmlShutdown()
else:
# cpu
if self.args.trace_memory_line_by_line:
logger.info(
"""When enabling line by line tracing, the max peak memory for CPU is inaccurate in"""
""" TensorFlow.""" )
lowerCAmelCase__ = None
else:
lowerCAmelCase__ = measure_peak_memory_cpu(snake_case__ )
lowerCAmelCase__ = Memory(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else memory_bytes
if self.args.trace_memory_line_by_line:
lowerCAmelCase__ = stop_memory_tracing(snake_case__ )
if memory is None:
lowerCAmelCase__ = summary.total
else:
lowerCAmelCase__ = None
return memory, summary
except ResourceExhaustedError as e:
self.print_fn(F"""Doesn't fit on GPU. {e}""" )
return "N/A", None
| 674 | """simple docstring"""
import argparse
import pickle
import numpy as np
import torch
from torch import nn
from transformers import ReformerConfig, ReformerModelWithLMHead
from transformers.utils import logging
logging.set_verbosity_info()
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ):
"""simple docstring"""
assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match"""
lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ )
if bias is not None:
assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match"""
lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = np.asarray(weights[0] )
lowerCAmelCase__ = np.asarray(weights[1] )
lowerCAmelCase__ = np.asarray(weights[2] )
set_param(
torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , )
set_param(
torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = np.asarray(weights[0] )
lowerCAmelCase__ = np.asarray(weights[1] )
lowerCAmelCase__ = np.asarray(weights[2] )
lowerCAmelCase__ = np.asarray(weights[3] )
set_param(
torch_layer.self_attention.query , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , )
set_param(
torch_layer.self_attention.key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , )
set_param(
torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = weights[0][0][0]
lowerCAmelCase__ = np.asarray(layer_norm_a[0] )
lowerCAmelCase__ = np.asarray(layer_norm_a[1] )
set_param(
torch_block.attention.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , )
# lsh weights + output
lowerCAmelCase__ = weights[0][1]
if len(lowerCamelCase__ ) < 4:
set_layer_weights_in_torch_lsh(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ )
else:
set_layer_weights_in_torch_local(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ )
# intermediate weighs
lowerCAmelCase__ = weights[2][0][1][2]
# Chunked Feed Forward
if len(lowerCamelCase__ ) == 4:
lowerCAmelCase__ = intermediate_weights[2]
# layernorm 2
lowerCAmelCase__ = np.asarray(intermediate_weights[0][0] )
lowerCAmelCase__ = np.asarray(intermediate_weights[0][1] )
set_param(
torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , )
# intermediate dense
lowerCAmelCase__ = np.asarray(intermediate_weights[1][0] )
lowerCAmelCase__ = np.asarray(intermediate_weights[1][1] )
set_param(
torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , )
# intermediate out
lowerCAmelCase__ = np.asarray(intermediate_weights[4][0] )
lowerCAmelCase__ = np.asarray(intermediate_weights[4][1] )
set_param(
torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = torch_model.reformer
# word embeds
lowerCAmelCase__ = np.asarray(weights[1] )
set_param(
torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase__ ) , )
if isinstance(weights[3] , lowerCamelCase__ ):
lowerCAmelCase__ = torch_model_reformer.embeddings.position_embeddings
for emb_idx in range(len(position_embeddings.weights ) ):
lowerCAmelCase__ = np.asarray(weights[3][emb_idx][0] )
assert (
position_embeddings.weights[emb_idx].shape == emb_weights.shape
), f"""{position_embeddings[emb_idx]} emb does not match"""
lowerCAmelCase__ = nn.Parameter(torch.tensor(lowerCamelCase__ ) )
lowerCAmelCase__ = weights[5]
assert len(torch_model_reformer.encoder.layers ) * 4 == len(
lowerCamelCase__ ), "HF and trax model do not have the same number of layers"
for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ):
lowerCAmelCase__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
set_block_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# output layer norm
lowerCAmelCase__ = np.asarray(weights[7][0] )
lowerCAmelCase__ = np.asarray(weights[7][1] )
set_param(
torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , )
# output embeddings
lowerCAmelCase__ = np.asarray(weights[9][0] )
lowerCAmelCase__ = np.asarray(weights[9][1] )
set_param(
torch_model.lm_head.decoder , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = ReformerConfig.from_json_file(lowerCamelCase__ )
print(f"""Building PyTorch model from configuration: {config}""" )
lowerCAmelCase__ = ReformerModelWithLMHead(lowerCamelCase__ )
with open(lowerCamelCase__ , """rb""" ) as f:
lowerCAmelCase__ = pickle.load(lowerCamelCase__ )["""weights"""]
set_model_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , config.hidden_size )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , lowerCamelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained Reformer model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__lowerCAmelCase : Union[str, Any] = parser.parse_args()
convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
| 674 | 1 |
"""simple docstring"""
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__lowerCAmelCase : Any = abspath(join(dirname(dirname(dirname(__file__))), "src"))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="ignore", category=FutureWarning)
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(lowerCamelCase__ )
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
from transformers.testing_utils import pytest_terminal_summary_main
lowerCAmelCase__ = terminalreporter.config.getoption("""--make-reports""" )
if make_reports:
pytest_terminal_summary_main(lowerCamelCase__ , id=lowerCamelCase__ )
| 674 | """simple docstring"""
import os
from math import logaa
def _UpperCAmelCase ( lowerCamelCase__ = "base_exp.txt" ):
"""simple docstring"""
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) ):
lowerCAmelCase__ , lowerCAmelCase__ = list(map(lowerCamelCase__ , line.split(""",""" ) ) )
if x * logaa(lowerCamelCase__ ) > largest:
lowerCAmelCase__ = x * logaa(lowerCamelCase__ )
lowerCAmelCase__ = i + 1
return result
if __name__ == "__main__":
print(solution())
| 674 | 1 |
"""simple docstring"""
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 674 | """simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
while b:
lowerCAmelCase__ , lowerCAmelCase__ = b, a % b
return a
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase__ , a % b )
def _UpperCAmelCase ( ):
"""simple docstring"""
print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" )
print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" )
print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" )
print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" )
print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" )
print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" )
print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" )
print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" )
if __name__ == "__main__":
main()
| 674 | 1 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
__lowerCAmelCase : List[str] = logging.get_logger(__name__)
__lowerCAmelCase : List[str] = {
"Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json",
}
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : Dict = "instructblip_vision_model"
def __init__( self : Optional[int] , snake_case__ : Optional[Any]=1408 , snake_case__ : List[str]=6144 , snake_case__ : Optional[Any]=39 , snake_case__ : Optional[int]=16 , snake_case__ : List[str]=224 , snake_case__ : Any=14 , snake_case__ : Any="gelu" , snake_case__ : List[str]=1E-6 , snake_case__ : List[str]=0.0 , snake_case__ : Optional[int]=1E-10 , snake_case__ : int=True , **snake_case__ : int , ):
super().__init__(**snake_case__ )
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = patch_size
lowerCAmelCase__ = image_size
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = attention_dropout
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = qkv_bias
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] , snake_case__ : Union[str, os.PathLike] , **snake_case__ : Dict ):
cls._set_token_in_kwargs(snake_case__ )
lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(snake_case__ , **snake_case__ )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get("""model_type""" ) == "instructblip":
lowerCAmelCase__ = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(snake_case__ , **snake_case__ )
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : int = "instructblip_qformer"
def __init__( self : Tuple , snake_case__ : Optional[int]=30522 , snake_case__ : Dict=768 , snake_case__ : Dict=12 , snake_case__ : Dict=12 , snake_case__ : List[Any]=3072 , snake_case__ : Any="gelu" , snake_case__ : str=0.1 , snake_case__ : int=0.1 , snake_case__ : Any=512 , snake_case__ : List[str]=0.02 , snake_case__ : Any=1E-12 , snake_case__ : Optional[int]=0 , snake_case__ : str="absolute" , snake_case__ : Any=2 , snake_case__ : Any=1408 , **snake_case__ : Any , ):
super().__init__(pad_token_id=snake_case__ , **snake_case__ )
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = position_embedding_type
lowerCAmelCase__ = cross_attention_frequency
lowerCAmelCase__ = encoder_hidden_size
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Any , snake_case__ : Union[str, os.PathLike] , **snake_case__ : List[str] ):
cls._set_token_in_kwargs(snake_case__ )
lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(snake_case__ , **snake_case__ )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get("""model_type""" ) == "instructblip":
lowerCAmelCase__ = config_dict["""qformer_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(snake_case__ , **snake_case__ )
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : Union[str, Any] = "instructblip"
UpperCamelCase_ : Optional[Any] = True
def __init__( self : Dict , snake_case__ : str=None , snake_case__ : str=None , snake_case__ : Optional[int]=None , snake_case__ : List[str]=32 , **snake_case__ : int ):
super().__init__(**snake_case__ )
if vision_config is None:
lowerCAmelCase__ = {}
logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" )
if qformer_config is None:
lowerCAmelCase__ = {}
logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" )
if text_config is None:
lowerCAmelCase__ = {}
logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" )
lowerCAmelCase__ = InstructBlipVisionConfig(**snake_case__ )
lowerCAmelCase__ = InstructBlipQFormerConfig(**snake_case__ )
lowerCAmelCase__ = text_config["""model_type"""] if """model_type""" in text_config else """opt"""
lowerCAmelCase__ = CONFIG_MAPPING[text_model_type](**snake_case__ )
lowerCAmelCase__ = self.text_config.tie_word_embeddings
lowerCAmelCase__ = self.text_config.is_encoder_decoder
lowerCAmelCase__ = num_query_tokens
lowerCAmelCase__ = self.vision_config.hidden_size
lowerCAmelCase__ = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
lowerCAmelCase__ = 1.0
lowerCAmelCase__ = 0.02
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : List[Any] , snake_case__ : InstructBlipVisionConfig , snake_case__ : InstructBlipQFormerConfig , snake_case__ : PretrainedConfig , **snake_case__ : Union[str, Any] , ):
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **snake_case__ , )
def _SCREAMING_SNAKE_CASE ( self : Any ):
lowerCAmelCase__ = copy.deepcopy(self.__dict__ )
lowerCAmelCase__ = self.vision_config.to_dict()
lowerCAmelCase__ = self.qformer_config.to_dict()
lowerCAmelCase__ = self.text_config.to_dict()
lowerCAmelCase__ = self.__class__.model_type
return output
| 674 | """simple docstring"""
import os
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = os.path.dirname(os.path.realpath(lowerCamelCase__ ) )
lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """triangle.txt""" )
with open(lowerCamelCase__ ) as f:
lowerCAmelCase__ = f.readlines()
lowerCAmelCase__ = []
for line in triangle:
lowerCAmelCase__ = []
for number in line.strip().split(""" """ ):
numbers_from_line.append(int(lowerCamelCase__ ) )
a.append(lowerCamelCase__ )
for i in range(1 , len(lowerCamelCase__ ) ):
for j in range(len(a[i] ) ):
lowerCAmelCase__ = a[i - 1][j] if j != len(a[i - 1] ) else 0
lowerCAmelCase__ = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(lowerCamelCase__ , lowerCamelCase__ )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 674 | 1 |
"""simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 674 | """simple docstring"""
import io
import json
import unittest
from parameterized import parameterized
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device
from utils import calculate_bleu
__lowerCAmelCase : Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json"
with io.open(filename, "r", encoding="utf-8") as f:
__lowerCAmelCase : Optional[int] = json.load(f)
@require_torch
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Dict ):
return FSMTTokenizer.from_pretrained(snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ):
lowerCAmelCase__ = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ )
if torch_device == "cuda":
model.half()
return model
@parameterized.expand(
[
["""en-ru""", 26.0],
["""ru-en""", 22.0],
["""en-de""", 22.0],
["""de-en""", 29.0],
] )
@slow
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Any , snake_case__ : int ):
# note: this test is not testing the best performance since it only evals a small batch
# but it should be enough to detect a regression in the output quality
lowerCAmelCase__ = F"""facebook/wmt19-{pair}"""
lowerCAmelCase__ = self.get_tokenizer(snake_case__ )
lowerCAmelCase__ = self.get_model(snake_case__ )
lowerCAmelCase__ = bleu_data[pair]["""src"""]
lowerCAmelCase__ = bleu_data[pair]["""tgt"""]
lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""pt""" , truncation=snake_case__ , padding="""longest""" ).to(snake_case__ )
lowerCAmelCase__ = model.generate(
input_ids=batch.input_ids , num_beams=8 , )
lowerCAmelCase__ = tokenizer.batch_decode(
snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ )
lowerCAmelCase__ = calculate_bleu(snake_case__ , snake_case__ )
print(snake_case__ )
self.assertGreaterEqual(scores["""bleu"""] , snake_case__ )
| 674 | 1 |
"""simple docstring"""
import pprint
import requests
__lowerCAmelCase : Union[str, Any] = "https://zenquotes.io/api"
def _UpperCAmelCase ( ):
"""simple docstring"""
return requests.get(API_ENDPOINT_URL + """/today""" ).json()
def _UpperCAmelCase ( ):
"""simple docstring"""
return requests.get(API_ENDPOINT_URL + """/random""" ).json()
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] = random_quotes()
pprint.pprint(response)
| 674 | """simple docstring"""
import pprint
import requests
__lowerCAmelCase : Union[str, Any] = "https://zenquotes.io/api"
def _UpperCAmelCase ( ):
"""simple docstring"""
return requests.get(API_ENDPOINT_URL + """/today""" ).json()
def _UpperCAmelCase ( ):
"""simple docstring"""
return requests.get(API_ENDPOINT_URL + """/random""" ).json()
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] = random_quotes()
pprint.pprint(response)
| 674 | 1 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
UniSpeechConfig,
UniSpeechForCTC,
UniSpeechForPreTraining,
WavaVecaFeatureExtractor,
WavaVecaPhonemeCTCTokenizer,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__lowerCAmelCase : Dict = logging.get_logger(__name__)
__lowerCAmelCase : Optional[int] = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "ctc_proj",
"mask_emb": "masked_spec_embed",
}
__lowerCAmelCase : Optional[int] = [
"ctc_proj",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
for attribute in key.split(""".""" ):
if is_finetuned:
if attribute in ["quantizer", "project_q", "project_hid"]:
# those layers are only relevant for pretraining and should be dropped
return
if attribute == "ctc_proj":
# we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models
lowerCAmelCase__ = """lm_head"""
lowerCAmelCase__ = getattr(lowerCamelCase__ , lowerCamelCase__ )
if weight_type is not None:
lowerCAmelCase__ = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape
else:
lowerCAmelCase__ = hf_pointer.shape
assert hf_shape == value.shape, (
f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
lowerCAmelCase__ = value
elif weight_type == "weight_g":
lowerCAmelCase__ = value
elif weight_type == "weight_v":
lowerCAmelCase__ = value
elif weight_type == "bias":
lowerCAmelCase__ = value
else:
lowerCAmelCase__ = value
logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = []
lowerCAmelCase__ = fairseq_model.state_dict()
lowerCAmelCase__ = hf_model.unispeech.feature_extractor
for name, value in fairseq_dict.items():
lowerCAmelCase__ = False
if "conv_layers" in name:
load_conv_layer(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == """group""" , )
lowerCAmelCase__ = True
else:
for key, mapped_key in MAPPING.items():
lowerCAmelCase__ = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
lowerCAmelCase__ = True
if "*" in mapped_key:
lowerCAmelCase__ = name.split(lowerCamelCase__ )[0].split(""".""" )[-2]
lowerCAmelCase__ = mapped_key.replace("""*""" , lowerCamelCase__ )
if "weight_g" in name:
lowerCAmelCase__ = """weight_g"""
elif "weight_v" in name:
lowerCAmelCase__ = """weight_v"""
elif "bias" in name:
lowerCAmelCase__ = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
lowerCAmelCase__ = """weight"""
else:
lowerCAmelCase__ = None
set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
continue
if not is_used:
unused_weights.append(lowerCamelCase__ )
logger.warning(f"""Unused weights: {unused_weights}""" )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = full_name.split("""conv_layers.""" )[-1]
lowerCAmelCase__ = name.split(""".""" )
lowerCAmelCase__ = int(items[0] )
lowerCAmelCase__ = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
lowerCAmelCase__ = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
lowerCAmelCase__ = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
lowerCAmelCase__ = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
lowerCAmelCase__ = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(lowerCamelCase__ )
@torch.no_grad()
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True ):
"""simple docstring"""
if config_path is not None:
lowerCAmelCase__ = UniSpeechConfig.from_pretrained(lowerCamelCase__ )
else:
lowerCAmelCase__ = UniSpeechConfig()
if is_finetuned:
if dict_path:
lowerCAmelCase__ = Dictionary.load_from_json(lowerCamelCase__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
lowerCAmelCase__ = target_dict.pad_index
lowerCAmelCase__ = target_dict.bos_index
lowerCAmelCase__ = target_dict.eos_index
lowerCAmelCase__ = len(target_dict.symbols )
lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """vocab.json""" )
if not os.path.isdir(lowerCamelCase__ ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCamelCase__ ) )
return
os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ )
lowerCAmelCase__ = target_dict.indices
# fairseq has the <pad> and <s> switched
lowerCAmelCase__ = 42
lowerCAmelCase__ = 43
with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = WavaVecaPhonemeCTCTokenizer(
lowerCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCamelCase__ , )
lowerCAmelCase__ = True if config.feat_extract_norm == """layer""" else False
lowerCAmelCase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , )
lowerCAmelCase__ = WavaVecaProcessor(feature_extractor=lowerCamelCase__ , tokenizer=lowerCamelCase__ )
processor.save_pretrained(lowerCamelCase__ )
lowerCAmelCase__ = UniSpeechForCTC(lowerCamelCase__ )
else:
lowerCAmelCase__ = UniSpeechForPreTraining(lowerCamelCase__ )
if is_finetuned:
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} )
else:
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
lowerCAmelCase__ = model[0].eval()
recursively_load_weights(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
hf_unispeech.save_pretrained(lowerCamelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : Any = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__lowerCAmelCase : str = parser.parse_args()
convert_unispeech_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 674 | """simple docstring"""
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = 0
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
lowerCAmelCase__ = Path(snake_case__ ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
lowerCAmelCase__ = Path(snake_case__ ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = CLIPConfig()
# Create a dummy config file with image_proceesor_type
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
lowerCAmelCase__ = Path(snake_case__ ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ).to_dict()
config_dict.pop("""image_processor_type""" )
lowerCAmelCase__ = CLIPImageProcessor(**snake_case__ )
# save in new folder
model_config.save_pretrained(snake_case__ )
config.save_pretrained(snake_case__ )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
# make sure private variable is not incorrectly saved
lowerCAmelCase__ = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
with self.assertRaisesRegex(
snake_case__ , """clip-base is not a local folder and is not a valid model identifier""" ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""clip-base""" )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
with self.assertRaisesRegex(
snake_case__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , revision="""aaaaaa""" )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
with self.assertRaisesRegex(
snake_case__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" )
def _SCREAMING_SNAKE_CASE ( self : Any ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(snake_case__ ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(snake_case__ ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(snake_case__ )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , trust_remote_code=snake_case__ )
self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
try:
AutoConfig.register("""custom""" , snake_case__ )
AutoImageProcessor.register(snake_case__ , snake_case__ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(snake_case__ ):
AutoImageProcessor.register(snake_case__ , snake_case__ )
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
lowerCAmelCase__ = Path(snake_case__ ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) )
lowerCAmelCase__ = CustomImageProcessor.from_pretrained(snake_case__ )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(snake_case__ )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : Tuple = True
try:
AutoConfig.register("""custom""" , snake_case__ )
AutoImageProcessor.register(snake_case__ , snake_case__ )
# If remote code is not set, the default is to use local
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(not hasattr(snake_case__ , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 674 | 1 |
"""simple docstring"""
import os
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = os.path.join(os.path.dirname(lowerCamelCase__ ) , """num.txt""" )
with open(lowerCamelCase__ ) as file_hand:
return str(sum(int(lowerCamelCase__ ) for line in file_hand ) )[:10]
if __name__ == "__main__":
print(solution())
| 674 | """simple docstring"""
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class a_ :
def __init__( self : Optional[int] , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=64 , snake_case__ : Any=None ):
lowerCAmelCase__ = np.random.default_rng(snake_case__ )
lowerCAmelCase__ = length
lowerCAmelCase__ = rng.normal(size=(length,) ).astype(np.floataa )
lowerCAmelCase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self : Optional[Any] ):
return self.length
def __getitem__( self : List[str] , snake_case__ : Optional[int] ):
return {"x": self.x[i], "y": self.y[i]}
class a_ ( torch.nn.Module ):
def __init__( self : List[str] , snake_case__ : str=0 , snake_case__ : Dict=0 , snake_case__ : Any=False ):
super().__init__()
lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
lowerCAmelCase__ = True
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Any=None ):
if self.first_batch:
print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" )
lowerCAmelCase__ = False
return x * self.a[0] + self.b[0]
class a_ ( torch.nn.Module ):
def __init__( self : Any , snake_case__ : Union[str, Any]=0 , snake_case__ : Union[str, Any]=0 , snake_case__ : List[Any]=False ):
super().__init__()
lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() )
lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() )
lowerCAmelCase__ = True
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any]=None ):
if self.first_batch:
print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" )
lowerCAmelCase__ = False
return x * self.a + self.b
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 16 ):
"""simple docstring"""
from datasets import load_dataset
from transformers import AutoTokenizer
lowerCAmelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" )
lowerCAmelCase__ = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
lowerCAmelCase__ = load_dataset("""csv""" , data_files=lowerCamelCase__ )
lowerCAmelCase__ = datasets["""train"""].unique("""label""" )
lowerCAmelCase__ = {v: i for i, v in enumerate(lowerCamelCase__ )}
def tokenize_function(lowerCamelCase__ ):
# max_length=None => use the model max length (it's actually the default)
lowerCAmelCase__ = tokenizer(
examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" )
if "label" in examples:
lowerCAmelCase__ = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
lowerCAmelCase__ = datasets.map(
lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , )
def collate_fn(lowerCamelCase__ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
lowerCAmelCase__ = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=2 )
lowerCAmelCase__ = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 674 | 1 |
"""simple docstring"""
from __future__ import annotations
from random import random
from typing import Generic, TypeVar
__lowerCAmelCase : Union[str, Any] = TypeVar("KT")
__lowerCAmelCase : Optional[int] = TypeVar("VT")
class a_ ( Generic[KT, VT] ):
def __init__( self : int , snake_case__ : KT | str = "root" , snake_case__ : VT | None = None ):
lowerCAmelCase__ = key
lowerCAmelCase__ = value
lowerCAmelCase__ = []
def __repr__( self : str ):
return F"""Node({self.key}: {self.value})"""
@property
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
return len(self.forward )
class a_ ( Generic[KT, VT] ):
def __init__( self : int , snake_case__ : float = 0.5 , snake_case__ : int = 16 ):
lowerCAmelCase__ = Node[KT, VT]()
lowerCAmelCase__ = 0
lowerCAmelCase__ = p
lowerCAmelCase__ = max_level
def __str__( self : str ):
lowerCAmelCase__ = list(self )
if len(snake_case__ ) == 0:
return F"""SkipList(level={self.level})"""
lowerCAmelCase__ = max((len(str(snake_case__ ) ) for item in items) , default=4 )
lowerCAmelCase__ = max(snake_case__ , 4 ) + 4
lowerCAmelCase__ = self.head
lowerCAmelCase__ = []
lowerCAmelCase__ = node.forward.copy()
lines.append(F"""[{node.key}]""".ljust(snake_case__ , """-""" ) + """* """ * len(snake_case__ ) )
lines.append(""" """ * label_size + """| """ * len(snake_case__ ) )
while len(node.forward ) != 0:
lowerCAmelCase__ = node.forward[0]
lines.append(
F"""[{node.key}]""".ljust(snake_case__ , """-""" )
+ """ """.join(str(n.key ) if n.key == node.key else """|""" for n in forwards ) )
lines.append(""" """ * label_size + """| """ * len(snake_case__ ) )
lowerCAmelCase__ = node.forward
lines.append("""None""".ljust(snake_case__ ) + """* """ * len(snake_case__ ) )
return F"""SkipList(level={self.level})\n""" + "\n".join(snake_case__ )
def __iter__( self : Dict ):
lowerCAmelCase__ = self.head
while len(node.forward ) != 0:
yield node.forward[0].key
lowerCAmelCase__ = node.forward[0]
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = 1
while random() < self.p and level < self.max_level:
level += 1
return level
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : List[str] ):
lowerCAmelCase__ = []
lowerCAmelCase__ = self.head
for i in reversed(range(self.level ) ):
# i < node.level - When node level is lesser than `i` decrement `i`.
# node.forward[i].key < key - Jumping to node with key value higher
# or equal to searched key would result
# in skipping searched key.
while i < node.level and node.forward[i].key < key:
lowerCAmelCase__ = node.forward[i]
# Each leftmost node (relative to searched node) will potentially have to
# be updated.
update_vector.append(snake_case__ )
update_vector.reverse() # Note that we were inserting values in reverse order.
# len(node.forward) != 0 - If current node doesn't contain any further
# references then searched key is not present.
# node.forward[0].key == key - Next node key should be equal to search key
# if key is present.
if len(node.forward ) != 0 and node.forward[0].key == key:
return node.forward[0], update_vector
else:
return None, update_vector
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : KT ):
lowerCAmelCase__ , lowerCAmelCase__ = self._locate_node(snake_case__ )
if node is not None:
for i, update_node in enumerate(snake_case__ ):
# Remove or replace all references to removed node.
if update_node.level > i and update_node.forward[i].key == key:
if node.level > i:
lowerCAmelCase__ = node.forward[i]
else:
lowerCAmelCase__ = update_node.forward[:i]
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : KT , snake_case__ : VT ):
lowerCAmelCase__ , lowerCAmelCase__ = self._locate_node(snake_case__ )
if node is not None:
lowerCAmelCase__ = value
else:
lowerCAmelCase__ = self.random_level()
if level > self.level:
# After level increase we have to add additional nodes to head.
for _ in range(self.level - 1 , snake_case__ ):
update_vector.append(self.head )
lowerCAmelCase__ = level
lowerCAmelCase__ = Node(snake_case__ , snake_case__ )
for i, update_node in enumerate(update_vector[:level] ):
# Change references to pass through new node.
if update_node.level > i:
new_node.forward.append(update_node.forward[i] )
if update_node.level < i + 1:
update_node.forward.append(snake_case__ )
else:
lowerCAmelCase__ = new_node
def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : VT ):
lowerCAmelCase__ , lowerCAmelCase__ = self._locate_node(snake_case__ )
if node is not None:
return node.value
return None
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = SkipList()
skip_list.insert("""Key1""" , 3 )
skip_list.insert("""Key2""" , 12 )
skip_list.insert("""Key3""" , 41 )
skip_list.insert("""Key4""" , -19 )
lowerCAmelCase__ = skip_list.head
lowerCAmelCase__ = {}
while node.level != 0:
lowerCAmelCase__ = node.forward[0]
lowerCAmelCase__ = node.value
assert len(lowerCamelCase__ ) == 4
assert all_values["Key1"] == 3
assert all_values["Key2"] == 12
assert all_values["Key3"] == 41
assert all_values["Key4"] == -19
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = SkipList()
skip_list.insert("""Key1""" , 10 )
skip_list.insert("""Key1""" , 12 )
skip_list.insert("""Key5""" , 7 )
skip_list.insert("""Key7""" , 10 )
skip_list.insert("""Key10""" , 5 )
skip_list.insert("""Key7""" , 7 )
skip_list.insert("""Key5""" , 5 )
skip_list.insert("""Key10""" , 10 )
lowerCAmelCase__ = skip_list.head
lowerCAmelCase__ = {}
while node.level != 0:
lowerCAmelCase__ = node.forward[0]
lowerCAmelCase__ = node.value
if len(lowerCamelCase__ ) != 4:
print()
assert len(lowerCamelCase__ ) == 4
assert all_values["Key1"] == 12
assert all_values["Key7"] == 7
assert all_values["Key5"] == 5
assert all_values["Key10"] == 10
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = SkipList()
assert skip_list.find("""Some key""" ) is None
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = SkipList()
skip_list.insert("""Key2""" , 20 )
assert skip_list.find("""Key2""" ) == 20
skip_list.insert("""Some Key""" , 10 )
skip_list.insert("""Key2""" , 8 )
skip_list.insert("""V""" , 13 )
assert skip_list.find("""Y""" ) is None
assert skip_list.find("""Key2""" ) == 8
assert skip_list.find("""Some Key""" ) == 10
assert skip_list.find("""V""" ) == 13
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = SkipList()
skip_list.delete("""Some key""" )
assert len(skip_list.head.forward ) == 0
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = SkipList()
skip_list.insert("""Key1""" , 12 )
skip_list.insert("""V""" , 13 )
skip_list.insert("""X""" , 14 )
skip_list.insert("""Key2""" , 15 )
skip_list.delete("""V""" )
skip_list.delete("""Key2""" )
assert skip_list.find("""V""" ) is None
assert skip_list.find("""Key2""" ) is None
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = SkipList()
skip_list.insert("""Key1""" , 12 )
skip_list.insert("""V""" , 13 )
skip_list.insert("""X""" , 14 )
skip_list.insert("""Key2""" , 15 )
skip_list.delete("""V""" )
assert skip_list.find("""V""" ) is None
assert skip_list.find("""X""" ) == 14
assert skip_list.find("""Key1""" ) == 12
assert skip_list.find("""Key2""" ) == 15
skip_list.delete("""X""" )
assert skip_list.find("""V""" ) is None
assert skip_list.find("""X""" ) is None
assert skip_list.find("""Key1""" ) == 12
assert skip_list.find("""Key2""" ) == 15
skip_list.delete("""Key1""" )
assert skip_list.find("""V""" ) is None
assert skip_list.find("""X""" ) is None
assert skip_list.find("""Key1""" ) is None
assert skip_list.find("""Key2""" ) == 15
skip_list.delete("""Key2""" )
assert skip_list.find("""V""" ) is None
assert skip_list.find("""X""" ) is None
assert skip_list.find("""Key1""" ) is None
assert skip_list.find("""Key2""" ) is None
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = SkipList()
skip_list.insert("""Key1""" , 12 )
skip_list.insert("""V""" , 13 )
skip_list.insert("""X""" , 142 )
skip_list.insert("""Key2""" , 15 )
skip_list.delete("""X""" )
def traverse_keys(lowerCamelCase__ ):
yield node.key
for forward_node in node.forward:
yield from traverse_keys(lowerCamelCase__ )
assert len(set(traverse_keys(skip_list.head ) ) ) == 4
def _UpperCAmelCase ( ):
"""simple docstring"""
def is_sorted(lowerCamelCase__ ):
return all(next_item >= item for item, next_item in zip(lowerCamelCase__ , lst[1:] ) )
lowerCAmelCase__ = SkipList()
for i in range(10 ):
skip_list.insert(lowerCamelCase__ , lowerCamelCase__ )
assert is_sorted(list(lowerCamelCase__ ) )
skip_list.delete(5 )
skip_list.delete(8 )
skip_list.delete(2 )
assert is_sorted(list(lowerCamelCase__ ) )
skip_list.insert(-12 , -12 )
skip_list.insert(77 , 77 )
assert is_sorted(list(lowerCamelCase__ ) )
def _UpperCAmelCase ( ):
"""simple docstring"""
for _ in range(100 ):
# Repeat test 100 times due to the probabilistic nature of skip list
# random values == random bugs
test_insert()
test_insert_overrides_existing_value()
test_searching_empty_list_returns_none()
test_search()
test_deleting_item_from_empty_list_do_nothing()
test_deleted_items_are_not_founded_by_find_method()
test_delete_removes_only_given_key()
test_delete_doesnt_leave_dead_nodes()
test_iter_always_yields_sorted_values()
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = SkipList()
skip_list.insert(2 , """2""" )
skip_list.insert(4 , """4""" )
skip_list.insert(6 , """4""" )
skip_list.insert(4 , """5""" )
skip_list.insert(8 , """4""" )
skip_list.insert(9 , """4""" )
skip_list.delete(4 )
print(lowerCamelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 674 | """simple docstring"""
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = MobileBertConfig.from_json_file(lowerCamelCase__ )
print(f"""Building PyTorch model from configuration: {config}""" )
lowerCAmelCase__ = MobileBertForPreTraining(lowerCamelCase__ )
# Load weights from tf checkpoint
lowerCAmelCase__ = load_tf_weights_in_mobilebert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , lowerCamelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--mobilebert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained MobileBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__lowerCAmelCase : Optional[int] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 674 | 1 |
"""simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ = 50 ):
"""simple docstring"""
lowerCAmelCase__ = [[0] * 3 for _ in range(length + 1 )]
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
different_colour_ways_number[row_length][tile_length - 2] += (
different_colour_ways_number[row_length - tile_start - tile_length][
tile_length - 2
]
+ 1
)
return sum(different_colour_ways_number[length] )
if __name__ == "__main__":
print(F"{solution() = }")
| 674 | """simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), f"""The input value of [n={number}] is not an integer"""
if number == 1:
return 2
elif number < 1:
lowerCAmelCase__ = f"""The input value of [n={number}] has to be > 0"""
raise ValueError(lowerCamelCase__ )
else:
lowerCAmelCase__ = sylvester(number - 1 )
lowerCAmelCase__ = num - 1
lowerCAmelCase__ = num
return lower * upper + 1
if __name__ == "__main__":
print(F"The 8th number in Sylvester's sequence: {sylvester(8)}")
| 674 | 1 |
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__lowerCAmelCase : str = logging.get_logger(__name__)
__lowerCAmelCase : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
__lowerCAmelCase : Dict = {
"tokenizer_file": {
"EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json",
},
}
__lowerCAmelCase : List[Any] = {
"gpt-neox-20b": 20_48,
}
class a_ ( _lowerCamelCase ):
UpperCamelCase_ : Dict = VOCAB_FILES_NAMES
UpperCamelCase_ : Tuple = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ : Optional[Any] = ["input_ids", "attention_mask"]
def __init__( self : Union[str, Any] , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : Tuple=None , snake_case__ : Optional[int]="<|endoftext|>" , snake_case__ : Any="<|endoftext|>" , snake_case__ : Optional[Any]="<|endoftext|>" , snake_case__ : int=False , **snake_case__ : Optional[int] , ):
super().__init__(
A__ , A__ , tokenizer_file=A__ , unk_token=A__ , bos_token=A__ , eos_token=A__ , add_prefix_space=A__ , **A__ , )
lowerCAmelCase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , A__ ) != add_prefix_space:
lowerCAmelCase__ = getattr(A__ , pre_tok_state.pop("""type""" ) )
lowerCAmelCase__ = add_prefix_space
lowerCAmelCase__ = pre_tok_class(**A__ )
lowerCAmelCase__ = add_prefix_space
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : Dict = None ):
lowerCAmelCase__ = self._tokenizer.model.save(A__ , name=A__ )
return tuple(A__ )
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Union[str, Any] ):
lowerCAmelCase__ = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(A__ , add_special_tokens=A__ ) + [self.eos_token_id] )
if len(A__ ) > self.model_max_length:
lowerCAmelCase__ = input_ids[-self.model_max_length :]
return input_ids
| 700 | """simple docstring"""
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__lowerCAmelCase : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model")
@require_sentencepiece
@require_tokenizers
class a_ ( __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : Tuple = PegasusTokenizer
UpperCamelCase_ : Any = PegasusTokenizerFast
UpperCamelCase_ : int = True
UpperCamelCase_ : Any = True
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase__ = PegasusTokenizer(snake_case__ )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : Optional[Any] ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any] ):
return ("This is a test", "This is a test")
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = """</s>"""
lowerCAmelCase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(snake_case__ ) , 1103 )
def _SCREAMING_SNAKE_CASE ( self : Any ):
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowerCAmelCase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
lowerCAmelCase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1]
lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 96103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
lowerCAmelCase__ = """To ensure a smooth flow of bank resolutions."""
lowerCAmelCase__ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1]
lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = ["""This is going to be way too long.""" * 150, """short example"""]
lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""]
lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
lowerCAmelCase__ = self._large_tokenizer(
text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(snake_case__ ) == 2 # input_ids, attention_mask.
@slow
def _SCREAMING_SNAKE_CASE ( self : str ):
# fmt: off
lowerCAmelCase__ = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class a_ ( __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : str = PegasusTokenizer
UpperCamelCase_ : Optional[int] = PegasusTokenizerFast
UpperCamelCase_ : Union[str, Any] = True
UpperCamelCase_ : Optional[int] = True
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase__ = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Dict ):
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : List[Any] ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Dict ):
return ("This is a test", "This is a test")
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
@require_torch
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = ["""This is going to be way too long.""" * 1000, """short example"""]
lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""]
lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
lowerCAmelCase__ = self._large_tokenizer(
text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(snake_case__ ) == 2 # input_ids, attention_mask.
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
lowerCAmelCase__ = self._large_tokenizer(snake_case__ ).input_ids
self.assertListEqual(
snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
| 674 | 0 |
"""simple docstring"""
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class a_ ( _snake_case ):
UpperCamelCase_ : Optional[int] = ["image_processor", "tokenizer"]
UpperCamelCase_ : List[str] = "AutoImageProcessor"
UpperCamelCase_ : Optional[int] = "AutoTokenizer"
def __init__( self : Tuple , snake_case__ : Tuple , snake_case__ : str ):
super().__init__(lowerCAmelCase__ , lowerCAmelCase__ )
lowerCAmelCase__ = self.image_processor
def __call__( self : List[Any] , snake_case__ : int=None , snake_case__ : Any=None , snake_case__ : Optional[Any]=None , **snake_case__ : int ):
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
lowerCAmelCase__ = self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ )
if images is not None:
lowerCAmelCase__ = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ )
if text is not None and images is not None:
lowerCAmelCase__ = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowerCAmelCase__ ) , tensor_type=lowerCAmelCase__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple , *snake_case__ : int , **snake_case__ : List[str] ):
return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ )
def _SCREAMING_SNAKE_CASE ( self : int , *snake_case__ : Tuple , **snake_case__ : Optional[Any] ):
return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
return ["input_ids", "attention_mask", "pixel_values"]
| 701 | """simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , )
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue_model_parallelism.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
] )
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : int ):
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case__ , )
assert hasattr(self , """env""" )
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] ):
# configuration for running training on smdistributed Model Parallel
lowerCAmelCase__ = {
"""enabled""": True,
"""processes_per_host""": 8,
}
lowerCAmelCase__ = {
"""enabled""": True,
"""parameters""": {
"""microbatches""": 4,
"""placement_strategy""": """spread""",
"""pipeline""": """interleaved""",
"""optimize""": """speed""",
"""partitions""": 4,
"""ddp""": True,
},
}
lowerCAmelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options}
lowerCAmelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer"""
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={
**self.env.hyperparameters,
"""model_name_or_path""": self.model_name_or_path,
"""max_steps""": 500,
} , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="""py36""" , )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str ):
TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] ):
# create estimator
lowerCAmelCase__ = self.create_estimator(snake_case__ )
# run training
estimator.fit()
# result dataframe
lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] )
lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
lowerCAmelCase__ = (
Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy )
assert all(t <= self.results["""eval_loss"""] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile:
json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case__ )
| 674 | 0 |
"""simple docstring"""
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
__lowerCAmelCase = TypeVar("T")
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
return (position - 1) // 2
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
return (2 * position) + 1
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
return (2 * position) + 2
class a_ ( Generic[T] ):
def __init__( self : Optional[Any] ):
lowerCAmelCase__ = []
lowerCAmelCase__ = {}
lowerCAmelCase__ = 0
def __len__( self : Dict ):
return self.elements
def __repr__( self : Dict ):
return str(self.heap )
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
return self.elements == 0
def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : T , snake_case__ : int ):
self.heap.append((elem, weight) )
lowerCAmelCase__ = self.elements
self.elements += 1
self._bubble_up(UpperCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
lowerCAmelCase__ , lowerCAmelCase__ = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
lowerCAmelCase__ , lowerCAmelCase__ = self.heap[0]
self._bubble_down(UpperCAmelCase_ )
return elem
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : T , snake_case__ : int ):
lowerCAmelCase__ = self.position_map[elem]
lowerCAmelCase__ = (elem, weight)
if position > 0:
lowerCAmelCase__ = get_parent_position(UpperCAmelCase_ )
lowerCAmelCase__ , lowerCAmelCase__ = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(UpperCAmelCase_ )
else:
self._bubble_down(UpperCAmelCase_ )
else:
self._bubble_down(UpperCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : T ):
lowerCAmelCase__ = self.position_map[elem]
if curr_pos == 0:
return None
lowerCAmelCase__ = get_parent_position(UpperCAmelCase_ )
lowerCAmelCase__ , lowerCAmelCase__ = self.heap[curr_pos]
lowerCAmelCase__ , lowerCAmelCase__ = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(UpperCAmelCase_ , UpperCAmelCase_ )
return self._bubble_up(UpperCAmelCase_ )
return None
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : T ):
lowerCAmelCase__ = self.position_map[elem]
lowerCAmelCase__ , lowerCAmelCase__ = self.heap[curr_pos]
lowerCAmelCase__ = get_child_left_position(UpperCAmelCase_ )
lowerCAmelCase__ = get_child_right_position(UpperCAmelCase_ )
if child_left_position < self.elements and child_right_position < self.elements:
lowerCAmelCase__ , lowerCAmelCase__ = self.heap[child_left_position]
lowerCAmelCase__ , lowerCAmelCase__ = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(UpperCAmelCase_ , UpperCAmelCase_ )
return self._bubble_down(UpperCAmelCase_ )
if child_left_position < self.elements:
lowerCAmelCase__ , lowerCAmelCase__ = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(UpperCAmelCase_ , UpperCAmelCase_ )
return self._bubble_down(UpperCAmelCase_ )
else:
return None
if child_right_position < self.elements:
lowerCAmelCase__ , lowerCAmelCase__ = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(UpperCAmelCase_ , UpperCAmelCase_ )
return self._bubble_down(UpperCAmelCase_ )
return None
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : int , snake_case__ : int ):
lowerCAmelCase__ = self.heap[nodea_pos][0]
lowerCAmelCase__ = self.heap[nodea_pos][0]
lowerCAmelCase__ , lowerCAmelCase__ = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
lowerCAmelCase__ = nodea_pos
lowerCAmelCase__ = nodea_pos
class a_ ( Generic[T] ):
def __init__( self : Any ):
lowerCAmelCase__ = {}
lowerCAmelCase__ = 0
def __repr__( self : Tuple ):
return str(self.connections )
def __len__( self : Dict ):
return self.nodes
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : T ):
if node not in self.connections:
lowerCAmelCase__ = {}
self.nodes += 1
def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : T , snake_case__ : T , snake_case__ : int ):
self.add_node(UpperCAmelCase_ )
self.add_node(UpperCAmelCase_ )
lowerCAmelCase__ = weight
lowerCAmelCase__ = weight
def _UpperCAmelCase ( lowerCamelCase__ , ):
"""simple docstring"""
lowerCAmelCase__ = {node: maxsize for node in graph.connections}
lowerCAmelCase__ = {node: None for node in graph.connections}
lowerCAmelCase__ = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if priority_queue.is_empty():
return dist, parent
# initialization
lowerCAmelCase__ = priority_queue.extract_min()
lowerCAmelCase__ = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
lowerCAmelCase__ = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] )
lowerCAmelCase__ = node
# running prim's algorithm
while not priority_queue.is_empty():
lowerCAmelCase__ = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
lowerCAmelCase__ = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] )
lowerCAmelCase__ = node
return dist, parent
| 702 | """simple docstring"""
from math import pi, sqrt
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
if num <= 0:
raise ValueError("""math domain error""" )
if num > 1_71.5:
raise OverflowError("""math range error""" )
elif num - int(lowerCamelCase__ ) not in (0, 0.5):
raise NotImplementedError("""num must be an integer or a half-integer""" )
elif num == 0.5:
return sqrt(lowerCamelCase__ )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def _UpperCAmelCase ( ):
"""simple docstring"""
assert gamma(0.5 ) == sqrt(lowerCamelCase__ )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
__lowerCAmelCase : Dict = 1.0
while num:
__lowerCAmelCase : Any = float(input("Gamma of: "))
print(F"gamma({num}) = {gamma(num)}")
print("\nEnter 0 to exit...")
| 674 | 0 |
"""simple docstring"""
from abc import ABC, abstractmethod
from typing import List, Optional
class a_ ( _SCREAMING_SNAKE_CASE ):
def __init__( self : Optional[int] ):
self.test()
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = 0
lowerCAmelCase__ = False
while not completed:
if counter == 1:
self.reset()
lowerCAmelCase__ = self.advance()
if not self.does_advance(A_ ):
raise Exception(
"""Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.update(A_ )
counter += 1
if counter > 10000:
raise Exception("""update() does not fulfill the constraint.""" )
if self.remaining() != 0:
raise Exception("""Custom Constraint is not defined correctly.""" )
@abstractmethod
def _SCREAMING_SNAKE_CASE ( self : str ):
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
@abstractmethod
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : str ):
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
@abstractmethod
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : int ):
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
@abstractmethod
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
@abstractmethod
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
@abstractmethod
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : int=False ):
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
class a_ ( _SCREAMING_SNAKE_CASE ):
def __init__( self : List[str] , snake_case__ : Optional[Any] ):
super(A_ , self ).__init__()
if not isinstance(A_ , A_ ) or len(A_ ) == 0:
raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""" )
if any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids ):
raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" )
lowerCAmelCase__ = token_ids
lowerCAmelCase__ = len(self.token_ids )
lowerCAmelCase__ = -1 # the index of the currently fulfilled step
lowerCAmelCase__ = False
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Union[str, Any] ):
if not isinstance(A_ , A_ ):
raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}""" )
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Optional[int] ):
if not isinstance(A_ , A_ ):
raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}""" )
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
if self.does_advance(A_ ):
self.fulfilled_idx += 1
lowerCAmelCase__ = True
if self.fulfilled_idx == (self.seqlen - 1):
lowerCAmelCase__ = True
lowerCAmelCase__ = completed
else:
# failed to make progress.
lowerCAmelCase__ = True
self.reset()
return stepped, completed, reset
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = False
lowerCAmelCase__ = 0
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
return self.seqlen - (self.fulfilled_idx + 1)
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any]=False ):
lowerCAmelCase__ = PhrasalConstraint(self.token_ids )
if stateful:
lowerCAmelCase__ = self.seqlen
lowerCAmelCase__ = self.fulfilled_idx
lowerCAmelCase__ = self.completed
return new_constraint
class a_ :
def __init__( self : List[str] , snake_case__ : List[str] , snake_case__ : Optional[int]=True ):
lowerCAmelCase__ = max([len(A_ ) for one in nested_token_ids] )
lowerCAmelCase__ = {}
for token_ids in nested_token_ids:
lowerCAmelCase__ = root
for tidx, token_id in enumerate(A_ ):
if token_id not in level:
lowerCAmelCase__ = {}
lowerCAmelCase__ = level[token_id]
if no_subsets and self.has_subsets(A_ , A_ ):
raise ValueError(
"""Each list in `nested_token_ids` can\'t be a complete subset of another list, but is"""
F""" {nested_token_ids}.""" )
lowerCAmelCase__ = root
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Optional[Any] ):
lowerCAmelCase__ = self.trie
for current_token in current_seq:
lowerCAmelCase__ = start[current_token]
lowerCAmelCase__ = list(start.keys() )
return next_tokens
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str ):
lowerCAmelCase__ = self.next_tokens(A_ )
return len(A_ ) == 0
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : str ):
lowerCAmelCase__ = list(root.values() )
if len(A_ ) == 0:
return 1
else:
return sum([self.count_leaves(A_ ) for nn in next_nodes] )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Dict ):
lowerCAmelCase__ = self.count_leaves(A_ )
return len(A_ ) != leaf_count
class a_ ( _SCREAMING_SNAKE_CASE ):
def __init__( self : int , snake_case__ : str ):
super(A_ , self ).__init__()
if not isinstance(A_ , A_ ) or len(A_ ) == 0:
raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" )
if any(not isinstance(A_ , A_ ) for token_ids in nested_token_ids ):
raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" )
if any(
any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids )
for token_ids in nested_token_ids ):
raise ValueError(
F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" )
lowerCAmelCase__ = DisjunctiveTrie(A_ )
lowerCAmelCase__ = nested_token_ids
lowerCAmelCase__ = self.trie.max_height
lowerCAmelCase__ = []
lowerCAmelCase__ = False
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
lowerCAmelCase__ = self.trie.next_tokens(self.current_seq )
if len(A_ ) == 0:
return None
else:
return token_list
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int ):
if not isinstance(A_ , A_ ):
raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}""" )
lowerCAmelCase__ = self.trie.next_tokens(self.current_seq )
return token_id in next_tokens
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : int ):
if not isinstance(A_ , A_ ):
raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}""" )
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
if self.does_advance(A_ ):
self.current_seq.append(A_ )
lowerCAmelCase__ = True
else:
lowerCAmelCase__ = True
self.reset()
lowerCAmelCase__ = self.trie.reached_leaf(self.current_seq )
lowerCAmelCase__ = completed
return stepped, completed, reset
def _SCREAMING_SNAKE_CASE ( self : str ):
lowerCAmelCase__ = False
lowerCAmelCase__ = []
def _SCREAMING_SNAKE_CASE ( self : Any ):
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq )
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Dict=False ):
lowerCAmelCase__ = DisjunctiveConstraint(self.token_ids )
if stateful:
lowerCAmelCase__ = self.seqlen
lowerCAmelCase__ = self.current_seq
lowerCAmelCase__ = self.completed
return new_constraint
class a_ :
def __init__( self : Dict , snake_case__ : Tuple ):
lowerCAmelCase__ = constraints
# max # of steps required to fulfill a given constraint
lowerCAmelCase__ = max([c.seqlen for c in constraints] )
lowerCAmelCase__ = len(A_ )
lowerCAmelCase__ = False
self.init_state()
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
lowerCAmelCase__ = []
lowerCAmelCase__ = None
lowerCAmelCase__ = [constraint.copy(stateful=A_ ) for constraint in self.constraints]
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
lowerCAmelCase__ = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints ) * self.max_seqlen) + add
def _SCREAMING_SNAKE_CASE ( self : str ):
lowerCAmelCase__ = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
lowerCAmelCase__ = constraint.advance()
if isinstance(A_ , A_ ):
token_list.append(A_ )
elif isinstance(A_ , A_ ):
token_list.extend(A_ )
else:
lowerCAmelCase__ = self.inprogress_constraint.advance()
if isinstance(A_ , A_ ):
token_list.append(A_ )
elif isinstance(A_ , A_ ):
token_list.extend(A_ )
if len(A_ ) == 0:
return None
else:
return token_list
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Tuple ):
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
lowerCAmelCase__ , lowerCAmelCase__ = self.add(A_ )
# the entire list of constraints are fulfilled
if self.completed:
break
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : str ):
if not isinstance(A_ , A_ ):
raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""" )
lowerCAmelCase__ , lowerCAmelCase__ = False, False
if self.completed:
lowerCAmelCase__ = True
lowerCAmelCase__ = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.inprogress_constraint.update(A_ )
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=A_ ) )
lowerCAmelCase__ = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint )
lowerCAmelCase__ = None
if len(self.pending_constraints ) == 0:
# we're done!
lowerCAmelCase__ = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints ):
if pending_constraint.does_advance(A_ ):
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = pending_constraint.update(A_ )
if not stepped:
raise Exception(
"""`constraint.update(token_id)` is not yielding incremental progress, """
"""even though `constraint.does_advance(token_id)` is true.""" )
if complete:
self.complete_constraints.append(A_ )
lowerCAmelCase__ = None
if not complete and stepped:
lowerCAmelCase__ = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
lowerCAmelCase__ = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
lowerCAmelCase__ = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Tuple=True ):
lowerCAmelCase__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
lowerCAmelCase__ = [
constraint.copy(stateful=A_ ) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
lowerCAmelCase__ = self.inprogress_constraint.copy(stateful=A_ )
lowerCAmelCase__ = [constraint.copy() for constraint in self.pending_constraints]
return new_state
| 703 | """simple docstring"""
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class a_ :
def __init__( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any=13 , snake_case__ : int=30 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : Dict=True , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=32 , snake_case__ : List[str]=2 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[int]=37 , snake_case__ : Tuple="gelu" , snake_case__ : str=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=10 , snake_case__ : Dict=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : str=None , snake_case__ : List[Any]=2 , ):
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = image_size
lowerCAmelCase__ = patch_size
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = type_sequence_label_size
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = scope
lowerCAmelCase__ = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
lowerCAmelCase__ = (image_size // patch_size) ** 2
lowerCAmelCase__ = num_patches + 2
def _SCREAMING_SNAKE_CASE ( self : Any ):
lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase__ = None
if self.use_labels:
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase__ = self.get_config()
return config, pixel_values, labels
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[str] ):
lowerCAmelCase__ = TFDeiTModel(config=snake_case__ )
lowerCAmelCase__ = model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict ):
lowerCAmelCase__ = TFDeiTForMaskedImageModeling(config=snake_case__ )
lowerCAmelCase__ = model(snake_case__ )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
lowerCAmelCase__ = 1
lowerCAmelCase__ = TFDeiTForMaskedImageModeling(snake_case__ )
lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCAmelCase__ = model(snake_case__ )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple ):
lowerCAmelCase__ = self.type_sequence_label_size
lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ )
lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
lowerCAmelCase__ = 1
lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ )
lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = self.prepare_config_and_inputs()
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs
lowerCAmelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : Optional[Any] = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
UpperCamelCase_ : Any = (
{
"feature-extraction": TFDeiTModel,
"image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
UpperCamelCase_ : Optional[Any] = False
UpperCamelCase_ : Optional[Any] = False
UpperCamelCase_ : Optional[int] = False
UpperCamelCase_ : int = False
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = TFDeiTModelTester(self )
lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""DeiT does not use inputs_embeds""" )
def _SCREAMING_SNAKE_CASE ( self : Any ):
pass
def _SCREAMING_SNAKE_CASE ( self : str ):
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
lowerCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Dense ) )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
lowerCAmelCase__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase__ = [*signature.parameters.keys()]
lowerCAmelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any]=False ):
lowerCAmelCase__ = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def _SCREAMING_SNAKE_CASE ( self : Any ):
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase__ = TFDeiTModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class a_ ( unittest.TestCase ):
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Any ):
return (
DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" )
if is_vision_available()
else None
)
@slow
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" )
lowerCAmelCase__ = self.default_image_processor
lowerCAmelCase__ = prepare_img()
lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors="""tf""" )
# forward pass
lowerCAmelCase__ = model(**snake_case__ )
# verify the logits
lowerCAmelCase__ = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , snake_case__ )
lowerCAmelCase__ = tf.constant([-1.0266, 0.1912, -1.2861] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
| 674 | 0 |
"""simple docstring"""
import os
# Precomputes a list of the 100 first triangular numbers
__lowerCAmelCase : List[Any] = [int(0.5 * n * (n + 1)) for n in range(1, 1_01)]
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = os.path.dirname(os.path.realpath(_lowercase ) )
lowerCAmelCase__ = os.path.join(_lowercase , """words.txt""" )
lowerCAmelCase__ = ''
with open(_lowercase ) as f:
lowerCAmelCase__ = f.readline()
lowerCAmelCase__ = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )]
lowerCAmelCase__ = [
word
for word in [sum(ord(_lowercase ) - 64 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(_lowercase )
if __name__ == "__main__":
print(solution())
| 704 | """simple docstring"""
from __future__ import annotations
from math import gcd
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 3 , ):
"""simple docstring"""
if num < 2:
raise ValueError("""The input value cannot be less than 2""" )
# Because of the relationship between ``f(f(x))`` and ``f(x)``, this
# algorithm struggles to find factors that are divisible by two.
# As a workaround, we specifically check for two and even inputs.
# See: https://math.stackexchange.com/a/2856214/165820
if num > 2 and num % 2 == 0:
return 2
# Pollard's Rho algorithm requires a function that returns pseudorandom
# values between 0 <= X < ``num``. It doesn't need to be random in the
# sense that the output value is cryptographically secure or difficult
# to calculate, it only needs to be random in the sense that all output
# values should be equally likely to appear.
# For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num``
# However, the success of Pollard's algorithm isn't guaranteed and is
# determined in part by the initial seed and the chosen random function.
# To make retries easier, we will instead use ``f(x) = (x**2 + C) % num``
# where ``C`` is a value that we can modify between each attempt.
def rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int:
return (pow(lowerCamelCase__ , 2 ) + step) % modulus
for _ in range(lowerCamelCase__ ):
# These track the position within the cycle detection logic.
lowerCAmelCase__ = seed
lowerCAmelCase__ = seed
while True:
# At each iteration, the tortoise moves one step and the hare moves two.
lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# At some point both the tortoise and the hare will enter a cycle whose
# length ``p`` is a divisor of ``num``. Once in that cycle, at some point
# the tortoise and hare will end up on the same value modulo ``p``.
# We can detect when this happens because the position difference between
# the tortoise and the hare will share a common divisor with ``num``.
lowerCAmelCase__ = gcd(hare - tortoise , lowerCamelCase__ )
if divisor == 1:
# No common divisor yet, just keep searching.
continue
else:
# We found a common divisor!
if divisor == num:
# Unfortunately, the divisor is ``num`` itself and is useless.
break
else:
# The divisor is a nontrivial factor of ``num``!
return divisor
# If we made it here, then this attempt failed.
# We need to pick a new starting seed for the tortoise and hare
# in addition to a new step value for the random function.
# To keep this example implementation deterministic, the
# new values will be generated based on currently available
# values instead of using something like ``random.randint``.
# We can use the hare's position as the new seed.
# This is actually what Richard Brent's the "optimized" variant does.
lowerCAmelCase__ = hare
# The new step value for the random function can just be incremented.
# At first the results will be similar to what the old function would
# have produced, but the value will quickly diverge after a bit.
step += 1
# We haven't found a divisor within the requested number of attempts.
# We were unlucky or ``num`` itself is actually prime.
return None
if __name__ == "__main__":
import argparse
__lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"num",
type=int,
help="The value to find a divisor of",
)
parser.add_argument(
"--attempts",
type=int,
default=3,
help="The number of attempts before giving up",
)
__lowerCAmelCase : List[str] = parser.parse_args()
__lowerCAmelCase : Dict = pollard_rho(args.num, attempts=args.attempts)
if divisor is None:
print(F"{args.num} is probably prime")
else:
__lowerCAmelCase : List[str] = args.num // divisor
print(F"{args.num} = {divisor} * {quotient}")
| 674 | 0 |
"""simple docstring"""
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class a_ ( unittest.TestCase ):
UpperCamelCase_ : Optional[Any] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : Optional[int] ):
lowerCAmelCase__ = hf_hub_download(
repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" )
lowerCAmelCase__ = VideoClassificationPipeline(model=__lowerCamelCase , image_processor=__lowerCamelCase , top_k=2 )
lowerCAmelCase__ = [
example_video_filepath,
"https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4",
]
return video_classifier, examples
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] ):
for example in examples:
lowerCAmelCase__ = video_classifier(__lowerCamelCase )
self.assertEqual(
__lowerCamelCase , [
{"""score""": ANY(__lowerCamelCase ), """label""": ANY(__lowerCamelCase )},
{"""score""": ANY(__lowerCamelCase ), """label""": ANY(__lowerCamelCase )},
] , )
@require_torch
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification"
lowerCAmelCase__ = VideoMAEFeatureExtractor(
size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} )
lowerCAmelCase__ = pipeline(
"""video-classification""" , model=__lowerCamelCase , feature_extractor=__lowerCamelCase , frame_sampling_rate=4 )
lowerCAmelCase__ = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" )
lowerCAmelCase__ = video_classifier(__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}] , )
lowerCAmelCase__ = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}],
[{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}],
] , )
@require_tf
def _SCREAMING_SNAKE_CASE ( self : Dict ):
pass
| 705 | """simple docstring"""
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = TapasConfig.from_json_file(lowerCamelCase__ )
# set absolute/relative position embeddings parameter
lowerCAmelCase__ = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ )
elif task == "WTQ":
# run_task_main.py hparams
lowerCAmelCase__ = 4
lowerCAmelCase__ = True
# hparam_utils.py hparams
lowerCAmelCase__ = 0.66_46_94
lowerCAmelCase__ = 0.20_79_51
lowerCAmelCase__ = 0.12_11_94
lowerCAmelCase__ = True
lowerCAmelCase__ = True
lowerCAmelCase__ = False
lowerCAmelCase__ = 0.0_35_25_13
lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
lowerCAmelCase__ = 4
lowerCAmelCase__ = False
# hparam_utils.py hparams
lowerCAmelCase__ = 36.45_19
lowerCAmelCase__ = 0.90_34_21
lowerCAmelCase__ = 2_22.0_88
lowerCAmelCase__ = True
lowerCAmelCase__ = True
lowerCAmelCase__ = True
lowerCAmelCase__ = 0.76_31_41
lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ )
elif task == "TABFACT":
lowerCAmelCase__ = TapasForSequenceClassification(config=lowerCamelCase__ )
elif task == "MLM":
lowerCAmelCase__ = TapasForMaskedLM(config=lowerCamelCase__ )
elif task == "INTERMEDIATE_PRETRAINING":
lowerCAmelCase__ = TapasModel(config=lowerCamelCase__ )
else:
raise ValueError(f"""Task {task} not supported.""" )
print(f"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# Save pytorch-model (weights and configuration)
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(lowerCamelCase__ )
# Save tokenizer files
print(f"""Save tokenizer files to {pytorch_dump_path}""" )
lowerCAmelCase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 )
tokenizer.save_pretrained(lowerCamelCase__ )
print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
__lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA."
)
parser.add_argument(
"--reset_position_index_per_cell",
default=False,
action="store_true",
help="Whether to use relative position embeddings or not. Defaults to True.",
)
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--tapas_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained TAPAS model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__lowerCAmelCase : Union[str, Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 674 | 0 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
__lowerCAmelCase : Optional[Any] = logging.getLogger(__name__)
torch.set_grad_enabled(False)
__lowerCAmelCase : List[str] = "cuda" if torch.cuda.is_available() else "cpu"
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=100 , lowerCamelCase__=" " ):
"""simple docstring"""
lowerCAmelCase__ = text.split(lowerCamelCase_ )
return [character.join(text[i : i + n] ).strip() for i in range(0 , len(lowerCamelCase_ ) , lowerCamelCase_ )]
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = [], []
for title, text in zip(documents["""title"""] , documents["""text"""] ):
if text is not None:
for passage in split_text(lowerCamelCase_ ):
titles.append(title if title is not None else """""" )
texts.append(lowerCamelCase_ )
return {"title": titles, "text": texts}
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = ctx_tokenizer(
documents["""title"""] , documents["""text"""] , truncation=lowerCamelCase_ , padding="""longest""" , return_tensors="""pt""" )['input_ids']
lowerCAmelCase__ = ctx_encoder(input_ids.to(device=lowerCamelCase_ ) , return_dict=lowerCamelCase_ ).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ):
"""simple docstring"""
logger.info("""Step 1 - Create the dataset""" )
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
lowerCAmelCase__ = load_dataset(
"""csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] )
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
lowerCAmelCase__ = dataset.map(lowerCamelCase_ , batched=lowerCamelCase_ , num_proc=processing_args.num_proc )
# And compute the embeddings
lowerCAmelCase__ = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=lowerCamelCase_ )
lowerCAmelCase__ = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name )
lowerCAmelCase__ = Features(
{"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space
lowerCAmelCase__ = dataset.map(
partial(lowerCamelCase_ , ctx_encoder=lowerCamelCase_ , ctx_tokenizer=lowerCamelCase_ ) , batched=lowerCamelCase_ , batch_size=processing_args.batch_size , features=lowerCamelCase_ , )
# And finally save your dataset
lowerCAmelCase__ = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" )
dataset.save_to_disk(lowerCamelCase_ )
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("""Step 2 - Index the dataset""" )
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
lowerCAmelCase__ = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT )
dataset.add_faiss_index("""embeddings""" , custom_index=lowerCamelCase_ )
# And save the index
lowerCAmelCase__ = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" )
dataset.get_index("""embeddings""" ).save(lowerCamelCase_ )
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class a_ :
UpperCamelCase_ : Any = field(
default=str(Path(__lowerCamelCase ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns \'title\' and \'text\'"} , )
UpperCamelCase_ : Optional[int] = field(
default=__lowerCamelCase , metadata={"help": "Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'."} , )
UpperCamelCase_ : str = field(
default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\'"} , )
UpperCamelCase_ : Tuple = field(
default="facebook/dpr-ctx_encoder-multiset-base" , metadata={
"help": (
"The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or"
" \'facebook/dpr-ctx_encoder-multiset-base\'"
)
} , )
UpperCamelCase_ : Optional[Any] = field(
default=str(Path(__lowerCamelCase ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , )
@dataclass
class a_ :
UpperCamelCase_ : List[str] = field(
default=__lowerCamelCase , metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
} , )
UpperCamelCase_ : List[Any] = field(
default=16 , metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
} , )
@dataclass
class a_ :
UpperCamelCase_ : List[Any] = field(
default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , )
UpperCamelCase_ : Optional[Any] = field(
default=128 , metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
} , )
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
__lowerCAmelCase : List[str] = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[str] = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
__lowerCAmelCase : Dict = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 706 | """simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ = 50 ):
"""simple docstring"""
lowerCAmelCase__ = [[0] * 3 for _ in range(length + 1 )]
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
different_colour_ways_number[row_length][tile_length - 2] += (
different_colour_ways_number[row_length - tile_start - tile_length][
tile_length - 2
]
+ 1
)
return sum(different_colour_ways_number[length] )
if __name__ == "__main__":
print(F"{solution() = }")
| 674 | 0 |
"""simple docstring"""
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class a_ ( tf.keras.layers.Layer ):
def __init__( self : Optional[Any] , snake_case__ : Any , snake_case__ : Dict , snake_case__ : str = None , snake_case__ : Dict = None ):
super().__init__()
lowerCAmelCase__ = pad_token_id
lowerCAmelCase__ = max_length
lowerCAmelCase__ = vocab
lowerCAmelCase__ = merges
lowerCAmelCase__ = BytePairTokenizer(_lowercase , _lowercase , sequence_length=_lowercase )
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Any , snake_case__ : str , *snake_case__ : Tuple , **snake_case__ : Optional[Any] ):
lowerCAmelCase__ = [' '.join(_lowercase ) for m in tokenizer.bpe_ranks.keys()]
lowerCAmelCase__ = tokenizer.get_vocab()
return cls(_lowercase , _lowercase , *_lowercase , **_lowercase )
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : List[Any] , snake_case__ : Any , *snake_case__ : Tuple , **snake_case__ : int ):
lowerCAmelCase__ = GPTaTokenizer.from_pretrained(_lowercase , *_lowercase , **_lowercase )
return cls.from_tokenizer(_lowercase , *_lowercase , **_lowercase )
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Optional[int] , snake_case__ : List[Any] ):
return cls(**_lowercase )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : int , snake_case__ : List[str] = None ):
lowerCAmelCase__ = self.tf_tokenizer(_lowercase )
lowerCAmelCase__ = tf.ones_like(_lowercase )
if self.pad_token_id is not None:
# pad the tokens up to max length
lowerCAmelCase__ = max_length if max_length is not None else self.max_length
if max_length is not None:
lowerCAmelCase__ = pad_model_inputs(
_lowercase , max_seq_length=_lowercase , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 707 | """simple docstring"""
import argparse
import os
import gluonnlp as nlp
import mxnet as mx
import numpy as np
import torch
from gluonnlp.base import get_home_dir
from gluonnlp.model.bert import BERTEncoder
from gluonnlp.model.utils import _load_vocab
from gluonnlp.vocab import Vocab
from packaging import version
from torch import nn
from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
if version.parse(nlp.__version__) != version.parse("0.8.3"):
raise Exception("requires gluonnlp == 0.8.3")
if version.parse(mx.__version__) != version.parse("1.5.0"):
raise Exception("requires mxnet == 1.5.0")
logging.set_verbosity_info()
__lowerCAmelCase : Any = logging.get_logger(__name__)
__lowerCAmelCase : Any = "The Nymphenburg Palace is a beautiful palace in Munich!"
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = {
"""attention_cell""": """multi_head""",
"""num_layers""": 4,
"""units""": 1024,
"""hidden_size""": 768,
"""max_length""": 512,
"""num_heads""": 8,
"""scaled""": True,
"""dropout""": 0.1,
"""use_residual""": True,
"""embed_size""": 1024,
"""embed_dropout""": 0.1,
"""word_embed""": None,
"""layer_norm_eps""": 1e-5,
"""token_type_vocab_size""": 2,
}
lowerCAmelCase__ = bort_4_8_768_1024_hparams
# Let's construct the original Bort model here
# Taken from official BERT implementation, see:
# https://github.com/alexa/bort/blob/master/bort/bort.py
lowerCAmelCase__ = BERTEncoder(
attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCamelCase__ , output_all_encodings=lowerCamelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCamelCase__ ) , )
# Vocab information needs to be fetched first
# It's the same as RoBERTa, so RobertaTokenizer can be used later
lowerCAmelCase__ = """openwebtext_ccnews_stories_books_cased"""
# Specify download folder to Gluonnlp's vocab
lowerCAmelCase__ = os.path.join(get_home_dir() , """models""" )
lowerCAmelCase__ = _load_vocab(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , cls=lowerCamelCase__ )
lowerCAmelCase__ = nlp.model.BERTModel(
lowerCamelCase__ , len(lowerCamelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCamelCase__ , use_token_type_embed=lowerCamelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCamelCase__ , use_decoder=lowerCamelCase__ , )
original_bort.load_parameters(lowerCamelCase__ , cast_dtype=lowerCamelCase__ , ignore_extra=lowerCamelCase__ )
lowerCAmelCase__ = original_bort._collect_params_with_prefix()
# Build our config 🤗
lowerCAmelCase__ = {
"""architectures""": ["""BertForMaskedLM"""],
"""attention_probs_dropout_prob""": predefined_args["""dropout"""],
"""hidden_act""": """gelu""",
"""hidden_dropout_prob""": predefined_args["""dropout"""],
"""hidden_size""": predefined_args["""embed_size"""],
"""initializer_range""": 0.02,
"""intermediate_size""": predefined_args["""hidden_size"""],
"""layer_norm_eps""": predefined_args["""layer_norm_eps"""],
"""max_position_embeddings""": predefined_args["""max_length"""],
"""model_type""": """bort""",
"""num_attention_heads""": predefined_args["""num_heads"""],
"""num_hidden_layers""": predefined_args["""num_layers"""],
"""pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa
"""type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa
"""vocab_size""": len(lowerCamelCase__ ),
}
lowerCAmelCase__ = BertConfig.from_dict(lowerCamelCase__ )
lowerCAmelCase__ = BertForMaskedLM(lowerCamelCase__ )
hf_bort_model.eval()
# Parameter mapping table (Gluonnlp to Transformers)
# * denotes layer index
#
# | Gluon Parameter | Transformers Parameter
# | -------------------------------------------------------------- | ----------------------
# | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias`
# | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight`
# | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight`
# | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight`
# | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight`
# | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight`
# | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias`
# | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight`
# Helper function to convert MXNET Arrays to PyTorch
def to_torch(lowerCamelCase__ ) -> nn.Parameter:
return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) )
# Check param shapes and map new HF param back
def check_and_map_params(lowerCamelCase__ , lowerCamelCase__ ):
lowerCAmelCase__ = hf_param.shape
lowerCAmelCase__ = to_torch(params[gluon_param] )
lowerCAmelCase__ = gluon_param.shape
assert (
shape_hf == shape_gluon
), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers"""
return gluon_param
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" )
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" )
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" )
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" )
# Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them)
lowerCAmelCase__ = torch.zeros_like(
hf_bort_model.bert.embeddings.token_type_embeddings.weight.data )
for i in range(hf_bort_config.num_hidden_layers ):
lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i]
# self attention
lowerCAmelCase__ = layer.attention.self
lowerCAmelCase__ = check_and_map_params(
self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" )
# self attention output
lowerCAmelCase__ = layer.attention.output
lowerCAmelCase__ = check_and_map_params(
self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" )
lowerCAmelCase__ = check_and_map_params(
self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" )
lowerCAmelCase__ = check_and_map_params(
self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" )
# intermediate
lowerCAmelCase__ = layer.intermediate
lowerCAmelCase__ = check_and_map_params(
intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" )
lowerCAmelCase__ = check_and_map_params(
intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" )
# output
lowerCAmelCase__ = layer.output
lowerCAmelCase__ = check_and_map_params(
bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" )
lowerCAmelCase__ = check_and_map_params(
bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" )
lowerCAmelCase__ = check_and_map_params(
bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" )
lowerCAmelCase__ = check_and_map_params(
bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" )
# Save space and energy 🎄
hf_bort_model.half()
# Compare output of both models
lowerCAmelCase__ = RobertaTokenizer.from_pretrained("""roberta-base""" )
lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ )["""input_ids"""]
# Get gluon output
lowerCAmelCase__ = mx.nd.array([input_ids] )
lowerCAmelCase__ = original_bort(inputs=lowerCamelCase__ , token_types=[] )
# Get Transformer output (save and reload model again)
hf_bort_model.save_pretrained(lowerCamelCase__ )
lowerCAmelCase__ = BertModel.from_pretrained(lowerCamelCase__ )
hf_bort_model.eval()
lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" )
lowerCAmelCase__ = hf_bort_model(**lowerCamelCase__ )[0]
lowerCAmelCase__ = output_gluon[0].asnumpy()
lowerCAmelCase__ = output_hf[0].detach().numpy()
lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item()
lowerCAmelCase__ = np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 )
if success:
print("""✔️ Both model do output the same tensors""" )
else:
print("""❌ Both model do **NOT** output the same tensors""" )
print("""Absolute difference is:""" , lowerCamelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__lowerCAmelCase : str = parser.parse_args()
convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
| 674 | 0 |
"""simple docstring"""
from __future__ import annotations
import math
class a_ :
def __init__( self : List[str] , snake_case__ : int ):
lowerCAmelCase__ = size
# approximate the overall size of segment tree with given value
lowerCAmelCase__ = [0 for i in range(0 , 4 * size )]
# create array to store lazy update
lowerCAmelCase__ = [0 for i in range(0 , 4 * size )]
lowerCAmelCase__ = [0 for i in range(0 , 4 * size )] # flag for lazy update
def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : int ):
return idx * 2
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int ):
return idx * 2 + 1
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : list[int] ):
if left_element == right_element:
lowerCAmelCase__ = a[left_element - 1]
else:
lowerCAmelCase__ = (left_element + right_element) // 2
self.build(self.left(snake_case__ ) , snake_case__ , snake_case__ , snake_case__ )
self.build(self.right(snake_case__ ) , mid + 1 , snake_case__ , snake_case__ )
lowerCAmelCase__ = max(
self.segment_tree[self.left(snake_case__ )] , self.segment_tree[self.right(snake_case__ )] )
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int ):
if self.flag[idx] is True:
lowerCAmelCase__ = self.lazy[idx]
lowerCAmelCase__ = False
if left_element != right_element:
lowerCAmelCase__ = self.lazy[idx]
lowerCAmelCase__ = self.lazy[idx]
lowerCAmelCase__ = True
lowerCAmelCase__ = True
if right_element < a or left_element > b:
return True
if left_element >= a and right_element <= b:
lowerCAmelCase__ = val
if left_element != right_element:
lowerCAmelCase__ = val
lowerCAmelCase__ = val
lowerCAmelCase__ = True
lowerCAmelCase__ = True
return True
lowerCAmelCase__ = (left_element + right_element) // 2
self.update(self.left(snake_case__ ) , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
self.update(self.right(snake_case__ ) , mid + 1 , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
lowerCAmelCase__ = max(
self.segment_tree[self.left(snake_case__ )] , self.segment_tree[self.right(snake_case__ )] )
return True
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int ):
if self.flag[idx] is True:
lowerCAmelCase__ = self.lazy[idx]
lowerCAmelCase__ = False
if left_element != right_element:
lowerCAmelCase__ = self.lazy[idx]
lowerCAmelCase__ = self.lazy[idx]
lowerCAmelCase__ = True
lowerCAmelCase__ = True
if right_element < a or left_element > b:
return -math.inf
if left_element >= a and right_element <= b:
return self.segment_tree[idx]
lowerCAmelCase__ = (left_element + right_element) // 2
lowerCAmelCase__ = self.query(self.left(snake_case__ ) , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
lowerCAmelCase__ = self.query(self.right(snake_case__ ) , mid + 1 , snake_case__ , snake_case__ , snake_case__ )
return max(snake_case__ , snake_case__ )
def __str__( self : Tuple ):
return str([self.query(1 , 1 , self.size , snake_case__ , snake_case__ ) for i in range(1 , self.size + 1 )] )
if __name__ == "__main__":
__lowerCAmelCase : str = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
__lowerCAmelCase : List[Any] = 15
__lowerCAmelCase : Union[str, Any] = SegmentTree(size)
segt.build(1, 1, size, A)
print(segt.query(1, 1, size, 4, 6))
print(segt.query(1, 1, size, 7, 11))
print(segt.query(1, 1, size, 7, 12))
segt.update(1, 1, size, 1, 3, 1_11)
print(segt.query(1, 1, size, 1, 15))
segt.update(1, 1, size, 7, 8, 2_35)
print(segt)
| 708 | """simple docstring"""
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class a_ :
def __init__( self : Optional[int] ):
lowerCAmelCase__ = """"""
lowerCAmelCase__ = """"""
lowerCAmelCase__ = []
lowerCAmelCase__ = 0
lowerCAmelCase__ = 256
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] ):
lowerCAmelCase__ = cva.imread(snake_case__ , 0 )
lowerCAmelCase__ = copy.deepcopy(self.img )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" )
lowerCAmelCase__ = np.sum(snake_case__ )
for i in range(len(snake_case__ ) ):
lowerCAmelCase__ = x[i] / self.k
self.sk += prk
lowerCAmelCase__ = (self.L - 1) * self.sk
if self.rem != 0:
lowerCAmelCase__ = int(last % last )
lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(snake_case__ )
lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size )
lowerCAmelCase__ = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
lowerCAmelCase__ = self.img[j][i]
if num != self.last_list[num]:
lowerCAmelCase__ = self.last_list[num]
cva.imwrite("""output_data/output.jpg""" , self.img )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
plt.hist(self.img.ravel() , 256 , [0, 256] )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
cva.imshow("""Output-Image""" , self.img )
cva.imshow("""Input-Image""" , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
__lowerCAmelCase : Dict = os.path.join(os.path.basename(__file__), "image_data/input.jpg")
__lowerCAmelCase : Optional[int] = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 674 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__lowerCAmelCase : Any = {
'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'],
'tokenization_luke': ['LukeTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Optional[Any] = [
'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST',
'LukeForEntityClassification',
'LukeForEntityPairClassification',
'LukeForEntitySpanClassification',
'LukeForMultipleChoice',
'LukeForQuestionAnswering',
'LukeForSequenceClassification',
'LukeForTokenClassification',
'LukeForMaskedLM',
'LukeModel',
'LukePreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig
from .tokenization_luke import LukeTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_luke import (
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST,
LukeForEntityClassification,
LukeForEntityPairClassification,
LukeForEntitySpanClassification,
LukeForMaskedLM,
LukeForMultipleChoice,
LukeForQuestionAnswering,
LukeForSequenceClassification,
LukeForTokenClassification,
LukeModel,
LukePreTrainedModel,
)
else:
import sys
__lowerCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 709 | """simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from ..models.clipseg import CLIPSegForImageSegmentation
from ..utils import is_vision_available, requires_backends
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : List[str] = (
"This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image."
"It takes two arguments named `image` which should be the original image, and `label` which should be a text "
"describing the elements what should be identified in the segmentation mask. The tool returns the mask."
)
UpperCamelCase_ : str = "CIDAS/clipseg-rd64-refined"
UpperCamelCase_ : Any = "image_segmenter"
UpperCamelCase_ : Optional[Any] = CLIPSegForImageSegmentation
UpperCamelCase_ : List[str] = ["image", "text"]
UpperCamelCase_ : int = ["image"]
def __init__( self : Tuple , *snake_case__ : str , **snake_case__ : Optional[Any] ):
requires_backends(self , ["""vision"""] )
super().__init__(*snake_case__ , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : "Image" , snake_case__ : str ):
return self.pre_processor(text=[label] , images=[image] , padding=snake_case__ , return_tensors="""pt""" )
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple ):
with torch.no_grad():
lowerCAmelCase__ = self.model(**snake_case__ ).logits
return logits
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] ):
lowerCAmelCase__ = outputs.cpu().detach().numpy()
lowerCAmelCase__ = 0
lowerCAmelCase__ = 1
return Image.fromarray((array * 255).astype(np.uinta ) )
| 674 | 0 |
"""simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
return number | (1 << position)
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
return number & ~(1 << position)
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
return number ^ (1 << position)
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
return ((number >> position) & 1) == 1
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 710 | """simple docstring"""
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class a_ ( __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : str = LayoutLMTokenizer
UpperCamelCase_ : List[Any] = LayoutLMTokenizerFast
UpperCamelCase_ : Dict = True
UpperCamelCase_ : Any = True
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
super().setUp()
lowerCAmelCase__ = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : Union[str, Any] ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Tuple ):
lowerCAmelCase__ = """UNwant\u00E9d,running"""
lowerCAmelCase__ = """unwanted, running"""
return input_text, output_text
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = self.tokenizer_class(self.vocab_file )
lowerCAmelCase__ = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(snake_case__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [7, 4, 5, 10, 8, 9] )
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
pass
| 674 | 0 |
"""simple docstring"""
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
__lowerCAmelCase : Optional[Any] = logging.getLogger(__name__)
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
if os.path.exists(_lowerCAmelCase ):
if os.path.exists(os.path.join(_lowerCAmelCase , """config.json""" ) ) and os.path.isfile(
os.path.join(_lowerCAmelCase , """config.json""" ) ):
os.remove(os.path.join(_lowerCAmelCase , """config.json""" ) )
if os.path.exists(os.path.join(_lowerCAmelCase , """pytorch_model.bin""" ) ) and os.path.isfile(
os.path.join(_lowerCAmelCase , """pytorch_model.bin""" ) ):
os.remove(os.path.join(_lowerCAmelCase , """pytorch_model.bin""" ) )
else:
os.makedirs(_lowerCAmelCase )
model.save_pretrained(_lowerCAmelCase )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=False ):
"""simple docstring"""
lowerCAmelCase__ = 2
if unlogit:
lowerCAmelCase__ = torch.pow(_lowerCAmelCase , _lowerCAmelCase )
lowerCAmelCase__ = p * torch.log(_lowerCAmelCase )
lowerCAmelCase__ = 0
return -plogp.sum(dim=-1 )
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
logger.info("""lv, h >\t""" + """\t""".join(f"""{x + 1}""" for x in range(len(_lowerCAmelCase ) ) ) )
for row in range(len(_lowerCAmelCase ) ):
if tensor.dtype != torch.long:
logger.info(f"""layer {row + 1}:\t""" + """\t""".join(f"""{x:.5f}""" for x in tensor[row].cpu().data ) )
else:
logger.info(f"""layer {row + 1}:\t""" + """\t""".join(f"""{x:d}""" for x in tensor[row].cpu().data ) )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=False ):
"""simple docstring"""
lowerCAmelCase__ = model.config.num_hidden_layers, model.config.num_attention_heads
lowerCAmelCase__ = torch.zeros(_lowerCAmelCase , _lowerCAmelCase ).to(args.device )
lowerCAmelCase__ = torch.zeros(_lowerCAmelCase , _lowerCAmelCase ).to(args.device )
if head_mask is None:
lowerCAmelCase__ = torch.ones(_lowerCAmelCase , _lowerCAmelCase ).to(args.device )
head_mask.requires_grad_(requires_grad=_lowerCAmelCase )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
lowerCAmelCase__ = None
lowerCAmelCase__ = 0.0
lowerCAmelCase__ = 0.0
for step, inputs in enumerate(tqdm(_lowerCAmelCase , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ):
lowerCAmelCase__ = tuple(t.to(args.device ) for t in inputs )
(lowerCAmelCase__ ) = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
lowerCAmelCase__ = model(_lowerCAmelCase , labels=_lowerCAmelCase , head_mask=_lowerCAmelCase )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
lowerCAmelCase__ = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(_lowerCAmelCase ):
lowerCAmelCase__ = entropy(attn.detach() , _lowerCAmelCase )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(_lowerCAmelCase ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
lowerCAmelCase__ = 2
lowerCAmelCase__ = torch.pow(torch.pow(_lowerCAmelCase , _lowerCAmelCase ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20
if not args.dont_normalize_global_importance:
lowerCAmelCase__ = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info("""Attention entropies""" )
print_ad_tensor(_lowerCAmelCase )
if compute_importance:
logger.info("""Head importance scores""" )
print_ad_tensor(_lowerCAmelCase )
logger.info("""Head ranked by importance scores""" )
lowerCAmelCase__ = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
lowerCAmelCase__ = torch.arange(
head_importance.numel() , device=args.device )
lowerCAmelCase__ = head_ranks.view_as(_lowerCAmelCase )
print_ad_tensor(_lowerCAmelCase )
return attn_entropy, head_importance, total_loss
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = compute_heads_importance(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase )
lowerCAmelCase__ = 1 / loss # instead of downsteam score use the LM loss
logger.info("""Pruning: original score: %f, threshold: %f""" , _lowerCAmelCase , original_score * args.masking_threshold )
lowerCAmelCase__ = torch.ones_like(_lowerCAmelCase )
lowerCAmelCase__ = max(1 , int(new_head_mask.numel() * args.masking_amount ) )
lowerCAmelCase__ = original_score
while current_score >= original_score * args.masking_threshold:
lowerCAmelCase__ = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
lowerCAmelCase__ = float("""Inf""" )
lowerCAmelCase__ = head_importance.view(-1 ).sort()[1]
if len(_lowerCAmelCase ) <= num_to_mask:
print("""BREAK BY num_to_mask""" )
break
# mask heads
lowerCAmelCase__ = current_heads_to_mask[:num_to_mask]
logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) )
lowerCAmelCase__ = new_head_mask.view(-1 )
lowerCAmelCase__ = 0.0
lowerCAmelCase__ = new_head_mask.view_as(_lowerCAmelCase )
lowerCAmelCase__ = new_head_mask.clone().detach()
print_ad_tensor(_lowerCAmelCase )
# Compute metric and head importance again
lowerCAmelCase__ = compute_heads_importance(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase , head_mask=_lowerCAmelCase )
lowerCAmelCase__ = 1 / loss
logger.info(
"""Masking: current score: %f, remaining heads %d (%.1f percents)""" , _lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , )
logger.info("""Final head mask""" )
print_ad_tensor(_lowerCAmelCase )
np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() )
return head_mask
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = datetime.now()
lowerCAmelCase__ = compute_heads_importance(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase , compute_importance=_lowerCAmelCase , head_mask=_lowerCAmelCase )
lowerCAmelCase__ = 1 / loss
lowerCAmelCase__ = datetime.now() - before_time
lowerCAmelCase__ = sum(p.numel() for p in model.parameters() )
lowerCAmelCase__ = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_lowerCAmelCase ) )
}
for k, v in heads_to_prune.items():
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
lowerCAmelCase__ = [
v,
]
assert sum(len(_lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(_lowerCAmelCase )
lowerCAmelCase__ = sum(p.numel() for p in model.parameters() )
lowerCAmelCase__ = datetime.now()
lowerCAmelCase__ = compute_heads_importance(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase , compute_importance=_lowerCAmelCase , head_mask=_lowerCAmelCase , actually_pruned=_lowerCAmelCase , )
lowerCAmelCase__ = 1 / loss
lowerCAmelCase__ = datetime.now() - before_time
logger.info(
"""Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , _lowerCAmelCase , _lowerCAmelCase , pruned_num_params / original_num_params * 100 , )
logger.info("""Pruning: score with masking: %f score with pruning: %f""" , _lowerCAmelCase , _lowerCAmelCase )
logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 100 )
save_model(_lowerCAmelCase , args.output_dir )
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--data_dir""" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , )
parser.add_argument(
"""--model_name_or_path""" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--output_dir""" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""The output directory where the model predictions and checkpoints will be written.""" , )
# Other parameters
parser.add_argument(
"""--config_name""" , default="""""" , type=_lowerCAmelCase , help="""Pretrained config name or path if not the same as model_name_or_path""" , )
parser.add_argument(
"""--tokenizer_name""" , default="""""" , type=_lowerCAmelCase , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , )
parser.add_argument(
"""--cache_dir""" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="""Where do you want to store the pre-trained models downloaded from s3""" , )
parser.add_argument(
"""--data_subset""" , type=_lowerCAmelCase , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" )
parser.add_argument(
"""--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" )
parser.add_argument(
"""--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" )
parser.add_argument(
"""--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" )
parser.add_argument(
"""--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , )
parser.add_argument(
"""--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" )
parser.add_argument(
"""--masking_threshold""" , default=0.9 , type=_lowerCAmelCase , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , )
parser.add_argument(
"""--masking_amount""" , default=0.1 , type=_lowerCAmelCase , help="""Amount to heads to masking at each masking step.""" )
parser.add_argument("""--metric_name""" , default="""acc""" , type=_lowerCAmelCase , help="""Metric to use for head masking.""" )
parser.add_argument(
"""--max_seq_length""" , default=128 , type=_lowerCAmelCase , help=(
"""The maximum total input sequence length after WordPiece tokenization. \n"""
"""Sequences longer than this will be truncated, sequences shorter padded."""
) , )
parser.add_argument("""--batch_size""" , default=1 , type=_lowerCAmelCase , help="""Batch size.""" )
parser.add_argument("""--seed""" , type=_lowerCAmelCase , default=42 )
parser.add_argument("""--local_rank""" , type=_lowerCAmelCase , default=-1 , help="""local_rank for distributed training on gpus""" )
parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" )
parser.add_argument("""--server_ip""" , type=_lowerCAmelCase , default="""""" , help="""Can be used for distant debugging.""" )
parser.add_argument("""--server_port""" , type=_lowerCAmelCase , default="""""" , help="""Can be used for distant debugging.""" )
lowerCAmelCase__ = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("""Waiting for debugger attach""" )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_lowerCAmelCase )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
lowerCAmelCase__ = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" )
lowerCAmelCase__ = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
lowerCAmelCase__ = torch.device("""cuda""" , args.local_rank )
lowerCAmelCase__ = 1
torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
lowerCAmelCase__ = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
lowerCAmelCase__ = nn.parallel.DistributedDataParallel(
_lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_lowerCAmelCase )
elif args.n_gpu > 1:
lowerCAmelCase__ = nn.DataParallel(_lowerCAmelCase )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=_lowerCAmelCase )
torch.save(_lowerCAmelCase , os.path.join(args.output_dir , """run_args.bin""" ) )
logger.info("""Training/evaluation parameters %s""" , _lowerCAmelCase )
# Prepare dataset
lowerCAmelCase__ = np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
lowerCAmelCase__ = (torch.from_numpy(_lowerCAmelCase ),)
lowerCAmelCase__ = TensorDataset(*_lowerCAmelCase )
lowerCAmelCase__ = RandomSampler(_lowerCAmelCase )
lowerCAmelCase__ = DataLoader(_lowerCAmelCase , sampler=_lowerCAmelCase , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
lowerCAmelCase__ = mask_heads(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
prune_heads(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if __name__ == "__main__":
main()
| 711 | """simple docstring"""
from binascii import hexlify
from hashlib import shaaaa
from os import urandom
# RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for
# Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526
__lowerCAmelCase : Any = {
# 1536-bit
5: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 2048-bit
14: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AACAA68FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 3072-bit
15: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 4096-bit
16: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199"
+ "FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 6144-bit
17: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
+ "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
+ "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
+ "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
+ "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8"
+ "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C"
+ "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718"
+ "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D"
+ "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D"
+ "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226"
+ "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC"
+ "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26"
+ "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB"
+ "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2"
+ "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127"
+ "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406"
+ "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918"
+ "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151"
+ "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03"
+ "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F"
+ "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B"
+ "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632"
+ "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E"
+ "6DCC4024FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 8192-bit
18: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD"
+ "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831"
+ "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B"
+ "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF"
+ "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6"
+ "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3"
+ "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328"
+ "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C"
+ "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE"
+ "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4"
+ "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300"
+ "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568"
+ "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9"
+ "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B"
+ "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A"
+ "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36"
+ "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1"
+ "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92"
+ "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47"
+ "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71"
+ "60C980DD98EDD3DFFFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
}
class a_ :
def __init__( self : List[str] , snake_case__ : int = 14 ):
if group not in primes:
raise ValueError("""Unsupported Group""" )
lowerCAmelCase__ = primes[group]["""prime"""]
lowerCAmelCase__ = primes[group]["""generator"""]
lowerCAmelCase__ = int(hexlify(urandom(32 ) ) , base=16 )
def _SCREAMING_SNAKE_CASE ( self : Any ):
return hex(self.__private_key )[2:]
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = pow(self.generator , self.__private_key , self.prime )
return hex(snake_case__ )[2:]
def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : int ):
# check if the other public key is valid based on NIST SP800-56
return (
2 <= key <= self.prime - 2
and pow(snake_case__ , (self.prime - 1) // 2 , self.prime ) == 1
)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str ):
lowerCAmelCase__ = int(snake_case__ , base=16 )
if not self.is_valid_public_key(snake_case__ ):
raise ValueError("""Invalid public key""" )
lowerCAmelCase__ = pow(snake_case__ , self.__private_key , self.prime )
return shaaaa(str(snake_case__ ).encode() ).hexdigest()
@staticmethod
def _SCREAMING_SNAKE_CASE ( snake_case__ : int , snake_case__ : int ):
# check if the other public key is valid based on NIST SP800-56
return (
2 <= remote_public_key_str <= prime - 2
and pow(snake_case__ , (prime - 1) // 2 , snake_case__ ) == 1
)
@staticmethod
def _SCREAMING_SNAKE_CASE ( snake_case__ : str , snake_case__ : str , snake_case__ : int = 14 ):
lowerCAmelCase__ = int(snake_case__ , base=16 )
lowerCAmelCase__ = int(snake_case__ , base=16 )
lowerCAmelCase__ = primes[group]["""prime"""]
if not DiffieHellman.is_valid_public_key_static(snake_case__ , snake_case__ ):
raise ValueError("""Invalid public key""" )
lowerCAmelCase__ = pow(snake_case__ , snake_case__ , snake_case__ )
return shaaaa(str(snake_case__ ).encode() ).hexdigest()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 674 | 0 |
"""simple docstring"""
import argparse
__lowerCAmelCase : Any = "docs/source/_static/js/custom.js"
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
with open(__lowerCAmelCase , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCAmelCase__ = f.readlines()
lowerCAmelCase__ = 0
# First let's put the right version
while not lines[index].startswith("""const stableVersion =""" ):
index += 1
lowerCAmelCase__ = f"""const stableVersion = \"v{version}\"\n"""
# Then update the dictionary
while not lines[index].startswith("""const versionMapping = {""" ):
index += 1
# We go until the end
while not lines[index].startswith("""}""" ):
index += 1
# We add the new version at the end
lines[index - 1] += f""" \"v{version}\": \"v{version}\",\n"""
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(__lowerCAmelCase )
if __name__ == "__main__":
__lowerCAmelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument("--version", help="Release version.")
__lowerCAmelCase : Optional[int] = parser.parse_args()
update_custom_js(args.version)
| 712 | """simple docstring"""
import argparse
import pickle
import numpy as np
import torch
from torch import nn
from transformers import ReformerConfig, ReformerModelWithLMHead
from transformers.utils import logging
logging.set_verbosity_info()
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ):
"""simple docstring"""
assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match"""
lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ )
if bias is not None:
assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match"""
lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = np.asarray(weights[0] )
lowerCAmelCase__ = np.asarray(weights[1] )
lowerCAmelCase__ = np.asarray(weights[2] )
set_param(
torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , )
set_param(
torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = np.asarray(weights[0] )
lowerCAmelCase__ = np.asarray(weights[1] )
lowerCAmelCase__ = np.asarray(weights[2] )
lowerCAmelCase__ = np.asarray(weights[3] )
set_param(
torch_layer.self_attention.query , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , )
set_param(
torch_layer.self_attention.key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , )
set_param(
torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = weights[0][0][0]
lowerCAmelCase__ = np.asarray(layer_norm_a[0] )
lowerCAmelCase__ = np.asarray(layer_norm_a[1] )
set_param(
torch_block.attention.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , )
# lsh weights + output
lowerCAmelCase__ = weights[0][1]
if len(lowerCamelCase__ ) < 4:
set_layer_weights_in_torch_lsh(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ )
else:
set_layer_weights_in_torch_local(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ )
# intermediate weighs
lowerCAmelCase__ = weights[2][0][1][2]
# Chunked Feed Forward
if len(lowerCamelCase__ ) == 4:
lowerCAmelCase__ = intermediate_weights[2]
# layernorm 2
lowerCAmelCase__ = np.asarray(intermediate_weights[0][0] )
lowerCAmelCase__ = np.asarray(intermediate_weights[0][1] )
set_param(
torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , )
# intermediate dense
lowerCAmelCase__ = np.asarray(intermediate_weights[1][0] )
lowerCAmelCase__ = np.asarray(intermediate_weights[1][1] )
set_param(
torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , )
# intermediate out
lowerCAmelCase__ = np.asarray(intermediate_weights[4][0] )
lowerCAmelCase__ = np.asarray(intermediate_weights[4][1] )
set_param(
torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = torch_model.reformer
# word embeds
lowerCAmelCase__ = np.asarray(weights[1] )
set_param(
torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase__ ) , )
if isinstance(weights[3] , lowerCamelCase__ ):
lowerCAmelCase__ = torch_model_reformer.embeddings.position_embeddings
for emb_idx in range(len(position_embeddings.weights ) ):
lowerCAmelCase__ = np.asarray(weights[3][emb_idx][0] )
assert (
position_embeddings.weights[emb_idx].shape == emb_weights.shape
), f"""{position_embeddings[emb_idx]} emb does not match"""
lowerCAmelCase__ = nn.Parameter(torch.tensor(lowerCamelCase__ ) )
lowerCAmelCase__ = weights[5]
assert len(torch_model_reformer.encoder.layers ) * 4 == len(
lowerCamelCase__ ), "HF and trax model do not have the same number of layers"
for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ):
lowerCAmelCase__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
set_block_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# output layer norm
lowerCAmelCase__ = np.asarray(weights[7][0] )
lowerCAmelCase__ = np.asarray(weights[7][1] )
set_param(
torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , )
# output embeddings
lowerCAmelCase__ = np.asarray(weights[9][0] )
lowerCAmelCase__ = np.asarray(weights[9][1] )
set_param(
torch_model.lm_head.decoder , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = ReformerConfig.from_json_file(lowerCamelCase__ )
print(f"""Building PyTorch model from configuration: {config}""" )
lowerCAmelCase__ = ReformerModelWithLMHead(lowerCamelCase__ )
with open(lowerCamelCase__ , """rb""" ) as f:
lowerCAmelCase__ = pickle.load(lowerCamelCase__ )["""weights"""]
set_model_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , config.hidden_size )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , lowerCamelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained Reformer model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__lowerCAmelCase : Union[str, Any] = parser.parse_args()
convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
| 674 | 0 |
"""simple docstring"""
from __future__ import annotations
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = str(__UpperCAmelCase )
return len(__UpperCAmelCase ) == 9 and set(__UpperCAmelCase ) == set("""123456789""" )
def _UpperCAmelCase ( ):
"""simple docstring"""
for base_num in range(9999 , 4999 , -1 ):
lowerCAmelCase__ = 10_0002 * base_num
if is_9_pandigital(__UpperCAmelCase ):
return candidate
for base_num in range(333 , 99 , -1 ):
lowerCAmelCase__ = 100_2003 * base_num
if is_9_pandigital(__UpperCAmelCase ):
return candidate
return None
if __name__ == "__main__":
print(F"{solution() = }")
| 713 | """simple docstring"""
import os
from math import logaa
def _UpperCAmelCase ( lowerCamelCase__ = "base_exp.txt" ):
"""simple docstring"""
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) ):
lowerCAmelCase__ , lowerCAmelCase__ = list(map(lowerCamelCase__ , line.split(""",""" ) ) )
if x * logaa(lowerCamelCase__ ) > largest:
lowerCAmelCase__ = x * logaa(lowerCamelCase__ )
lowerCAmelCase__ = i + 1
return result
if __name__ == "__main__":
print(solution())
| 674 | 0 |
"""simple docstring"""
import os
import tempfile
import unittest
import uuid
from pathlib import Path
from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision
from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText
from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_soundfile_availble():
import soundfile as sf
if is_vision_available():
from PIL import Image
def _UpperCAmelCase ( lowerCamelCase__="" ):
"""simple docstring"""
lowerCAmelCase__ = tempfile.mkdtemp()
return os.path.join(lowerCAmelCase__ , str(uuid.uuida() ) + suffix )
@require_soundfile
@require_torch
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = torch.rand(12 , dtype=torch.floataa ) - 0.5
lowerCAmelCase__ = AgentAudio(_UpperCAmelCase )
lowerCAmelCase__ = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(_UpperCAmelCase , agent_type.to_raw() , atol=1E-4 ) )
del agent_type
# Ensure the path remains even after the object deletion
self.assertTrue(os.path.exists(_UpperCAmelCase ) )
# Ensure that the file contains the same value as the original tensor
lowerCAmelCase__ , lowerCAmelCase__ = sf.read(_UpperCAmelCase )
self.assertTrue(torch.allclose(_UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , atol=1E-4 ) )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = torch.rand(12 , dtype=torch.floataa ) - 0.5
lowerCAmelCase__ = get_new_path(suffix=""".wav""" )
sf.write(_UpperCAmelCase , _UpperCAmelCase , 16000 )
lowerCAmelCase__ = AgentAudio(_UpperCAmelCase )
self.assertTrue(torch.allclose(_UpperCAmelCase , agent_type.to_raw() , atol=1E-4 ) )
self.assertEqual(agent_type.to_string() , _UpperCAmelCase )
@require_vision
@require_torch
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = torch.randint(0 , 256 , (64, 64, 3) )
lowerCAmelCase__ = AgentImage(_UpperCAmelCase )
lowerCAmelCase__ = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(_UpperCAmelCase , agent_type._tensor , atol=1E-4 ) )
self.assertIsInstance(agent_type.to_raw() , Image.Image )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(_UpperCAmelCase ) )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png"""
lowerCAmelCase__ = Image.open(_UpperCAmelCase )
lowerCAmelCase__ = AgentImage(_UpperCAmelCase )
self.assertTrue(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(_UpperCAmelCase ) )
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
lowerCAmelCase__ = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png"""
lowerCAmelCase__ = Image.open(_UpperCAmelCase )
lowerCAmelCase__ = AgentImage(_UpperCAmelCase )
self.assertFalse(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(_UpperCAmelCase ) )
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = """Hey!"""
lowerCAmelCase__ = AgentText(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , agent_type.to_string() )
self.assertEqual(_UpperCAmelCase , agent_type.to_raw() )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
| 714 | """simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
while b:
lowerCAmelCase__ , lowerCAmelCase__ = b, a % b
return a
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase__ , a % b )
def _UpperCAmelCase ( ):
"""simple docstring"""
print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" )
print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" )
print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" )
print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" )
print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" )
print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" )
print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" )
print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" )
if __name__ == "__main__":
main()
| 674 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__lowerCAmelCase : List[str] = {
"configuration_whisper": ["WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP", "WhisperConfig", "WhisperOnnxConfig"],
"feature_extraction_whisper": ["WhisperFeatureExtractor"],
"processing_whisper": ["WhisperProcessor"],
"tokenization_whisper": ["WhisperTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str = ["WhisperTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Any = [
"WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST",
"WhisperForConditionalGeneration",
"WhisperModel",
"WhisperPreTrainedModel",
"WhisperForAudioClassification",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Union[str, Any] = [
"TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWhisperForConditionalGeneration",
"TFWhisperModel",
"TFWhisperPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Optional[Any] = [
"FlaxWhisperForConditionalGeneration",
"FlaxWhisperModel",
"FlaxWhisperPreTrainedModel",
"FlaxWhisperForAudioClassification",
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
__lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 715 | """simple docstring"""
import os
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = os.path.dirname(os.path.realpath(lowerCamelCase__ ) )
lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """triangle.txt""" )
with open(lowerCamelCase__ ) as f:
lowerCAmelCase__ = f.readlines()
lowerCAmelCase__ = []
for line in triangle:
lowerCAmelCase__ = []
for number in line.strip().split(""" """ ):
numbers_from_line.append(int(lowerCamelCase__ ) )
a.append(lowerCamelCase__ )
for i in range(1 , len(lowerCamelCase__ ) ):
for j in range(len(a[i] ) ):
lowerCAmelCase__ = a[i - 1][j] if j != len(a[i - 1] ) else 0
lowerCAmelCase__ = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(lowerCamelCase__ , lowerCamelCase__ )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 674 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
__lowerCAmelCase : Dict = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class a_ ( a__ , a__ ):
UpperCamelCase_ : str = "resnet"
UpperCamelCase_ : str = ["basic", "bottleneck"]
def __init__( self : int , snake_case__ : Union[str, Any]=3 , snake_case__ : Optional[Any]=64 , snake_case__ : int=[256, 512, 1024, 2048] , snake_case__ : List[Any]=[3, 4, 6, 3] , snake_case__ : Any="bottleneck" , snake_case__ : Optional[int]="relu" , snake_case__ : Any=False , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]=None , **snake_case__ : Any , ):
super().__init__(**_A )
if layer_type not in self.layer_types:
raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" )
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = embedding_size
lowerCAmelCase__ = hidden_sizes
lowerCAmelCase__ = depths
lowerCAmelCase__ = layer_type
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = downsample_in_first_stage
lowerCAmelCase__ = ['stem'] + [F"""stage{idx}""" for idx in range(1 , len(_A ) + 1 )]
lowerCAmelCase__ = get_aligned_output_features_output_indices(
out_features=_A , out_indices=_A , stage_names=self.stage_names )
class a_ ( a__ ):
UpperCamelCase_ : Tuple = version.parse("1.11" )
@property
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
return 1E-3
| 716 | """simple docstring"""
import io
import json
import unittest
from parameterized import parameterized
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device
from utils import calculate_bleu
__lowerCAmelCase : Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json"
with io.open(filename, "r", encoding="utf-8") as f:
__lowerCAmelCase : Optional[int] = json.load(f)
@require_torch
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Dict ):
return FSMTTokenizer.from_pretrained(snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ):
lowerCAmelCase__ = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ )
if torch_device == "cuda":
model.half()
return model
@parameterized.expand(
[
["""en-ru""", 26.0],
["""ru-en""", 22.0],
["""en-de""", 22.0],
["""de-en""", 29.0],
] )
@slow
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Any , snake_case__ : int ):
# note: this test is not testing the best performance since it only evals a small batch
# but it should be enough to detect a regression in the output quality
lowerCAmelCase__ = F"""facebook/wmt19-{pair}"""
lowerCAmelCase__ = self.get_tokenizer(snake_case__ )
lowerCAmelCase__ = self.get_model(snake_case__ )
lowerCAmelCase__ = bleu_data[pair]["""src"""]
lowerCAmelCase__ = bleu_data[pair]["""tgt"""]
lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""pt""" , truncation=snake_case__ , padding="""longest""" ).to(snake_case__ )
lowerCAmelCase__ = model.generate(
input_ids=batch.input_ids , num_beams=8 , )
lowerCAmelCase__ = tokenizer.batch_decode(
snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ )
lowerCAmelCase__ = calculate_bleu(snake_case__ , snake_case__ )
print(snake_case__ )
self.assertGreaterEqual(scores["""bleu"""] , snake_case__ )
| 674 | 0 |
"""simple docstring"""
from __future__ import annotations
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): # noqa: E741
"""simple docstring"""
while r - l > 1:
lowerCAmelCase__ = (l + r) // 2
if v[m] >= key:
lowerCAmelCase__ = m
else:
lowerCAmelCase__ = m # noqa: E741
return r
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
if len(_lowerCamelCase ) == 0:
return 0
lowerCAmelCase__ = [0] * len(_lowerCamelCase )
lowerCAmelCase__ = 1
lowerCAmelCase__ = v[0]
for i in range(1 , len(_lowerCamelCase ) ):
if v[i] < tail[0]:
lowerCAmelCase__ = v[i]
elif v[i] > tail[length - 1]:
lowerCAmelCase__ = v[i]
length += 1
else:
lowerCAmelCase__ = v[i]
return length
if __name__ == "__main__":
import doctest
doctest.testmod()
| 717 | """simple docstring"""
import pprint
import requests
__lowerCAmelCase : Union[str, Any] = "https://zenquotes.io/api"
def _UpperCAmelCase ( ):
"""simple docstring"""
return requests.get(API_ENDPOINT_URL + """/today""" ).json()
def _UpperCAmelCase ( ):
"""simple docstring"""
return requests.get(API_ENDPOINT_URL + """/random""" ).json()
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] = random_quotes()
pprint.pprint(response)
| 674 | 0 |
"""simple docstring"""
from math import factorial
def _UpperCAmelCase ( lowerCamelCase__ = 20 ):
"""simple docstring"""
lowerCAmelCase__ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
lowerCAmelCase__ = n // 2
return int(factorial(a_ ) / (factorial(a_ ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
__lowerCAmelCase : List[str] = int(sys.argv[1])
print(solution(n))
except ValueError:
print("Invalid entry - please enter a number.")
| 718 | """simple docstring"""
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = 0
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
lowerCAmelCase__ = Path(snake_case__ ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
lowerCAmelCase__ = Path(snake_case__ ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = CLIPConfig()
# Create a dummy config file with image_proceesor_type
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
lowerCAmelCase__ = Path(snake_case__ ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ).to_dict()
config_dict.pop("""image_processor_type""" )
lowerCAmelCase__ = CLIPImageProcessor(**snake_case__ )
# save in new folder
model_config.save_pretrained(snake_case__ )
config.save_pretrained(snake_case__ )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
# make sure private variable is not incorrectly saved
lowerCAmelCase__ = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
with self.assertRaisesRegex(
snake_case__ , """clip-base is not a local folder and is not a valid model identifier""" ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""clip-base""" )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
with self.assertRaisesRegex(
snake_case__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , revision="""aaaaaa""" )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
with self.assertRaisesRegex(
snake_case__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" )
def _SCREAMING_SNAKE_CASE ( self : Any ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(snake_case__ ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(snake_case__ ):
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(snake_case__ )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , trust_remote_code=snake_case__ )
self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
try:
AutoConfig.register("""custom""" , snake_case__ )
AutoImageProcessor.register(snake_case__ , snake_case__ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(snake_case__ ):
AutoImageProcessor.register(snake_case__ , snake_case__ )
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json"""
lowerCAmelCase__ = Path(snake_case__ ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) )
lowerCAmelCase__ = CustomImageProcessor.from_pretrained(snake_case__ )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(snake_case__ )
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : Tuple = True
try:
AutoConfig.register("""custom""" , snake_case__ )
AutoImageProcessor.register(snake_case__ , snake_case__ )
# If remote code is not set, the default is to use local
lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
lowerCAmelCase__ = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(not hasattr(snake_case__ , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 674 | 0 |
"""simple docstring"""
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
__lowerCAmelCase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name
def _UpperCAmelCase ( lowerCamelCase__ ) -> int:
"""simple docstring"""
warnings.warn(
"""The preprocess method is deprecated and will be removed in a future version. Please"""
""" use VaeImageProcessor.preprocess instead""" , _A , )
if isinstance(_A , torch.Tensor ):
return image
elif isinstance(_A , PIL.Image.Image ):
lowerCAmelCase__ = [image]
if isinstance(image[0] , PIL.Image.Image ):
lowerCAmelCase__ , lowerCAmelCase__ = image[0].size
lowerCAmelCase__ , lowerCAmelCase__ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
lowerCAmelCase__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image]
lowerCAmelCase__ = np.concatenate(_A , axis=0 )
lowerCAmelCase__ = np.array(_A ).astype(np.floataa ) / 2_55.0
lowerCAmelCase__ = image.transpose(0 , 3 , 1 , 2 )
lowerCAmelCase__ = 2.0 * image - 1.0
lowerCAmelCase__ = torch.from_numpy(_A )
elif isinstance(image[0] , torch.Tensor ):
lowerCAmelCase__ = torch.cat(_A , dim=0 )
return image
def _UpperCAmelCase ( lowerCamelCase__ ) -> Tuple:
"""simple docstring"""
if isinstance(_A , torch.Tensor ):
return mask
elif isinstance(_A , PIL.Image.Image ):
lowerCAmelCase__ = [mask]
if isinstance(mask[0] , PIL.Image.Image ):
lowerCAmelCase__ , lowerCAmelCase__ = mask[0].size
lowerCAmelCase__ , lowerCAmelCase__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
lowerCAmelCase__ = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask]
lowerCAmelCase__ = np.concatenate(_A , axis=0 )
lowerCAmelCase__ = mask.astype(np.floataa ) / 2_55.0
lowerCAmelCase__ = 0
lowerCAmelCase__ = 1
lowerCAmelCase__ = torch.from_numpy(_A )
elif isinstance(mask[0] , torch.Tensor ):
lowerCAmelCase__ = torch.cat(_A , dim=0 )
return mask
class a_ ( _UpperCAmelCase ):
UpperCamelCase_ : UNetaDModel
UpperCamelCase_ : RePaintScheduler
def __init__( self : List[str] , snake_case__ : Optional[int] , snake_case__ : str ):
super().__init__()
self.register_modules(unet=__UpperCamelCase , scheduler=__UpperCamelCase )
@torch.no_grad()
def __call__( self : Any , snake_case__ : Union[torch.Tensor, PIL.Image.Image] , snake_case__ : Union[torch.Tensor, PIL.Image.Image] , snake_case__ : int = 250 , snake_case__ : float = 0.0 , snake_case__ : int = 10 , snake_case__ : int = 10 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , ):
lowerCAmelCase__ = image
lowerCAmelCase__ = _preprocess_image(__UpperCamelCase )
lowerCAmelCase__ = original_image.to(device=self.device , dtype=self.unet.dtype )
lowerCAmelCase__ = _preprocess_mask(__UpperCamelCase )
lowerCAmelCase__ = mask_image.to(device=self.device , dtype=self.unet.dtype )
lowerCAmelCase__ = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(__UpperCamelCase ) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(__UpperCamelCase )}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
lowerCAmelCase__ = original_image.shape
lowerCAmelCase__ = randn_tensor(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , self.device )
lowerCAmelCase__ = eta
lowerCAmelCase__ = self.scheduler.timesteps[0] + 1
lowerCAmelCase__ = generator[0] if isinstance(__UpperCamelCase , __UpperCamelCase ) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
if t < t_last:
# predict the noise residual
lowerCAmelCase__ = self.unet(__UpperCamelCase , __UpperCamelCase ).sample
# compute previous image: x_t -> x_t-1
lowerCAmelCase__ = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
lowerCAmelCase__ = self.scheduler.undo_step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
lowerCAmelCase__ = t
lowerCAmelCase__ = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase__ = self.numpy_to_pil(__UpperCamelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__UpperCamelCase )
| 719 | """simple docstring"""
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class a_ :
def __init__( self : Optional[int] , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=64 , snake_case__ : Any=None ):
lowerCAmelCase__ = np.random.default_rng(snake_case__ )
lowerCAmelCase__ = length
lowerCAmelCase__ = rng.normal(size=(length,) ).astype(np.floataa )
lowerCAmelCase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self : Optional[Any] ):
return self.length
def __getitem__( self : List[str] , snake_case__ : Optional[int] ):
return {"x": self.x[i], "y": self.y[i]}
class a_ ( torch.nn.Module ):
def __init__( self : List[str] , snake_case__ : str=0 , snake_case__ : Dict=0 , snake_case__ : Any=False ):
super().__init__()
lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
lowerCAmelCase__ = True
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Any=None ):
if self.first_batch:
print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" )
lowerCAmelCase__ = False
return x * self.a[0] + self.b[0]
class a_ ( torch.nn.Module ):
def __init__( self : Any , snake_case__ : Union[str, Any]=0 , snake_case__ : Union[str, Any]=0 , snake_case__ : List[Any]=False ):
super().__init__()
lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() )
lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() )
lowerCAmelCase__ = True
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any]=None ):
if self.first_batch:
print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" )
lowerCAmelCase__ = False
return x * self.a + self.b
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 16 ):
"""simple docstring"""
from datasets import load_dataset
from transformers import AutoTokenizer
lowerCAmelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" )
lowerCAmelCase__ = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
lowerCAmelCase__ = load_dataset("""csv""" , data_files=lowerCamelCase__ )
lowerCAmelCase__ = datasets["""train"""].unique("""label""" )
lowerCAmelCase__ = {v: i for i, v in enumerate(lowerCamelCase__ )}
def tokenize_function(lowerCamelCase__ ):
# max_length=None => use the model max length (it's actually the default)
lowerCAmelCase__ = tokenizer(
examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" )
if "label" in examples:
lowerCAmelCase__ = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
lowerCAmelCase__ = datasets.map(
lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , )
def collate_fn(lowerCamelCase__ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
lowerCAmelCase__ = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=2 )
lowerCAmelCase__ = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 674 | 0 |
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
__lowerCAmelCase : Tuple = """__DUMMY_TRANSFORMERS_USER__"""
__lowerCAmelCase : Dict = """Dummy User"""
__lowerCAmelCase : Union[str, Any] = """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"""
__lowerCAmelCase : Union[str, Any] = """https://hub-ci.huggingface.co"""
__lowerCAmelCase : List[Any] = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}"""
__lowerCAmelCase : Union[str, Any] = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}"""
__lowerCAmelCase : List[Any] = Path("~/.huggingface/hub_ci_token").expanduser()
@pytest.fixture
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
monkeypatch.setattr(
"""huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , lowerCamelCase__ )
@pytest.fixture
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , lowerCamelCase__ )
monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , lowerCamelCase__ )
@pytest.fixture
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , lowerCamelCase__ )
@pytest.fixture
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
HfFolder.save_token(lowerCamelCase__ )
yield
HfFolder.delete_token()
@pytest.fixture(scope="""session""" )
def _UpperCAmelCase ( ):
"""simple docstring"""
return HfApi(endpoint=lowerCamelCase__ )
@pytest.fixture(scope="""session""" )
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
A = HfFolder.get_token()
HfFolder.save_token(lowerCamelCase__ )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(lowerCamelCase__ )
@pytest.fixture
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
def _cleanup_repo(lowerCamelCase__ ):
hf_api.delete_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="""dataset""" )
return _cleanup_repo
@pytest.fixture
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
@contextmanager
def _temporary_repo(lowerCamelCase__ ):
try:
yield repo_id
finally:
cleanup_repo(lowerCamelCase__ )
return _temporary_repo
@pytest.fixture(scope="""session""" )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
A = f"""repo_txt_data-{int(time.time() * 10e3 )}"""
A = f"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="""dataset""" , private=lowerCamelCase__ )
hf_api.upload_file(
token=lowerCamelCase__ , path_or_fileobj=str(lowerCamelCase__ ) , path_in_repo="""data/text_data.txt""" , repo_id=lowerCamelCase__ , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="""session""" )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
A = f"""repo_zipped_txt_data-{int(time.time() * 10e3 )}"""
A = f"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="""dataset""" , private=lowerCamelCase__ )
hf_api.upload_file(
token=lowerCamelCase__ , path_or_fileobj=str(lowerCamelCase__ ) , path_in_repo="""data.zip""" , repo_id=lowerCamelCase__ , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="""session""" )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
A = f"""repo_zipped_img_data-{int(time.time() * 10e3 )}"""
A = f"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="""dataset""" , private=lowerCamelCase__ )
hf_api.upload_file(
token=lowerCamelCase__ , path_or_fileobj=str(lowerCamelCase__ ) , path_in_repo="""data.zip""" , repo_id=lowerCamelCase__ , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
return hf_private_dataset_repo_zipped_img_data_
| 720 | """simple docstring"""
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = MobileBertConfig.from_json_file(lowerCamelCase__ )
print(f"""Building PyTorch model from configuration: {config}""" )
lowerCAmelCase__ = MobileBertForPreTraining(lowerCamelCase__ )
# Load weights from tf checkpoint
lowerCAmelCase__ = load_tf_weights_in_mobilebert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , lowerCamelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--mobilebert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained MobileBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__lowerCAmelCase : Optional[int] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 674 | 0 |
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__)
__lowerCAmelCase : str = ['''model.decoder.embed_positions.weights''']
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
if "emb" in name:
lowerCAmelCase__ = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
lowerCAmelCase__ = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
lowerCAmelCase__ = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
lowerCAmelCase__ = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
lowerCAmelCase__ = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
lowerCAmelCase__ = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
lowerCAmelCase__ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
lowerCAmelCase__ = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
lowerCAmelCase__ = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
lowerCAmelCase__ = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
lowerCAmelCase__ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = list(state_dict.keys() )
lowerCAmelCase__ = {}
for key in keys:
lowerCAmelCase__ = state_dict.pop(__UpperCamelCase )
lowerCAmelCase__ = rename_keys(__UpperCamelCase )
if "in_proj_weight" in key:
# split fused qkv proj
lowerCAmelCase__ = val[:hidden_size, :]
lowerCAmelCase__ = val[hidden_size : 2 * hidden_size, :]
lowerCAmelCase__ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
lowerCAmelCase__ = val
else:
lowerCAmelCase__ = val
return state_dict, enc_dec_proj_state_dict
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
if checkpoint == "small":
# default config values
lowerCAmelCase__ = 1024
lowerCAmelCase__ = 24
lowerCAmelCase__ = 16
elif checkpoint == "medium":
lowerCAmelCase__ = 1536
lowerCAmelCase__ = 48
lowerCAmelCase__ = 24
elif checkpoint == "large":
lowerCAmelCase__ = 2048
lowerCAmelCase__ = 48
lowerCAmelCase__ = 32
else:
raise ValueError(f"""Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.""" )
lowerCAmelCase__ = MusicgenDecoderConfig(
hidden_size=__UpperCamelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=__UpperCamelCase , num_attention_heads=__UpperCamelCase , )
return config
@torch.no_grad()
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="cpu" ):
"""simple docstring"""
lowerCAmelCase__ = MusicGen.get_pretrained(__UpperCamelCase , device=__UpperCamelCase )
lowerCAmelCase__ = decoder_config_from_checkpoint(__UpperCamelCase )
lowerCAmelCase__ = fairseq_model.lm.state_dict()
lowerCAmelCase__ = rename_state_dict(
__UpperCamelCase , hidden_size=decoder_config.hidden_size )
lowerCAmelCase__ = TaEncoderModel.from_pretrained("""t5-base""" )
lowerCAmelCase__ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
lowerCAmelCase__ = MusicgenForCausalLM(__UpperCamelCase ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
lowerCAmelCase__ = decoder.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(__UpperCamelCase )
if len(__UpperCamelCase ) > 0:
raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" )
if len(__UpperCamelCase ) > 0:
raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
lowerCAmelCase__ = MusicgenForConditionalGeneration(text_encoder=__UpperCamelCase , audio_encoder=__UpperCamelCase , decoder=__UpperCamelCase )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(__UpperCamelCase )
# check we can do a forward pass
lowerCAmelCase__ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
lowerCAmelCase__ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
lowerCAmelCase__ = model(input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase ).logits
if logits.shape != (8, 1, 2048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
lowerCAmelCase__ = AutoTokenizer.from_pretrained("""t5-base""" )
lowerCAmelCase__ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
lowerCAmelCase__ = MusicgenProcessor(feature_extractor=__UpperCamelCase , tokenizer=__UpperCamelCase )
# set the appropriate bos/pad token ids
lowerCAmelCase__ = 2048
lowerCAmelCase__ = 2048
# set other default generation config params
lowerCAmelCase__ = int(30 * audio_encoder.config.frame_rate )
lowerCAmelCase__ = True
lowerCAmelCase__ = 3.0
if pytorch_dump_folder is not None:
Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase )
logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(__UpperCamelCase )
processor.save_pretrained(__UpperCamelCase )
if repo_id:
logger.info(f"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(__UpperCamelCase )
processor.push_to_hub(__UpperCamelCase )
if __name__ == "__main__":
__lowerCAmelCase : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
__lowerCAmelCase : List[str] = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 721 | """simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), f"""The input value of [n={number}] is not an integer"""
if number == 1:
return 2
elif number < 1:
lowerCAmelCase__ = f"""The input value of [n={number}] has to be > 0"""
raise ValueError(lowerCamelCase__ )
else:
lowerCAmelCase__ = sylvester(number - 1 )
lowerCAmelCase__ = num - 1
lowerCAmelCase__ = num
return lower * upper + 1
if __name__ == "__main__":
print(F"The 8th number in Sylvester's sequence: {sylvester(8)}")
| 674 | 0 |
"""simple docstring"""
import unittest
from transformers import AutoTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
if is_flax_available():
import jax.numpy as jnp
from transformers import FlaxXLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_flax
class a_ ( unittest.TestCase ):
@slow
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
lowerCAmelCase__ = FlaxXLMRobertaModel.from_pretrained("""xlm-roberta-base""" )
lowerCAmelCase__ = AutoTokenizer.from_pretrained("""xlm-roberta-base""" )
lowerCAmelCase__ = """The dog is cute and lives in the garden house"""
lowerCAmelCase__ = jnp.array([tokenizer.encode(A_ )] )
lowerCAmelCase__ = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim
lowerCAmelCase__ = jnp.array(
[[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] )
lowerCAmelCase__ = model(A_ )["""last_hidden_state"""]
self.assertEqual(output.shape , A_ )
# compare the actual values for a slice of last dim
self.assertTrue(jnp.allclose(output[:, :, -1] , A_ , atol=1E-3 ) )
| 700 | """simple docstring"""
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__lowerCAmelCase : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model")
@require_sentencepiece
@require_tokenizers
class a_ ( __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : Tuple = PegasusTokenizer
UpperCamelCase_ : Any = PegasusTokenizerFast
UpperCamelCase_ : int = True
UpperCamelCase_ : Any = True
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase__ = PegasusTokenizer(snake_case__ )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : Optional[Any] ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any] ):
return ("This is a test", "This is a test")
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = """</s>"""
lowerCAmelCase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(snake_case__ ) , 1103 )
def _SCREAMING_SNAKE_CASE ( self : Any ):
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowerCAmelCase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
lowerCAmelCase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1]
lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 96103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
lowerCAmelCase__ = """To ensure a smooth flow of bank resolutions."""
lowerCAmelCase__ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1]
lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = ["""This is going to be way too long.""" * 150, """short example"""]
lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""]
lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
lowerCAmelCase__ = self._large_tokenizer(
text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(snake_case__ ) == 2 # input_ids, attention_mask.
@slow
def _SCREAMING_SNAKE_CASE ( self : str ):
# fmt: off
lowerCAmelCase__ = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class a_ ( __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : str = PegasusTokenizer
UpperCamelCase_ : Optional[int] = PegasusTokenizerFast
UpperCamelCase_ : Union[str, Any] = True
UpperCamelCase_ : Optional[int] = True
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase__ = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Dict ):
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : List[Any] ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Dict ):
return ("This is a test", "This is a test")
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0]
self.assertListEqual(snake_case__ , snake_case__ )
@require_torch
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = ["""This is going to be way too long.""" * 1000, """short example"""]
lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""]
lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
lowerCAmelCase__ = self._large_tokenizer(
text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(snake_case__ ) == 2 # input_ids, attention_mask.
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
lowerCAmelCase__ = self._large_tokenizer(snake_case__ ).input_ids
self.assertListEqual(
snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
| 674 | 0 |
"""simple docstring"""
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
__lowerCAmelCase : Tuple = {"LayoutLMv2Config", "LayoutLMv3Config"}
@is_pipeline_test
class a_ ( unittest.TestCase ):
UpperCamelCase_ : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
UpperCamelCase_ : Optional[int] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
UpperCamelCase_ : Any = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
UpperCamelCase_ : int = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def _SCREAMING_SNAKE_CASE ( self : str ):
lowerCAmelCase__ = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" )
lowerCAmelCase__ = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
lowerCAmelCase__ = text_classifier("""This is great !""" , top_k=2 )
self.assertEqual(
nested_simplify(snake_case__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] )
lowerCAmelCase__ = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 )
self.assertEqual(
nested_simplify(snake_case__ ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
lowerCAmelCase__ = text_classifier("""This is great !""" , top_k=1 )
self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
# Legacy behavior
lowerCAmelCase__ = text_classifier("""This is great !""" , return_all_scores=snake_case__ )
self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
lowerCAmelCase__ = text_classifier("""This is great !""" , return_all_scores=snake_case__ )
self.assertEqual(
nested_simplify(snake_case__ ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] )
lowerCAmelCase__ = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=snake_case__ )
self.assertEqual(
nested_simplify(snake_case__ ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
lowerCAmelCase__ = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=snake_case__ )
self.assertEqual(
nested_simplify(snake_case__ ) , [
{"""label""": """LABEL_0""", """score""": 0.504},
{"""label""": """LABEL_0""", """score""": 0.504},
] , )
@require_torch
def _SCREAMING_SNAKE_CASE ( self : str ):
import torch
lowerCAmelCase__ = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , )
lowerCAmelCase__ = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@require_tf
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" )
lowerCAmelCase__ = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@slow
@require_torch
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = pipeline("""text-classification""" )
lowerCAmelCase__ = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
lowerCAmelCase__ = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
lowerCAmelCase__ = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
@slow
@require_tf
def _SCREAMING_SNAKE_CASE ( self : str ):
lowerCAmelCase__ = pipeline("""text-classification""" , framework="""tf""" )
lowerCAmelCase__ = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
lowerCAmelCase__ = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
lowerCAmelCase__ = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[str] ):
lowerCAmelCase__ = TextClassificationPipeline(model=snake_case__ , tokenizer=snake_case__ )
return text_classifier, ["HuggingFace is in", "This is another test"]
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Tuple , snake_case__ : Dict ):
lowerCAmelCase__ = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
lowerCAmelCase__ = """HuggingFace is in"""
lowerCAmelCase__ = text_classifier(snake_case__ )
self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": ANY(snake_case__ ), """score""": ANY(snake_case__ )}] )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
lowerCAmelCase__ = ["""HuggingFace is in """, """Paris is in France"""]
lowerCAmelCase__ = text_classifier(snake_case__ )
self.assertEqual(
nested_simplify(snake_case__ ) , [{"""label""": ANY(snake_case__ ), """score""": ANY(snake_case__ )}, {"""label""": ANY(snake_case__ ), """score""": ANY(snake_case__ )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
lowerCAmelCase__ = text_classifier(snake_case__ , top_k=snake_case__ )
lowerCAmelCase__ = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(snake_case__ ) , [[{"""label""": ANY(snake_case__ ), """score""": ANY(snake_case__ )}] * N, [{"""label""": ANY(snake_case__ ), """score""": ANY(snake_case__ )}] * N] , )
lowerCAmelCase__ = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""}
lowerCAmelCase__ = text_classifier(snake_case__ )
self.assertEqual(
nested_simplify(snake_case__ ) , {"""label""": ANY(snake_case__ ), """score""": ANY(snake_case__ )} , )
self.assertTrue(outputs["""label"""] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
lowerCAmelCase__ = [["""HuggingFace is in """, """Paris is in France"""]]
with self.assertRaises(snake_case__ ):
text_classifier(snake_case__ )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
lowerCAmelCase__ = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] )
self.assertEqual(
nested_simplify(snake_case__ ) , [{"""label""": ANY(snake_case__ ), """score""": ANY(snake_case__ )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
| 701 | """simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , )
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue_model_parallelism.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
] )
class a_ ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : int ):
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case__ , )
assert hasattr(self , """env""" )
def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] ):
# configuration for running training on smdistributed Model Parallel
lowerCAmelCase__ = {
"""enabled""": True,
"""processes_per_host""": 8,
}
lowerCAmelCase__ = {
"""enabled""": True,
"""parameters""": {
"""microbatches""": 4,
"""placement_strategy""": """spread""",
"""pipeline""": """interleaved""",
"""optimize""": """speed""",
"""partitions""": 4,
"""ddp""": True,
},
}
lowerCAmelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options}
lowerCAmelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer"""
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={
**self.env.hyperparameters,
"""model_name_or_path""": self.model_name_or_path,
"""max_steps""": 500,
} , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="""py36""" , )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str ):
TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] ):
# create estimator
lowerCAmelCase__ = self.create_estimator(snake_case__ )
# run training
estimator.fit()
# result dataframe
lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] )
lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
lowerCAmelCase__ = (
Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy )
assert all(t <= self.results["""eval_loss"""] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile:
json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case__ )
| 674 | 0 |
"""simple docstring"""
import logging
import math
import os
from dataclasses import dataclass, field
from glob import glob
from typing import Optional
from torch.utils.data import ConcatDataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForWholeWordMask,
HfArgumentParser,
LineByLineTextDataset,
LineByLineWithRefDataset,
PreTrainedTokenizer,
TextDataset,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__lowerCAmelCase = logging.getLogger(__name__)
__lowerCAmelCase = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
__lowerCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class a_ :
UpperCamelCase_ : int = field(
default=__UpperCamelCase , metadata={
"help": (
"The model checkpoint for weights initialization. Leave None if you want to train a model from"
" scratch."
)
} , )
UpperCamelCase_ : int = field(
default=__UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(__UpperCamelCase )} , )
UpperCamelCase_ : Dict = field(
default=__UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
UpperCamelCase_ : Any = field(
default=__UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
UpperCamelCase_ : Optional[Any] = field(
default=__UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
@dataclass
class a_ :
UpperCamelCase_ : Union[str, Any] = field(
default=__UpperCamelCase , metadata={"help": "The input training data file (a text file)."} )
UpperCamelCase_ : Optional[int] = field(
default=__UpperCamelCase , metadata={
"help": (
"The input training data files (multiple files in glob format). "
"Very often splitting large files to smaller files can prevent tokenizer going out of memory"
)
} , )
UpperCamelCase_ : List[str] = field(
default=__UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
UpperCamelCase_ : List[Any] = field(
default=__UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , )
UpperCamelCase_ : Optional[int] = field(
default=__UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , )
UpperCamelCase_ : Any = field(
default=__UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , )
UpperCamelCase_ : List[Any] = field(
default=__UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} )
UpperCamelCase_ : Union[str, Any] = field(default=__UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."} )
UpperCamelCase_ : Optional[Any] = field(
default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} )
UpperCamelCase_ : Any = field(
default=1 / 6 , metadata={
"help": (
"Ratio of length of a span of masked tokens to surrounding context length for permutation language"
" modeling."
)
} , )
UpperCamelCase_ : int = field(
default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} )
UpperCamelCase_ : List[str] = field(
default=-1 , metadata={
"help": (
"Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens)."
)
} , )
UpperCamelCase_ : List[Any] = field(
default=__UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} )
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False , lowerCamelCase__ = None , ):
"""simple docstring"""
def _dataset(lowerCamelCase__ , lowerCamelCase__=None ):
if args.line_by_line:
if ref_path is not None:
if not args.whole_word_mask or not args.mlm:
raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" )
return LineByLineWithRefDataset(
tokenizer=lowerCamelCase__ , file_path=lowerCamelCase__ , block_size=args.block_size , ref_path=lowerCamelCase__ , )
return LineByLineTextDataset(tokenizer=lowerCamelCase__ , file_path=lowerCamelCase__ , block_size=args.block_size )
else:
return TextDataset(
tokenizer=lowerCamelCase__ , file_path=lowerCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase__ , )
if evaluate:
return _dataset(args.eval_data_file , args.eval_ref_file )
elif args.train_data_files:
return ConcatDataset([_dataset(lowerCamelCase__ ) for f in glob(args.train_data_files )] )
else:
return _dataset(args.train_data_file , args.train_ref_file )
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_args_into_dataclasses()
if data_args.eval_data_file is None and training_args.do_eval:
raise ValueError(
"""Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """
"""or remove the --do_eval argument.""" )
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
""" --overwrite_output_dir to overcome.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("""Training/evaluation parameters %s""" , lowerCamelCase__ )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.config_name:
lowerCAmelCase__ = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
lowerCAmelCase__ = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
lowerCAmelCase__ = CONFIG_MAPPING[model_args.model_type]()
logger.warning("""You are instantiating a new config instance from scratch.""" )
if model_args.tokenizer_name:
lowerCAmelCase__ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
lowerCAmelCase__ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
raise ValueError(
"""You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another"""
""" script, save it,and load it from here, using --tokenizer_name""" )
if model_args.model_name_or_path:
lowerCAmelCase__ = AutoModelWithLMHead.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , )
else:
logger.info("""Training new model from scratch""" )
lowerCAmelCase__ = AutoModelWithLMHead.from_config(lowerCamelCase__ )
model.resize_token_embeddings(len(lowerCamelCase__ ) )
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
raise ValueError(
"""BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the"""
"""--mlm flag (masked language modeling).""" )
if data_args.block_size <= 0:
lowerCAmelCase__ = tokenizer.max_len
# Our input block size will be the max possible for the model
else:
lowerCAmelCase__ = min(data_args.block_size , tokenizer.max_len )
# Get datasets
lowerCAmelCase__ = (
get_dataset(lowerCamelCase__ , tokenizer=lowerCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None
)
lowerCAmelCase__ = (
get_dataset(lowerCamelCase__ , tokenizer=lowerCamelCase__ , evaluate=lowerCamelCase__ , cache_dir=model_args.cache_dir )
if training_args.do_eval
else None
)
if config.model_type == "xlnet":
lowerCAmelCase__ = DataCollatorForPermutationLanguageModeling(
tokenizer=lowerCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , )
else:
if data_args.mlm and data_args.whole_word_mask:
lowerCAmelCase__ = DataCollatorForWholeWordMask(
tokenizer=lowerCamelCase__ , mlm_probability=data_args.mlm_probability )
else:
lowerCAmelCase__ = DataCollatorForLanguageModeling(
tokenizer=lowerCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
lowerCAmelCase__ = Trainer(
model=lowerCamelCase__ , args=lowerCamelCase__ , data_collator=lowerCamelCase__ , train_dataset=lowerCamelCase__ , eval_dataset=lowerCamelCase__ , prediction_loss_only=lowerCamelCase__ , )
# Training
if training_args.do_train:
lowerCAmelCase__ = (
model_args.model_name_or_path
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path )
else None
)
trainer.train(model_path=lowerCamelCase__ )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
lowerCAmelCase__ = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
lowerCAmelCase__ = trainer.evaluate()
lowerCAmelCase__ = math.exp(eval_output["""eval_loss"""] )
lowerCAmelCase__ = {"""perplexity""": perplexity}
lowerCAmelCase__ = os.path.join(training_args.output_dir , """eval_results_lm.txt""" )
if trainer.is_world_master():
with open(lowerCamelCase__ , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key in sorted(result.keys() ):
logger.info(""" %s = %s""" , lowerCamelCase__ , str(result[key] ) )
writer.write("""%s = %s\n""" % (key, str(result[key] )) )
results.update(lowerCamelCase__ )
return results
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 702 | """simple docstring"""
from math import pi, sqrt
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
if num <= 0:
raise ValueError("""math domain error""" )
if num > 1_71.5:
raise OverflowError("""math range error""" )
elif num - int(lowerCamelCase__ ) not in (0, 0.5):
raise NotImplementedError("""num must be an integer or a half-integer""" )
elif num == 0.5:
return sqrt(lowerCamelCase__ )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def _UpperCAmelCase ( ):
"""simple docstring"""
assert gamma(0.5 ) == sqrt(lowerCamelCase__ )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
__lowerCAmelCase : Dict = 1.0
while num:
__lowerCAmelCase : Any = float(input("Gamma of: "))
print(F"gamma({num}) = {gamma(num)}")
print("\nEnter 0 to exit...")
| 674 | 0 |
"""simple docstring"""
class a_ :
def __init__( self : Tuple ):
lowerCAmelCase__ = {}
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
print(self.vertex )
for i in self.vertex:
print(__A , """ -> """ , """ -> """.join([str(__A ) for j in self.vertex[i]] ) )
def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : int , snake_case__ : int ):
# check if vertex is already present,
if from_vertex in self.vertex:
self.vertex[from_vertex].append(__A )
else:
# else make a new vertex
lowerCAmelCase__ = [to_vertex]
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
# visited array for storing already visited nodes
lowerCAmelCase__ = [False] * len(self.vertex )
# call the recursive helper function
for i in range(len(self.vertex ) ):
if not visited[i]:
self.dfs_recursive(__A , __A )
def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : int , snake_case__ : list ):
# mark start vertex as visited
lowerCAmelCase__ = True
print(__A , end=""" """ )
# Recur for all the vertices that are adjacent to this node
for i in self.vertex:
if not visited[i]:
self.dfs_recursive(__A , __A )
if __name__ == "__main__":
__lowerCAmelCase : str = Graph()
g.add_edge(0, 1)
g.add_edge(0, 2)
g.add_edge(1, 2)
g.add_edge(2, 0)
g.add_edge(2, 3)
g.add_edge(3, 3)
g.print_graph()
print("DFS:")
g.dfs()
# OUTPUT:
# 0 -> 1 -> 2
# 1 -> 2
# 2 -> 0 -> 3
# 3 -> 3
# DFS:
# 0 1 2 3
| 703 | """simple docstring"""
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class a_ :
def __init__( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any=13 , snake_case__ : int=30 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : Dict=True , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=32 , snake_case__ : List[str]=2 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[int]=37 , snake_case__ : Tuple="gelu" , snake_case__ : str=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=10 , snake_case__ : Dict=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : str=None , snake_case__ : List[Any]=2 , ):
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = image_size
lowerCAmelCase__ = patch_size
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = type_sequence_label_size
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = scope
lowerCAmelCase__ = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
lowerCAmelCase__ = (image_size // patch_size) ** 2
lowerCAmelCase__ = num_patches + 2
def _SCREAMING_SNAKE_CASE ( self : Any ):
lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase__ = None
if self.use_labels:
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase__ = self.get_config()
return config, pixel_values, labels
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[str] ):
lowerCAmelCase__ = TFDeiTModel(config=snake_case__ )
lowerCAmelCase__ = model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict ):
lowerCAmelCase__ = TFDeiTForMaskedImageModeling(config=snake_case__ )
lowerCAmelCase__ = model(snake_case__ )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
lowerCAmelCase__ = 1
lowerCAmelCase__ = TFDeiTForMaskedImageModeling(snake_case__ )
lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCAmelCase__ = model(snake_case__ )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple ):
lowerCAmelCase__ = self.type_sequence_label_size
lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ )
lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
lowerCAmelCase__ = 1
lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ )
lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = self.prepare_config_and_inputs()
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs
lowerCAmelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ):
UpperCamelCase_ : Optional[Any] = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
UpperCamelCase_ : Any = (
{
"feature-extraction": TFDeiTModel,
"image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
UpperCamelCase_ : Optional[Any] = False
UpperCamelCase_ : Optional[Any] = False
UpperCamelCase_ : Optional[int] = False
UpperCamelCase_ : int = False
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
lowerCAmelCase__ = TFDeiTModelTester(self )
lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""DeiT does not use inputs_embeds""" )
def _SCREAMING_SNAKE_CASE ( self : Any ):
pass
def _SCREAMING_SNAKE_CASE ( self : str ):
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
lowerCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Dense ) )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ = model_class(snake_case__ )
lowerCAmelCase__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase__ = [*signature.parameters.keys()]
lowerCAmelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int ):
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any]=False ):
lowerCAmelCase__ = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def _SCREAMING_SNAKE_CASE ( self : Any ):
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase__ = TFDeiTModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def _UpperCAmelCase ( ):
"""simple docstring"""
lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class a_ ( unittest.TestCase ):
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Any ):
return (
DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" )
if is_vision_available()
else None
)
@slow
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
lowerCAmelCase__ = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" )
lowerCAmelCase__ = self.default_image_processor
lowerCAmelCase__ = prepare_img()
lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors="""tf""" )
# forward pass
lowerCAmelCase__ = model(**snake_case__ )
# verify the logits
lowerCAmelCase__ = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , snake_case__ )
lowerCAmelCase__ = tf.constant([-1.0266, 0.1912, -1.2861] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
| 674 | 0 |
"""simple docstring"""
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin, SchedulerOutput
@dataclass
class a_ ( lowercase__ ):
'''simple docstring'''
UpperCamelCase_ : int = 42
UpperCamelCase_ : str = 42
class a_ ( lowercase__ , lowercase__ ):
'''simple docstring'''
UpperCamelCase_ : str = 1
@register_to_config
def __init__( self : Dict , snake_case__ : int = 2000 , snake_case__ : float = 0.15 , snake_case__ : float = 0.01 , snake_case__ : float = 1348.0 , snake_case__ : float = 1E-5 , snake_case__ : int = 1 , ):
# standard deviation of the initial noise distribution
lowerCAmelCase__ = sigma_max
# setable values
lowerCAmelCase__ = None
self.set_sigmas(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : torch.FloatTensor , snake_case__ : Optional[int] = None ):
return sample
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : int , snake_case__ : float = None , snake_case__ : Union[str, torch.device] = None ):
lowerCAmelCase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps
lowerCAmelCase__ = torch.linspace(1 , snake_case__ , snake_case__ , device=snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : int , snake_case__ : float = None , snake_case__ : float = None , snake_case__ : float = None ):
lowerCAmelCase__ = sigma_min if sigma_min is not None else self.config.sigma_min
lowerCAmelCase__ = sigma_max if sigma_max is not None else self.config.sigma_max
lowerCAmelCase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps
if self.timesteps is None:
self.set_timesteps(snake_case__ , snake_case__ )
lowerCAmelCase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
lowerCAmelCase__ = torch.exp(torch.linspace(math.log(snake_case__ ) , math.log(snake_case__ ) , snake_case__ ) )
lowerCAmelCase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str , snake_case__ : Tuple ):
return torch.where(
timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Optional[torch.Generator] = None , snake_case__ : bool = True , ):
if self.timesteps is None:
raise ValueError(
"""`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" )
lowerCAmelCase__ = timestep * torch.ones(
sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0])
lowerCAmelCase__ = (timestep * (len(self.timesteps ) - 1)).long()
# mps requires indices to be in the same device, so we use cpu as is the default with cuda
lowerCAmelCase__ = timesteps.to(self.discrete_sigmas.device )
lowerCAmelCase__ = self.discrete_sigmas[timesteps].to(sample.device )
lowerCAmelCase__ = self.get_adjacent_sigma(snake_case__ , snake_case__ ).to(sample.device )
lowerCAmelCase__ = torch.zeros_like(snake_case__ )
lowerCAmelCase__ = (sigma**2 - adjacent_sigma**2) ** 0.5
# equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
# also equation 47 shows the analog from SDE models to ancestral sampling methods
lowerCAmelCase__ = diffusion.flatten()
while len(diffusion.shape ) < len(sample.shape ):
lowerCAmelCase__ = diffusion.unsqueeze(-1 )
lowerCAmelCase__ = drift - diffusion**2 * model_output
# equation 6: sample noise for the diffusion term of
lowerCAmelCase__ = randn_tensor(
sample.shape , layout=sample.layout , generator=snake_case__ , device=sample.device , dtype=sample.dtype )
lowerCAmelCase__ = sample - drift # subtract because `dt` is a small negative timestep
# TODO is the variable diffusion the correct scaling term for the noise?
lowerCAmelCase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g
if not return_dict:
return (prev_sample, prev_sample_mean)
return SdeVeOutput(prev_sample=snake_case__ , prev_sample_mean=snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : Optional[torch.Generator] = None , snake_case__ : bool = True , ):
if self.timesteps is None:
raise ValueError(
"""`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" )
# For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
# sample noise for correction
lowerCAmelCase__ = randn_tensor(sample.shape , layout=sample.layout , generator=snake_case__ ).to(sample.device )
# compute step size from the model_output, the noise, and the snr
lowerCAmelCase__ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean()
lowerCAmelCase__ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean()
lowerCAmelCase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
lowerCAmelCase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device )
# self.repeat_scalar(step_size, sample.shape[0])
# compute corrected sample: model_output term and noise term
lowerCAmelCase__ = step_size.flatten()
while len(step_size.shape ) < len(sample.shape ):
lowerCAmelCase__ = step_size.unsqueeze(-1 )
lowerCAmelCase__ = sample + step_size * model_output
lowerCAmelCase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , ):
# Make sure sigmas and timesteps have the same device and dtype as original_samples
lowerCAmelCase__ = timesteps.to(original_samples.device )
lowerCAmelCase__ = self.discrete_sigmas.to(original_samples.device )[timesteps]
lowerCAmelCase__ = (
noise * sigmas[:, None, None, None]
if noise is not None
else torch.randn_like(snake_case__ ) * sigmas[:, None, None, None]
)
lowerCAmelCase__ = noise + original_samples
return noisy_samples
def __len__( self : Dict ):
return self.config.num_train_timesteps
| 704 | """simple docstring"""
from __future__ import annotations
from math import gcd
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 3 , ):
"""simple docstring"""
if num < 2:
raise ValueError("""The input value cannot be less than 2""" )
# Because of the relationship between ``f(f(x))`` and ``f(x)``, this
# algorithm struggles to find factors that are divisible by two.
# As a workaround, we specifically check for two and even inputs.
# See: https://math.stackexchange.com/a/2856214/165820
if num > 2 and num % 2 == 0:
return 2
# Pollard's Rho algorithm requires a function that returns pseudorandom
# values between 0 <= X < ``num``. It doesn't need to be random in the
# sense that the output value is cryptographically secure or difficult
# to calculate, it only needs to be random in the sense that all output
# values should be equally likely to appear.
# For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num``
# However, the success of Pollard's algorithm isn't guaranteed and is
# determined in part by the initial seed and the chosen random function.
# To make retries easier, we will instead use ``f(x) = (x**2 + C) % num``
# where ``C`` is a value that we can modify between each attempt.
def rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int:
return (pow(lowerCamelCase__ , 2 ) + step) % modulus
for _ in range(lowerCamelCase__ ):
# These track the position within the cycle detection logic.
lowerCAmelCase__ = seed
lowerCAmelCase__ = seed
while True:
# At each iteration, the tortoise moves one step and the hare moves two.
lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# At some point both the tortoise and the hare will enter a cycle whose
# length ``p`` is a divisor of ``num``. Once in that cycle, at some point
# the tortoise and hare will end up on the same value modulo ``p``.
# We can detect when this happens because the position difference between
# the tortoise and the hare will share a common divisor with ``num``.
lowerCAmelCase__ = gcd(hare - tortoise , lowerCamelCase__ )
if divisor == 1:
# No common divisor yet, just keep searching.
continue
else:
# We found a common divisor!
if divisor == num:
# Unfortunately, the divisor is ``num`` itself and is useless.
break
else:
# The divisor is a nontrivial factor of ``num``!
return divisor
# If we made it here, then this attempt failed.
# We need to pick a new starting seed for the tortoise and hare
# in addition to a new step value for the random function.
# To keep this example implementation deterministic, the
# new values will be generated based on currently available
# values instead of using something like ``random.randint``.
# We can use the hare's position as the new seed.
# This is actually what Richard Brent's the "optimized" variant does.
lowerCAmelCase__ = hare
# The new step value for the random function can just be incremented.
# At first the results will be similar to what the old function would
# have produced, but the value will quickly diverge after a bit.
step += 1
# We haven't found a divisor within the requested number of attempts.
# We were unlucky or ``num`` itself is actually prime.
return None
if __name__ == "__main__":
import argparse
__lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"num",
type=int,
help="The value to find a divisor of",
)
parser.add_argument(
"--attempts",
type=int,
default=3,
help="The number of attempts before giving up",
)
__lowerCAmelCase : List[str] = parser.parse_args()
__lowerCAmelCase : Dict = pollard_rho(args.num, attempts=args.attempts)
if divisor is None:
print(F"{args.num} is probably prime")
else:
__lowerCAmelCase : List[str] = args.num // divisor
print(F"{args.num} = {divisor} * {quotient}")
| 674 | 0 |
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def _UpperCAmelCase ( lowerCAmelCase_ ):
"""simple docstring"""
if (
(cp >= 0X4e00 and cp <= 0X9fff)
or (cp >= 0X3400 and cp <= 0X4dbf) #
or (cp >= 0X20000 and cp <= 0X2a6df) #
or (cp >= 0X2a700 and cp <= 0X2b73f) #
or (cp >= 0X2b740 and cp <= 0X2b81f) #
or (cp >= 0X2b820 and cp <= 0X2ceaf) #
or (cp >= 0Xf900 and cp <= 0Xfaff)
or (cp >= 0X2f800 and cp <= 0X2fa1f) #
): #
return True
return False
def _UpperCAmelCase ( lowerCAmelCase_ ):
"""simple docstring"""
for char in word:
lowerCAmelCase__ = ord(lowerCAmelCase_ )
if not _is_chinese_char(lowerCAmelCase_ ):
return 0
return 1
def _UpperCAmelCase ( lowerCAmelCase_ ):
"""simple docstring"""
lowerCAmelCase__ = set()
for token in tokens:
lowerCAmelCase__ = len(lowerCAmelCase_ ) > 1 and is_chinese(lowerCAmelCase_ )
if chinese_word:
word_set.add(lowerCAmelCase_ )
lowerCAmelCase__ = list(lowerCAmelCase_ )
return word_list
def _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
lowerCAmelCase__ = max([len(lowerCAmelCase_ ) for w in chinese_word_set] )
lowerCAmelCase__ = bert_tokens
lowerCAmelCase__ = 0, len(lowerCAmelCase_ )
while start < end:
lowerCAmelCase__ = True
if is_chinese(bert_word[start] ):
lowerCAmelCase__ = min(end - start , lowerCAmelCase_ )
for i in range(lowerCAmelCase_ , 1 , -1 ):
lowerCAmelCase__ = """""".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowerCAmelCase__ = """##""" + bert_word[j]
lowerCAmelCase__ = start + i
lowerCAmelCase__ = False
break
if single_word:
start += 1
return bert_word
def _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
lowerCAmelCase__ = []
for i in range(0 , len(lowerCAmelCase_ ) , 100 ):
lowerCAmelCase__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws
lowerCAmelCase__ = [get_chinese_word(lowerCAmelCase_ ) for r in res]
ltp_res.extend(lowerCAmelCase_ )
assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ )
lowerCAmelCase__ = []
for i in range(0 , len(lowerCAmelCase_ ) , 100 ):
lowerCAmelCase__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=512 )
bert_res.extend(res["""input_ids"""] )
assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ )
lowerCAmelCase__ = []
for input_ids, chinese_word in zip(lowerCAmelCase_ , lowerCAmelCase_ ):
lowerCAmelCase__ = []
for id in input_ids:
lowerCAmelCase__ = bert_tokenizer._convert_id_to_token(lowerCAmelCase_ )
input_tokens.append(lowerCAmelCase_ )
lowerCAmelCase__ = add_sub_symbol(lowerCAmelCase_ , lowerCAmelCase_ )
lowerCAmelCase__ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(lowerCAmelCase_ ):
if token[:2] == "##":
lowerCAmelCase__ = token[2:]
# save chinese tokens' pos
if len(lowerCAmelCase_ ) == 1 and _is_chinese_char(ord(lowerCAmelCase_ ) ):
ref_id.append(lowerCAmelCase_ )
ref_ids.append(lowerCAmelCase_ )
assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ )
return ref_ids
def _UpperCAmelCase ( lowerCAmelCase_ ):
"""simple docstring"""
with open(args.file_name , """r""" , encoding="""utf-8""" ) as f:
lowerCAmelCase__ = f.readlines()
lowerCAmelCase__ = [line.strip() for line in data if len(lowerCAmelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowerCAmelCase__ = LTP(args.ltp ) # faster in GPU device
lowerCAmelCase__ = BertTokenizer.from_pretrained(args.bert )
lowerCAmelCase__ = prepare_ref(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
with open(args.save_path , """w""" , encoding="""utf-8""" ) as f:
lowerCAmelCase__ = [json.dumps(lowerCAmelCase_ ) + """\n""" for ref in ref_ids]
f.writelines(lowerCAmelCase_ )
if __name__ == "__main__":
__lowerCAmelCase : List[str] = argparse.ArgumentParser(description="prepare_chinese_ref")
parser.add_argument(
"--file_name",
required=False,
type=str,
default="./resources/chinese-demo.txt",
help="file need process, same as training data in lm",
)
parser.add_argument(
"--ltp",
required=False,
type=str,
default="./resources/ltp",
help="resources for LTP tokenizer, usually a path",
)
parser.add_argument(
"--bert",
required=False,
type=str,
default="./resources/robert",
help="resources for Bert tokenizer",
)
parser.add_argument(
"--save_path",
required=False,
type=str,
default="./resources/ref.txt",
help="path to save res",
)
__lowerCAmelCase : List[str] = parser.parse_args()
main(args)
| 705 | """simple docstring"""
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = TapasConfig.from_json_file(lowerCamelCase__ )
# set absolute/relative position embeddings parameter
lowerCAmelCase__ = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ )
elif task == "WTQ":
# run_task_main.py hparams
lowerCAmelCase__ = 4
lowerCAmelCase__ = True
# hparam_utils.py hparams
lowerCAmelCase__ = 0.66_46_94
lowerCAmelCase__ = 0.20_79_51
lowerCAmelCase__ = 0.12_11_94
lowerCAmelCase__ = True
lowerCAmelCase__ = True
lowerCAmelCase__ = False
lowerCAmelCase__ = 0.0_35_25_13
lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
lowerCAmelCase__ = 4
lowerCAmelCase__ = False
# hparam_utils.py hparams
lowerCAmelCase__ = 36.45_19
lowerCAmelCase__ = 0.90_34_21
lowerCAmelCase__ = 2_22.0_88
lowerCAmelCase__ = True
lowerCAmelCase__ = True
lowerCAmelCase__ = True
lowerCAmelCase__ = 0.76_31_41
lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ )
elif task == "TABFACT":
lowerCAmelCase__ = TapasForSequenceClassification(config=lowerCamelCase__ )
elif task == "MLM":
lowerCAmelCase__ = TapasForMaskedLM(config=lowerCamelCase__ )
elif task == "INTERMEDIATE_PRETRAINING":
lowerCAmelCase__ = TapasModel(config=lowerCamelCase__ )
else:
raise ValueError(f"""Task {task} not supported.""" )
print(f"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# Save pytorch-model (weights and configuration)
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(lowerCamelCase__ )
# Save tokenizer files
print(f"""Save tokenizer files to {pytorch_dump_path}""" )
lowerCAmelCase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 )
tokenizer.save_pretrained(lowerCamelCase__ )
print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
__lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA."
)
parser.add_argument(
"--reset_position_index_per_cell",
default=False,
action="store_true",
help="Whether to use relative position embeddings or not. Defaults to True.",
)
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--tapas_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained TAPAS model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__lowerCAmelCase : Union[str, Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 674 | 0 |
"""simple docstring"""
from arguments import InitializationArguments
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
# Configuration
__lowerCAmelCase : str = HfArgumentParser(InitializationArguments)
__lowerCAmelCase : str = parser.parse_args()
# Load codeparrot tokenizer trained for Python code tokenization
__lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name)
# Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks
__lowerCAmelCase : str = {
"vocab_size": len(tokenizer),
"scale_attn_by_inverse_layer_idx": True,
"reorder_and_upcast_attn": True,
}
# Load model config (GPT-2 large in this case)
__lowerCAmelCase : int = AutoConfig.from_pretrained(args.config_name, **config_kwargs)
# Initialize new model with config
__lowerCAmelCase : Any = AutoModelForCausalLM.from_config(config)
# Save model to the hub
model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
| 706 | """simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ = 50 ):
"""simple docstring"""
lowerCAmelCase__ = [[0] * 3 for _ in range(length + 1 )]
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
different_colour_ways_number[row_length][tile_length - 2] += (
different_colour_ways_number[row_length - tile_start - tile_length][
tile_length - 2
]
+ 1
)
return sum(different_colour_ways_number[length] )
if __name__ == "__main__":
print(F"{solution() = }")
| 674 | 0 |
"""simple docstring"""
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class a_ ( unittest.TestCase ):
@parameterized.expand([(None,), ("""foo.json""",)] )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : List[Any] ):
lowerCAmelCase__ = GenerationConfig(
do_sample=__lowerCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__lowerCAmelCase , config_name=__lowerCAmelCase )
lowerCAmelCase__ = GenerationConfig.from_pretrained(__lowerCAmelCase , config_name=__lowerCAmelCase )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , __lowerCAmelCase )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 50 )
self.assertEqual(loaded_config.max_length , 20 )
self.assertEqual(loaded_config.max_time , __lowerCAmelCase )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = AutoConfig.from_pretrained("""gpt2""" )
lowerCAmelCase__ = GenerationConfig.from_model_config(__lowerCAmelCase )
lowerCAmelCase__ = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
lowerCAmelCase__ = GenerationConfig()
lowerCAmelCase__ = {
"""max_new_tokens""": 1024,
"""foo""": """bar""",
}
lowerCAmelCase__ = copy.deepcopy(__lowerCAmelCase )
lowerCAmelCase__ = generation_config.update(**__lowerCAmelCase )
# update_kwargs was not modified (no side effects)
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1024 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(__lowerCAmelCase , {"""foo""": """bar"""} )
def _SCREAMING_SNAKE_CASE ( self : str ):
lowerCAmelCase__ = GenerationConfig()
lowerCAmelCase__ = """bar"""
with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir:
generation_config.save_pretrained(__lowerCAmelCase )
lowerCAmelCase__ = GenerationConfig.from_pretrained(__lowerCAmelCase )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , """bar""" )
lowerCAmelCase__ = GenerationConfig.from_model_config(__lowerCAmelCase )
assert not hasattr(__lowerCAmelCase , """foo""" ) # no new kwargs should be initialized if from config
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
lowerCAmelCase__ = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , __lowerCAmelCase )
self.assertEqual(default_config.num_beams , 1 )
lowerCAmelCase__ = GenerationConfig(
do_sample=__lowerCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , __lowerCAmelCase )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__lowerCAmelCase )
lowerCAmelCase__ = GenerationConfig.from_pretrained(__lowerCAmelCase , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , __lowerCAmelCase )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class a_ ( unittest.TestCase ):
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] ):
lowerCAmelCase__ = TOKEN
HfFolder.save_token(__lowerCAmelCase )
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] ):
try:
delete_repo(token=cls._token , repo_id="""test-generation-config""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" )
except HTTPError:
pass
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
lowerCAmelCase__ = GenerationConfig(
do_sample=__lowerCAmelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("""test-generation-config""" , use_auth_token=self._token )
lowerCAmelCase__ = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id="""test-generation-config""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
__lowerCAmelCase , repo_id="""test-generation-config""" , push_to_hub=__lowerCAmelCase , use_auth_token=self._token )
lowerCAmelCase__ = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) )
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
lowerCAmelCase__ = GenerationConfig(
do_sample=__lowerCAmelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token )
lowerCAmelCase__ = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
__lowerCAmelCase , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=__lowerCAmelCase , use_auth_token=self._token )
lowerCAmelCase__ = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) )
| 707 | """simple docstring"""
import argparse
import os
import gluonnlp as nlp
import mxnet as mx
import numpy as np
import torch
from gluonnlp.base import get_home_dir
from gluonnlp.model.bert import BERTEncoder
from gluonnlp.model.utils import _load_vocab
from gluonnlp.vocab import Vocab
from packaging import version
from torch import nn
from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
if version.parse(nlp.__version__) != version.parse("0.8.3"):
raise Exception("requires gluonnlp == 0.8.3")
if version.parse(mx.__version__) != version.parse("1.5.0"):
raise Exception("requires mxnet == 1.5.0")
logging.set_verbosity_info()
__lowerCAmelCase : Any = logging.get_logger(__name__)
__lowerCAmelCase : Any = "The Nymphenburg Palace is a beautiful palace in Munich!"
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = {
"""attention_cell""": """multi_head""",
"""num_layers""": 4,
"""units""": 1024,
"""hidden_size""": 768,
"""max_length""": 512,
"""num_heads""": 8,
"""scaled""": True,
"""dropout""": 0.1,
"""use_residual""": True,
"""embed_size""": 1024,
"""embed_dropout""": 0.1,
"""word_embed""": None,
"""layer_norm_eps""": 1e-5,
"""token_type_vocab_size""": 2,
}
lowerCAmelCase__ = bort_4_8_768_1024_hparams
# Let's construct the original Bort model here
# Taken from official BERT implementation, see:
# https://github.com/alexa/bort/blob/master/bort/bort.py
lowerCAmelCase__ = BERTEncoder(
attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCamelCase__ , output_all_encodings=lowerCamelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCamelCase__ ) , )
# Vocab information needs to be fetched first
# It's the same as RoBERTa, so RobertaTokenizer can be used later
lowerCAmelCase__ = """openwebtext_ccnews_stories_books_cased"""
# Specify download folder to Gluonnlp's vocab
lowerCAmelCase__ = os.path.join(get_home_dir() , """models""" )
lowerCAmelCase__ = _load_vocab(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , cls=lowerCamelCase__ )
lowerCAmelCase__ = nlp.model.BERTModel(
lowerCamelCase__ , len(lowerCamelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCamelCase__ , use_token_type_embed=lowerCamelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCamelCase__ , use_decoder=lowerCamelCase__ , )
original_bort.load_parameters(lowerCamelCase__ , cast_dtype=lowerCamelCase__ , ignore_extra=lowerCamelCase__ )
lowerCAmelCase__ = original_bort._collect_params_with_prefix()
# Build our config 🤗
lowerCAmelCase__ = {
"""architectures""": ["""BertForMaskedLM"""],
"""attention_probs_dropout_prob""": predefined_args["""dropout"""],
"""hidden_act""": """gelu""",
"""hidden_dropout_prob""": predefined_args["""dropout"""],
"""hidden_size""": predefined_args["""embed_size"""],
"""initializer_range""": 0.02,
"""intermediate_size""": predefined_args["""hidden_size"""],
"""layer_norm_eps""": predefined_args["""layer_norm_eps"""],
"""max_position_embeddings""": predefined_args["""max_length"""],
"""model_type""": """bort""",
"""num_attention_heads""": predefined_args["""num_heads"""],
"""num_hidden_layers""": predefined_args["""num_layers"""],
"""pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa
"""type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa
"""vocab_size""": len(lowerCamelCase__ ),
}
lowerCAmelCase__ = BertConfig.from_dict(lowerCamelCase__ )
lowerCAmelCase__ = BertForMaskedLM(lowerCamelCase__ )
hf_bort_model.eval()
# Parameter mapping table (Gluonnlp to Transformers)
# * denotes layer index
#
# | Gluon Parameter | Transformers Parameter
# | -------------------------------------------------------------- | ----------------------
# | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias`
# | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight`
# | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight`
# | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight`
# | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight`
# | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight`
# | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias`
# | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight`
# Helper function to convert MXNET Arrays to PyTorch
def to_torch(lowerCamelCase__ ) -> nn.Parameter:
return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) )
# Check param shapes and map new HF param back
def check_and_map_params(lowerCamelCase__ , lowerCamelCase__ ):
lowerCAmelCase__ = hf_param.shape
lowerCAmelCase__ = to_torch(params[gluon_param] )
lowerCAmelCase__ = gluon_param.shape
assert (
shape_hf == shape_gluon
), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers"""
return gluon_param
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" )
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" )
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" )
lowerCAmelCase__ = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" )
# Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them)
lowerCAmelCase__ = torch.zeros_like(
hf_bort_model.bert.embeddings.token_type_embeddings.weight.data )
for i in range(hf_bort_config.num_hidden_layers ):
lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i]
# self attention
lowerCAmelCase__ = layer.attention.self
lowerCAmelCase__ = check_and_map_params(
self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" )
# self attention output
lowerCAmelCase__ = layer.attention.output
lowerCAmelCase__ = check_and_map_params(
self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" )
lowerCAmelCase__ = check_and_map_params(
self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" )
lowerCAmelCase__ = check_and_map_params(
self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" )
lowerCAmelCase__ = check_and_map_params(
self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" )
# intermediate
lowerCAmelCase__ = layer.intermediate
lowerCAmelCase__ = check_and_map_params(
intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" )
lowerCAmelCase__ = check_and_map_params(
intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" )
# output
lowerCAmelCase__ = layer.output
lowerCAmelCase__ = check_and_map_params(
bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" )
lowerCAmelCase__ = check_and_map_params(
bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" )
lowerCAmelCase__ = check_and_map_params(
bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" )
lowerCAmelCase__ = check_and_map_params(
bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" )
# Save space and energy 🎄
hf_bort_model.half()
# Compare output of both models
lowerCAmelCase__ = RobertaTokenizer.from_pretrained("""roberta-base""" )
lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ )["""input_ids"""]
# Get gluon output
lowerCAmelCase__ = mx.nd.array([input_ids] )
lowerCAmelCase__ = original_bort(inputs=lowerCamelCase__ , token_types=[] )
# Get Transformer output (save and reload model again)
hf_bort_model.save_pretrained(lowerCamelCase__ )
lowerCAmelCase__ = BertModel.from_pretrained(lowerCamelCase__ )
hf_bort_model.eval()
lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" )
lowerCAmelCase__ = hf_bort_model(**lowerCamelCase__ )[0]
lowerCAmelCase__ = output_gluon[0].asnumpy()
lowerCAmelCase__ = output_hf[0].detach().numpy()
lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item()
lowerCAmelCase__ = np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 )
if success:
print("""✔️ Both model do output the same tensors""" )
else:
print("""❌ Both model do **NOT** output the same tensors""" )
print("""Absolute difference is:""" , lowerCamelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__lowerCAmelCase : str = parser.parse_args()
convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
| 674 | 0 |
"""simple docstring"""
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
lowerCAmelCase__ = load_file(UpperCAmelCase__ )
lowerCAmelCase__ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
lowerCAmelCase__ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" )
lowerCAmelCase__ = pipeline.text_encoder
else:
lowerCAmelCase__ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" )
lowerCAmelCase__ = pipeline.unet
# find the target layer
lowerCAmelCase__ = layer_infos.pop(0 )
while len(UpperCAmelCase__ ) > -1:
try:
lowerCAmelCase__ = curr_layer.__getattr__(UpperCAmelCase__ )
if len(UpperCAmelCase__ ) > 0:
lowerCAmelCase__ = layer_infos.pop(0 )
elif len(UpperCAmelCase__ ) == 0:
break
except Exception:
if len(UpperCAmelCase__ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
lowerCAmelCase__ = layer_infos.pop(0 )
lowerCAmelCase__ = []
if "lora_down" in key:
pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) )
pair_keys.append(UpperCAmelCase__ )
else:
pair_keys.append(UpperCAmelCase__ )
pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
lowerCAmelCase__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
lowerCAmelCase__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(UpperCAmelCase__ , UpperCAmelCase__ ).unsqueeze(2 ).unsqueeze(3 )
else:
lowerCAmelCase__ = state_dict[pair_keys[0]].to(torch.floataa )
lowerCAmelCase__ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(UpperCAmelCase__ , UpperCAmelCase__ )
# update visited list
for item in pair_keys:
visited.append(UpperCAmelCase__ )
return pipeline
if __name__ == "__main__":
__lowerCAmelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format."
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors"
)
parser.add_argument(
"--lora_prefix_text_encoder",
default="lora_te",
type=str,
help="The prefix of text encoder weight in safetensors",
)
parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW")
parser.add_argument(
"--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not."
)
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
__lowerCAmelCase : List[str] = parser.parse_args()
__lowerCAmelCase : Tuple = args.base_model_path
__lowerCAmelCase : Dict = args.checkpoint_path
__lowerCAmelCase : Union[str, Any] = args.dump_path
__lowerCAmelCase : Dict = args.lora_prefix_unet
__lowerCAmelCase : Tuple = args.lora_prefix_text_encoder
__lowerCAmelCase : List[str] = args.alpha
__lowerCAmelCase : Dict = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
__lowerCAmelCase : str = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 708 | """simple docstring"""
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class a_ :
def __init__( self : Optional[int] ):
lowerCAmelCase__ = """"""
lowerCAmelCase__ = """"""
lowerCAmelCase__ = []
lowerCAmelCase__ = 0
lowerCAmelCase__ = 256
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] ):
lowerCAmelCase__ = cva.imread(snake_case__ , 0 )
lowerCAmelCase__ = copy.deepcopy(self.img )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" )
lowerCAmelCase__ = np.sum(snake_case__ )
for i in range(len(snake_case__ ) ):
lowerCAmelCase__ = x[i] / self.k
self.sk += prk
lowerCAmelCase__ = (self.L - 1) * self.sk
if self.rem != 0:
lowerCAmelCase__ = int(last % last )
lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(snake_case__ )
lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size )
lowerCAmelCase__ = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
lowerCAmelCase__ = self.img[j][i]
if num != self.last_list[num]:
lowerCAmelCase__ = self.last_list[num]
cva.imwrite("""output_data/output.jpg""" , self.img )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
plt.hist(self.img.ravel() , 256 , [0, 256] )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
cva.imshow("""Output-Image""" , self.img )
cva.imshow("""Input-Image""" , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
__lowerCAmelCase : Dict = os.path.join(os.path.basename(__file__), "image_data/input.jpg")
__lowerCAmelCase : Optional[int] = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 674 | 0 |
"""simple docstring"""
import operator as op
def _UpperCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = []
lowerCAmelCase__ = lambda lowerCamelCase__ , lowerCamelCase__ : int(x / y ) # noqa: E731 integer division operation
lowerCAmelCase__ = {
"^": op.pow,
"*": op.mul,
"/": div,
"+": op.add,
"-": op.sub,
} # operators & their respective operation
# print table header
print("""Symbol""".center(8 ) , """Action""".center(12 ) , """Stack""" , sep=""" | """ )
print("""-""" * (30 + len(_lowercase )) )
for x in post_fix:
if x.isdigit(): # if x in digit
stack.append(_lowercase ) # append x to stack
# output in tabular format
print(x.rjust(8 ) , ("""push(""" + x + """)""").ljust(12 ) , """,""".join(_lowercase ) , sep=""" | """ )
else:
lowerCAmelCase__ = stack.pop() # pop stack
# output in tabular format
print("""""".rjust(8 ) , ("""pop(""" + b + """)""").ljust(12 ) , """,""".join(_lowercase ) , sep=""" | """ )
lowerCAmelCase__ = stack.pop() # pop stack
# output in tabular format
print("""""".rjust(8 ) , ("""pop(""" + a + """)""").ljust(12 ) , """,""".join(_lowercase ) , sep=""" | """ )
stack.append(
str(opr[x](int(_lowercase ) , int(_lowercase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack
# output in tabular format
print(
x.rjust(8 ) , ("""push(""" + a + x + b + """)""").ljust(12 ) , """,""".join(_lowercase ) , sep=""" | """ , )
return int(stack[0] )
if __name__ == "__main__":
__lowerCAmelCase : Optional[Any] = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ")
print("\n\tResult = ", solve(Postfix))
| 709 | """simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from ..models.clipseg import CLIPSegForImageSegmentation
from ..utils import is_vision_available, requires_backends
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class a_ ( __UpperCamelCase ):
UpperCamelCase_ : List[str] = (
"This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image."
"It takes two arguments named `image` which should be the original image, and `label` which should be a text "
"describing the elements what should be identified in the segmentation mask. The tool returns the mask."
)
UpperCamelCase_ : str = "CIDAS/clipseg-rd64-refined"
UpperCamelCase_ : Any = "image_segmenter"
UpperCamelCase_ : Optional[Any] = CLIPSegForImageSegmentation
UpperCamelCase_ : List[str] = ["image", "text"]
UpperCamelCase_ : int = ["image"]
def __init__( self : Tuple , *snake_case__ : str , **snake_case__ : Optional[Any] ):
requires_backends(self , ["""vision"""] )
super().__init__(*snake_case__ , **snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : "Image" , snake_case__ : str ):
return self.pre_processor(text=[label] , images=[image] , padding=snake_case__ , return_tensors="""pt""" )
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple ):
with torch.no_grad():
lowerCAmelCase__ = self.model(**snake_case__ ).logits
return logits
def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] ):
lowerCAmelCase__ = outputs.cpu().detach().numpy()
lowerCAmelCase__ = 0
lowerCAmelCase__ = 1
return Image.fromarray((array * 255).astype(np.uinta ) )
| 674 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.