code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class a_ ( metaclass=__UpperCamelCase ): UpperCamelCase_ : Optional[Any] = ["torch", "scipy"] def __init__( self : Optional[int] , *snake_case__ : str , **snake_case__ : Tuple ): requires_backends(self , ["""torch""", """scipy"""] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] , *snake_case__ : int , **snake_case__ : Optional[int] ): requires_backends(cls , ["""torch""", """scipy"""] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] , *snake_case__ : Any , **snake_case__ : Tuple ): requires_backends(cls , ["""torch""", """scipy"""] )
700
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Tuple = PegasusTokenizer UpperCamelCase_ : Any = PegasusTokenizerFast UpperCamelCase_ : int = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : Optional[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any] ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = """</s>""" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(snake_case__ ) , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowerCAmelCase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase__ = """To ensure a smooth flow of bank resolutions.""" lowerCAmelCase__ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def _SCREAMING_SNAKE_CASE ( self : str ): # fmt: off lowerCAmelCase__ = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = PegasusTokenizer UpperCamelCase_ : Optional[int] = PegasusTokenizerFast UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Optional[int] = True def _SCREAMING_SNAKE_CASE ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ): return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : List[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Dict ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowerCAmelCase__ = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
674
0
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class a_ ( unittest.TestCase ): @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = ort.SessionOptions() lowerCAmelCase__ = False return options def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) lowerCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) lowerCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default lowerCAmelCase__ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = """A red cat sitting on a park bench""" lowerCAmelCase__ = np.random.RandomState(0 ) lowerCAmelCase__ = pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=snake_case__ , output_type="""np""" , ) lowerCAmelCase__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
701
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case__ , ) assert hasattr(self , """env""" ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] ): # configuration for running training on smdistributed Model Parallel lowerCAmelCase__ = { """enabled""": True, """processes_per_host""": 8, } lowerCAmelCase__ = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowerCAmelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowerCAmelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="""py36""" , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str ): TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] ): # create estimator lowerCAmelCase__ = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case__ )
674
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( __UpperCamelCase ): UpperCamelCase_ : Union[str, Any] = ["image_processor", "tokenizer"] UpperCamelCase_ : List[Any] = "CLIPImageProcessor" UpperCamelCase_ : Union[str, Any] = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self : List[str] , snake_case__ : str=None , snake_case__ : Any=None , **snake_case__ : List[Any] ): lowerCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , snake_case__ , ) lowerCAmelCase__ = kwargs.pop("""feature_extractor""" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(snake_case__ , snake_case__ ) def __call__( self : List[str] , snake_case__ : List[str]=None , snake_case__ : Optional[Any]=None , snake_case__ : int=None , **snake_case__ : Optional[int] ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: lowerCAmelCase__ = self.tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if images is not None: lowerCAmelCase__ = self.image_processor(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if text is not None and images is not None: lowerCAmelCase__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case__ ) , tensor_type=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict , *snake_case__ : int , **snake_case__ : Optional[Any] ): return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , *snake_case__ : Dict , **snake_case__ : List[str] ): return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.tokenizer.model_input_names lowerCAmelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
702
"""simple docstring""" from math import pi, sqrt def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if num <= 0: raise ValueError("""math domain error""" ) if num > 1_71.5: raise OverflowError("""math range error""" ) elif num - int(lowerCamelCase__ ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(lowerCamelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _UpperCAmelCase ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(lowerCamelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __lowerCAmelCase : Dict = 1.0 while num: __lowerCAmelCase : Any = float(input("Gamma of: ")) print(F"gamma({num}) = {gamma(num)}") print("\nEnter 0 to exit...")
674
0
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests __lowerCAmelCase : Union[str, Any] = "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __lowerCAmelCase : int = BASE_URL + "/user" # https://github.com/settings/tokens __lowerCAmelCase : Tuple = os.environ.get("USER_TOKEN", "") def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = { """Authorization""": f"""token {auth_token}""", """Accept""": """application/vnd.github.v3+json""", } return requests.get(lowerCamelCase__ , headers=lowerCamelCase__ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F"{key}: {value}") else: raise ValueError("'USER_TOKEN' field cannot be empty.")
703
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : def __init__( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any=13 , snake_case__ : int=30 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : Dict=True , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=32 , snake_case__ : List[str]=2 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[int]=37 , snake_case__ : Tuple="gelu" , snake_case__ : str=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=10 , snake_case__ : Dict=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : str=None , snake_case__ : List[Any]=2 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = num_patches + 2 def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[Any] ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[str] ): lowerCAmelCase__ = TFDeiTModel(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict ): lowerCAmelCase__ = TFDeiTForMaskedImageModeling(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForMaskedImageModeling(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple ): lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase_ : Any = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : int = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = TFDeiTModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): pass def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Dense ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any]=False ): lowerCAmelCase__ = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _SCREAMING_SNAKE_CASE ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDeiTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Any ): return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors="""tf""" ) # forward pass lowerCAmelCase__ = model(**snake_case__ ) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase__ = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
674
0
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class a_ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor class a_ ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCamelCase_ : Dict = 1 @register_to_config def __init__( self : Optional[int] , snake_case__ : int = 2000 , snake_case__ : float = 0.15 , snake_case__ : float = 0.01 , snake_case__ : float = 1348.0 , snake_case__ : float = 1E-5 , snake_case__ : int = 1 , ): # standard deviation of the initial noise distribution lowerCAmelCase__ = sigma_max # setable values lowerCAmelCase__ = None self.set_sigmas(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : torch.FloatTensor , snake_case__ : Optional[int] = None ): return sample def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : int , snake_case__ : float = None , snake_case__ : Union[str, torch.device] = None ): lowerCAmelCase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowerCAmelCase__ = torch.linspace(1 , snake_case__ , snake_case__ , device=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : int , snake_case__ : float = None , snake_case__ : float = None , snake_case__ : float = None ): lowerCAmelCase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowerCAmelCase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowerCAmelCase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(snake_case__ , snake_case__ ) lowerCAmelCase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowerCAmelCase__ = torch.exp(torch.linspace(math.log(snake_case__ ) , math.log(snake_case__ ) , snake_case__ ) ) lowerCAmelCase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : int , snake_case__ : int ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Optional[torch.Generator] = None , snake_case__ : bool = True , ): if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) lowerCAmelCase__ = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowerCAmelCase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowerCAmelCase__ = timesteps.to(self.discrete_sigmas.device ) lowerCAmelCase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowerCAmelCase__ = self.get_adjacent_sigma(snake_case__ , snake_case__ ).to(sample.device ) lowerCAmelCase__ = torch.zeros_like(snake_case__ ) lowerCAmelCase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowerCAmelCase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowerCAmelCase__ = diffusion.unsqueeze(-1 ) lowerCAmelCase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowerCAmelCase__ = randn_tensor( sample.shape , layout=sample.layout , generator=snake_case__ , device=sample.device , dtype=sample.dtype ) lowerCAmelCase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowerCAmelCase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=snake_case__ , prev_sample_mean=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : Optional[torch.Generator] = None , snake_case__ : bool = True , ): if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowerCAmelCase__ = randn_tensor(sample.shape , layout=sample.layout , generator=snake_case__ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowerCAmelCase__ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() lowerCAmelCase__ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() lowerCAmelCase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowerCAmelCase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowerCAmelCase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowerCAmelCase__ = step_size.unsqueeze(-1 ) lowerCAmelCase__ = sample + step_size * model_output lowerCAmelCase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples lowerCAmelCase__ = timesteps.to(original_samples.device ) lowerCAmelCase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowerCAmelCase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(snake_case__ ) * sigmas[:, None, None, None] ) lowerCAmelCase__ = noise + original_samples return noisy_samples def __len__( self : List[Any] ): return self.config.num_train_timesteps
704
"""simple docstring""" from __future__ import annotations from math import gcd def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 3 , ): """simple docstring""" if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: return (pow(lowerCamelCase__ , 2 ) + step) % modulus for _ in range(lowerCamelCase__ ): # These track the position within the cycle detection logic. lowerCAmelCase__ = seed lowerCAmelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCAmelCase__ = gcd(hare - tortoise , lowerCamelCase__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCAmelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : Dict = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"{args.num} is probably prime") else: __lowerCAmelCase : List[str] = args.num // divisor print(F"{args.num} = {divisor} * {quotient}")
674
0
"""simple docstring""" import doctest from collections import deque import numpy as np class a_ : def __init__( self : Union[str, Any] ): lowerCAmelCase__ = [2, 1, 2, -1] lowerCAmelCase__ = [1, 2, 3, 4] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = len(self.first_signal ) lowerCAmelCase__ = len(self.second_signal ) lowerCAmelCase__ = max(snake_case__ , snake_case__ ) # create a zero matrix of max_length x max_length lowerCAmelCase__ = [[0] * max_length for i in range(snake_case__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(snake_case__ ): lowerCAmelCase__ = deque(self.second_signal ) rotated_signal.rotate(snake_case__ ) for j, item in enumerate(snake_case__ ): matrix[i][j] += item # multiply the matrix with the first signal lowerCAmelCase__ = np.matmul(np.transpose(snake_case__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(snake_case__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
705
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = TapasConfig.from_json_file(lowerCamelCase__ ) # set absolute/relative position embeddings parameter lowerCAmelCase__ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WTQ": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = True # hparam_utils.py hparams lowerCAmelCase__ = 0.66_46_94 lowerCAmelCase__ = 0.20_79_51 lowerCAmelCase__ = 0.12_11_94 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 0.0_35_25_13 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = False # hparam_utils.py hparams lowerCAmelCase__ = 36.45_19 lowerCAmelCase__ = 0.90_34_21 lowerCAmelCase__ = 2_22.0_88 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = 0.76_31_41 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "TABFACT": lowerCAmelCase__ = TapasForSequenceClassification(config=lowerCamelCase__ ) elif task == "MLM": lowerCAmelCase__ = TapasForMaskedLM(config=lowerCamelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": lowerCAmelCase__ = TapasModel(config=lowerCamelCase__ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase__ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) lowerCAmelCase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 ) tokenizer.save_pretrained(lowerCamelCase__ ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
674
0
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class a_ ( __UpperCamelCase ): def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case__ , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(snake_case__ , """num_attention_heads""" ) ) class a_ : def __init__( self : str , snake_case__ : Dict , snake_case__ : int=13 , snake_case__ : List[str]=64 , snake_case__ : List[Any]=3 , snake_case__ : Tuple=3 , snake_case__ : Any=2 , snake_case__ : Optional[Any]=1 , snake_case__ : Optional[int]=16 , snake_case__ : Optional[int]=[128, 256, 384] , snake_case__ : str=[4, 6, 8] , snake_case__ : Union[str, Any]=[2, 3, 4] , snake_case__ : str=[16, 16, 16] , snake_case__ : Dict=0 , snake_case__ : List[Any]=[2, 2, 2] , snake_case__ : List[Any]=[2, 2, 2] , snake_case__ : List[str]=0.02 , snake_case__ : List[str]=True , snake_case__ : Tuple=True , snake_case__ : Optional[int]=2 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = kernel_size lowerCAmelCase__ = stride lowerCAmelCase__ = padding lowerCAmelCase__ = hidden_sizes lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = depths lowerCAmelCase__ = key_dim lowerCAmelCase__ = drop_path_rate lowerCAmelCase__ = patch_size lowerCAmelCase__ = attention_ratio lowerCAmelCase__ = mlp_ratio lowerCAmelCase__ = initializer_range lowerCAmelCase__ = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = num_labels lowerCAmelCase__ = initializer_range def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : str ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Optional[int] ): lowerCAmelCase__ = LevitModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model(snake_case__ ) lowerCAmelCase__ = (self.image_size, self.image_size) lowerCAmelCase__ , lowerCAmelCase__ = image_size[0], image_size[1] for _ in range(4 ): lowerCAmelCase__ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) lowerCAmelCase__ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : Any ): lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = LevitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) UpperCamelCase_ : Union[str, Any] = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : Dict = False UpperCamelCase_ : str = False UpperCamelCase_ : List[str] = False UpperCamelCase_ : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = LevitModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : int ): return @unittest.skip(reason="""Levit does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass @unittest.skip(reason="""Levit does not support input and output embeddings""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): pass @unittest.skip(reason="""Levit does not output attentions""" ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): pass def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): def check_hidden_states_output(snake_case__ : str , snake_case__ : int , snake_case__ : Any ): lowerCAmelCase__ = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase__ = outputs.hidden_states lowerCAmelCase__ = len(self.model_tester.depths ) + 1 self.assertEqual(len(snake_case__ ) , snake_case__ ) lowerCAmelCase__ = (self.model_tester.image_size, self.model_tester.image_size) lowerCAmelCase__ , lowerCAmelCase__ = image_size[0], image_size[1] for _ in range(4 ): lowerCAmelCase__ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) lowerCAmelCase__ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _SCREAMING_SNAKE_CASE ( self : str ): pass def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : Union[str, Any]=False ): lowerCAmelCase__ = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): if not self.model_tester.is_training: return lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(snake_case__ ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowerCAmelCase__ = model_class(snake_case__ ) model.to(snake_case__ ) model.train() lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) lowerCAmelCase__ = model(**snake_case__ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowerCAmelCase__ = False lowerCAmelCase__ = True for model_class in self.all_model_classes: if model_class in get_values(snake_case__ ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowerCAmelCase__ = model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) lowerCAmelCase__ = model(**snake_case__ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(snake_case__ ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ): lowerCAmelCase__ = problem_type["""title"""] lowerCAmelCase__ = problem_type["""num_labels"""] lowerCAmelCase__ = model_class(snake_case__ ) model.to(snake_case__ ) model.train() lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if problem_type["num_labels"] > 1: lowerCAmelCase__ = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) lowerCAmelCase__ = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=snake_case__ ) as warning_list: lowerCAmelCase__ = model(**snake_case__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def _SCREAMING_SNAKE_CASE ( self : int ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = LevitModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( snake_case__ ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors="""pt""" ).to(snake_case__ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**snake_case__ ) # verify the logits lowerCAmelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase__ = torch.tensor([1.0448, -0.3745, -1.8317] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
706
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ = 50 ): """simple docstring""" lowerCAmelCase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"{solution() = }")
674
0
"""simple docstring""" from typing import Any import numpy as np def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return np.array_equal(lowerCamelCase__ , matrix.conjugate().T ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = v.conjugate().T lowerCAmelCase__ = v_star.dot(lowerCamelCase__ ) assert isinstance(lowerCamelCase__ , np.ndarray ) return (v_star_dot.dot(lowerCamelCase__ )) / (v_star.dot(lowerCamelCase__ )) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) lowerCAmelCase__ = np.array([[1], [2], [3]] ) assert is_hermitian(lowerCamelCase__ ), f"""{a} is not hermitian.""" print(rayleigh_quotient(lowerCamelCase__ , lowerCamelCase__ ) ) lowerCAmelCase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowerCamelCase__ ), f"""{a} is not hermitian.""" assert rayleigh_quotient(lowerCamelCase__ , lowerCamelCase__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
707
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Any = "The Nymphenburg Palace is a beautiful palace in Munich!" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } lowerCAmelCase__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase__ = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCamelCase__ , output_all_encodings=lowerCamelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCamelCase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase__ = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab lowerCAmelCase__ = os.path.join(get_home_dir() , """models""" ) lowerCAmelCase__ = _load_vocab(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , cls=lowerCamelCase__ ) lowerCAmelCase__ = nlp.model.BERTModel( lowerCamelCase__ , len(lowerCamelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCamelCase__ , use_token_type_embed=lowerCamelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCamelCase__ , use_decoder=lowerCamelCase__ , ) original_bort.load_parameters(lowerCamelCase__ , cast_dtype=lowerCamelCase__ , ignore_extra=lowerCamelCase__ ) lowerCAmelCase__ = original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCAmelCase__ = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(lowerCamelCase__ ), } lowerCAmelCase__ = BertConfig.from_dict(lowerCamelCase__ ) lowerCAmelCase__ = BertForMaskedLM(lowerCamelCase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCamelCase__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = hf_param.shape lowerCAmelCase__ = to_torch(params[gluon_param] ) lowerCAmelCase__ = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase__ = layer.attention.self lowerCAmelCase__ = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output lowerCAmelCase__ = layer.attention.output lowerCAmelCase__ = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) lowerCAmelCase__ = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate lowerCAmelCase__ = layer.intermediate lowerCAmelCase__ = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) lowerCAmelCase__ = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output lowerCAmelCase__ = layer.output lowerCAmelCase__ = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) lowerCAmelCase__ = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCAmelCase__ = RobertaTokenizer.from_pretrained("""roberta-base""" ) lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ )["""input_ids"""] # Get gluon output lowerCAmelCase__ = mx.nd.array([input_ids] ) lowerCAmelCase__ = original_bort(inputs=lowerCamelCase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCamelCase__ ) lowerCAmelCase__ = BertModel.from_pretrained(lowerCamelCase__ ) hf_bort_model.eval() lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" ) lowerCAmelCase__ = hf_bort_model(**lowerCamelCase__ )[0] lowerCAmelCase__ = output_gluon[0].asnumpy() lowerCAmelCase__ = output_hf[0].detach().numpy() lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase__ = np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : str = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
674
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase : Union[str, Any] = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __lowerCAmelCase : Optional[Any] = { "yjernite/retribert-base-uncased": 5_12, } __lowerCAmelCase : List[str] = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class a_ ( __UpperCamelCase ): UpperCamelCase_ : Optional[int] = VOCAB_FILES_NAMES UpperCamelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : List[str] = RetriBertTokenizer UpperCamelCase_ : List[str] = ["input_ids", "attention_mask"] def __init__( self : Tuple , snake_case__ : Union[str, Any]=None , snake_case__ : int=None , snake_case__ : Dict=True , snake_case__ : Union[str, Any]="[UNK]" , snake_case__ : Dict="[SEP]" , snake_case__ : Tuple="[PAD]" , snake_case__ : Optional[Any]="[CLS]" , snake_case__ : List[str]="[MASK]" , snake_case__ : str=True , snake_case__ : str=None , **snake_case__ : Dict , ): super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case__ ) != tokenize_chinese_chars ): lowerCAmelCase__ = getattr(snake_case__ , normalizer_state.pop("""type""" ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = tokenize_chinese_chars lowerCAmelCase__ = normalizer_class(**snake_case__ ) lowerCAmelCase__ = do_lower_case def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] , snake_case__ : Optional[int]=None ): lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): lowerCAmelCase__ = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
708
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self : Optional[int] ): lowerCAmelCase__ = """""" lowerCAmelCase__ = """""" lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = 256 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = cva.imread(snake_case__ , 0 ) lowerCAmelCase__ = copy.deepcopy(self.img ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" ) lowerCAmelCase__ = np.sum(snake_case__ ) for i in range(len(snake_case__ ) ): lowerCAmelCase__ = x[i] / self.k self.sk += prk lowerCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase__ = int(last % last ) lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case__ ) lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase__ = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase__ = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": __lowerCAmelCase : Dict = os.path.join(os.path.basename(__file__), "image_data/input.jpg") __lowerCAmelCase : Optional[int] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
674
0
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=True , lowerCamelCase__="pt" ): """simple docstring""" lowerCAmelCase__ = {"""add_prefix_space""": True} if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and not line.startswith(""" """ ) else {} lowerCAmelCase__ = padding_side return tokenizer( [line] , max_length=lowerCamelCase__ , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase__ , return_tensors=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , ): """simple docstring""" lowerCAmelCase__ = input_ids.ne(lowerCamelCase__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class a_ ( __UpperCamelCase ): def __init__( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[int]="train" , snake_case__ : Union[str, Any]=None , snake_case__ : List[Any]=None , snake_case__ : Union[str, Any]=None , snake_case__ : Optional[Any]="" , ): super().__init__() lowerCAmelCase__ = Path(snake_case__ ).joinpath(type_path + """.source""" ) lowerCAmelCase__ = Path(snake_case__ ).joinpath(type_path + """.target""" ) lowerCAmelCase__ = self.get_char_lens(self.src_file ) lowerCAmelCase__ = max_source_length lowerCAmelCase__ = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" lowerCAmelCase__ = tokenizer lowerCAmelCase__ = prefix if n_obs is not None: lowerCAmelCase__ = self.src_lens[:n_obs] lowerCAmelCase__ = src_lang lowerCAmelCase__ = tgt_lang def __len__( self : Tuple ): return len(self.src_lens ) def __getitem__( self : Any , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = index + 1 # linecache starts at 1 lowerCAmelCase__ = self.prefix + linecache.getline(str(self.src_file ) , snake_case__ ).rstrip("""\n""" ) lowerCAmelCase__ = linecache.getline(str(self.tgt_file ) , snake_case__ ).rstrip("""\n""" ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , snake_case__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowerCAmelCase__ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer ) lowerCAmelCase__ = self.tokenizer.generator if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer lowerCAmelCase__ = encode_line(snake_case__ , snake_case__ , self.max_source_length , """right""" ) lowerCAmelCase__ = encode_line(snake_case__ , snake_case__ , self.max_target_length , """right""" ) lowerCAmelCase__ = source_inputs["""input_ids"""].squeeze() lowerCAmelCase__ = target_inputs["""input_ids"""].squeeze() lowerCAmelCase__ = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : Union[str, Any] ): return [len(snake_case__ ) for x in Path(snake_case__ ).open().readlines()] def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Optional[Any] ): lowerCAmelCase__ = torch.stack([x["""input_ids"""] for x in batch] ) lowerCAmelCase__ = torch.stack([x["""attention_mask"""] for x in batch] ) lowerCAmelCase__ = torch.stack([x["""decoder_input_ids"""] for x in batch] ) lowerCAmelCase__ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) lowerCAmelCase__ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) lowerCAmelCase__ = trim_batch(snake_case__ , snake_case__ ) lowerCAmelCase__ , lowerCAmelCase__ = trim_batch(snake_case__ , snake_case__ , attention_mask=snake_case__ ) lowerCAmelCase__ = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __lowerCAmelCase : Optional[int] = getLogger(__name__) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return list(itertools.chain.from_iterable(lowerCamelCase__ ) ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = get_git_info() save_json(lowerCamelCase__ , os.path.join(lowerCamelCase__ , """git_log.json""" ) ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=4 , **lowerCamelCase__ ): """simple docstring""" with open(lowerCamelCase__ , """w""" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ , indent=lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" with open(lowerCamelCase__ ) as f: return json.load(lowerCamelCase__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = git.Repo(search_parent_directories=lowerCamelCase__ ) lowerCAmelCase__ = { """repo_id""": str(lowerCamelCase__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return list(map(lowerCamelCase__ , lowerCamelCase__ ) ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" with open(lowerCamelCase__ , """wb""" ) as f: return pickle.dump(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" def remove_articles(lowerCamelCase__ ): return re.sub(r"""\b(a|an|the)\b""" , """ """ , lowerCamelCase__ ) def white_space_fix(lowerCamelCase__ ): return " ".join(text.split() ) def remove_punc(lowerCamelCase__ ): lowerCAmelCase__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCamelCase__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase__ ) ) ) ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = normalize_answer(lowerCamelCase__ ).split() lowerCAmelCase__ = normalize_answer(lowerCamelCase__ ).split() lowerCAmelCase__ = Counter(lowerCamelCase__ ) & Counter(lowerCamelCase__ ) lowerCAmelCase__ = sum(common.values() ) if num_same == 0: return 0 lowerCAmelCase__ = 1.0 * num_same / len(lowerCamelCase__ ) lowerCAmelCase__ = 1.0 * num_same / len(lowerCamelCase__ ) lowerCAmelCase__ = (2 * precision * recall) / (precision + recall) return fa def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return normalize_answer(lowerCamelCase__ ) == normalize_answer(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) lowerCAmelCase__ = 0 for hypo, pred in zip(lowerCamelCase__ , lowerCamelCase__ ): em += exact_match_score(lowerCamelCase__ , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: em /= len(lowerCamelCase__ ) return {"em": em} def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return model_prefix.startswith("""rag""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowerCAmelCase__ = """dropout_rate""" for p in extra_params: if getattr(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if not hasattr(lowerCamelCase__ , lowerCamelCase__ ) and not hasattr(lowerCamelCase__ , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase__ ) ) delattr(lowerCamelCase__ , lowerCamelCase__ ) continue lowerCAmelCase__ = p if hasattr(lowerCamelCase__ , lowerCamelCase__ ) else equivalent_param[p] setattr(lowerCamelCase__ , lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) delattr(lowerCamelCase__ , lowerCamelCase__ ) return hparams, config
709
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class a_ ( __UpperCamelCase ): UpperCamelCase_ : List[str] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) UpperCamelCase_ : str = "CIDAS/clipseg-rd64-refined" UpperCamelCase_ : Any = "image_segmenter" UpperCamelCase_ : Optional[Any] = CLIPSegForImageSegmentation UpperCamelCase_ : List[str] = ["image", "text"] UpperCamelCase_ : int = ["image"] def __init__( self : Tuple , *snake_case__ : str , **snake_case__ : Optional[Any] ): requires_backends(self , ["""vision"""] ) super().__init__(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : "Image" , snake_case__ : str ): return self.pre_processor(text=[label] , images=[image] , padding=snake_case__ , return_tensors="""pt""" ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple ): with torch.no_grad(): lowerCAmelCase__ = self.model(**snake_case__ ).logits return logits def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] ): lowerCAmelCase__ = outputs.cpu().detach().numpy() lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
674
0
"""simple docstring""" from __future__ import annotations def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" lowerCAmelCase__ = word_bank or [] # create a table lowerCAmelCase__ = len(lowerCamelCase__ ) + 1 lowerCAmelCase__ = [] for _ in range(lowerCamelCase__ ): table.append([] ) # seed value lowerCAmelCase__ = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCamelCase__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCamelCase__ )] == word: lowerCAmelCase__ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCamelCase__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCamelCase__ )]: combination.reverse() return table[len(lowerCamelCase__ )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
710
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = LayoutLMTokenizer UpperCamelCase_ : List[Any] = LayoutLMTokenizerFast UpperCamelCase_ : Dict = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() lowerCAmelCase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : Union[str, Any] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Tuple ): lowerCAmelCase__ = """UNwant\u00E9d,running""" lowerCAmelCase__ = """unwanted, running""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(snake_case__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): pass
674
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : List[str] = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class a_ ( __UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ : Optional[int] = "convnextv2" def __init__( self : str , snake_case__ : Any=3 , snake_case__ : List[Any]=4 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[int]=None , snake_case__ : Tuple=None , snake_case__ : int="gelu" , snake_case__ : Any=0.02 , snake_case__ : Optional[Any]=1E-12 , snake_case__ : Dict=0.0 , snake_case__ : List[str]=224 , snake_case__ : List[Any]=None , snake_case__ : Any=None , **snake_case__ : Union[str, Any] , ): super().__init__(**snake_case__ ) lowerCAmelCase__ = num_channels lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_stages lowerCAmelCase__ = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes lowerCAmelCase__ = [3, 3, 9, 3] if depths is None else depths lowerCAmelCase__ = hidden_act lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = drop_path_rate lowerCAmelCase__ = image_size lowerCAmelCase__ = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] lowerCAmelCase__ , lowerCAmelCase__ = get_aligned_output_features_output_indices( out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
711
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __lowerCAmelCase : Any = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : def __init__( self : List[str] , snake_case__ : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) lowerCAmelCase__ = primes[group]["""prime"""] lowerCAmelCase__ = primes[group]["""generator"""] lowerCAmelCase__ = int(hexlify(urandom(32 ) ) , base=16 ) def _SCREAMING_SNAKE_CASE ( self : Any ): return hex(self.__private_key )[2:] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = pow(self.generator , self.__private_key , self.prime ) return hex(snake_case__ )[2:] def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(snake_case__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str ): lowerCAmelCase__ = int(snake_case__ , base=16 ) if not self.is_valid_public_key(snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , self.__private_key , self.prime ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : int , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(snake_case__ , (prime - 1) // 2 , snake_case__ ) == 1 ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : str , snake_case__ : str , snake_case__ : int = 14 ): lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(snake_case__ , snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , snake_case__ , snake_case__ ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
674
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __lowerCAmelCase : Any = False class a_ ( unittest.TestCase ): pass @nightly @require_torch_gpu class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe.dual_guided( prompt="""first prompt""" , image=snake_case__ , text_to_image_strength=0.75 , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case__ ) lowerCAmelCase__ = VersatileDiffusionPipeline.from_pretrained(snake_case__ , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = generator.manual_seed(0 ) lowerCAmelCase__ = pipe.dual_guided( prompt="""first prompt""" , image=snake_case__ , text_to_image_strength=0.75 , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = """cyberpunk 2077""" lowerCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe.dual_guided( prompt=snake_case__ , image=snake_case__ , text_to_image_strength=0.75 , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images lowerCAmelCase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase__ = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowerCAmelCase__ = """A painting of a squirrel eating a burger """ lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe.text_to_image( prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images lowerCAmelCase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowerCAmelCase__ = pipe.image_variation(snake_case__ , generator=snake_case__ , output_type="""numpy""" ).images lowerCAmelCase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase__ = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
712
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) lowerCAmelCase__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = weights[0][0][0] lowerCAmelCase__ = np.asarray(layer_norm_a[0] ) lowerCAmelCase__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # lsh weights + output lowerCAmelCase__ = weights[0][1] if len(lowerCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) else: set_layer_weights_in_torch_local(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) # intermediate weighs lowerCAmelCase__ = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase__ ) == 4: lowerCAmelCase__ = intermediate_weights[2] # layernorm 2 lowerCAmelCase__ = np.asarray(intermediate_weights[0][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # intermediate dense lowerCAmelCase__ = np.asarray(intermediate_weights[1][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) # intermediate out lowerCAmelCase__ = np.asarray(intermediate_weights[4][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = torch_model.reformer # word embeds lowerCAmelCase__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase__ ) , ) if isinstance(weights[3] , lowerCamelCase__ ): lowerCAmelCase__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCAmelCase__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" lowerCAmelCase__ = nn.Parameter(torch.tensor(lowerCamelCase__ ) ) lowerCAmelCase__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCAmelCase__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # output layer norm lowerCAmelCase__ = np.asarray(weights[7][0] ) lowerCAmelCase__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # output embeddings lowerCAmelCase__ = np.asarray(weights[9][0] ) lowerCAmelCase__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = ReformerConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = ReformerModelWithLMHead(lowerCamelCase__ ) with open(lowerCamelCase__ , """rb""" ) as f: lowerCAmelCase__ = pickle.load(lowerCamelCase__ )["""weights"""] set_model_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
674
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class a_ ( __UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ : Union[str, Any] = "resnet" UpperCamelCase_ : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : List[Any] , snake_case__ : int=3 , snake_case__ : Optional[Any]=64 , snake_case__ : Union[str, Any]=[256, 512, 1024, 2048] , snake_case__ : Tuple=[3, 4, 6, 3] , snake_case__ : int="bottleneck" , snake_case__ : Any="relu" , snake_case__ : Union[str, Any]=False , snake_case__ : int=None , snake_case__ : List[str]=None , **snake_case__ : Tuple , ): super().__init__(**snake_case__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) lowerCAmelCase__ = num_channels lowerCAmelCase__ = embedding_size lowerCAmelCase__ = hidden_sizes lowerCAmelCase__ = depths lowerCAmelCase__ = layer_type lowerCAmelCase__ = hidden_act lowerCAmelCase__ = downsample_in_first_stage lowerCAmelCase__ = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(snake_case__ ) + 1 )] lowerCAmelCase__ , lowerCAmelCase__ = get_aligned_output_features_output_indices( out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names ) class a_ ( __UpperCamelCase ): UpperCamelCase_ : Dict = version.parse("1.11" ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : int ): return 1E-3
713
"""simple docstring""" import os from math import logaa def _UpperCAmelCase ( lowerCamelCase__ = "base_exp.txt" ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) ): lowerCAmelCase__ , lowerCAmelCase__ = list(map(lowerCamelCase__ , line.split(""",""" ) ) ) if x * logaa(lowerCamelCase__ ) > largest: lowerCAmelCase__ = x * logaa(lowerCamelCase__ ) lowerCAmelCase__ = i + 1 return result if __name__ == "__main__": print(solution())
674
0
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __lowerCAmelCase : int = logging.get_logger(__name__) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None ): """simple docstring""" if "." in tensor_name: lowerCAmelCase__ = tensor_name.split(""".""" ) for split in splits[:-1]: lowerCAmelCase__ = getattr(lowerCamelCase__ , lowerCamelCase__ ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) lowerCAmelCase__ = new_module lowerCAmelCase__ = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) lowerCAmelCase__ = tensor_name in module._buffers lowerCAmelCase__ = getattr(lowerCamelCase__ , lowerCamelCase__ ) if old_value.device == torch.device("""meta""" ) and device not in ["meta", torch.device("""meta""" )] and value is None: raise ValueError(f"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) lowerCAmelCase__ = False lowerCAmelCase__ = False if is_buffer or not is_bitsandbytes_available(): lowerCAmelCase__ = False lowerCAmelCase__ = False else: lowerCAmelCase__ = hasattr(bnb.nn , """Params4bit""" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) lowerCAmelCase__ = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: lowerCAmelCase__ = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: lowerCAmelCase__ = old_value.to(lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , torch.Tensor ): lowerCAmelCase__ = value.to("""cpu""" ) if value.dtype == torch.inta: lowerCAmelCase__ = version.parse(importlib.metadata.version("""bitsandbytes""" ) ) > version.parse( """0.37.2""" ) if not is_abit_serializable: raise ValueError( """Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. """ """Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.""" ) else: lowerCAmelCase__ = torch.tensor(lowerCamelCase__ , device="""cpu""" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , lowerCamelCase__ ) and fpaa_statistics is None: lowerCAmelCase__ = new_value.T lowerCAmelCase__ = old_value.__dict__ if is_abit: lowerCAmelCase__ = bnb.nn.IntaParams(lowerCamelCase__ , requires_grad=lowerCamelCase__ , **lowerCamelCase__ ).to(lowerCamelCase__ ) elif is_abit: lowerCAmelCase__ = bnb.nn.Paramsabit(lowerCamelCase__ , requires_grad=lowerCamelCase__ , **lowerCamelCase__ ).to(lowerCamelCase__ ) lowerCAmelCase__ = new_value if fpaa_statistics is not None: setattr(module.weight , """SCB""" , fpaa_statistics.to(lowerCamelCase__ ) ) else: if value is None: lowerCAmelCase__ = old_value.to(lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , torch.Tensor ): lowerCAmelCase__ = value.to(lowerCamelCase__ ) else: lowerCAmelCase__ = torch.tensor(lowerCamelCase__ , device=lowerCamelCase__ ) if is_buffer: lowerCAmelCase__ = new_value else: lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ , requires_grad=old_value.requires_grad ) lowerCAmelCase__ = new_value def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase__ = [] current_key_name.append(lowerCamelCase__ ) if (isinstance(lowerCamelCase__ , nn.Linear ) or isinstance(lowerCamelCase__ , lowerCamelCase__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in """.""".join(lowerCamelCase__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ , lowerCAmelCase__ = module.weight.shape else: lowerCAmelCase__ = module.in_features lowerCAmelCase__ = module.out_features if quantization_config.quantization_method() == "llm_int8": lowerCAmelCase__ = bnb.nn.LinearabitLt( lowerCamelCase__ , lowerCamelCase__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) lowerCAmelCase__ = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: lowerCAmelCase__ = bnb.nn.Linearabit( lowerCamelCase__ , lowerCamelCase__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) lowerCAmelCase__ = True # Store the module class in case we need to transpose the weight later lowerCAmelCase__ = type(lowerCamelCase__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(lowerCamelCase__ ) if len(list(module.children() ) ) > 0: lowerCAmelCase__ , lowerCAmelCase__ = _replace_with_bnb_linear( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , has_been_replaced=lowerCamelCase__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None ): """simple docstring""" lowerCAmelCase__ = ["""lm_head"""] if modules_to_not_convert is None else modules_to_not_convert lowerCAmelCase__ , lowerCAmelCase__ = _replace_with_bnb_linear( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def _UpperCAmelCase ( *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" warnings.warn( """`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead""" , lowerCamelCase__ , ) return replace_with_bnb_linear(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCAmelCase ( *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" warnings.warn( """`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead""" , lowerCamelCase__ , ) return set_module_quantized_tensor_to_device(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = deepcopy(lowerCamelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() lowerCAmelCase__ = find_tied_parameters(lowerCamelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowerCAmelCase__ = sum(lowerCamelCase__ , [] ) lowerCAmelCase__ = len(lowerCamelCase__ ) > 0 # Check if it is a base model lowerCAmelCase__ = not hasattr(lowerCamelCase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase__ = list(model.named_children() ) lowerCAmelCase__ = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase__ = set(lowerCamelCase__ ) - set(lowerCamelCase__ ) lowerCAmelCase__ = list(set(lowerCamelCase__ ) ) + list(lowerCamelCase__ ) # remove ".weight" from the keys lowerCAmelCase__ = [""".weight""", """.bias"""] lowerCAmelCase__ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase__ = name.replace(lowerCamelCase__ , """""" ) filtered_module_names.append(lowerCamelCase__ ) return filtered_module_names
714
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" while b: lowerCAmelCase__ , lowerCAmelCase__ = b, a % b return a def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase__ , a % b ) def _UpperCAmelCase ( ): """simple docstring""" print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
674
0
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __lowerCAmelCase : Any = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : def __init__( self : List[str] , snake_case__ : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) lowerCAmelCase__ = primes[group]["""prime"""] lowerCAmelCase__ = primes[group]["""generator"""] lowerCAmelCase__ = int(hexlify(urandom(32 ) ) , base=16 ) def _SCREAMING_SNAKE_CASE ( self : Any ): return hex(self.__private_key )[2:] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = pow(self.generator , self.__private_key , self.prime ) return hex(snake_case__ )[2:] def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(snake_case__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str ): lowerCAmelCase__ = int(snake_case__ , base=16 ) if not self.is_valid_public_key(snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , self.__private_key , self.prime ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : int , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(snake_case__ , (prime - 1) // 2 , snake_case__ ) == 1 ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : str , snake_case__ : str , snake_case__ : int = 14 ): lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(snake_case__ , snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , snake_case__ , snake_case__ ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
715
"""simple docstring""" import os def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = os.path.dirname(os.path.realpath(lowerCamelCase__ ) ) lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """triangle.txt""" ) with open(lowerCamelCase__ ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = [] for line in triangle: lowerCAmelCase__ = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(lowerCamelCase__ ) ) a.append(lowerCamelCase__ ) for i in range(1 , len(lowerCamelCase__ ) ): for j in range(len(a[i] ) ): lowerCAmelCase__ = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCAmelCase__ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCamelCase__ , lowerCamelCase__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
674
0
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging __lowerCAmelCase : Tuple = logging.get_logger(__name__) class a_ ( __UpperCamelCase ): def __init__( self : Optional[Any] , snake_case__ : List[Any]=None , **snake_case__ : Dict ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case__ , ) super().__init__(args=snake_case__ , **snake_case__ )
716
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCAmelCase : Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __lowerCAmelCase : Optional[int] = json.load(f) @require_torch class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Dict ): return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ): lowerCAmelCase__ = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Any , snake_case__ : int ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowerCAmelCase__ = F"""facebook/wmt19-{pair}""" lowerCAmelCase__ = self.get_tokenizer(snake_case__ ) lowerCAmelCase__ = self.get_model(snake_case__ ) lowerCAmelCase__ = bleu_data[pair]["""src"""] lowerCAmelCase__ = bleu_data[pair]["""tgt"""] lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""pt""" , truncation=snake_case__ , padding="""longest""" ).to(snake_case__ ) lowerCAmelCase__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCAmelCase__ = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) lowerCAmelCase__ = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["""bleu"""] , snake_case__ )
674
0
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = len(lowerCamelCase__ ) lowerCAmelCase__ = len(matrix[0] ) lowerCAmelCase__ = min(lowerCamelCase__ , lowerCamelCase__ ) for row in range(lowerCamelCase__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , lowerCamelCase__ ): lowerCAmelCase__ = matrix[col][row] / matrix[row][row] for i in range(lowerCamelCase__ , lowerCamelCase__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows lowerCAmelCase__ = True for i in range(row + 1 , lowerCamelCase__ ): if matrix[i][row] != 0: lowerCAmelCase__ , lowerCAmelCase__ = matrix[i], matrix[row] lowerCAmelCase__ = False break if reduce: rank -= 1 for i in range(lowerCamelCase__ ): lowerCAmelCase__ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
717
"""simple docstring""" import pprint import requests __lowerCAmelCase : Union[str, Any] = "https://zenquotes.io/api" def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = random_quotes() pprint.pprint(response)
674
0
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = args.pruning_method lowerCAmelCase__ = args.threshold lowerCAmelCase__ = args.model_name_or_path.rstrip("""/""" ) lowerCAmelCase__ = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) lowerCAmelCase__ = torch.load(os.path.join(lowerCamelCase__ , """pytorch_model.bin""" ) ) lowerCAmelCase__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowerCAmelCase__ = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: lowerCAmelCase__ = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: lowerCAmelCase__ = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": lowerCAmelCase__ = MagnitudeBinarizer.apply(inputs=lowerCamelCase__ , threshold=lowerCamelCase__ ) lowerCAmelCase__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue lowerCAmelCase__ = name[:-6] lowerCAmelCase__ = model[f"""{prefix_}mask_scores"""] lowerCAmelCase__ = TopKBinarizer.apply(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowerCAmelCase__ = name[:-6] lowerCAmelCase__ = model[f"""{prefix_}mask_scores"""] lowerCAmelCase__ = ThresholdBinarizer.apply(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue lowerCAmelCase__ = name[:-6] lowerCAmelCase__ = model[f"""{prefix_}mask_scores"""] lowerCAmelCase__ , lowerCAmelCase__ = -0.1, 1.1 lowerCAmelCase__ = torch.sigmoid(lowerCamelCase__ ) lowerCAmelCase__ = s * (r - l) + l lowerCAmelCase__ = s_bar.clamp(min=0.0 , max=1.0 ) lowerCAmelCase__ = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError("""Unknown pruning method""" ) if target_model_path is None: lowerCAmelCase__ = os.path.join( os.path.dirname(lowerCamelCase__ ) , f"""bertarized_{os.path.basename(lowerCamelCase__ )}""" ) if not os.path.isdir(lowerCamelCase__ ): shutil.copytree(lowerCamelCase__ , lowerCamelCase__ ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(lowerCamelCase__ , os.path.join(lowerCamelCase__ , """pytorch_model.bin""" ) ) print("""\nPruned model saved! See you later!""" ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) __lowerCAmelCase : int = parser.parse_args() main(args)
718
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = CLIPConfig() # Create a dummy config file with image_proceesor_type lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ).to_dict() config_dict.pop("""image_processor_type""" ) lowerCAmelCase__ = CLIPImageProcessor(**snake_case__ ) # save in new folder model_config.save_pretrained(snake_case__ ) config.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) # make sure private variable is not incorrectly saved lowerCAmelCase__ = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with self.assertRaisesRegex( snake_case__ , """clip-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""clip-base""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): with self.assertRaisesRegex( snake_case__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , revision="""aaaaaa""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): with self.assertRaisesRegex( snake_case__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , trust_remote_code=snake_case__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ): try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoImageProcessor.register(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = CustomImageProcessor.from_pretrained(snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self : List[str] ): class a_ ( __UpperCamelCase ): UpperCamelCase_ : Tuple = True try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # If remote code is not set, the default is to use local lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(snake_case__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
674
0
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class a_ ( __UpperCamelCase , __UpperCamelCase ): @register_to_config def __init__( self : Dict , snake_case__ : int = 768 , ): super().__init__() lowerCAmelCase__ = nn.Parameter(torch.zeros(1 , snake_case__ ) ) lowerCAmelCase__ = nn.Parameter(torch.ones(1 , snake_case__ ) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Optional[Union[str, torch.device]] = None , snake_case__ : Optional[torch.dtype] = None , ): lowerCAmelCase__ = nn.Parameter(self.mean.to(snake_case__ ).to(snake_case__ ) ) lowerCAmelCase__ = nn.Parameter(self.std.to(snake_case__ ).to(snake_case__ ) ) return self def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Any ): lowerCAmelCase__ = (embeds - self.mean) * 1.0 / self.std return embeds def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Dict ): lowerCAmelCase__ = (embeds * self.std) + self.mean return embeds
719
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a_ : def __init__( self : Optional[int] , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=64 , snake_case__ : Any=None ): lowerCAmelCase__ = np.random.default_rng(snake_case__ ) lowerCAmelCase__ = length lowerCAmelCase__ = rng.normal(size=(length,) ).astype(np.floataa ) lowerCAmelCase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[Any] ): return self.length def __getitem__( self : List[str] , snake_case__ : Optional[int] ): return {"x": self.x[i], "y": self.y[i]} class a_ ( torch.nn.Module ): def __init__( self : List[str] , snake_case__ : str=0 , snake_case__ : Dict=0 , snake_case__ : Any=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Any=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a[0] + self.b[0] class a_ ( torch.nn.Module ): def __init__( self : Any , snake_case__ : Union[str, Any]=0 , snake_case__ : Union[str, Any]=0 , snake_case__ : List[Any]=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any]=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a + self.b def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase__ = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} lowerCAmelCase__ = load_dataset("""csv""" , data_files=lowerCamelCase__ ) lowerCAmelCase__ = datasets["""train"""].unique("""label""" ) lowerCAmelCase__ = {v: i for i, v in enumerate(lowerCamelCase__ )} def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" ) if "label" in examples: lowerCAmelCase__ = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase__ = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=2 ) lowerCAmelCase__ = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
674
0
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __lowerCAmelCase : str = logging.get_logger(__name__) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" def constraint_to_multiple_of(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=0 , lowerCamelCase__=None ): A = round(val / multiple ) * multiple if max_val is not None and x > max_val: A = math.floor(val / multiple ) * multiple if x < min_val: A = math.ceil(val / multiple ) * multiple return x A = (output_size, output_size) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else output_size A , A = get_image_size(lowerCamelCase__ ) A , A = output_size # determine new height and width A = output_height / input_height A = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width A = scale_width else: # fit height A = scale_height A = constraint_to_multiple_of(scale_height * input_height , multiple=lowerCamelCase__ ) A = constraint_to_multiple_of(scale_width * input_width , multiple=lowerCamelCase__ ) return (new_height, new_width) class a_ ( __UpperCamelCase ): UpperCamelCase_ : Dict = ["pixel_values"] def __init__( self : Tuple , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = PILImageResampling.BILINEAR , snake_case__ : bool = False , snake_case__ : int = 1 , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 255 , snake_case__ : bool = True , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , **snake_case__ : Dict , ): super().__init__(**snake_case__ ) A = size if size is not None else {"""height""": 384, """width""": 384} A = get_size_dict(snake_case__ ) A = do_resize A = size A = keep_aspect_ratio A = ensure_multiple_of A = resample A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : np.ndarray , snake_case__ : Dict[str, int] , snake_case__ : bool = False , snake_case__ : int = 1 , snake_case__ : PILImageResampling = PILImageResampling.BICUBIC , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Optional[int] , ): A = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) A = get_resize_output_image_size( snake_case__ , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=snake_case__ , multiple=snake_case__ , ) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : np.ndarray , snake_case__ : Union[int, float] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] , ): return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : np.ndarray , snake_case__ : Union[float, List[float]] , snake_case__ : Union[float, List[float]] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : str , ): return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : ImageInput , snake_case__ : bool = None , snake_case__ : int = None , snake_case__ : bool = None , snake_case__ : int = None , snake_case__ : PILImageResampling = None , snake_case__ : bool = None , snake_case__ : float = None , snake_case__ : bool = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : ChannelDimension = ChannelDimension.FIRST , **snake_case__ : str , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(snake_case__ ) A = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio A = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of A = resample if resample is not None else self.resample A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. A = [to_numpy_array(snake_case__ ) for image in images] if do_resize: A = [self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images] if do_rescale: A = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_normalize: A = [self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) for image in images] A = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] A = {"""pixel_values""": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : int , snake_case__ : List[Tuple] = None ): A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(snake_case__ ) != len(snake_case__ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(snake_case__ ): A = target_sizes.numpy() A = [] for idx in range(len(snake_case__ ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=snake_case__ ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(snake_case__ ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
720
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = MobileBertConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = MobileBertForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint lowerCAmelCase__ = load_tf_weights_in_mobilebert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
674
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : str = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class a_ ( __UpperCamelCase ): UpperCamelCase_ : List[str] = "bert" def __init__( self : int , snake_case__ : Any=30522 , snake_case__ : Union[str, Any]=768 , snake_case__ : Any=12 , snake_case__ : Optional[int]=12 , snake_case__ : str=3072 , snake_case__ : int="gelu" , snake_case__ : List[Any]=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Optional[Any]=512 , snake_case__ : Dict=2 , snake_case__ : Optional[int]=0.02 , snake_case__ : str=1E-12 , snake_case__ : List[str]=0 , snake_case__ : int="absolute" , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=None , **snake_case__ : Optional[int] , ): super().__init__(pad_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = hidden_act lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = position_embedding_type lowerCAmelCase__ = use_cache lowerCAmelCase__ = classifier_dropout class a_ ( __UpperCamelCase ): @property def _SCREAMING_SNAKE_CASE ( self : Any ): if self.task == "multiple-choice": lowerCAmelCase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
721
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: lowerCAmelCase__ = f"""The input value of [n={number}] has to be > 0""" raise ValueError(lowerCamelCase__ ) else: lowerCAmelCase__ = sylvester(number - 1 ) lowerCAmelCase__ = num - 1 lowerCAmelCase__ = num return lower * upper + 1 if __name__ == "__main__": print(F"The 8th number in Sylvester's sequence: {sylvester(8)}")
674
0
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : int = logging.get_logger(__name__) __lowerCAmelCase : Dict = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class a_ ( __UpperCamelCase ): UpperCamelCase_ : Optional[Any] = "xlm-prophetnet" UpperCamelCase_ : Optional[int] = ["past_key_values"] UpperCamelCase_ : Tuple = { "num_attention_heads": "num_encoder_attention_heads", } def __init__( self : List[Any] , snake_case__ : Optional[float] = 0.1 , snake_case__ : Optional[Union[str, Callable]] = "gelu" , snake_case__ : Optional[int] = 30522 , snake_case__ : Optional[int] = 1024 , snake_case__ : Optional[int] = 4096 , snake_case__ : Optional[int] = 12 , snake_case__ : Optional[int] = 16 , snake_case__ : Optional[int] = 4096 , snake_case__ : Optional[int] = 12 , snake_case__ : Optional[int] = 16 , snake_case__ : Optional[float] = 0.1 , snake_case__ : Optional[float] = 0.1 , snake_case__ : Optional[int] = 512 , snake_case__ : Optional[float] = 0.02 , snake_case__ : Optional[bool] = True , snake_case__ : Optional[bool] = True , snake_case__ : Optional[int] = 0 , snake_case__ : Optional[int] = 2 , snake_case__ : Optional[int] = 32 , snake_case__ : Optional[int] = 128 , snake_case__ : Optional[bool] = False , snake_case__ : Optional[float] = 0.0 , snake_case__ : Optional[bool] = True , snake_case__ : Optional[int] = 0 , snake_case__ : Optional[int] = 1 , snake_case__ : Optional[int] = 2 , **snake_case__ : Tuple , ): lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = encoder_ffn_dim lowerCAmelCase__ = num_encoder_layers lowerCAmelCase__ = num_encoder_attention_heads lowerCAmelCase__ = decoder_ffn_dim lowerCAmelCase__ = num_decoder_layers lowerCAmelCase__ = num_decoder_attention_heads lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = init_std # Normal(0, this parameter) lowerCAmelCase__ = activation_function # parameters for xlmprophetnet lowerCAmelCase__ = ngram lowerCAmelCase__ = num_buckets lowerCAmelCase__ = relative_max_distance lowerCAmelCase__ = disable_ngram_loss lowerCAmelCase__ = eps # 3 Types of Dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = dropout lowerCAmelCase__ = use_cache super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , add_cross_attention=snake_case__ , decoder_start_token_id=snake_case__ , **snake_case__ , ) @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Optional[int] ): raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and""" """ `num_decoder_layers`.""" )
700
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Tuple = PegasusTokenizer UpperCamelCase_ : Any = PegasusTokenizerFast UpperCamelCase_ : int = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : Optional[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any] ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = """</s>""" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(snake_case__ ) , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowerCAmelCase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase__ = """To ensure a smooth flow of bank resolutions.""" lowerCAmelCase__ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def _SCREAMING_SNAKE_CASE ( self : str ): # fmt: off lowerCAmelCase__ = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = PegasusTokenizer UpperCamelCase_ : Optional[int] = PegasusTokenizerFast UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Optional[int] = True def _SCREAMING_SNAKE_CASE ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ): return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : List[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Dict ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowerCAmelCase__ = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
674
0
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = MobileBertConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = MobileBertForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint lowerCAmelCase__ = load_tf_weights_in_mobilebert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
701
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case__ , ) assert hasattr(self , """env""" ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] ): # configuration for running training on smdistributed Model Parallel lowerCAmelCase__ = { """enabled""": True, """processes_per_host""": 8, } lowerCAmelCase__ = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowerCAmelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowerCAmelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="""py36""" , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str ): TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] ): # create estimator lowerCAmelCase__ = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case__ )
674
0
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _UpperCAmelCase ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join lowerCAmelCase__ = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , lowerCamelCase__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _UpperCAmelCase ( ): """simple docstring""" assert _test_patching.open is open lowerCAmelCase__ = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , lowerCamelCase__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , lowerCamelCase__ ): pass def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , lowerCamelCase__ ) is None with patch_submodule(_test_patching , """len""" , lowerCamelCase__ ): assert _test_patching.len is mock assert _test_patching.len is len def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = """__test_patch_submodule_start_and_stop_mock__""" lowerCAmelCase__ = patch_submodule(_test_patching , """open""" , lowerCamelCase__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _UpperCAmelCase ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join lowerCAmelCase__ = """__test_patch_submodule_successive_join__""" lowerCAmelCase__ = """__test_patch_submodule_successive_dirname__""" lowerCAmelCase__ = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , lowerCamelCase__ ): with patch_submodule(_test_patching , """os.rename""" , lowerCamelCase__ ): with patch_submodule(_test_patching , """os.path.dirname""" , lowerCamelCase__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , lowerCamelCase__ ): with patch_submodule(_test_patching , """os.path.join""" , lowerCamelCase__ ): with patch_submodule(_test_patching , """os.path.dirname""" , lowerCamelCase__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , lowerCamelCase__ ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , lowerCamelCase__ ): pass
702
"""simple docstring""" from math import pi, sqrt def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if num <= 0: raise ValueError("""math domain error""" ) if num > 1_71.5: raise OverflowError("""math range error""" ) elif num - int(lowerCamelCase__ ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(lowerCamelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _UpperCAmelCase ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(lowerCamelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __lowerCAmelCase : Dict = 1.0 while num: __lowerCAmelCase : Any = float(input("Gamma of: ")) print(F"gamma({num}) = {gamma(num)}") print("\nEnter 0 to exit...")
674
0
"""simple docstring""" import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCAmelCase : Any = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase__ = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(lowerCamelCase__ , id=lowerCamelCase__ )
703
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : def __init__( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any=13 , snake_case__ : int=30 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : Dict=True , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=32 , snake_case__ : List[str]=2 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[int]=37 , snake_case__ : Tuple="gelu" , snake_case__ : str=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=10 , snake_case__ : Dict=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : str=None , snake_case__ : List[Any]=2 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = num_patches + 2 def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[Any] ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[str] ): lowerCAmelCase__ = TFDeiTModel(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict ): lowerCAmelCase__ = TFDeiTForMaskedImageModeling(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForMaskedImageModeling(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple ): lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase_ : Any = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : int = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = TFDeiTModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): pass def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Dense ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any]=False ): lowerCAmelCase__ = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _SCREAMING_SNAKE_CASE ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDeiTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Any ): return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors="""tf""" ) # forward pass lowerCAmelCase__ = model(**snake_case__ ) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase__ = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
674
0
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if len(lowerCamelCase__ ) <= 1: return [tuple(lowerCamelCase__ )] lowerCAmelCase__ = [] def generate(lowerCamelCase__ , lowerCamelCase__ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even lowerCAmelCase__ , lowerCAmelCase__ = arr[k - 1], arr[i] else: # k is odd lowerCAmelCase__ , lowerCAmelCase__ = arr[k - 1], arr[0] generate(k - 1 , lowerCamelCase__ ) generate(len(lowerCamelCase__ ) , lowerCamelCase__ ) return res if __name__ == "__main__": __lowerCAmelCase : Optional[int] = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : Tuple = [int(item) for item in user_input.split(",")] print(heaps(arr))
704
"""simple docstring""" from __future__ import annotations from math import gcd def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 3 , ): """simple docstring""" if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: return (pow(lowerCamelCase__ , 2 ) + step) % modulus for _ in range(lowerCamelCase__ ): # These track the position within the cycle detection logic. lowerCAmelCase__ = seed lowerCAmelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCAmelCase__ = gcd(hare - tortoise , lowerCamelCase__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCAmelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : Dict = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"{args.num} is probably prime") else: __lowerCAmelCase : List[str] = args.num // divisor print(F"{args.num} = {divisor} * {quotient}")
674
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class a_ ( __UpperCamelCase ): UpperCamelCase_ : UNetaDModel UpperCamelCase_ : ScoreSdeVeScheduler def __init__( self : Optional[Any] , snake_case__ : UNetaDModel , snake_case__ : ScoreSdeVeScheduler ): super().__init__() self.register_modules(unet=snake_case__ , scheduler=snake_case__ ) @torch.no_grad() def __call__( self : Dict , snake_case__ : int = 1 , snake_case__ : int = 2000 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , **snake_case__ : int , ): lowerCAmelCase__ = self.unet.config.sample_size lowerCAmelCase__ = (batch_size, 3, img_size, img_size) lowerCAmelCase__ = self.unet lowerCAmelCase__ = randn_tensor(snake_case__ , generator=snake_case__ ) * self.scheduler.init_noise_sigma lowerCAmelCase__ = sample.to(self.device ) self.scheduler.set_timesteps(snake_case__ ) self.scheduler.set_sigmas(snake_case__ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCAmelCase__ = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowerCAmelCase__ = self.unet(snake_case__ , snake_case__ ).sample lowerCAmelCase__ = self.scheduler.step_correct(snake_case__ , snake_case__ , generator=snake_case__ ).prev_sample # prediction step lowerCAmelCase__ = model(snake_case__ , snake_case__ ).sample lowerCAmelCase__ = self.scheduler.step_pred(snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ ) lowerCAmelCase__ , lowerCAmelCase__ = output.prev_sample, output.prev_sample_mean lowerCAmelCase__ = sample_mean.clamp(0 , 1 ) lowerCAmelCase__ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase__ = self.numpy_to_pil(snake_case__ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=snake_case__ )
705
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = TapasConfig.from_json_file(lowerCamelCase__ ) # set absolute/relative position embeddings parameter lowerCAmelCase__ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WTQ": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = True # hparam_utils.py hparams lowerCAmelCase__ = 0.66_46_94 lowerCAmelCase__ = 0.20_79_51 lowerCAmelCase__ = 0.12_11_94 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 0.0_35_25_13 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = False # hparam_utils.py hparams lowerCAmelCase__ = 36.45_19 lowerCAmelCase__ = 0.90_34_21 lowerCAmelCase__ = 2_22.0_88 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = 0.76_31_41 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "TABFACT": lowerCAmelCase__ = TapasForSequenceClassification(config=lowerCamelCase__ ) elif task == "MLM": lowerCAmelCase__ = TapasForMaskedLM(config=lowerCamelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": lowerCAmelCase__ = TapasModel(config=lowerCamelCase__ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase__ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) lowerCAmelCase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 ) tokenizer.save_pretrained(lowerCamelCase__ ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
674
0
"""simple docstring""" __lowerCAmelCase : Tuple = "Alexander Joslin" import operator as op from .stack import Stack def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} lowerCAmelCase__ = Stack() lowerCAmelCase__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowerCamelCase__ ) ) elif i in operators: # RULE 2 operator_stack.push(lowerCamelCase__ ) elif i == ")": # RULE 4 lowerCAmelCase__ = operator_stack.peek() operator_stack.pop() lowerCAmelCase__ = operand_stack.peek() operand_stack.pop() lowerCAmelCase__ = operand_stack.peek() operand_stack.pop() lowerCAmelCase__ = operators[opr](lowerCamelCase__ , lowerCamelCase__ ) operand_stack.push(lowerCamelCase__ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"{equation} = {dijkstras_two_stack_algorithm(equation)}")
706
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ = 50 ): """simple docstring""" lowerCAmelCase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"{solution() = }")
674
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[str] = logging.get_logger(__name__) __lowerCAmelCase : Any = { "google/pegasus-large": "https://huggingface.co/google/pegasus-large/resolve/main/config.json", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class a_ ( __UpperCamelCase ): UpperCamelCase_ : Optional[int] = "pegasus" UpperCamelCase_ : Optional[int] = ["past_key_values"] UpperCamelCase_ : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Any , snake_case__ : List[Any]=50265 , snake_case__ : Tuple=1024 , snake_case__ : Tuple=12 , snake_case__ : List[Any]=4096 , snake_case__ : Any=16 , snake_case__ : Any=12 , snake_case__ : Any=4096 , snake_case__ : List[str]=16 , snake_case__ : Union[str, Any]=0.0 , snake_case__ : Union[str, Any]=0.0 , snake_case__ : Union[str, Any]=True , snake_case__ : Dict=True , snake_case__ : Optional[int]="gelu" , snake_case__ : List[Any]=1024 , snake_case__ : int=0.1 , snake_case__ : int=0.0 , snake_case__ : Dict=0.0 , snake_case__ : int=0.02 , snake_case__ : Union[str, Any]=0 , snake_case__ : Optional[Any]=False , snake_case__ : int=0 , snake_case__ : Dict=1 , snake_case__ : Tuple=1 , **snake_case__ : Optional[Any] , ): lowerCAmelCase__ = vocab_size lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = d_model lowerCAmelCase__ = encoder_ffn_dim lowerCAmelCase__ = encoder_layers lowerCAmelCase__ = encoder_attention_heads lowerCAmelCase__ = decoder_ffn_dim lowerCAmelCase__ = decoder_layers lowerCAmelCase__ = decoder_attention_heads lowerCAmelCase__ = dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = activation_function lowerCAmelCase__ = init_std lowerCAmelCase__ = encoder_layerdrop lowerCAmelCase__ = decoder_layerdrop lowerCAmelCase__ = use_cache lowerCAmelCase__ = encoder_layers lowerCAmelCase__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) @property def _SCREAMING_SNAKE_CASE ( self : Any ): return self.encoder_attention_heads @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return self.d_model
707
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Any = "The Nymphenburg Palace is a beautiful palace in Munich!" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } lowerCAmelCase__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase__ = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCamelCase__ , output_all_encodings=lowerCamelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCamelCase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase__ = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab lowerCAmelCase__ = os.path.join(get_home_dir() , """models""" ) lowerCAmelCase__ = _load_vocab(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , cls=lowerCamelCase__ ) lowerCAmelCase__ = nlp.model.BERTModel( lowerCamelCase__ , len(lowerCamelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCamelCase__ , use_token_type_embed=lowerCamelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCamelCase__ , use_decoder=lowerCamelCase__ , ) original_bort.load_parameters(lowerCamelCase__ , cast_dtype=lowerCamelCase__ , ignore_extra=lowerCamelCase__ ) lowerCAmelCase__ = original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCAmelCase__ = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(lowerCamelCase__ ), } lowerCAmelCase__ = BertConfig.from_dict(lowerCamelCase__ ) lowerCAmelCase__ = BertForMaskedLM(lowerCamelCase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCamelCase__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = hf_param.shape lowerCAmelCase__ = to_torch(params[gluon_param] ) lowerCAmelCase__ = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase__ = layer.attention.self lowerCAmelCase__ = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output lowerCAmelCase__ = layer.attention.output lowerCAmelCase__ = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) lowerCAmelCase__ = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate lowerCAmelCase__ = layer.intermediate lowerCAmelCase__ = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) lowerCAmelCase__ = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output lowerCAmelCase__ = layer.output lowerCAmelCase__ = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) lowerCAmelCase__ = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCAmelCase__ = RobertaTokenizer.from_pretrained("""roberta-base""" ) lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ )["""input_ids"""] # Get gluon output lowerCAmelCase__ = mx.nd.array([input_ids] ) lowerCAmelCase__ = original_bort(inputs=lowerCamelCase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCamelCase__ ) lowerCAmelCase__ = BertModel.from_pretrained(lowerCamelCase__ ) hf_bort_model.eval() lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" ) lowerCAmelCase__ = hf_bort_model(**lowerCamelCase__ )[0] lowerCAmelCase__ = output_gluon[0].asnumpy() lowerCAmelCase__ = output_hf[0].detach().numpy() lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase__ = np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : str = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
674
0
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar __lowerCAmelCase : int = TypeVar("T") class a_ ( Generic[T] ): def __init__( self : List[Any] , snake_case__ : T ): lowerCAmelCase__ = data lowerCAmelCase__ = self lowerCAmelCase__ = 0 class a_ ( Generic[T] ): def __init__( self : Optional[int] ): # map from node name to the node object lowerCAmelCase__ = {} def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : T ): # create a new set with x as its member lowerCAmelCase__ = DisjointSetTreeNode(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : T ): # find the set x belongs to (with path-compression) lowerCAmelCase__ = self.map[data] if elem_ref != elem_ref.parent: lowerCAmelCase__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : DisjointSetTreeNode[T] , snake_case__ : DisjointSetTreeNode[T] ): # helper function for union operation if nodea.rank > nodea.rank: lowerCAmelCase__ = nodea else: lowerCAmelCase__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : T , snake_case__ : T ): # merge 2 disjoint sets self.link(self.find_set(snake_case__ ) , self.find_set(snake_case__ ) ) class a_ ( Generic[T] ): def __init__( self : List[Any] ): # connections: map from the node to the neighbouring nodes (with weights) lowerCAmelCase__ = {} def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : T ): # add a node ONLY if its not present in the graph if node not in self.connections: lowerCAmelCase__ = {} def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : T , snake_case__ : T , snake_case__ : int ): # add an edge with the given weight self.add_node(snake_case__ ) self.add_node(snake_case__ ) lowerCAmelCase__ = weight lowerCAmelCase__ = weight def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = [] lowerCAmelCase__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda snake_case__ : x[2] ) # creating the disjoint set lowerCAmelCase__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(snake_case__ ) # MST generation lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = edges[index] index += 1 lowerCAmelCase__ = disjoint_set.find_set(snake_case__ ) lowerCAmelCase__ = disjoint_set.find_set(snake_case__ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(snake_case__ , snake_case__ , snake_case__ ) disjoint_set.union(snake_case__ , snake_case__ ) return graph
708
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self : Optional[int] ): lowerCAmelCase__ = """""" lowerCAmelCase__ = """""" lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = 256 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = cva.imread(snake_case__ , 0 ) lowerCAmelCase__ = copy.deepcopy(self.img ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" ) lowerCAmelCase__ = np.sum(snake_case__ ) for i in range(len(snake_case__ ) ): lowerCAmelCase__ = x[i] / self.k self.sk += prk lowerCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase__ = int(last % last ) lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case__ ) lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase__ = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase__ = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": __lowerCAmelCase : Dict = os.path.join(os.path.basename(__file__), "image_data/input.jpg") __lowerCAmelCase : Optional[int] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
674
0
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Any = "The Nymphenburg Palace is a beautiful palace in Munich!" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } lowerCAmelCase__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase__ = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCamelCase__ , output_all_encodings=lowerCamelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCamelCase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase__ = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab lowerCAmelCase__ = os.path.join(get_home_dir() , """models""" ) lowerCAmelCase__ = _load_vocab(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , cls=lowerCamelCase__ ) lowerCAmelCase__ = nlp.model.BERTModel( lowerCamelCase__ , len(lowerCamelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCamelCase__ , use_token_type_embed=lowerCamelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCamelCase__ , use_decoder=lowerCamelCase__ , ) original_bort.load_parameters(lowerCamelCase__ , cast_dtype=lowerCamelCase__ , ignore_extra=lowerCamelCase__ ) lowerCAmelCase__ = original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCAmelCase__ = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(lowerCamelCase__ ), } lowerCAmelCase__ = BertConfig.from_dict(lowerCamelCase__ ) lowerCAmelCase__ = BertForMaskedLM(lowerCamelCase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCamelCase__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = hf_param.shape lowerCAmelCase__ = to_torch(params[gluon_param] ) lowerCAmelCase__ = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase__ = layer.attention.self lowerCAmelCase__ = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output lowerCAmelCase__ = layer.attention.output lowerCAmelCase__ = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) lowerCAmelCase__ = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate lowerCAmelCase__ = layer.intermediate lowerCAmelCase__ = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) lowerCAmelCase__ = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output lowerCAmelCase__ = layer.output lowerCAmelCase__ = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) lowerCAmelCase__ = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCAmelCase__ = RobertaTokenizer.from_pretrained("""roberta-base""" ) lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ )["""input_ids"""] # Get gluon output lowerCAmelCase__ = mx.nd.array([input_ids] ) lowerCAmelCase__ = original_bort(inputs=lowerCamelCase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCamelCase__ ) lowerCAmelCase__ = BertModel.from_pretrained(lowerCamelCase__ ) hf_bort_model.eval() lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" ) lowerCAmelCase__ = hf_bort_model(**lowerCamelCase__ )[0] lowerCAmelCase__ = output_gluon[0].asnumpy() lowerCAmelCase__ = output_hf[0].detach().numpy() lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase__ = np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : str = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
709
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class a_ ( __UpperCamelCase ): UpperCamelCase_ : List[str] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) UpperCamelCase_ : str = "CIDAS/clipseg-rd64-refined" UpperCamelCase_ : Any = "image_segmenter" UpperCamelCase_ : Optional[Any] = CLIPSegForImageSegmentation UpperCamelCase_ : List[str] = ["image", "text"] UpperCamelCase_ : int = ["image"] def __init__( self : Tuple , *snake_case__ : str , **snake_case__ : Optional[Any] ): requires_backends(self , ["""vision"""] ) super().__init__(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : "Image" , snake_case__ : str ): return self.pre_processor(text=[label] , images=[image] , padding=snake_case__ , return_tensors="""pt""" ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple ): with torch.no_grad(): lowerCAmelCase__ = self.model(**snake_case__ ).logits return logits def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] ): lowerCAmelCase__ = outputs.cpu().detach().numpy() lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
674
0
"""simple docstring""" from __future__ import annotations from typing import Any class a_ : def __init__( self : Union[str, Any] , snake_case__ : int ): lowerCAmelCase__ = num_of_nodes lowerCAmelCase__ = [] lowerCAmelCase__ = {} def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : int , snake_case__ : int , snake_case__ : int ): self.m_edges.append([u_node, v_node, weight] ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase__ = self.find_component(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : list[int] , snake_case__ : int , snake_case__ : int ): if component_size[u_node] <= component_size[v_node]: lowerCAmelCase__ = v_node component_size[v_node] += component_size[u_node] self.set_component(snake_case__ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase__ = self.find_component(snake_case__ ) component_size[u_node] += component_size[v_node] self.set_component(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase__ = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = edge lowerCAmelCase__ = self.m_component[u] lowerCAmelCase__ = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase__ = [u, v, w] for edge in minimum_weight_edge: if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = edge lowerCAmelCase__ = self.m_component[u] lowerCAmelCase__ = self.m_component[v] if u_component != v_component: mst_weight += w self.union(snake_case__ , snake_case__ , snake_case__ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 lowerCAmelCase__ = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _UpperCAmelCase ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
710
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = LayoutLMTokenizer UpperCamelCase_ : List[Any] = LayoutLMTokenizerFast UpperCamelCase_ : Dict = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() lowerCAmelCase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : Union[str, Any] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Tuple ): lowerCAmelCase__ = """UNwant\u00E9d,running""" lowerCAmelCase__ = """unwanted, running""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(snake_case__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): pass
674
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : str = logging.get_logger(__name__) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["""stage2""", """stage3""", """stage4"""] , ) lowerCAmelCase__ = DetaConfig( backbone_config=lowerCamelCase__ , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=lowerCamelCase__ , with_box_refine=lowerCamelCase__ , two_stage=lowerCamelCase__ , ) # set labels lowerCAmelCase__ = """huggingface/label-files""" if "o365" in model_name: lowerCAmelCase__ = 366 lowerCAmelCase__ = """object365-id2label.json""" else: lowerCAmelCase__ = 91 lowerCAmelCase__ = """coco-detection-id2label.json""" lowerCAmelCase__ = num_labels lowerCAmelCase__ = json.load(open(cached_download(hf_hub_url(lowerCamelCase__ , lowerCamelCase__ , repo_type="""dataset""" ) ) , """r""" ) ) lowerCAmelCase__ = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.patch_embed.proj.weight""", """model.backbone.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.proj.bias""", """model.backbone.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.weight""", """model.backbone.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.bias""", """model.backbone.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.reduction.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.bias""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append(("""backbone.0.body.norm1.weight""", """model.backbone.model.hidden_states_norms.stage2.weight""") ) rename_keys.append(("""backbone.0.body.norm1.bias""", """model.backbone.model.hidden_states_norms.stage2.bias""") ) rename_keys.append(("""backbone.0.body.norm2.weight""", """model.backbone.model.hidden_states_norms.stage3.weight""") ) rename_keys.append(("""backbone.0.body.norm2.bias""", """model.backbone.model.hidden_states_norms.stage3.bias""") ) rename_keys.append(("""backbone.0.body.norm3.weight""", """model.backbone.model.hidden_states_norms.stage4.weight""") ) rename_keys.append(("""backbone.0.body.norm3.bias""", """model.backbone.model.hidden_states_norms.stage4.bias""") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.weight""", f"""model.encoder.layers.{i}.self_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.bias""", f"""model.encoder.layers.{i}.self_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.weight""", f"""model.encoder.layers.{i}.self_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.bias""", f"""model.encoder.layers.{i}.self_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.weight""", f"""model.encoder.layers.{i}.self_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.bias""", f"""model.encoder.layers.{i}.self_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.weight""", f"""model.encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""model.encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""model.encoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""model.encoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""model.encoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""model.encoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""model.encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""model.encoder.layers.{i}.final_layer_norm.bias""") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.weight""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.bias""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.weight""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""model.decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""model.decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.weight""", f"""model.decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.bias""", f"""model.decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""model.decoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""model.decoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""model.decoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""model.decoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""model.decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""model.decoder.layers.{i}.final_layer_norm.bias""") ) # fmt: on return rename_keys def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = dct.pop(lowerCamelCase__ ) lowerCAmelCase__ = val def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCAmelCase__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight""" ) lowerCAmelCase__ = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[:dim, :] lowerCAmelCase__ = in_proj_bias[: dim] lowerCAmelCase__ = in_proj_weight[ dim : dim * 2, : ] lowerCAmelCase__ = in_proj_bias[ dim : dim * 2 ] lowerCAmelCase__ = in_proj_weight[ -dim :, : ] lowerCAmelCase__ = in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention lowerCAmelCase__ = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) lowerCAmelCase__ = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[:hidden_size, :] lowerCAmelCase__ = in_proj_bias[:hidden_size] lowerCAmelCase__ = in_proj_weight[ hidden_size : hidden_size * 2, : ] lowerCAmelCase__ = in_proj_bias[hidden_size : hidden_size * 2] lowerCAmelCase__ = in_proj_weight[-hidden_size:, :] lowerCAmelCase__ = in_proj_bias[-hidden_size:] def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase__ = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = get_deta_config(lowerCamelCase__ ) # load original state dict if model_name == "deta-swin-large": lowerCAmelCase__ = hf_hub_download(repo_id="""nielsr/deta-checkpoints""" , filename="""adet_swin_ft.pth""" ) elif model_name == "deta-swin-large-o365": lowerCAmelCase__ = hf_hub_download(repo_id="""jozhang97/deta-swin-l-o365""" , filename="""deta_swin_pt_o365.pth""" ) else: raise ValueError(f"""Model name {model_name} not supported""" ) lowerCAmelCase__ = torch.load(lowerCamelCase__ , map_location="""cpu""" )["""model"""] # original state dict for name, param in state_dict.items(): print(lowerCamelCase__ , param.shape ) # rename keys lowerCAmelCase__ = create_rename_keys(lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) read_in_swin_q_k_v(lowerCamelCase__ , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase__ , lowerCamelCase__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: lowerCAmelCase__ = state_dict.pop(lowerCamelCase__ ) lowerCAmelCase__ = val if "input_proj" in key: lowerCAmelCase__ = state_dict.pop(lowerCamelCase__ ) lowerCAmelCase__ = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: lowerCAmelCase__ = state_dict.pop(lowerCamelCase__ ) lowerCAmelCase__ = val # finally, create HuggingFace model and load state dict lowerCAmelCase__ = DetaForObjectDetection(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() lowerCAmelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" model.to(lowerCamelCase__ ) # load image processor lowerCAmelCase__ = DetaImageProcessor(format="""coco_detection""" ) # verify our conversion on image lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = processor(images=lowerCamelCase__ , return_tensors="""pt""" ) lowerCAmelCase__ = encoding["""pixel_values"""] lowerCAmelCase__ = model(pixel_values.to(lowerCamelCase__ ) ) # verify logits print("""Logits:""" , outputs.logits[0, :3, :3] ) print("""Boxes:""" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": lowerCAmelCase__ = torch.tensor( [[-7.63_08, -2.84_85, -5.37_37], [-7.20_37, -4.55_05, -4.80_27], [-7.29_43, -4.26_11, -4.66_17]] ) lowerCAmelCase__ = torch.tensor([[0.49_87, 0.49_69, 0.99_99], [0.25_49, 0.54_98, 0.48_05], [0.54_98, 0.27_57, 0.05_69]] ) elif model_name == "deta-swin-large-o365": lowerCAmelCase__ = torch.tensor( [[-8.01_22, -3.57_20, -4.97_17], [-8.15_47, -3.68_86, -4.63_89], [-7.66_10, -3.61_94, -5.01_34]] ) lowerCAmelCase__ = torch.tensor([[0.25_23, 0.55_49, 0.48_81], [0.77_15, 0.41_49, 0.46_01], [0.55_03, 0.27_53, 0.05_75]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(lowerCamelCase__ ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(lowerCamelCase__ ) , atol=1e-4 ) print("""Everything ok!""" ) if pytorch_dump_folder_path: # Save model and processor logger.info(f"""Saving PyTorch model and processor to {pytorch_dump_folder_path}...""" ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) # Push to hub if push_to_hub: print("""Pushing model and processor to hub...""" ) model.push_to_hub(f"""jozhang97/{model_name}""" ) processor.push_to_hub(f"""jozhang97/{model_name}""" ) if __name__ == "__main__": __lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
711
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __lowerCAmelCase : Any = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : def __init__( self : List[str] , snake_case__ : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) lowerCAmelCase__ = primes[group]["""prime"""] lowerCAmelCase__ = primes[group]["""generator"""] lowerCAmelCase__ = int(hexlify(urandom(32 ) ) , base=16 ) def _SCREAMING_SNAKE_CASE ( self : Any ): return hex(self.__private_key )[2:] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = pow(self.generator , self.__private_key , self.prime ) return hex(snake_case__ )[2:] def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(snake_case__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str ): lowerCAmelCase__ = int(snake_case__ , base=16 ) if not self.is_valid_public_key(snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , self.__private_key , self.prime ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : int , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(snake_case__ , (prime - 1) // 2 , snake_case__ ) == 1 ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : str , snake_case__ : str , snake_case__ : int = 14 ): lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(snake_case__ , snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , snake_case__ , snake_case__ ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
674
0
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase : List[Any] = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" __lowerCAmelCase : List[str] = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" __lowerCAmelCase : Tuple = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return float((preds == labels).mean() ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="binary" ): """simple docstring""" lowerCAmelCase__ = simple_accuracy(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = float(fa_score(y_true=lowerCamelCase__ , y_pred=lowerCamelCase__ , average=lowerCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = {} for id_pred, label in zip(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = f"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" lowerCAmelCase__ = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase__ = [(pred, label)] lowerCAmelCase__ , lowerCAmelCase__ = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase__ , lowerCAmelCase__ = zip(*lowerCamelCase__ ) lowerCAmelCase__ = fa_score(y_true=lowerCamelCase__ , y_pred=lowerCamelCase__ , average="""macro""" ) fas.append(lowerCamelCase__ ) lowerCAmelCase__ = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase__ ) ) ems.append(lowerCamelCase__ ) lowerCAmelCase__ = float(sum(lowerCamelCase__ ) / len(lowerCamelCase__ ) ) lowerCAmelCase__ = sum(lowerCamelCase__ ) / len(lowerCamelCase__ ) lowerCAmelCase__ = float(fa_score(y_true=lowerCamelCase__ , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self : Any ): if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : int , snake_case__ : Union[str, Any] ): if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(snake_case__ , snake_case__ )} elif self.config_name == "cb": return acc_and_fa(snake_case__ , snake_case__ , fa_avg="""macro""" ) elif self.config_name == "record": lowerCAmelCase__ = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] lowerCAmelCase__ = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(snake_case__ , snake_case__ )[0] elif self.config_name == "multirc": return evaluate_multirc(snake_case__ , snake_case__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(snake_case__ , snake_case__ )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
712
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) lowerCAmelCase__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = weights[0][0][0] lowerCAmelCase__ = np.asarray(layer_norm_a[0] ) lowerCAmelCase__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # lsh weights + output lowerCAmelCase__ = weights[0][1] if len(lowerCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) else: set_layer_weights_in_torch_local(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) # intermediate weighs lowerCAmelCase__ = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase__ ) == 4: lowerCAmelCase__ = intermediate_weights[2] # layernorm 2 lowerCAmelCase__ = np.asarray(intermediate_weights[0][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # intermediate dense lowerCAmelCase__ = np.asarray(intermediate_weights[1][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) # intermediate out lowerCAmelCase__ = np.asarray(intermediate_weights[4][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = torch_model.reformer # word embeds lowerCAmelCase__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase__ ) , ) if isinstance(weights[3] , lowerCamelCase__ ): lowerCAmelCase__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCAmelCase__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" lowerCAmelCase__ = nn.Parameter(torch.tensor(lowerCamelCase__ ) ) lowerCAmelCase__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCAmelCase__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # output layer norm lowerCAmelCase__ = np.asarray(weights[7][0] ) lowerCAmelCase__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # output embeddings lowerCAmelCase__ = np.asarray(weights[9][0] ) lowerCAmelCase__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = ReformerConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = ReformerModelWithLMHead(lowerCamelCase__ ) with open(lowerCamelCase__ , """rb""" ) as f: lowerCAmelCase__ = pickle.load(lowerCamelCase__ )["""weights"""] set_model_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
674
0
"""simple docstring""" import os from math import logaa def _UpperCAmelCase ( lowerCamelCase__ = "base_exp.txt" ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) ): lowerCAmelCase__ , lowerCAmelCase__ = list(map(lowerCamelCase__ , line.split(""",""" ) ) ) if x * logaa(lowerCamelCase__ ) > largest: lowerCAmelCase__ = x * logaa(lowerCamelCase__ ) lowerCAmelCase__ = i + 1 return result if __name__ == "__main__": print(solution())
713
"""simple docstring""" import os from math import logaa def _UpperCAmelCase ( lowerCamelCase__ = "base_exp.txt" ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) ): lowerCAmelCase__ , lowerCAmelCase__ = list(map(lowerCamelCase__ , line.split(""",""" ) ) ) if x * logaa(lowerCamelCase__ ) > largest: lowerCAmelCase__ = x * logaa(lowerCamelCase__ ) lowerCAmelCase__ = i + 1 return result if __name__ == "__main__": print(solution())
674
0
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
714
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" while b: lowerCAmelCase__ , lowerCAmelCase__ = b, a % b return a def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase__ , a % b ) def _UpperCAmelCase ( ): """simple docstring""" print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
674
0
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class a_ : UpperCamelCase_ : Optional[Union[str, Path]] = None UpperCamelCase_ : bool = False UpperCamelCase_ : bool = False UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Dict] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = False UpperCamelCase_ : bool = False UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : int = 1 UpperCamelCase_ : Optional[Union[str, bool]] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Dict] = None UpperCamelCase_ : Optional[str] = None def _SCREAMING_SNAKE_CASE ( self : str ): return self.__class__(**{k: copy.deepcopy(snake_case__ ) for k, v in self.__dict__.items()} )
715
"""simple docstring""" import os def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = os.path.dirname(os.path.realpath(lowerCamelCase__ ) ) lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """triangle.txt""" ) with open(lowerCamelCase__ ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = [] for line in triangle: lowerCAmelCase__ = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(lowerCamelCase__ ) ) a.append(lowerCamelCase__ ) for i in range(1 , len(lowerCamelCase__ ) ): for j in range(len(a[i] ) ): lowerCAmelCase__ = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCAmelCase__ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCamelCase__ , lowerCamelCase__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
674
0
"""simple docstring""" import os def _UpperCAmelCase ( lowerCamelCase__ = "matrix.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) as in_file: lowerCAmelCase__ = in_file.read() lowerCAmelCase__ = [[int(lowerCamelCase__ ) for cell in row.split(""",""" )] for row in data.strip().splitlines()] lowerCAmelCase__ = [[0 for cell in row] for row in grid] lowerCAmelCase__ = len(grid[0] ) lowerCAmelCase__ = [[0 for i in range(lowerCamelCase__ )] for j in range(lowerCamelCase__ )] lowerCAmelCase__ = grid[0][0] for i in range(1 , lowerCamelCase__ ): lowerCAmelCase__ = grid[0][i] + dp[0][i - 1] for i in range(1 , lowerCamelCase__ ): lowerCAmelCase__ = grid[i][0] + dp[i - 1][0] for i in range(1 , lowerCamelCase__ ): for j in range(1 , lowerCamelCase__ ): lowerCAmelCase__ = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"{solution() = }")
716
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCAmelCase : Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __lowerCAmelCase : Optional[int] = json.load(f) @require_torch class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Dict ): return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ): lowerCAmelCase__ = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Any , snake_case__ : int ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowerCAmelCase__ = F"""facebook/wmt19-{pair}""" lowerCAmelCase__ = self.get_tokenizer(snake_case__ ) lowerCAmelCase__ = self.get_model(snake_case__ ) lowerCAmelCase__ = bleu_data[pair]["""src"""] lowerCAmelCase__ = bleu_data[pair]["""tgt"""] lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""pt""" , truncation=snake_case__ , padding="""longest""" ).to(snake_case__ ) lowerCAmelCase__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCAmelCase__ = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) lowerCAmelCase__ = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["""bleu"""] , snake_case__ )
674
0
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" while b: lowerCAmelCase__ , lowerCAmelCase__ = b, a % b return a def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase__ , a % b ) def _UpperCAmelCase ( ): """simple docstring""" print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
717
"""simple docstring""" import pprint import requests __lowerCAmelCase : Union[str, Any] = "https://zenquotes.io/api" def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = random_quotes() pprint.pprint(response)
674
0
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) __lowerCAmelCase : List[Any] = { "kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", } class a_ ( __UpperCamelCase ): UpperCamelCase_ : Optional[int] = "align_text_model" def __init__( self : Optional[Any] , snake_case__ : Optional[Any]=30522 , snake_case__ : Tuple=768 , snake_case__ : Union[str, Any]=12 , snake_case__ : Tuple=12 , snake_case__ : Dict=3072 , snake_case__ : int="gelu" , snake_case__ : Tuple=0.1 , snake_case__ : Any=0.1 , snake_case__ : List[Any]=512 , snake_case__ : str=2 , snake_case__ : List[str]=0.02 , snake_case__ : Tuple=1E-12 , snake_case__ : Dict=0 , snake_case__ : str="absolute" , snake_case__ : str=True , **snake_case__ : Dict , ): super().__init__(**snake_case__ ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = hidden_act lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = position_embedding_type lowerCAmelCase__ = use_cache lowerCAmelCase__ = pad_token_id @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , snake_case__ : Union[str, os.PathLike] , **snake_case__ : Tuple ): cls._set_token_in_kwargs(snake_case__ ) lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(snake_case__ , **snake_case__ ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": lowerCAmelCase__ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case__ , **snake_case__ ) class a_ ( __UpperCamelCase ): UpperCamelCase_ : Any = "align_vision_model" def __init__( self : Tuple , snake_case__ : int = 3 , snake_case__ : int = 600 , snake_case__ : float = 2.0 , snake_case__ : float = 3.1 , snake_case__ : int = 8 , snake_case__ : List[int] = [3, 3, 5, 3, 5, 5, 3] , snake_case__ : List[int] = [32, 16, 24, 40, 80, 112, 192] , snake_case__ : List[int] = [16, 24, 40, 80, 112, 192, 320] , snake_case__ : List[int] = [] , snake_case__ : List[int] = [1, 2, 2, 2, 1, 2, 1] , snake_case__ : List[int] = [1, 2, 2, 3, 3, 4, 1] , snake_case__ : List[int] = [1, 6, 6, 6, 6, 6, 6] , snake_case__ : float = 0.25 , snake_case__ : str = "swish" , snake_case__ : int = 2560 , snake_case__ : str = "mean" , snake_case__ : float = 0.02 , snake_case__ : float = 0.001 , snake_case__ : float = 0.99 , snake_case__ : float = 0.2 , **snake_case__ : Union[str, Any] , ): super().__init__(**snake_case__ ) lowerCAmelCase__ = num_channels lowerCAmelCase__ = image_size lowerCAmelCase__ = width_coefficient lowerCAmelCase__ = depth_coefficient lowerCAmelCase__ = depth_divisor lowerCAmelCase__ = kernel_sizes lowerCAmelCase__ = in_channels lowerCAmelCase__ = out_channels lowerCAmelCase__ = depthwise_padding lowerCAmelCase__ = strides lowerCAmelCase__ = num_block_repeats lowerCAmelCase__ = expand_ratios lowerCAmelCase__ = squeeze_expansion_ratio lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dim lowerCAmelCase__ = pooling_type lowerCAmelCase__ = initializer_range lowerCAmelCase__ = batch_norm_eps lowerCAmelCase__ = batch_norm_momentum lowerCAmelCase__ = drop_connect_rate lowerCAmelCase__ = sum(snake_case__ ) * 4 @classmethod def _SCREAMING_SNAKE_CASE ( cls : int , snake_case__ : Union[str, os.PathLike] , **snake_case__ : Optional[Any] ): cls._set_token_in_kwargs(snake_case__ ) lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(snake_case__ , **snake_case__ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": lowerCAmelCase__ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case__ , **snake_case__ ) class a_ ( __UpperCamelCase ): UpperCamelCase_ : int = "align" UpperCamelCase_ : Any = True def __init__( self : Union[str, Any] , snake_case__ : Dict=None , snake_case__ : List[Any]=None , snake_case__ : Union[str, Any]=640 , snake_case__ : Optional[Any]=1.0 , snake_case__ : Any=0.02 , **snake_case__ : Any , ): super().__init__(**snake_case__ ) if text_config is None: lowerCAmelCase__ = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: lowerCAmelCase__ = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) lowerCAmelCase__ = AlignTextConfig(**snake_case__ ) lowerCAmelCase__ = AlignVisionConfig(**snake_case__ ) lowerCAmelCase__ = projection_dim lowerCAmelCase__ = temperature_init_value lowerCAmelCase__ = initializer_range @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , snake_case__ : AlignTextConfig , snake_case__ : AlignVisionConfig , **snake_case__ : List[str] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ = self.text_config.to_dict() lowerCAmelCase__ = self.vision_config.to_dict() lowerCAmelCase__ = self.__class__.model_type return output
718
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = CLIPConfig() # Create a dummy config file with image_proceesor_type lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ).to_dict() config_dict.pop("""image_processor_type""" ) lowerCAmelCase__ = CLIPImageProcessor(**snake_case__ ) # save in new folder model_config.save_pretrained(snake_case__ ) config.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) # make sure private variable is not incorrectly saved lowerCAmelCase__ = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with self.assertRaisesRegex( snake_case__ , """clip-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""clip-base""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): with self.assertRaisesRegex( snake_case__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , revision="""aaaaaa""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): with self.assertRaisesRegex( snake_case__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , trust_remote_code=snake_case__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ): try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoImageProcessor.register(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = CustomImageProcessor.from_pretrained(snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self : List[str] ): class a_ ( __UpperCamelCase ): UpperCamelCase_ : Tuple = True try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # If remote code is not set, the default is to use local lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(snake_case__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
674
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : str = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple = [ "SEW_PRETRAINED_MODEL_ARCHIVE_LIST", "SEWForCTC", "SEWForSequenceClassification", "SEWModel", "SEWPreTrainedModel", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys __lowerCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
719
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a_ : def __init__( self : Optional[int] , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=64 , snake_case__ : Any=None ): lowerCAmelCase__ = np.random.default_rng(snake_case__ ) lowerCAmelCase__ = length lowerCAmelCase__ = rng.normal(size=(length,) ).astype(np.floataa ) lowerCAmelCase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[Any] ): return self.length def __getitem__( self : List[str] , snake_case__ : Optional[int] ): return {"x": self.x[i], "y": self.y[i]} class a_ ( torch.nn.Module ): def __init__( self : List[str] , snake_case__ : str=0 , snake_case__ : Dict=0 , snake_case__ : Any=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Any=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a[0] + self.b[0] class a_ ( torch.nn.Module ): def __init__( self : Any , snake_case__ : Union[str, Any]=0 , snake_case__ : Union[str, Any]=0 , snake_case__ : List[Any]=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any]=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a + self.b def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase__ = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} lowerCAmelCase__ = load_dataset("""csv""" , data_files=lowerCamelCase__ ) lowerCAmelCase__ = datasets["""train"""].unique("""label""" ) lowerCAmelCase__ = {v: i for i, v in enumerate(lowerCamelCase__ )} def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" ) if "label" in examples: lowerCAmelCase__ = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase__ = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=2 ) lowerCAmelCase__ = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
674
0
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name __lowerCAmelCase : List[Any] = "\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=8 ): """simple docstring""" A = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 A = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class a_ ( __UpperCamelCase ): def __init__( self : int , snake_case__ : UNetaDConditionModel , snake_case__ : DDPMScheduler , snake_case__ : VQModel , ): super().__init__() self.register_modules( unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , ) A = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Any , snake_case__ : str , snake_case__ : Union[str, Any] ): if latents is None: A = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) A = latents.to(snake_case__ ) A = latents * scheduler.init_noise_sigma return latents def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) A = torch.device(F"""cuda:{gpu_id}""" ) A = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : List[Any]=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) A = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=snake_case__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) A = None for cpu_offloaded_model in [self.unet, self.movq]: A , A = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ ) # We'll offload the last model manually. A = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _SCREAMING_SNAKE_CASE ( self : List[Any] ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case__ ) def __call__( self : Optional[int] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : torch.FloatTensor , snake_case__ : int = 512 , snake_case__ : int = 512 , snake_case__ : int = 100 , snake_case__ : float = 4.0 , snake_case__ : int = 1 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , ): A = self._execution_device A = guidance_scale > 1.0 if isinstance(snake_case__ , snake_case__ ): A = torch.cat(snake_case__ , dim=0 ) if isinstance(snake_case__ , snake_case__ ): A = torch.cat(snake_case__ , dim=0 ) if isinstance(snake_case__ , snake_case__ ): A = torch.cat(snake_case__ , dim=0 ) A = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: A = image_embeds.repeat_interleave(snake_case__ , dim=0 ) A = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 ) A = hint.repeat_interleave(snake_case__ , dim=0 ) A = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case__ ) A = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case__ ) self.scheduler.set_timesteps(snake_case__ , device=snake_case__ ) A = self.scheduler.timesteps A = self.movq.config.latent_channels A , A = downscale_height_and_width(snake_case__ , snake_case__ , self.movq_scale_factor ) # create initial latent A = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , snake_case__ , snake_case__ , snake_case__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A = {"""image_embeds""": image_embeds, """hint""": hint} A = self.unet( sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0] if do_classifier_free_guidance: A , A = noise_pred.split(latents.shape[1] , dim=1 ) A , A = noise_pred.chunk(2 ) A , A = variance_pred.chunk(2 ) A = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) A = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): A , A = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 A = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , )[0] # post-processing A = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: A = image * 0.5 + 0.5 A = image.clamp(0 , 1 ) A = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
720
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = MobileBertConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = MobileBertForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint lowerCAmelCase__ = load_tf_weights_in_mobilebert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
674
0
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class a_ : def __init__( self : int , snake_case__ : Any , snake_case__ : List[str]=13 , snake_case__ : int=32 , snake_case__ : Dict=2 , snake_case__ : Optional[Any]=3 , snake_case__ : Optional[Any]=16 , snake_case__ : Tuple=[1, 2, 1] , snake_case__ : Optional[int]=[2, 2, 4] , snake_case__ : Union[str, Any]=2 , snake_case__ : List[Any]=2.0 , snake_case__ : List[str]=True , snake_case__ : Optional[int]=0.0 , snake_case__ : Dict=0.0 , snake_case__ : Tuple=0.1 , snake_case__ : List[str]="gelu" , snake_case__ : int=False , snake_case__ : List[str]=True , snake_case__ : List[Any]=0.02 , snake_case__ : Tuple=1E-5 , snake_case__ : Union[str, Any]=True , snake_case__ : str=None , snake_case__ : List[Any]=True , snake_case__ : str=10 , snake_case__ : Dict=8 , snake_case__ : List[Any]=["stage1", "stage2", "stage3"] , snake_case__ : List[str]=[1, 2, 3] , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = embed_dim lowerCAmelCase__ = depths lowerCAmelCase__ = num_heads lowerCAmelCase__ = window_size lowerCAmelCase__ = mlp_ratio lowerCAmelCase__ = qkv_bias lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = drop_path_rate lowerCAmelCase__ = hidden_act lowerCAmelCase__ = use_absolute_embeddings lowerCAmelCase__ = patch_norm lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = initializer_range lowerCAmelCase__ = is_training lowerCAmelCase__ = scope lowerCAmelCase__ = use_labels lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = encoder_stride lowerCAmelCase__ = out_features lowerCAmelCase__ = out_indices def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : Any ): lowerCAmelCase__ = MaskFormerSwinModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model(snake_case__ ) lowerCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[int] ): lowerCAmelCase__ = MaskFormerSwinBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = model(snake_case__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(snake_case__ ): lowerCAmelCase__ = ["""stem"""] lowerCAmelCase__ = MaskFormerSwinBackbone(config=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[int] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) UpperCamelCase_ : str = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : Dict = False def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = MaskFormerSwinModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): pass def _SCREAMING_SNAKE_CASE ( self : List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*snake_case__ ) @unittest.skip("""Swin does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass @unittest.skip("""Swin does not support feedforward chunking""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def _SCREAMING_SNAKE_CASE ( self : int ): pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): pass def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : Any ): lowerCAmelCase__ = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase__ = outputs.hidden_states lowerCAmelCase__ = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) # Swin has a different seq_length lowerCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase__ = True self.check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True self.check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = 3 lowerCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase__ = True self.check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True self.check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ): pass def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(snake_case__ : Union[str, Any] ): lowerCAmelCase__ = 0 return t def check_equivalence(snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Dict , snake_case__ : int={} ): with torch.no_grad(): lowerCAmelCase__ = model(**snake_case__ , return_dict=snake_case__ , **snake_case__ ) lowerCAmelCase__ = model(**snake_case__ , return_dict=snake_case__ , **snake_case__ ).to_tuple() def recursive_check(snake_case__ : Dict , snake_case__ : int ): if isinstance(snake_case__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(snake_case__ , snake_case__ ): recursive_check(snake_case__ , snake_case__ ) elif isinstance(snake_case__ , snake_case__ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(snake_case__ , snake_case__ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(snake_case__ ) , set_nan_tensor_to_zero(snake_case__ ) , atol=1E-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(snake_case__ ).any()} and `inf`: {torch.isinf(snake_case__ )}. Dict has""" F""" `nan`: {torch.isnan(snake_case__ ).any()} and `inf`: {torch.isinf(snake_case__ )}.""" ) , ) recursive_check(snake_case__ , snake_case__ ) for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ , {"""output_hidden_states""": True} ) lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ , {"""output_hidden_states""": True} ) @require_torch class a_ ( unittest.TestCase , __UpperCamelCase ): UpperCamelCase_ : Optional[int] = (MaskFormerSwinBackbone,) if is_torch_available() else () UpperCamelCase_ : Optional[Any] = MaskFormerSwinConfig def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = MaskFormerSwinModelTester(self ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: lowerCAmelCase__ = backbone_class(snake_case__ ) backbone.to(snake_case__ ) backbone.eval() lowerCAmelCase__ = backbone(**snake_case__ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , snake_case__ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowerCAmelCase__ = backbone(**snake_case__ , output_hidden_states=snake_case__ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowerCAmelCase__ = backbone(**snake_case__ , output_attentions=snake_case__ ) self.assertIsNotNone(outputs.attentions )
721
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: lowerCAmelCase__ = f"""The input value of [n={number}] has to be > 0""" raise ValueError(lowerCamelCase__ ) else: lowerCAmelCase__ = sylvester(number - 1 ) lowerCAmelCase__ = num - 1 lowerCAmelCase__ = num return lower * upper + 1 if __name__ == "__main__": print(F"The 8th number in Sylvester's sequence: {sylvester(8)}")
674
0
"""simple docstring""" import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __lowerCAmelCase : Optional[Any] = trt.Logger(trt.Logger.WARNING) __lowerCAmelCase : int = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __lowerCAmelCase : Dict = logging.getLogger(__name__) __lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--onnx_model_path", default=None, type=str, required=True, help="Path to ONNX model: ", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--tokenizer_name", default="", type=str, required=True, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=3_84, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=1_28, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--dataset_name", type=str, default=None, required=True, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision instead of 32-bit", ) parser.add_argument( "--int8", action="store_true", help="Whether to use INT8", ) __lowerCAmelCase : Tuple = parser.parse_args() if args.tokenizer_name: __lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) logger.info("Training/evaluation parameters %s", args) __lowerCAmelCase : int = args.per_device_eval_batch_size __lowerCAmelCase : Union[str, Any] = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __lowerCAmelCase : Dict = True __lowerCAmelCase : Dict = "temp_engine/bert-fp32.engine" if args.fpaa: __lowerCAmelCase : Any = "temp_engine/bert-fp16.engine" if args.inta: __lowerCAmelCase : Optional[Any] = "temp_engine/bert-int8.engine" # import ONNX file if not os.path.exists("temp_engine"): os.makedirs("temp_engine") __lowerCAmelCase : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, "rb") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __lowerCAmelCase : Optional[Any] = [network.get_input(i) for i in range(network.num_inputs)] __lowerCAmelCase : List[Any] = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __lowerCAmelCase : str = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __lowerCAmelCase : Any = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __lowerCAmelCase : Any = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, "wb") as f: f.write(engine.serialize()) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) lowerCAmelCase__ = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) lowerCAmelCase__ = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCamelCase__ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCamelCase__ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCamelCase__ ) # start time lowerCAmelCase__ = time.time() # Run inference context.execute_async( bindings=[int(lowerCamelCase__ ) for d_inp in d_inputs] + [int(lowerCamelCase__ ), int(lowerCamelCase__ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) cuda.memcpy_dtoh_async(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase__ = time.time() lowerCAmelCase__ = end_time - start_time lowerCAmelCase__ = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __lowerCAmelCase : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase : str = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("Evaluation requires a dataset name") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __lowerCAmelCase : Dict = raw_datasets["validation"].column_names __lowerCAmelCase : Any = "question" if "question" in column_names else column_names[0] __lowerCAmelCase : List[str] = "context" if "context" in column_names else column_names[1] __lowerCAmelCase : Any = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __lowerCAmelCase : Optional[Any] = tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) __lowerCAmelCase : int = min(args.max_seq_length, tokenizer.model_max_length) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase__ = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCamelCase__ , stride=args.doc_stride , return_overflowing_tokens=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase__ = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase__ = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase__ = tokenized_examples.sequence_ids(lowerCamelCase__ ) lowerCAmelCase__ = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase__ = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase__ = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples __lowerCAmelCase : List[str] = raw_datasets["validation"] # Validation Feature Creation __lowerCAmelCase : str = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) __lowerCAmelCase : Optional[Any] = default_data_collator __lowerCAmelCase : int = eval_dataset.remove_columns(["example_id", "offset_mapping"]) __lowerCAmelCase : Any = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="eval" ): """simple docstring""" lowerCAmelCase__ = postprocess_qa_predictions( examples=lowerCamelCase__ , features=lowerCamelCase__ , predictions=lowerCamelCase__ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCamelCase__ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase__ = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: lowerCAmelCase__ = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] lowerCAmelCase__ = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCamelCase__ , label_ids=lowerCamelCase__ ) __lowerCAmelCase : List[Any] = load_metric("squad_v2" if args.version_2_with_negative else "squad") # Evaluation! logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return trt.volume(engine.get_binding_shape(lowerCamelCase__ ) ) * engine.get_binding_dtype(lowerCamelCase__ ).itemsize # Allocate device memory for inputs and outputs. __lowerCAmelCase : Dict = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __lowerCAmelCase : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __lowerCAmelCase : List[str] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __lowerCAmelCase : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) __lowerCAmelCase : Union[str, Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __lowerCAmelCase : Any = cuda.Stream() # Evaluation logger.info("***** Running Evaluation *****") logger.info(F" Num examples = {len(eval_dataset)}") logger.info(F" Batch size = {args.per_device_eval_batch_size}") __lowerCAmelCase : List[str] = 0.0 __lowerCAmelCase : str = 0 __lowerCAmelCase : Dict = timeit.default_timer() __lowerCAmelCase : List[str] = None for step, batch in enumerate(eval_dataloader): __lowerCAmelCase : Tuple = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __lowerCAmelCase : List[str] = outputs __lowerCAmelCase : Dict = torch.tensor(start_logits) __lowerCAmelCase : List[str] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __lowerCAmelCase : List[str] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) __lowerCAmelCase : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) __lowerCAmelCase : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __lowerCAmelCase : Union[str, Any] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: __lowerCAmelCase : str = nested_truncate(all_preds, len(eval_dataset)) __lowerCAmelCase : str = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("Average Inference Time = {:.3f} ms".format(total_time * 10_00 / niter)) logger.info("Total Inference Time = {:.3f} ms".format(total_time * 10_00)) logger.info("Total Number of Inference = %d", niter) __lowerCAmelCase : Any = post_processing_function(eval_examples, eval_dataset, all_preds) __lowerCAmelCase : List[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F"Evaluation metrics: {eval_metric}")
700
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Tuple = PegasusTokenizer UpperCamelCase_ : Any = PegasusTokenizerFast UpperCamelCase_ : int = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : Optional[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any] ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = """</s>""" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(snake_case__ ) , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowerCAmelCase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase__ = """To ensure a smooth flow of bank resolutions.""" lowerCAmelCase__ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def _SCREAMING_SNAKE_CASE ( self : str ): # fmt: off lowerCAmelCase__ = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = PegasusTokenizer UpperCamelCase_ : Optional[int] = PegasusTokenizerFast UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Optional[int] = True def _SCREAMING_SNAKE_CASE ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ): return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : List[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Dict ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowerCAmelCase__ = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
674
0
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = MgpstrTokenizer UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : Dict = {} UpperCamelCase_ : int = False def _SCREAMING_SNAKE_CASE ( self : int ): super().setUp() # fmt: off lowerCAmelCase__ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on lowerCAmelCase__ = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case__ ) + """\n""" ) def _SCREAMING_SNAKE_CASE ( self : Tuple , **snake_case__ : Dict ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ): lowerCAmelCase__ = """tester""" lowerCAmelCase__ = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.get_tokenizers(do_lower_case=snake_case__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase__ = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) lowerCAmelCase__ = tokenizer.encode([special_token] , add_special_tokens=snake_case__ ) self.assertEqual(len(snake_case__ ) , 1 ) lowerCAmelCase__ = tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) self.assertTrue(special_token not in decoded ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase__ , lowerCAmelCase__ = self.get_input_output_texts(snake_case__ ) lowerCAmelCase__ = tokenizer.tokenize(snake_case__ ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(snake_case__ ) lowerCAmelCase__ = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertNotEqual(len(snake_case__ ) , 0 ) lowerCAmelCase__ = tokenizer.decode(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , snake_case__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): pass
701
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case__ , ) assert hasattr(self , """env""" ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] ): # configuration for running training on smdistributed Model Parallel lowerCAmelCase__ = { """enabled""": True, """processes_per_host""": 8, } lowerCAmelCase__ = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowerCAmelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowerCAmelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="""py36""" , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str ): TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] ): # create estimator lowerCAmelCase__ = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case__ )
674
0
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __lowerCAmelCase = "0.12" # assumed parallelism: 8 if is_torch_available(): import torch def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" if rng is None: lowerCAmelCase__ = random.Random() lowerCAmelCase__ = 1 for dim in shape: total_dims *= dim lowerCAmelCase__ = [] for _ in range(lowerCamelCase__ ): values.append(rng.randint(0 , vocab_size - 1 ) ) lowerCAmelCase__ = np.array(lowerCamelCase__ , dtype=jnp.intaa ).reshape(lowerCamelCase__ ) return output def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" lowerCAmelCase__ = ids_tensor(lowerCamelCase__ , vocab_size=2 , rng=lowerCamelCase__ ) # make sure that at least one token is attended to for each batch lowerCAmelCase__ = 1 return attn_mask @require_flax class a_ : UpperCamelCase_ : List[str] = None UpperCamelCase_ : Any = () def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 lowerCAmelCase__ = 2 lowerCAmelCase__ = inputs["""input_ids"""].shape[-1] // 2 lowerCAmelCase__ = inputs["""input_ids"""][:max_batch_size, :sequence_length] lowerCAmelCase__ = jnp.ones_like(snake_case__ ) lowerCAmelCase__ = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens lowerCAmelCase__ = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` lowerCAmelCase__ = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() lowerCAmelCase__ = False lowerCAmelCase__ = max_length lowerCAmelCase__ = 0 for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase__ = getattr(snake_case__ , snake_case__ ) lowerCAmelCase__ = pt_model_class(snake_case__ ).eval() lowerCAmelCase__ = load_flax_weights_in_pytorch_model(snake_case__ , flax_model.params ) lowerCAmelCase__ = flax_model.generate(snake_case__ ).sequences lowerCAmelCase__ = pt_model.generate(torch.tensor(snake_case__ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: lowerCAmelCase__ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() lowerCAmelCase__ = False lowerCAmelCase__ = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = model.generate(snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) lowerCAmelCase__ = jit(model.generate ) lowerCAmelCase__ = jit_generate(snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() lowerCAmelCase__ = True lowerCAmelCase__ = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = model.generate(snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) lowerCAmelCase__ = jit(model.generate ) lowerCAmelCase__ = jit_generate(snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() lowerCAmelCase__ = False lowerCAmelCase__ = max_length lowerCAmelCase__ = 2 for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = model.generate(snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) lowerCAmelCase__ = jit(model.generate ) lowerCAmelCase__ = jit_generate(snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() lowerCAmelCase__ = False lowerCAmelCase__ = max_length lowerCAmelCase__ = 2 lowerCAmelCase__ = 2 for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = model.generate(snake_case__ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() lowerCAmelCase__ = True lowerCAmelCase__ = max_length lowerCAmelCase__ = 0.8 lowerCAmelCase__ = 10 lowerCAmelCase__ = 0.3 lowerCAmelCase__ = 1 lowerCAmelCase__ = 8 lowerCAmelCase__ = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = model.generate(snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) lowerCAmelCase__ = jit(model.generate ) lowerCAmelCase__ = jit_generate(snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() lowerCAmelCase__ = max_length lowerCAmelCase__ = 1 lowerCAmelCase__ = 8 lowerCAmelCase__ = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = model.generate(snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) lowerCAmelCase__ = jit(model.generate ) lowerCAmelCase__ = jit_generate(snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() lowerCAmelCase__ = max_length lowerCAmelCase__ = 2 lowerCAmelCase__ = 1 lowerCAmelCase__ = 8 lowerCAmelCase__ = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = model.generate(snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) lowerCAmelCase__ = jit(model.generate ) lowerCAmelCase__ = jit_generate(snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ = False lowerCAmelCase__ = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = model.generate(snake_case__ , attention_mask=snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) lowerCAmelCase__ = jit(model.generate ) lowerCAmelCase__ = jit_generate(snake_case__ , attention_mask=snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ = True lowerCAmelCase__ = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = model.generate(snake_case__ , attention_mask=snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) lowerCAmelCase__ = jit(model.generate ) lowerCAmelCase__ = jit_generate(snake_case__ , attention_mask=snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ = 2 lowerCAmelCase__ = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = model.generate(snake_case__ , attention_mask=snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) lowerCAmelCase__ = jit(model.generate ) lowerCAmelCase__ = jit_generate(snake_case__ , attention_mask=snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) lowerCAmelCase__ = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) lowerCAmelCase__ = """Hello world""" lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(snake_case__ , """do_samples""" ): model.generate(snake_case__ , do_samples=snake_case__ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(snake_case__ , """foo""" ): lowerCAmelCase__ = {"""foo""": """bar"""} model.generate(snake_case__ , **snake_case__ )
702
"""simple docstring""" from math import pi, sqrt def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if num <= 0: raise ValueError("""math domain error""" ) if num > 1_71.5: raise OverflowError("""math range error""" ) elif num - int(lowerCamelCase__ ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(lowerCamelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _UpperCAmelCase ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(lowerCamelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __lowerCAmelCase : Dict = 1.0 while num: __lowerCAmelCase : Any = float(input("Gamma of: ")) print(F"gamma({num}) = {gamma(num)}") print("\nEnter 0 to exit...")
674
0
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ = 10**12 ): """simple docstring""" lowerCAmelCase__ = 1 lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 lowerCAmelCase__ = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F"{solution() = }")
703
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : def __init__( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any=13 , snake_case__ : int=30 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : Dict=True , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=32 , snake_case__ : List[str]=2 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[int]=37 , snake_case__ : Tuple="gelu" , snake_case__ : str=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=10 , snake_case__ : Dict=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : str=None , snake_case__ : List[Any]=2 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = num_patches + 2 def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[Any] ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[str] ): lowerCAmelCase__ = TFDeiTModel(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict ): lowerCAmelCase__ = TFDeiTForMaskedImageModeling(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForMaskedImageModeling(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple ): lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase_ : Any = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : int = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = TFDeiTModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): pass def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Dense ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any]=False ): lowerCAmelCase__ = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _SCREAMING_SNAKE_CASE ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDeiTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Any ): return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors="""tf""" ) # forward pass lowerCAmelCase__ = model(**snake_case__ ) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase__ = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
674
0
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def _UpperCAmelCase ( lowerCamelCase__="ro" , lowerCamelCase__="en" , lowerCamelCase__="wmt16" , lowerCamelCase__=None ): """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) lowerCAmelCase__ = f"""{src_lang}-{tgt_lang}""" print(f"""Converting {dataset}-{pair}""" ) lowerCAmelCase__ = datasets.load_dataset(lowerCamelCase__ , lowerCamelCase__ ) if save_dir is None: lowerCAmelCase__ = f"""{dataset}-{pair}""" lowerCAmelCase__ = Path(lowerCamelCase__ ) save_dir.mkdir(exist_ok=lowerCamelCase__ ) for split in ds.keys(): print(f"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets lowerCAmelCase__ = """val""" if split == """validation""" else split lowerCAmelCase__ = save_dir.joinpath(f"""{fn}.source""" ) lowerCAmelCase__ = save_dir.joinpath(f"""{fn}.target""" ) lowerCAmelCase__ = src_path.open("""w+""" ) lowerCAmelCase__ = tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): lowerCAmelCase__ = x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(f"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
704
"""simple docstring""" from __future__ import annotations from math import gcd def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 3 , ): """simple docstring""" if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: return (pow(lowerCamelCase__ , 2 ) + step) % modulus for _ in range(lowerCamelCase__ ): # These track the position within the cycle detection logic. lowerCAmelCase__ = seed lowerCAmelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCAmelCase__ = gcd(hare - tortoise , lowerCamelCase__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCAmelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : Dict = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"{args.num} is probably prime") else: __lowerCAmelCase : List[str] = args.num // divisor print(F"{args.num} = {divisor} * {quotient}")
674
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = KandinskyVaaInpaintPipeline UpperCamelCase_ : List[str] = ["image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCamelCase_ : Dict = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCamelCase_ : List[str] = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCamelCase_ : Dict = False @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): return 32 @property def _SCREAMING_SNAKE_CASE ( self : Any ): return 32 @property def _SCREAMING_SNAKE_CASE ( self : str ): return self.time_input_dim @property def _SCREAMING_SNAKE_CASE ( self : Tuple ): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : List[str] ): return 100 @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): torch.manual_seed(0 ) lowerCAmelCase__ = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowerCAmelCase__ = UNetaDConditionModel(**snake_case__ ) return model @property def _SCREAMING_SNAKE_CASE ( self : Dict ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): torch.manual_seed(0 ) lowerCAmelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = self.dummy_unet lowerCAmelCase__ = self.dummy_movq lowerCAmelCase__ = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=snake_case__ , ) lowerCAmelCase__ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] , snake_case__ : Optional[Any]=0 ): lowerCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image lowerCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(snake_case__ ) ).convert("""RGB""" ).resize((256, 256) ) # create mask lowerCAmelCase__ = np.ones((64, 64) , dtype=np.floataa ) lowerCAmelCase__ = 0 if str(snake_case__ ).startswith("""mps""" ): lowerCAmelCase__ = torch.manual_seed(snake_case__ ) else: lowerCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase__ = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = """cpu""" lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**snake_case__ ) lowerCAmelCase__ = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowerCAmelCase__ = output.images lowerCAmelCase__ = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) lowerCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowerCAmelCase__ = np.ones((768, 768) , dtype=np.floataa ) lowerCAmelCase__ = 0 lowerCAmelCase__ = """a hat""" lowerCAmelCase__ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowerCAmelCase__ = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""" , torch_dtype=torch.floataa ) lowerCAmelCase__ = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase__ , lowerCAmelCase__ = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowerCAmelCase__ = pipeline( image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) lowerCAmelCase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
705
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = TapasConfig.from_json_file(lowerCamelCase__ ) # set absolute/relative position embeddings parameter lowerCAmelCase__ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WTQ": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = True # hparam_utils.py hparams lowerCAmelCase__ = 0.66_46_94 lowerCAmelCase__ = 0.20_79_51 lowerCAmelCase__ = 0.12_11_94 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 0.0_35_25_13 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = False # hparam_utils.py hparams lowerCAmelCase__ = 36.45_19 lowerCAmelCase__ = 0.90_34_21 lowerCAmelCase__ = 2_22.0_88 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = 0.76_31_41 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "TABFACT": lowerCAmelCase__ = TapasForSequenceClassification(config=lowerCamelCase__ ) elif task == "MLM": lowerCAmelCase__ = TapasForMaskedLM(config=lowerCamelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": lowerCAmelCase__ = TapasModel(config=lowerCamelCase__ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase__ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) lowerCAmelCase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 ) tokenizer.save_pretrained(lowerCamelCase__ ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
674
0
"""simple docstring""" import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) __lowerCAmelCase : str = logging.getLogger() __lowerCAmelCase : Tuple = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class a_ ( __UpperCamelCase ): def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ): os.makedirs(snake_case__ , exist_ok=snake_case__ ) lowerCAmelCase__ = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase__ = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase__ = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case__ , F"""{split}.{field}""" ) , """w""" ) as f: f.write(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : int , snake_case__ : str = "pytorch" ): lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = os.path.join(snake_case__ , """output""" ) lowerCAmelCase__ = os.path.join(snake_case__ , """data""" ) self._create_dummy_data(data_dir=snake_case__ ) lowerCAmelCase__ = F""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(F"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase__ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case__ , env=self.get_env() ) lowerCAmelCase__ = os.path.join(snake_case__ , """metrics.json""" ) with open(snake_case__ ) as f: lowerCAmelCase__ = json.load(snake_case__ ) return result @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
706
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ = 50 ): """simple docstring""" lowerCAmelCase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"{solution() = }")
674
0
"""simple docstring""" __lowerCAmelCase : List[Any] = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __lowerCAmelCase : Optional[int] = [{"type": "code", "content": INSTALL_CONTENT}] __lowerCAmelCase : str = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
707
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Any = "The Nymphenburg Palace is a beautiful palace in Munich!" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } lowerCAmelCase__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase__ = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCamelCase__ , output_all_encodings=lowerCamelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCamelCase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase__ = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab lowerCAmelCase__ = os.path.join(get_home_dir() , """models""" ) lowerCAmelCase__ = _load_vocab(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , cls=lowerCamelCase__ ) lowerCAmelCase__ = nlp.model.BERTModel( lowerCamelCase__ , len(lowerCamelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCamelCase__ , use_token_type_embed=lowerCamelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCamelCase__ , use_decoder=lowerCamelCase__ , ) original_bort.load_parameters(lowerCamelCase__ , cast_dtype=lowerCamelCase__ , ignore_extra=lowerCamelCase__ ) lowerCAmelCase__ = original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCAmelCase__ = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(lowerCamelCase__ ), } lowerCAmelCase__ = BertConfig.from_dict(lowerCamelCase__ ) lowerCAmelCase__ = BertForMaskedLM(lowerCamelCase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCamelCase__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = hf_param.shape lowerCAmelCase__ = to_torch(params[gluon_param] ) lowerCAmelCase__ = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase__ = layer.attention.self lowerCAmelCase__ = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output lowerCAmelCase__ = layer.attention.output lowerCAmelCase__ = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) lowerCAmelCase__ = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate lowerCAmelCase__ = layer.intermediate lowerCAmelCase__ = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) lowerCAmelCase__ = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output lowerCAmelCase__ = layer.output lowerCAmelCase__ = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) lowerCAmelCase__ = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCAmelCase__ = RobertaTokenizer.from_pretrained("""roberta-base""" ) lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ )["""input_ids"""] # Get gluon output lowerCAmelCase__ = mx.nd.array([input_ids] ) lowerCAmelCase__ = original_bort(inputs=lowerCamelCase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCamelCase__ ) lowerCAmelCase__ = BertModel.from_pretrained(lowerCamelCase__ ) hf_bort_model.eval() lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" ) lowerCAmelCase__ = hf_bort_model(**lowerCamelCase__ )[0] lowerCAmelCase__ = output_gluon[0].asnumpy() lowerCAmelCase__ = output_hf[0].detach().numpy() lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase__ = np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : str = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
674
0
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) lowerCAmelCase__ = hex_num[0] == """-""" if is_negative: lowerCAmelCase__ = hex_num[1:] try: lowerCAmelCase__ = int(lowerCamelCase__ , 16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) lowerCAmelCase__ = """""" while int_num > 0: lowerCAmelCase__ = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
708
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self : Optional[int] ): lowerCAmelCase__ = """""" lowerCAmelCase__ = """""" lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = 256 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = cva.imread(snake_case__ , 0 ) lowerCAmelCase__ = copy.deepcopy(self.img ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" ) lowerCAmelCase__ = np.sum(snake_case__ ) for i in range(len(snake_case__ ) ): lowerCAmelCase__ = x[i] / self.k self.sk += prk lowerCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase__ = int(last % last ) lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case__ ) lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase__ = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase__ = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": __lowerCAmelCase : Dict = os.path.join(os.path.basename(__file__), "image_data/input.jpg") __lowerCAmelCase : Optional[int] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
674
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : int = logging.get_logger(__name__) class a_ ( __UpperCamelCase ): UpperCamelCase_ : Optional[Any] = "timm_backbone" def __init__( self : Optional[int] , snake_case__ : int=None , snake_case__ : List[str]=3 , snake_case__ : str=True , snake_case__ : Dict=True , snake_case__ : List[str]=None , **snake_case__ : Optional[Any] , ): super().__init__(**snake_case__ ) lowerCAmelCase__ = backbone lowerCAmelCase__ = num_channels lowerCAmelCase__ = features_only lowerCAmelCase__ = use_pretrained_backbone lowerCAmelCase__ = True lowerCAmelCase__ = out_indices if out_indices is not None else (-1,)
709
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class a_ ( __UpperCamelCase ): UpperCamelCase_ : List[str] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) UpperCamelCase_ : str = "CIDAS/clipseg-rd64-refined" UpperCamelCase_ : Any = "image_segmenter" UpperCamelCase_ : Optional[Any] = CLIPSegForImageSegmentation UpperCamelCase_ : List[str] = ["image", "text"] UpperCamelCase_ : int = ["image"] def __init__( self : Tuple , *snake_case__ : str , **snake_case__ : Optional[Any] ): requires_backends(self , ["""vision"""] ) super().__init__(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : "Image" , snake_case__ : str ): return self.pre_processor(text=[label] , images=[image] , padding=snake_case__ , return_tensors="""pt""" ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple ): with torch.no_grad(): lowerCAmelCase__ = self.model(**snake_case__ ).logits return logits def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] ): lowerCAmelCase__ = outputs.cpu().detach().numpy() lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
674
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case__ , ) assert hasattr(self , """env""" ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] ): # configuration for running training on smdistributed Model Parallel lowerCAmelCase__ = { """enabled""": True, """processes_per_host""": 8, } lowerCAmelCase__ = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowerCAmelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowerCAmelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="""py36""" , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str ): TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] ): # create estimator lowerCAmelCase__ = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case__ )
710
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = LayoutLMTokenizer UpperCamelCase_ : List[Any] = LayoutLMTokenizerFast UpperCamelCase_ : Dict = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() lowerCAmelCase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : Union[str, Any] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Tuple ): lowerCAmelCase__ = """UNwant\u00E9d,running""" lowerCAmelCase__ = """unwanted, running""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(snake_case__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): pass
674
0
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = """ylacombe/bark-small""" lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = """en_speaker_1""" lowerCAmelCase__ = """This is a test string""" lowerCAmelCase__ = """speaker_embeddings_path.json""" lowerCAmelCase__ = """speaker_embeddings""" def _SCREAMING_SNAKE_CASE ( self : List[str] , **snake_case__ : Any ): return AutoTokenizer.from_pretrained(self.checkpoint , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Any ): shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = BarkProcessor(tokenizer=snake_case__ ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowerCAmelCase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowerCAmelCase__ = 35 lowerCAmelCase__ = 2 lowerCAmelCase__ = 8 lowerCAmelCase__ = { """semantic_prompt""": np.ones(snake_case__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowerCAmelCase__ = processor(text=self.input_string , voice_preset=snake_case__ ) lowerCAmelCase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(snake_case__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowerCAmelCase__ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(snake_case__ , **snake_case__ ) lowerCAmelCase__ = processor(text=self.input_string , voice_preset=snake_case__ ) lowerCAmelCase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(snake_case__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowerCAmelCase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = BarkProcessor(tokenizer=snake_case__ ) lowerCAmelCase__ = processor(text=self.input_string ) lowerCAmelCase__ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=snake_case__ , return_attention_mask=snake_case__ , return_token_type_ids=snake_case__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
711
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __lowerCAmelCase : Any = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : def __init__( self : List[str] , snake_case__ : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) lowerCAmelCase__ = primes[group]["""prime"""] lowerCAmelCase__ = primes[group]["""generator"""] lowerCAmelCase__ = int(hexlify(urandom(32 ) ) , base=16 ) def _SCREAMING_SNAKE_CASE ( self : Any ): return hex(self.__private_key )[2:] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = pow(self.generator , self.__private_key , self.prime ) return hex(snake_case__ )[2:] def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(snake_case__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str ): lowerCAmelCase__ = int(snake_case__ , base=16 ) if not self.is_valid_public_key(snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , self.__private_key , self.prime ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : int , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(snake_case__ , (prime - 1) // 2 , snake_case__ ) == 1 ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : str , snake_case__ : str , snake_case__ : int = 14 ): lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(snake_case__ , snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , snake_case__ , snake_case__ ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
674
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _SCREAMING_SNAKE_CASE ( self : Any ): torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return model @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , cross_attention_dim=10 , ) return model @property def _SCREAMING_SNAKE_CASE ( self : int ): torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , ) lowerCAmelCase__ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return vqvae, unet @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowerCAmelCase__ = DDPMScheduler() lowerCAmelCase__ = AudioDiffusionPipeline(vqvae=snake_case__ , unet=self.dummy_unet , mel=snake_case__ , scheduler=snake_case__ ) lowerCAmelCase__ = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(42 ) lowerCAmelCase__ = pipe(generator=snake_case__ , steps=4 ) lowerCAmelCase__ = output.audios[0] lowerCAmelCase__ = output.images[0] lowerCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(42 ) lowerCAmelCase__ = pipe(generator=snake_case__ , steps=4 , return_dict=snake_case__ ) lowerCAmelCase__ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowerCAmelCase__ = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] lowerCAmelCase__ = np.frombuffer(image_from_tuple.tobytes() , dtype="""uint8""" )[:10] lowerCAmelCase__ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowerCAmelCase__ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowerCAmelCase__ = DDIMScheduler() lowerCAmelCase__ = self.dummy_vqvae_and_unet lowerCAmelCase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=snake_case__ , scheduler=snake_case__ ) lowerCAmelCase__ = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) np.random.seed(0 ) lowerCAmelCase__ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowerCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(42 ) lowerCAmelCase__ = pipe(raw_audio=snake_case__ , generator=snake_case__ , start_step=5 , steps=10 ) lowerCAmelCase__ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowerCAmelCase__ = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] lowerCAmelCase__ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowerCAmelCase__ = self.dummy_unet_condition lowerCAmelCase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=snake_case__ , mel=snake_case__ , scheduler=snake_case__ ) lowerCAmelCase__ = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) np.random.seed(0 ) lowerCAmelCase__ = torch.rand((1, 1, 10) ) lowerCAmelCase__ = pipe(generator=snake_case__ , encoding=snake_case__ ) lowerCAmelCase__ = output.images[0] lowerCAmelCase__ = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] lowerCAmelCase__ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = torch_device lowerCAmelCase__ = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) lowerCAmelCase__ = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(42 ) lowerCAmelCase__ = pipe(generator=snake_case__ ) lowerCAmelCase__ = output.audios[0] lowerCAmelCase__ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowerCAmelCase__ = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] lowerCAmelCase__ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
712
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) lowerCAmelCase__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = weights[0][0][0] lowerCAmelCase__ = np.asarray(layer_norm_a[0] ) lowerCAmelCase__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # lsh weights + output lowerCAmelCase__ = weights[0][1] if len(lowerCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) else: set_layer_weights_in_torch_local(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) # intermediate weighs lowerCAmelCase__ = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase__ ) == 4: lowerCAmelCase__ = intermediate_weights[2] # layernorm 2 lowerCAmelCase__ = np.asarray(intermediate_weights[0][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # intermediate dense lowerCAmelCase__ = np.asarray(intermediate_weights[1][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) # intermediate out lowerCAmelCase__ = np.asarray(intermediate_weights[4][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = torch_model.reformer # word embeds lowerCAmelCase__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase__ ) , ) if isinstance(weights[3] , lowerCamelCase__ ): lowerCAmelCase__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCAmelCase__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" lowerCAmelCase__ = nn.Parameter(torch.tensor(lowerCamelCase__ ) ) lowerCAmelCase__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCAmelCase__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # output layer norm lowerCAmelCase__ = np.asarray(weights[7][0] ) lowerCAmelCase__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # output embeddings lowerCAmelCase__ = np.asarray(weights[9][0] ) lowerCAmelCase__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = ReformerConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = ReformerModelWithLMHead(lowerCamelCase__ ) with open(lowerCamelCase__ , """rb""" ) as f: lowerCAmelCase__ = pickle.load(lowerCamelCase__ )["""weights"""] set_model_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
674
0
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowerCAmelCase : Any = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , ): """simple docstring""" if attention_mask is None: lowerCAmelCase__ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCAmelCase__ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCAmelCase__ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class a_ : def __init__( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : List[Any]=13 , snake_case__ : List[str]=7 , snake_case__ : Optional[int]=True , snake_case__ : Optional[int]=False , snake_case__ : Any=99 , snake_case__ : List[str]=16 , snake_case__ : Dict=2 , snake_case__ : Union[str, Any]=4 , snake_case__ : Dict=4 , snake_case__ : Dict="gelu" , snake_case__ : Any=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : Any=32 , snake_case__ : Tuple=2 , snake_case__ : List[str]=1 , snake_case__ : Dict=0 , snake_case__ : Optional[int]=0.02 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = eos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = initializer_range def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCAmelCase__ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCAmelCase__ = shift_tokens_right(snake_case__ , 1 , 2 ) lowerCAmelCase__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=snake_case__ , ) lowerCAmelCase__ = prepare_blenderbot_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ , lowerCAmelCase__ = self.prepare_config_and_inputs() return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[Any] ): lowerCAmelCase__ = 20 lowerCAmelCase__ = model_class_name(snake_case__ ) lowerCAmelCase__ = model.encode(inputs_dict["""input_ids"""] ) lowerCAmelCase__ , lowerCAmelCase__ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowerCAmelCase__ = model.init_cache(decoder_input_ids.shape[0] , snake_case__ , snake_case__ ) lowerCAmelCase__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowerCAmelCase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase__ = model.decode( decoder_input_ids[:, :-1] , snake_case__ , decoder_attention_mask=snake_case__ , past_key_values=snake_case__ , decoder_position_ids=snake_case__ , ) lowerCAmelCase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase__ = model.decode( decoder_input_ids[:, -1:] , snake_case__ , decoder_attention_mask=snake_case__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=snake_case__ , ) lowerCAmelCase__ = model.decode(snake_case__ , snake_case__ ) lowerCAmelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple ): lowerCAmelCase__ = 20 lowerCAmelCase__ = model_class_name(snake_case__ ) lowerCAmelCase__ = model.encode(inputs_dict["""input_ids"""] ) lowerCAmelCase__ , lowerCAmelCase__ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowerCAmelCase__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase__ = model.init_cache(decoder_input_ids.shape[0] , snake_case__ , snake_case__ ) lowerCAmelCase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase__ = model.decode( decoder_input_ids[:, :-1] , snake_case__ , decoder_attention_mask=snake_case__ , past_key_values=snake_case__ , decoder_position_ids=snake_case__ , ) lowerCAmelCase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase__ = model.decode( decoder_input_ids[:, -1:] , snake_case__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=snake_case__ , decoder_position_ids=snake_case__ , ) lowerCAmelCase__ = model.decode(snake_case__ , snake_case__ , decoder_attention_mask=snake_case__ ) lowerCAmelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class a_ ( unittest.TestCase ): UpperCamelCase_ : int = 99 def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCAmelCase__ = input_ids.shape[0] lowerCAmelCase__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._get_config_and_data() lowerCAmelCase__ = FlaxBlenderbotForConditionalGeneration(snake_case__ ) lowerCAmelCase__ = lm_model(input_ids=snake_case__ ) lowerCAmelCase__ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCAmelCase__ = FlaxBlenderbotForConditionalGeneration(snake_case__ ) lowerCAmelCase__ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowerCAmelCase__ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowerCAmelCase__ = lm_model(input_ids=snake_case__ , decoder_input_ids=snake_case__ ) lowerCAmelCase__ = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowerCAmelCase__ = shift_tokens_right(snake_case__ , 1 , 2 ) lowerCAmelCase__ = np.equal(snake_case__ , 1 ).astype(np.floataa ).sum() lowerCAmelCase__ = np.equal(snake_case__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(snake_case__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class a_ ( __UpperCamelCase , unittest.TestCase , __UpperCamelCase ): UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : Union[str, Any] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) UpperCamelCase_ : Optional[int] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = FlaxBlenderbotModelTester(self ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(snake_case__ , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(snake_case__ , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase__ = model_class(snake_case__ ) @jax.jit def encode_jitted(snake_case__ : List[Any] , snake_case__ : Any=None , **snake_case__ : Any ): return model.encode(input_ids=snake_case__ , attention_mask=snake_case__ ) with self.subTest("""JIT Enabled""" ): lowerCAmelCase__ = encode_jitted(**snake_case__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowerCAmelCase__ = encode_jitted(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for jitted_output, output in zip(snake_case__ , snake_case__ ): self.assertEqual(jitted_output.shape , output.shape ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) lowerCAmelCase__ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : List[Any] ): return model.decode( decoder_input_ids=snake_case__ , decoder_attention_mask=snake_case__ , encoder_outputs=snake_case__ , ) with self.subTest("""JIT Enabled""" ): lowerCAmelCase__ = decode_jitted(**snake_case__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowerCAmelCase__ = decode_jitted(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for jitted_output, output in zip(snake_case__ , snake_case__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _SCREAMING_SNAKE_CASE ( self : int ): for model_class_name in self.all_model_classes: lowerCAmelCase__ = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCAmelCase__ = np.ones((1, 1) ) * model.config.eos_token_id lowerCAmelCase__ = model(snake_case__ ) self.assertIsNotNone(snake_case__ ) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" ) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} lowerCAmelCase__ = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} lowerCAmelCase__ = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=snake_case__ ) lowerCAmelCase__ = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) lowerCAmelCase__ = ["""Sam"""] lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""jax""" ) lowerCAmelCase__ = model.generate(**snake_case__ , **snake_case__ ) lowerCAmelCase__ = """Sam is a great name. It means \"sun\" in Gaelic.""" lowerCAmelCase__ = tokenizer.batch_decode(snake_case__ , **snake_case__ ) assert generated_txt[0].strip() == tgt_text
713
"""simple docstring""" import os from math import logaa def _UpperCAmelCase ( lowerCamelCase__ = "base_exp.txt" ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) ): lowerCAmelCase__ , lowerCAmelCase__ = list(map(lowerCamelCase__ , line.split(""",""" ) ) ) if x * logaa(lowerCamelCase__ ) > largest: lowerCAmelCase__ = x * logaa(lowerCamelCase__ ) lowerCAmelCase__ = i + 1 return result if __name__ == "__main__": print(solution())
674
0
"""simple docstring""" import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=False ): """simple docstring""" try: lowerCAmelCase__ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowerCAmelCase__ = default else: # KEY is set, convert it to True or False. try: lowerCAmelCase__ = strtobool(lowerCamelCase__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value __lowerCAmelCase : Optional[int] = parse_flag_from_env("RUN_SLOW", default=False) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skip("""Test was skipped""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(_run_slow_tests , """test is slow""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__=None , lowerCamelCase__=None ): """simple docstring""" if test_case is None: return partial(lowerCamelCase__ , version=lowerCamelCase__ ) return unittest.skipUnless(is_torch_version(""">=""" , lowerCamelCase__ ) , f"""test requires torch version >= {version}""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(lowerCamelCase__ ) __lowerCAmelCase : Dict = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(lowerCamelCase__ ) class a_ ( unittest.TestCase ): UpperCamelCase_ : Union[str, Any] = True @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] ): lowerCAmelCase__ = tempfile.mkdtemp() @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def _SCREAMING_SNAKE_CASE ( self : str ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(snake_case__ ) class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : List[Any] ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[mock.Mock, List[mock.Mock]] ): lowerCAmelCase__ = mocks if isinstance(snake_case__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = AcceleratorState() lowerCAmelCase__ = tensor[None].clone().to(state.device ) lowerCAmelCase__ = gather(lowerCamelCase__ ).cpu() lowerCAmelCase__ = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , lowerCamelCase__ ): return False return True class a_ : def __init__( self : Union[str, Any] , snake_case__ : Any , snake_case__ : Any , snake_case__ : Tuple ): lowerCAmelCase__ = returncode lowerCAmelCase__ = stdout lowerCAmelCase__ = stderr async def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" while True: lowerCAmelCase__ = await stream.readline() if line: callback(lowerCamelCase__ ) else: break async def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=False ): """simple docstring""" if echo: print("""\nRunning: """ , """ """.join(lowerCamelCase__ ) ) lowerCAmelCase__ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCamelCase__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCamelCase__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowerCAmelCase__ = [] lowerCAmelCase__ = [] def tee(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="" ): lowerCAmelCase__ = line.decode("""utf-8""" ).rstrip() sink.append(lowerCamelCase__ ) if not quiet: print(lowerCamelCase__ , lowerCamelCase__ , file=lowerCamelCase__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda lowerCamelCase__ : tee(lowerCamelCase__ , lowerCamelCase__ , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda lowerCamelCase__ : tee(lowerCamelCase__ , lowerCamelCase__ , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=lowerCamelCase__ , ) return _RunOutput(await p.wait() , lowerCamelCase__ , lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=180 , lowerCamelCase__=False , lowerCamelCase__=True ): """simple docstring""" lowerCAmelCase__ = asyncio.get_event_loop() lowerCAmelCase__ = loop.run_until_complete( _stream_subprocess(lowerCamelCase__ , env=lowerCamelCase__ , stdin=lowerCamelCase__ , timeout=lowerCamelCase__ , quiet=lowerCamelCase__ , echo=lowerCamelCase__ ) ) lowerCAmelCase__ = """ """.join(lowerCamelCase__ ) if result.returncode > 0: lowerCAmelCase__ = """\n""".join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) return result class a_ ( __UpperCamelCase ): pass def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=False ): """simple docstring""" try: lowerCAmelCase__ = subprocess.check_output(lowerCamelCase__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(lowerCamelCase__ , """decode""" ): lowerCAmelCase__ = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f"""Command `{' '.join(lowerCamelCase__ )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
714
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" while b: lowerCAmelCase__ , lowerCAmelCase__ = b, a % b return a def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase__ , a % b ) def _UpperCAmelCase ( ): """simple docstring""" print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
674
0
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib __lowerCAmelCase : Tuple = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } __lowerCAmelCase : Optional[int] = logging.WARNING def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = os.getenv("""DATASETS_VERBOSITY""" , lowerCamelCase__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def _UpperCAmelCase ( ): """simple docstring""" return __name__.split(""".""" )[0] def _UpperCAmelCase ( ): """simple docstring""" return logging.getLogger(_get_library_name() ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def _UpperCAmelCase ( lowerCamelCase__ = None ): """simple docstring""" if name is None: lowerCAmelCase__ = _get_library_name() return logging.getLogger(lowerCamelCase__ ) def _UpperCAmelCase ( ): """simple docstring""" return _get_library_root_logger().getEffectiveLevel() def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" _get_library_root_logger().setLevel(lowerCamelCase__ ) def _UpperCAmelCase ( ): """simple docstring""" return set_verbosity(lowerCamelCase__ ) def _UpperCAmelCase ( ): """simple docstring""" return set_verbosity(lowerCamelCase__ ) def _UpperCAmelCase ( ): """simple docstring""" return set_verbosity(lowerCamelCase__ ) def _UpperCAmelCase ( ): """simple docstring""" return set_verbosity(lowerCamelCase__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = False def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class a_ : def __init__( self : str , *snake_case__ : Any , **snake_case__ : List[Any] ): # pylint: disable=unused-argument lowerCAmelCase__ = args[0] if args else None def __iter__( self : List[Any] ): return iter(self._iterator ) def __getattr__( self : Any , snake_case__ : Dict ): def empty_fn(*snake_case__ : List[str] , **snake_case__ : Union[str, Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : List[Any] ): return self def __exit__( self : int , snake_case__ : str , snake_case__ : List[str] , snake_case__ : str ): return __lowerCAmelCase : Tuple = True class a_ : def __call__( self : int , *snake_case__ : Optional[int] , snake_case__ : Optional[int]=False , **snake_case__ : Optional[int] ): if _tqdm_active and not disable: return tqdm_lib.tqdm(*snake_case__ , **snake_case__ ) else: return EmptyTqdm(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , *snake_case__ : str , **snake_case__ : str ): lowerCAmelCase__ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Any ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() __lowerCAmelCase : Union[str, Any] = _tqdm_cls() def _UpperCAmelCase ( ): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def _UpperCAmelCase ( ): """simple docstring""" global _tqdm_active lowerCAmelCase__ = True def _UpperCAmelCase ( ): """simple docstring""" global _tqdm_active lowerCAmelCase__ = False
715
"""simple docstring""" import os def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = os.path.dirname(os.path.realpath(lowerCamelCase__ ) ) lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """triangle.txt""" ) with open(lowerCamelCase__ ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = [] for line in triangle: lowerCAmelCase__ = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(lowerCamelCase__ ) ) a.append(lowerCamelCase__ ) for i in range(1 , len(lowerCamelCase__ ) ): for j in range(len(a[i] ) ): lowerCAmelCase__ = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCAmelCase__ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCamelCase__ , lowerCamelCase__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
674
0
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
716
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCAmelCase : Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __lowerCAmelCase : Optional[int] = json.load(f) @require_torch class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Dict ): return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ): lowerCAmelCase__ = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Any , snake_case__ : int ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowerCAmelCase__ = F"""facebook/wmt19-{pair}""" lowerCAmelCase__ = self.get_tokenizer(snake_case__ ) lowerCAmelCase__ = self.get_model(snake_case__ ) lowerCAmelCase__ = bleu_data[pair]["""src"""] lowerCAmelCase__ = bleu_data[pair]["""tgt"""] lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""pt""" , truncation=snake_case__ , padding="""longest""" ).to(snake_case__ ) lowerCAmelCase__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCAmelCase__ = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) lowerCAmelCase__ = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["""bleu"""] , snake_case__ )
674
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = 1 lowerCAmelCase__ = 3 lowerCAmelCase__ = (32, 32) lowerCAmelCase__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case__ ) return image @property def _SCREAMING_SNAKE_CASE ( self : List[str] ): torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def _SCREAMING_SNAKE_CASE ( self : List[str] ): torch.manual_seed(0 ) lowerCAmelCase__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(snake_case__ ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple ): def extract(*snake_case__ : List[Any] , **snake_case__ : List[str] ): class a_ : def __init__( self : Any ): lowerCAmelCase__ = torch.ones([0] ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Union[str, Any] ): self.pixel_values.to(snake_case__ ) return self return Out() return extract def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.dummy_cond_unet lowerCAmelCase__ = PNDMScheduler(skip_prk_steps=snake_case__ ) lowerCAmelCase__ = self.dummy_vae lowerCAmelCase__ = self.dummy_text_encoder lowerCAmelCase__ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowerCAmelCase__ = 77 lowerCAmelCase__ = self.dummy_image.to(snake_case__ ) lowerCAmelCase__ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCAmelCase__ = AltDiffusionImgaImgPipeline( unet=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , safety_checker=snake_case__ , feature_extractor=self.dummy_extractor , ) lowerCAmelCase__ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=snake_case__ ) lowerCAmelCase__ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = """A painting of a squirrel eating a burger""" lowerCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(0 ) lowerCAmelCase__ = alt_pipe( [prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=snake_case__ , ) lowerCAmelCase__ = output.images lowerCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(0 ) lowerCAmelCase__ = alt_pipe( [prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=snake_case__ , return_dict=snake_case__ , )[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.dummy_cond_unet lowerCAmelCase__ = PNDMScheduler(skip_prk_steps=snake_case__ ) lowerCAmelCase__ = self.dummy_vae lowerCAmelCase__ = self.dummy_text_encoder lowerCAmelCase__ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowerCAmelCase__ = 77 lowerCAmelCase__ = self.dummy_image.to(snake_case__ ) # put models in fp16 lowerCAmelCase__ = unet.half() lowerCAmelCase__ = vae.half() lowerCAmelCase__ = bert.half() # make sure here that pndm scheduler skips prk lowerCAmelCase__ = AltDiffusionImgaImgPipeline( unet=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , safety_checker=snake_case__ , feature_extractor=self.dummy_extractor , ) lowerCAmelCase__ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=snake_case__ ) lowerCAmelCase__ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = """A painting of a squirrel eating a burger""" lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = alt_pipe( [prompt] , generator=snake_case__ , num_inference_steps=2 , output_type="""np""" , image=snake_case__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCAmelCase__ = init_image.resize((760, 504) ) lowerCAmelCase__ = """BAAI/AltDiffusion""" lowerCAmelCase__ = AltDiffusionImgaImgPipeline.from_pretrained( snake_case__ , safety_checker=snake_case__ , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase__ = """A fantasy landscape, trending on artstation""" lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( prompt=snake_case__ , image=snake_case__ , strength=0.75 , guidance_scale=7.5 , generator=snake_case__ , output_type="""np""" , ) lowerCAmelCase__ = output.images[0] lowerCAmelCase__ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowerCAmelCase__ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowerCAmelCase__ = init_image.resize((768, 512) ) lowerCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) lowerCAmelCase__ = """BAAI/AltDiffusion""" lowerCAmelCase__ = AltDiffusionImgaImgPipeline.from_pretrained( snake_case__ , safety_checker=snake_case__ , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase__ = """A fantasy landscape, trending on artstation""" lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( prompt=snake_case__ , image=snake_case__ , strength=0.75 , guidance_scale=7.5 , generator=snake_case__ , output_type="""np""" , ) lowerCAmelCase__ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
717
"""simple docstring""" import pprint import requests __lowerCAmelCase : Union[str, Any] = "https://zenquotes.io/api" def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = random_quotes() pprint.pprint(response)
674
0
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = CLIPConfig() # Create a dummy config file with image_proceesor_type lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ).to_dict() config_dict.pop("""image_processor_type""" ) lowerCAmelCase__ = CLIPImageProcessor(**snake_case__ ) # save in new folder model_config.save_pretrained(snake_case__ ) config.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) # make sure private variable is not incorrectly saved lowerCAmelCase__ = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with self.assertRaisesRegex( snake_case__ , """clip-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""clip-base""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): with self.assertRaisesRegex( snake_case__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , revision="""aaaaaa""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): with self.assertRaisesRegex( snake_case__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , trust_remote_code=snake_case__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ): try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoImageProcessor.register(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = CustomImageProcessor.from_pretrained(snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self : List[str] ): class a_ ( __UpperCamelCase ): UpperCamelCase_ : Tuple = True try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # If remote code is not set, the default is to use local lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(snake_case__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
718
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = CLIPConfig() # Create a dummy config file with image_proceesor_type lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ).to_dict() config_dict.pop("""image_processor_type""" ) lowerCAmelCase__ = CLIPImageProcessor(**snake_case__ ) # save in new folder model_config.save_pretrained(snake_case__ ) config.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) # make sure private variable is not incorrectly saved lowerCAmelCase__ = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with self.assertRaisesRegex( snake_case__ , """clip-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""clip-base""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): with self.assertRaisesRegex( snake_case__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , revision="""aaaaaa""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): with self.assertRaisesRegex( snake_case__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , trust_remote_code=snake_case__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ): try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoImageProcessor.register(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = CustomImageProcessor.from_pretrained(snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self : List[str] ): class a_ ( __UpperCamelCase ): UpperCamelCase_ : Tuple = True try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # If remote code is not set, the default is to use local lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(snake_case__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
674
0
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = TapasConfig.from_json_file(lowerCamelCase__ ) # set absolute/relative position embeddings parameter lowerCAmelCase__ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WTQ": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = True # hparam_utils.py hparams lowerCAmelCase__ = 0.66_46_94 lowerCAmelCase__ = 0.20_79_51 lowerCAmelCase__ = 0.12_11_94 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 0.0_35_25_13 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = False # hparam_utils.py hparams lowerCAmelCase__ = 36.45_19 lowerCAmelCase__ = 0.90_34_21 lowerCAmelCase__ = 222.088 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = 0.76_31_41 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "TABFACT": lowerCAmelCase__ = TapasForSequenceClassification(config=lowerCamelCase__ ) elif task == "MLM": lowerCAmelCase__ = TapasForMaskedLM(config=lowerCamelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": lowerCAmelCase__ = TapasModel(config=lowerCamelCase__ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase__ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) lowerCAmelCase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 ) tokenizer.save_pretrained(lowerCamelCase__ ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
719
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a_ : def __init__( self : Optional[int] , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=64 , snake_case__ : Any=None ): lowerCAmelCase__ = np.random.default_rng(snake_case__ ) lowerCAmelCase__ = length lowerCAmelCase__ = rng.normal(size=(length,) ).astype(np.floataa ) lowerCAmelCase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[Any] ): return self.length def __getitem__( self : List[str] , snake_case__ : Optional[int] ): return {"x": self.x[i], "y": self.y[i]} class a_ ( torch.nn.Module ): def __init__( self : List[str] , snake_case__ : str=0 , snake_case__ : Dict=0 , snake_case__ : Any=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Any=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a[0] + self.b[0] class a_ ( torch.nn.Module ): def __init__( self : Any , snake_case__ : Union[str, Any]=0 , snake_case__ : Union[str, Any]=0 , snake_case__ : List[Any]=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any]=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a + self.b def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase__ = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} lowerCAmelCase__ = load_dataset("""csv""" , data_files=lowerCamelCase__ ) lowerCAmelCase__ = datasets["""train"""].unique("""label""" ) lowerCAmelCase__ = {v: i for i, v in enumerate(lowerCamelCase__ )} def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" ) if "label" in examples: lowerCAmelCase__ = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase__ = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=2 ) lowerCAmelCase__ = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
674
0
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" _validate_point(lowerCamelCase__ ) _validate_point(lowerCamelCase__ ) if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(lowerCamelCase__ , lowerCamelCase__ ) ) ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if point: if isinstance(lowerCamelCase__ , lowerCamelCase__ ): for item in point: if not isinstance(lowerCamelCase__ , (int, float) ): A = ( """Expected a list of numbers as input, found """ f"""{type(lowerCamelCase__ ).__name__}""" ) raise TypeError(lowerCamelCase__ ) else: A = f"""Expected a list of numbers as input, found {type(lowerCamelCase__ ).__name__}""" raise TypeError(lowerCamelCase__ ) else: raise ValueError("""Missing an input""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" _validate_point(lowerCamelCase__ ) _validate_point(lowerCamelCase__ ) if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(lowerCamelCase__ , lowerCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
720
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = MobileBertConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = MobileBertForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint lowerCAmelCase__ = load_tf_weights_in_mobilebert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
674
0
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ = 400_0000 ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ , lowerCAmelCase__ = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(lowerCamelCase__ ) lowerCAmelCase__ , lowerCAmelCase__ = b, a + b return sum(lowerCamelCase__ ) if __name__ == "__main__": print(F"{solution() = }")
721
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: lowerCAmelCase__ = f"""The input value of [n={number}] has to be > 0""" raise ValueError(lowerCamelCase__ ) else: lowerCAmelCase__ = sylvester(number - 1 ) lowerCAmelCase__ = num - 1 lowerCAmelCase__ = num return lower * upper + 1 if __name__ == "__main__": print(F"The 8th number in Sylvester's sequence: {sylvester(8)}")
674
0
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class a_ ( unittest.TestCase ): UpperCamelCase_ : Optional[Any] = JukeboxTokenizer UpperCamelCase_ : List[Any] = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def _SCREAMING_SNAKE_CASE ( self : Any ): import torch lowerCAmelCase__ = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) lowerCAmelCase__ = tokenizer(**self.metas )["""input_ids"""] # fmt: off lowerCAmelCase__ = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): import torch lowerCAmelCase__ = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) lowerCAmelCase__ = tokenizer(**self.metas )["""input_ids"""] # fmt: off lowerCAmelCase__ = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
700
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Tuple = PegasusTokenizer UpperCamelCase_ : Any = PegasusTokenizerFast UpperCamelCase_ : int = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : Optional[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any] ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = """</s>""" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(snake_case__ ) , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowerCAmelCase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase__ = """To ensure a smooth flow of bank resolutions.""" lowerCAmelCase__ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def _SCREAMING_SNAKE_CASE ( self : str ): # fmt: off lowerCAmelCase__ = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = PegasusTokenizer UpperCamelCase_ : Optional[int] = PegasusTokenizerFast UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Optional[int] = True def _SCREAMING_SNAKE_CASE ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ): return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : List[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Dict ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowerCAmelCase__ = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
674
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __lowerCAmelCase : Optional[int] = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" for attribute in key.split(""".""" ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCAmelCase__ = """lm_head""" lowerCAmelCase__ = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: lowerCAmelCase__ = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: lowerCAmelCase__ = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase__ = value elif weight_type == "weight_g": lowerCAmelCase__ = value elif weight_type == "weight_v": lowerCAmelCase__ = value elif weight_type == "bias": lowerCAmelCase__ = value else: lowerCAmelCase__ = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = fairseq_model.state_dict() lowerCAmelCase__ = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase__ = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == """group""" , ) lowerCAmelCase__ = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase__ = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowerCAmelCase__ = True if "*" in mapped_key: lowerCAmelCase__ = name.split(lowerCamelCase__ )[0].split(""".""" )[-2] lowerCAmelCase__ = mapped_key.replace("""*""" , lowerCamelCase__ ) if "weight_g" in name: lowerCAmelCase__ = """weight_g""" elif "weight_v" in name: lowerCAmelCase__ = """weight_v""" elif "bias" in name: lowerCAmelCase__ = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase__ = """weight""" else: lowerCAmelCase__ = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = full_name.split("""conv_layers.""" )[-1] lowerCAmelCase__ = name.split(""".""" ) lowerCAmelCase__ = int(items[0] ) lowerCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCamelCase__ ) @torch.no_grad() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True ) -> Union[str, Any]: """simple docstring""" if config_path is not None: lowerCAmelCase__ = UniSpeechConfig.from_pretrained(lowerCamelCase__ ) else: lowerCAmelCase__ = UniSpeechConfig() if is_finetuned: if dict_path: lowerCAmelCase__ = Dictionary.load_from_json(lowerCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase__ = target_dict.pad_index lowerCAmelCase__ = target_dict.bos_index lowerCAmelCase__ = target_dict.eos_index lowerCAmelCase__ = len(target_dict.symbols ) lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """vocab.json""" ) if not os.path.isdir(lowerCamelCase__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCamelCase__ ) ) return os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) lowerCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase__ = 42 lowerCAmelCase__ = 43 with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = WavaVecaPhonemeCTCTokenizer( lowerCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCamelCase__ , ) lowerCAmelCase__ = True if config.feat_extract_norm == """layer""" else False lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) lowerCAmelCase__ = WavaVecaProcessor(feature_extractor=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) lowerCAmelCase__ = UniSpeechForCTC(lowerCamelCase__ ) else: lowerCAmelCase__ = UniSpeechForPreTraining(lowerCamelCase__ ) if is_finetuned: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} ) else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCAmelCase__ = model[0].eval() recursively_load_weights(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) hf_unispeech.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __lowerCAmelCase : str = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
701
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case__ , ) assert hasattr(self , """env""" ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] ): # configuration for running training on smdistributed Model Parallel lowerCAmelCase__ = { """enabled""": True, """processes_per_host""": 8, } lowerCAmelCase__ = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowerCAmelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowerCAmelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="""py36""" , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str ): TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] ): # create estimator lowerCAmelCase__ = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case__ )
674
0
"""simple docstring""" import math import sys def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = """""" try: with open(lowerCamelCase__ , """rb""" ) as binary_file: lowerCAmelCase__ = binary_file.read() for dat in data: lowerCAmelCase__ = f"""{dat:08b}""" result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = {"""0""": """0""", """1""": """1"""} lowerCAmelCase__ , lowerCAmelCase__ = """""", """""" lowerCAmelCase__ = len(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowerCAmelCase__ = lexicon[curr_string] result += last_match_id lowerCAmelCase__ = last_match_id + """0""" if math.loga(lowerCamelCase__ ).is_integer(): lowerCAmelCase__ = {} for curr_key in list(lowerCamelCase__ ): lowerCAmelCase__ = lexicon.pop(lowerCamelCase__ ) lowerCAmelCase__ = new_lex lowerCAmelCase__ = last_match_id + """1""" index += 1 lowerCAmelCase__ = """""" return result def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = 8 try: with open(lowerCamelCase__ , """wb""" ) as opened_file: lowerCAmelCase__ = [ to_write[i : i + byte_length] for i in range(0 , len(lowerCamelCase__ ) , lowerCamelCase__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(lowerCamelCase__ , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowerCAmelCase__ = data_bits[counter:] lowerCAmelCase__ = data_bits[counter + 1 :] return data_bits def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = read_file_binary(lowerCamelCase__ ) lowerCAmelCase__ = remove_prefix(lowerCamelCase__ ) lowerCAmelCase__ = decompress_data(lowerCamelCase__ ) write_file_binary(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
702
"""simple docstring""" from math import pi, sqrt def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if num <= 0: raise ValueError("""math domain error""" ) if num > 1_71.5: raise OverflowError("""math range error""" ) elif num - int(lowerCamelCase__ ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(lowerCamelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _UpperCAmelCase ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(lowerCamelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __lowerCAmelCase : Dict = 1.0 while num: __lowerCAmelCase : Any = float(input("Gamma of: ")) print(F"gamma({num}) = {gamma(num)}") print("\nEnter 0 to exit...")
674
0
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __lowerCAmelCase : Union[str, Any] = pytest.mark.integration __lowerCAmelCase : List[str] = {"comet"} __lowerCAmelCase : List[Any] = importlib.util.find_spec("fairseq") is not None __lowerCAmelCase : Dict = {"code_eval"} __lowerCAmelCase : List[str] = os.name == "nt" __lowerCAmelCase : Tuple = {"bertscore", "frugalscore", "perplexity"} __lowerCAmelCase : List[Any] = importlib.util.find_spec("transformers") is not None def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" @wraps(lowerCamelCase__ ) def wrapper(self , lowerCamelCase__ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self , lowerCamelCase__ ) return wrapper def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" @wraps(lowerCamelCase__ ) def wrapper(self , lowerCamelCase__ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self , lowerCamelCase__ ) return wrapper def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" @wraps(lowerCamelCase__ ) def wrapper(self , lowerCamelCase__ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self , lowerCamelCase__ ) return wrapper def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @local class a_ ( parameterized.TestCase ): UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Dict = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = """[...]""" lowerCAmelCase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , snake_case__ ) ).module_path ) lowerCAmelCase__ = datasets.load.import_main_class(metric_module.__name__ , dataset=snake_case__ ) # check parameters lowerCAmelCase__ = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(snake_case__ , metric_module.__name__ ): with self.use_local_metrics(): try: lowerCAmelCase__ = doctest.testmod(snake_case__ , verbose=snake_case__ , raise_on_error=snake_case__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : int ): lowerCAmelCase__ = """[...]""" lowerCAmelCase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , snake_case__ ) ).module_path ) # run doctest with self.use_local_metrics(): lowerCAmelCase__ = doctest.testmod(snake_case__ , verbose=snake_case__ , raise_on_error=snake_case__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : int ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](snake_case__ ): yield else: yield @contextmanager def _SCREAMING_SNAKE_CASE ( self : Tuple ): def load_local_metric(snake_case__ : Dict , *snake_case__ : List[str] , **snake_case__ : int ): return load_metric(os.path.join("""metrics""" , snake_case__ ) , *snake_case__ , **snake_case__ ) with patch("""datasets.load_metric""" ) as mock_load_metric: lowerCAmelCase__ = load_local_metric yield @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , snake_case__ : int ): def wrapper(snake_case__ : str ): lowerCAmelCase__ = contextmanager(snake_case__ ) lowerCAmelCase__ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags class a_ ( __UpperCamelCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Any ): assert len(input_dict["""input_ids"""] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: lowerCAmelCase__ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" import torch def bert_cos_score_idf(lowerCamelCase__ , lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(lowerCamelCase__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: lowerCAmelCase__ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" def load_from_checkpoint(lowerCamelCase__ ): class a_ : def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : List[str] , *snake_case__ : Union[str, Any] , **snake_case__ : List[str] ): assert len(snake_case__ ) == 2 lowerCAmelCase__ = [0.19, 0.92] return scores, sum(snake_case__ ) / len(snake_case__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: lowerCAmelCase__ = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: lowerCAmelCase__ = load_from_checkpoint yield def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = load_metric(os.path.join("""metrics""" , """seqeval""" ) ) lowerCAmelCase__ = """ERROR""" lowerCAmelCase__ = f"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(lowerCamelCase__ , match=re.escape(lowerCamelCase__ ) ): metric.compute(predictions=[] , references=[] , scheme=lowerCamelCase__ )
703
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : def __init__( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any=13 , snake_case__ : int=30 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : Dict=True , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=32 , snake_case__ : List[str]=2 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[int]=37 , snake_case__ : Tuple="gelu" , snake_case__ : str=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=10 , snake_case__ : Dict=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : str=None , snake_case__ : List[Any]=2 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = num_patches + 2 def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[Any] ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[str] ): lowerCAmelCase__ = TFDeiTModel(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict ): lowerCAmelCase__ = TFDeiTForMaskedImageModeling(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForMaskedImageModeling(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple ): lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase_ : Any = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : int = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = TFDeiTModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): pass def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Dense ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any]=False ): lowerCAmelCase__ = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _SCREAMING_SNAKE_CASE ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDeiTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Any ): return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors="""tf""" ) # forward pass lowerCAmelCase__ = model(**snake_case__ ) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase__ = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
674
0
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): # noqa: E741 """simple docstring""" lowerCAmelCase__ = len(lowerCamelCase__ ) lowerCAmelCase__ = 0 lowerCAmelCase__ = [0] * n lowerCAmelCase__ = [False] * n lowerCAmelCase__ = [False] * n def dfs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if parent == root: out_edge_count += 1 lowerCAmelCase__ = True lowerCAmelCase__ = at for to in l[at]: if to == parent: pass elif not visited[to]: lowerCAmelCase__ = dfs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: lowerCAmelCase__ = True # AP found via cycle if at == low[to]: lowerCAmelCase__ = True else: lowerCAmelCase__ = min(low[at] , lowerCamelCase__ ) return out_edge_count for i in range(lowerCamelCase__ ): if not visited[i]: lowerCAmelCase__ = 0 lowerCAmelCase__ = dfs(lowerCamelCase__ , lowerCamelCase__ , -1 , lowerCamelCase__ ) lowerCAmelCase__ = out_edge_count > 1 for x in range(len(lowerCamelCase__ ) ): if is_art[x] is True: print(lowerCamelCase__ ) # Adjacency list of graph __lowerCAmelCase : str = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
704
"""simple docstring""" from __future__ import annotations from math import gcd def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 3 , ): """simple docstring""" if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: return (pow(lowerCamelCase__ , 2 ) + step) % modulus for _ in range(lowerCamelCase__ ): # These track the position within the cycle detection logic. lowerCAmelCase__ = seed lowerCAmelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCAmelCase__ = gcd(hare - tortoise , lowerCamelCase__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCAmelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : Dict = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"{args.num} is probably prime") else: __lowerCAmelCase : List[str] = args.num // divisor print(F"{args.num} = {divisor} * {quotient}")
674
0
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __lowerCAmelCase : int = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase : Optional[int] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __lowerCAmelCase : Optional[Any] = {"allegro/herbert-base-cased": 5_14} __lowerCAmelCase : List[str] = {} class a_ ( __UpperCamelCase ): UpperCamelCase_ : Optional[int] = VOCAB_FILES_NAMES UpperCamelCase_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[Any] = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : List[str] = HerbertTokenizer def __init__( self : Union[str, Any] , snake_case__ : List[str]=None , snake_case__ : List[Any]=None , snake_case__ : Any=None , snake_case__ : Dict="<s>" , snake_case__ : Optional[Any]="<unk>" , snake_case__ : Optional[int]="<pad>" , snake_case__ : List[str]="<mask>" , snake_case__ : Dict="</s>" , **snake_case__ : int , ): super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sep_token=snake_case__ , **snake_case__ , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCAmelCase__ = [self.cls_token_id] lowerCAmelCase__ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): lowerCAmelCase__ = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
705
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = TapasConfig.from_json_file(lowerCamelCase__ ) # set absolute/relative position embeddings parameter lowerCAmelCase__ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WTQ": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = True # hparam_utils.py hparams lowerCAmelCase__ = 0.66_46_94 lowerCAmelCase__ = 0.20_79_51 lowerCAmelCase__ = 0.12_11_94 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 0.0_35_25_13 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = False # hparam_utils.py hparams lowerCAmelCase__ = 36.45_19 lowerCAmelCase__ = 0.90_34_21 lowerCAmelCase__ = 2_22.0_88 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = 0.76_31_41 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "TABFACT": lowerCAmelCase__ = TapasForSequenceClassification(config=lowerCamelCase__ ) elif task == "MLM": lowerCAmelCase__ = TapasForMaskedLM(config=lowerCamelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": lowerCAmelCase__ = TapasModel(config=lowerCamelCase__ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase__ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) lowerCAmelCase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 ) tokenizer.save_pretrained(lowerCamelCase__ ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
674
0
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCAmelCase : Dict = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : str , snake_case__ : bool , snake_case__ : str = None , snake_case__ : list = None ): lowerCAmelCase__ = None lowerCAmelCase__ = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) ) lowerCAmelCase__ = os.path.abspath("""examples""" ) for item in os.listdir(snake_case__ ): if item not in EXCLUDE_EXAMPLES: lowerCAmelCase__ = os.path.join(snake_case__ , snake_case__ ) if os.path.isfile(snake_case__ ) and ".py" in item_path: with self.subTest( tested_script=snake_case__ , feature_script=snake_case__ , tested_section="""main()""" if parser_only else """training_function()""" , ): lowerCAmelCase__ = compare_against_test( os.path.join(snake_case__ , snake_case__ ) , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase__ = """\n""".join(snake_case__ ) if special_strings is not None: for string in special_strings: lowerCAmelCase__ = diff.replace(snake_case__ , """""" ) self.assertEqual(snake_case__ , """""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self.one_complete_example("""complete_nlp_example.py""" , snake_case__ ) self.one_complete_example("""complete_nlp_example.py""" , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) ) lowerCAmelCase__ = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , snake_case__ , snake_case__ , snake_case__ ) self.one_complete_example("""complete_cv_example.py""" , snake_case__ , snake_case__ , snake_case__ ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class a_ ( __UpperCamelCase ): UpperCamelCase_ : Optional[Any] = False @classmethod def _SCREAMING_SNAKE_CASE ( cls : Tuple ): super().setUpClass() lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = os.path.join(cls._tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) lowerCAmelCase__ = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = F""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = F""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() lowerCAmelCase__ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) ) def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() lowerCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=snake_case__ ) self.assertNotIn("""epoch 0:""" , snake_case__ ) self.assertIn("""epoch 1:""" , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() lowerCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=snake_case__ ) if torch.cuda.is_available(): lowerCAmelCase__ = torch.cuda.device_count() else: lowerCAmelCase__ = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , snake_case__ ) self.assertIn("""epoch 1:""" , snake_case__ ) else: self.assertIn("""epoch 0:""" , snake_case__ ) self.assertIn("""epoch 1:""" , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): lowerCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=snake_case__ ) lowerCAmelCase__ = re.findall("""({.+})""" , snake_case__ ) lowerCAmelCase__ = [r for r in results if """accuracy""" in r][-1] lowerCAmelCase__ = ast.literal_eval(snake_case__ ) self.assertGreaterEqual(results["""accuracy"""] , 0.75 ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _SCREAMING_SNAKE_CASE ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdir: lowerCAmelCase__ = F""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , """tracking""" ) ) ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs )
706
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ = 50 ): """simple docstring""" lowerCAmelCase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"{solution() = }")
674
0
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class a_ ( __UpperCamelCase ): def __init__( self : Optional[Any] , snake_case__ : UNetaDModel , snake_case__ : UNetaDModel , snake_case__ : DDPMScheduler , snake_case__ : Optional[Any] , ): super().__init__() lowerCAmelCase__ = value_function lowerCAmelCase__ = unet lowerCAmelCase__ = scheduler lowerCAmelCase__ = env lowerCAmelCase__ = env.get_dataset() lowerCAmelCase__ = {} for key in self.data.keys(): try: lowerCAmelCase__ = self.data[key].mean() except: # noqa: E722 pass lowerCAmelCase__ = {} for key in self.data.keys(): try: lowerCAmelCase__ = self.data[key].std() except: # noqa: E722 pass lowerCAmelCase__ = env.observation_space.shape[0] lowerCAmelCase__ = env.action_space.shape[0] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Tuple ): return (x_in - self.means[key]) / self.stds[key] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Any , snake_case__ : Optional[int] ): return x_in * self.stds[key] + self.means[key] def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] ): if type(snake_case__ ) is dict: return {k: self.to_torch(snake_case__ ) for k, v in x_in.items()} elif torch.is_tensor(snake_case__ ): return x_in.to(self.unet.device ) return torch.tensor(snake_case__ , device=self.unet.device ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : Any ): for key, val in cond.items(): lowerCAmelCase__ = val.clone() return x_in def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : str , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : Dict ): lowerCAmelCase__ = x.shape[0] lowerCAmelCase__ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowerCAmelCase__ = torch.full((batch_size,) , snake_case__ , device=self.unet.device , dtype=torch.long ) for _ in range(snake_case__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowerCAmelCase__ = self.value_function(x.permute(0 , 2 , 1 ) , snake_case__ ).sample lowerCAmelCase__ = torch.autograd.grad([y.sum()] , [x] )[0] lowerCAmelCase__ = self.scheduler._get_variance(snake_case__ ) lowerCAmelCase__ = torch.exp(0.5 * posterior_variance ) lowerCAmelCase__ = model_std * grad lowerCAmelCase__ = 0 lowerCAmelCase__ = x.detach() lowerCAmelCase__ = x + scale * grad lowerCAmelCase__ = self.reset_xa(snake_case__ , snake_case__ , self.action_dim ) lowerCAmelCase__ = self.unet(x.permute(0 , 2 , 1 ) , snake_case__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg lowerCAmelCase__ = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , predict_epsilon=snake_case__ )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) lowerCAmelCase__ = self.reset_xa(snake_case__ , snake_case__ , self.action_dim ) lowerCAmelCase__ = self.to_torch(snake_case__ ) return x, y def __call__( self : int , snake_case__ : Optional[int] , snake_case__ : int=64 , snake_case__ : Dict=32 , snake_case__ : Any=2 , snake_case__ : Optional[Any]=0.1 ): # normalize the observations and create batch dimension lowerCAmelCase__ = self.normalize(snake_case__ , """observations""" ) lowerCAmelCase__ = obs[None].repeat(snake_case__ , axis=0 ) lowerCAmelCase__ = {0: self.to_torch(snake_case__ )} lowerCAmelCase__ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowerCAmelCase__ = randn_tensor(snake_case__ , device=self.unet.device ) lowerCAmelCase__ = self.reset_xa(snake_case__ , snake_case__ , self.action_dim ) lowerCAmelCase__ = self.to_torch(snake_case__ ) # run the diffusion process lowerCAmelCase__ , lowerCAmelCase__ = self.run_diffusion(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # sort output trajectories by value lowerCAmelCase__ = y.argsort(0 , descending=snake_case__ ).squeeze() lowerCAmelCase__ = x[sorted_idx] lowerCAmelCase__ = sorted_values[:, :, : self.action_dim] lowerCAmelCase__ = actions.detach().cpu().numpy() lowerCAmelCase__ = self.de_normalize(snake_case__ , key="""actions""" ) # select the action with the highest value if y is not None: lowerCAmelCase__ = 0 else: # if we didn't run value guiding, select a random action lowerCAmelCase__ = np.random.randint(0 , snake_case__ ) lowerCAmelCase__ = denorm_actions[selected_index, 0] return denorm_actions
707
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Any = "The Nymphenburg Palace is a beautiful palace in Munich!" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } lowerCAmelCase__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase__ = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCamelCase__ , output_all_encodings=lowerCamelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCamelCase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase__ = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab lowerCAmelCase__ = os.path.join(get_home_dir() , """models""" ) lowerCAmelCase__ = _load_vocab(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , cls=lowerCamelCase__ ) lowerCAmelCase__ = nlp.model.BERTModel( lowerCamelCase__ , len(lowerCamelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCamelCase__ , use_token_type_embed=lowerCamelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCamelCase__ , use_decoder=lowerCamelCase__ , ) original_bort.load_parameters(lowerCamelCase__ , cast_dtype=lowerCamelCase__ , ignore_extra=lowerCamelCase__ ) lowerCAmelCase__ = original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCAmelCase__ = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(lowerCamelCase__ ), } lowerCAmelCase__ = BertConfig.from_dict(lowerCamelCase__ ) lowerCAmelCase__ = BertForMaskedLM(lowerCamelCase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCamelCase__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = hf_param.shape lowerCAmelCase__ = to_torch(params[gluon_param] ) lowerCAmelCase__ = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase__ = layer.attention.self lowerCAmelCase__ = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output lowerCAmelCase__ = layer.attention.output lowerCAmelCase__ = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) lowerCAmelCase__ = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate lowerCAmelCase__ = layer.intermediate lowerCAmelCase__ = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) lowerCAmelCase__ = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output lowerCAmelCase__ = layer.output lowerCAmelCase__ = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) lowerCAmelCase__ = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCAmelCase__ = RobertaTokenizer.from_pretrained("""roberta-base""" ) lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ )["""input_ids"""] # Get gluon output lowerCAmelCase__ = mx.nd.array([input_ids] ) lowerCAmelCase__ = original_bort(inputs=lowerCamelCase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCamelCase__ ) lowerCAmelCase__ = BertModel.from_pretrained(lowerCamelCase__ ) hf_bort_model.eval() lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" ) lowerCAmelCase__ = hf_bort_model(**lowerCamelCase__ )[0] lowerCAmelCase__ = output_gluon[0].asnumpy() lowerCAmelCase__ = output_hf[0].detach().numpy() lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase__ = np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : str = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
674
0
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
708
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self : Optional[int] ): lowerCAmelCase__ = """""" lowerCAmelCase__ = """""" lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = 256 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = cva.imread(snake_case__ , 0 ) lowerCAmelCase__ = copy.deepcopy(self.img ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" ) lowerCAmelCase__ = np.sum(snake_case__ ) for i in range(len(snake_case__ ) ): lowerCAmelCase__ = x[i] / self.k self.sk += prk lowerCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase__ = int(last % last ) lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case__ ) lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase__ = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase__ = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": __lowerCAmelCase : Dict = os.path.join(os.path.basename(__file__), "image_data/input.jpg") __lowerCAmelCase : Optional[int] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
674
0
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) lowerCAmelCase__ = DatasetInfosDict.from_directory(lowerCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ), ] , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = str(lowerCamelCase__ ) dataset_info.write_to_directory(lowerCamelCase__ ) lowerCAmelCase__ = DatasetInfo.from_directory(lowerCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(lowerCamelCase__ , """dataset_info.json""" ) ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) lowerCAmelCase__ = dataset_info._to_yaml_dict() assert sorted(lowerCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase__ = yaml.safe_dump(lowerCamelCase__ ) lowerCAmelCase__ = yaml.safe_load(lowerCamelCase__ ) assert dataset_info_yaml_dict == reloaded def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = DatasetInfo() lowerCAmelCase__ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=42 ), """v2""": DatasetInfo(dataset_size=1337 ), } ), ] , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = str(lowerCamelCase__ ) dataset_infos_dict.write_to_directory(lowerCamelCase__ ) lowerCAmelCase__ = DatasetInfosDict.from_directory(lowerCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase__ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase__ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(lowerCamelCase__ , """README.md""" ) )
709
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class a_ ( __UpperCamelCase ): UpperCamelCase_ : List[str] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) UpperCamelCase_ : str = "CIDAS/clipseg-rd64-refined" UpperCamelCase_ : Any = "image_segmenter" UpperCamelCase_ : Optional[Any] = CLIPSegForImageSegmentation UpperCamelCase_ : List[str] = ["image", "text"] UpperCamelCase_ : int = ["image"] def __init__( self : Tuple , *snake_case__ : str , **snake_case__ : Optional[Any] ): requires_backends(self , ["""vision"""] ) super().__init__(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : "Image" , snake_case__ : str ): return self.pre_processor(text=[label] , images=[image] , padding=snake_case__ , return_tensors="""pt""" ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Tuple ): with torch.no_grad(): lowerCAmelCase__ = self.model(**snake_case__ ).logits return logits def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : List[Any] ): lowerCAmelCase__ = outputs.cpu().detach().numpy() lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
674
0
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
710
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = LayoutLMTokenizer UpperCamelCase_ : List[Any] = LayoutLMTokenizerFast UpperCamelCase_ : Dict = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() lowerCAmelCase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : Union[str, Any] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Tuple ): lowerCAmelCase__ = """UNwant\u00E9d,running""" lowerCAmelCase__ = """unwanted, running""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(snake_case__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): pass
674
0
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowerCAmelCase : List[str] = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = test_results.split(""" """ ) lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowerCAmelCase__ = expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = {} lowerCAmelCase__ = None lowerCAmelCase__ = False for line in failures_short_lines.split("""\n""" ): if re.search(r"""_ \[doctest\]""" , lowerCamelCase__ ): lowerCAmelCase__ = True lowerCAmelCase__ = line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): lowerCAmelCase__ = line lowerCAmelCase__ = False return failures class a_ : def __init__( self : Union[str, Any] , snake_case__ : str , snake_case__ : Dict ): lowerCAmelCase__ = title lowerCAmelCase__ = doc_test_results["""time_spent"""].split(""",""" )[0] lowerCAmelCase__ = doc_test_results["""success"""] lowerCAmelCase__ = doc_test_results["""failures"""] lowerCAmelCase__ = self.n_success + self.n_failures # Failures and success of the modeling tests lowerCAmelCase__ = doc_test_results @property def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = [self._time_spent] lowerCAmelCase__ = 0 for time in time_spent: lowerCAmelCase__ = time.split(""":""" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(snake_case__ ) == 1: lowerCAmelCase__ = [0, 0, time_parts[0]] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F"""{int(snake_case__ )}h{int(snake_case__ )}m{int(snake_case__ )}s""" @property def _SCREAMING_SNAKE_CASE ( self : int ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _SCREAMING_SNAKE_CASE ( self : Any ): return { "type": "section", "text": { "type": "plain_text", "text": F"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def _SCREAMING_SNAKE_CASE ( self : Dict ): return { "type": "section", "text": { "type": "plain_text", "text": ( F"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" F""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = 40 lowerCAmelCase__ = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(snake_case__ , snake_case__ )} lowerCAmelCase__ = """""" for category, failures in category_failures.items(): if len(snake_case__ ) == 0: continue if report != "": report += "\n\n" report += F"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(snake_case__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F"""The following examples had failures:\n\n\n{report}\n""", }, } @property def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(snake_case__ ) @staticmethod def _SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ = [ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } ] print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(snake_case__ )} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=snake_case__ , ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(self.payload )} ) ) lowerCAmelCase__ = F"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else """All tests passed.""" lowerCAmelCase__ = client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=snake_case__ , ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] ): lowerCAmelCase__ = """""" for key, value in failures.items(): lowerCAmelCase__ = value[:200] + """ [Truncated]""" if len(snake_case__ ) > 250 else value failures_text += F"""*{key}*\n_{value}_\n\n""" lowerCAmelCase__ = job_name lowerCAmelCase__ = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: lowerCAmelCase__ = { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""" ) lowerCAmelCase__ = self.doc_test_results.pop("""job_link""" ) self.doc_test_results.pop("""failures""" ) self.doc_test_results.pop("""success""" ) self.doc_test_results.pop("""time_spent""" ) lowerCAmelCase__ = sorted(self.doc_test_results.items() , key=lambda snake_case__ : t[0] ) for job, job_result in sorted_dict: if len(job_result["""failures"""] ): lowerCAmelCase__ = F"""*Num failures* :{len(job_result['failed'] )} \n""" lowerCAmelCase__ = job_result["""failures"""] lowerCAmelCase__ = self.get_reply_blocks(snake_case__ , snake_case__ , snake_case__ , text=snake_case__ ) print("""Sending the following reply""" ) print(json.dumps({"""blocks""": blocks} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=F"""Results for {job}""" , blocks=snake_case__ , thread_ts=self.thread_ts["""ts"""] , ) time.sleep(1 ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = os.environ["""GITHUB_RUN_ID"""] lowerCAmelCase__ = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" lowerCAmelCase__ = requests.get(lowerCamelCase__ ).json() lowerCAmelCase__ = {} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase__ = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(lowerCamelCase__ ): lowerCAmelCase__ = requests.get(url + f"""&page={i + 2}""" ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""" , lowerCamelCase__ ) return {} def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = {} if os.path.exists(lowerCamelCase__ ): lowerCAmelCase__ = os.listdir(lowerCamelCase__ ) for file in files: try: with open(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , encoding="""utf-8""" ) as f: lowerCAmelCase__ = f.read() except UnicodeDecodeError as e: raise ValueError(f"""Could not open {os.path.join(lowerCamelCase__ , lowerCamelCase__ )}.""" ) from e return _artifact def _UpperCAmelCase ( ): """simple docstring""" class a_ : def __init__( self : Optional[int] , snake_case__ : str ): lowerCAmelCase__ = name lowerCAmelCase__ = [] def __str__( self : List[str] ): return self.name def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : str ): self.paths.append({"""name""": self.name, """path""": path} ) lowerCAmelCase__ = {} lowerCAmelCase__ = filter(os.path.isdir , os.listdir() ) for directory in directories: lowerCAmelCase__ = directory if artifact_name not in _available_artifacts: lowerCAmelCase__ = Artifact(lowerCamelCase__ ) _available_artifacts[artifact_name].add_path(lowerCamelCase__ ) return _available_artifacts if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = get_job_links() __lowerCAmelCase : str = retrieve_available_artifacts() __lowerCAmelCase : Optional[int] = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowerCAmelCase : Optional[int] = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job __lowerCAmelCase : Optional[int] = github_actions_job_links.get("run_doctests") __lowerCAmelCase : Any = available_artifacts["doc_tests_gpu_test_reports"].paths[0] __lowerCAmelCase : Dict = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: __lowerCAmelCase : Any = handle_test_results(artifact["stats"]) __lowerCAmelCase : List[Any] = failed __lowerCAmelCase : Dict = success __lowerCAmelCase : List[str] = time_spent[1:-1] + ", " __lowerCAmelCase : Union[str, Any] = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): __lowerCAmelCase : Tuple = line.replace("FAILED ", "") __lowerCAmelCase : Any = line.split()[0].replace("\n", "") if "::" in line: __lowerCAmelCase : List[Any] = line.split("::") else: __lowerCAmelCase : Optional[Any] = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowerCAmelCase : Union[str, Any] = docs[file_regex] doc_test_results[category]["failed"].append(test) __lowerCAmelCase : List[str] = all_failures[test] if test in all_failures else "N/A" __lowerCAmelCase : Optional[int] = failure break __lowerCAmelCase : Optional[Any] = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
711
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __lowerCAmelCase : Any = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : def __init__( self : List[str] , snake_case__ : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) lowerCAmelCase__ = primes[group]["""prime"""] lowerCAmelCase__ = primes[group]["""generator"""] lowerCAmelCase__ = int(hexlify(urandom(32 ) ) , base=16 ) def _SCREAMING_SNAKE_CASE ( self : Any ): return hex(self.__private_key )[2:] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = pow(self.generator , self.__private_key , self.prime ) return hex(snake_case__ )[2:] def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(snake_case__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : str ): lowerCAmelCase__ = int(snake_case__ , base=16 ) if not self.is_valid_public_key(snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , self.__private_key , self.prime ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : int , snake_case__ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(snake_case__ , (prime - 1) // 2 , snake_case__ ) == 1 ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : str , snake_case__ : str , snake_case__ : int = 14 ): lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = int(snake_case__ , base=16 ) lowerCAmelCase__ = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(snake_case__ , snake_case__ ): raise ValueError("""Invalid public key""" ) lowerCAmelCase__ = pow(snake_case__ , snake_case__ , snake_case__ ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
674
0
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) lowerCAmelCase__ = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
712
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) lowerCAmelCase__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = weights[0][0][0] lowerCAmelCase__ = np.asarray(layer_norm_a[0] ) lowerCAmelCase__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # lsh weights + output lowerCAmelCase__ = weights[0][1] if len(lowerCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) else: set_layer_weights_in_torch_local(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) # intermediate weighs lowerCAmelCase__ = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase__ ) == 4: lowerCAmelCase__ = intermediate_weights[2] # layernorm 2 lowerCAmelCase__ = np.asarray(intermediate_weights[0][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # intermediate dense lowerCAmelCase__ = np.asarray(intermediate_weights[1][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) # intermediate out lowerCAmelCase__ = np.asarray(intermediate_weights[4][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = torch_model.reformer # word embeds lowerCAmelCase__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase__ ) , ) if isinstance(weights[3] , lowerCamelCase__ ): lowerCAmelCase__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCAmelCase__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" lowerCAmelCase__ = nn.Parameter(torch.tensor(lowerCamelCase__ ) ) lowerCAmelCase__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCAmelCase__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # output layer norm lowerCAmelCase__ = np.asarray(weights[7][0] ) lowerCAmelCase__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # output embeddings lowerCAmelCase__ = np.asarray(weights[9][0] ) lowerCAmelCase__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = ReformerConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = ReformerModelWithLMHead(lowerCamelCase__ ) with open(lowerCamelCase__ , """rb""" ) as f: lowerCAmelCase__ = pickle.load(lowerCamelCase__ )["""weights"""] set_model_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
674
0
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowerCAmelCase : List[str] = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" __lowerCAmelCase : Any = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" __lowerCAmelCase : Union[str, Any] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[List[List[str]]] , snake_case__ : List[List[str]] , snake_case__ : int = 1 , snake_case__ : int = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=snake_case__ , hypotheses=snake_case__ , min_len=snake_case__ , max_len=snake_case__ ) }
713
"""simple docstring""" import os from math import logaa def _UpperCAmelCase ( lowerCamelCase__ = "base_exp.txt" ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) ): lowerCAmelCase__ , lowerCAmelCase__ = list(map(lowerCamelCase__ , line.split(""",""" ) ) ) if x * logaa(lowerCamelCase__ ) > largest: lowerCAmelCase__ = x * logaa(lowerCamelCase__ ) lowerCAmelCase__ = i + 1 return result if __name__ == "__main__": print(solution())
674
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if isinstance(lowerCamelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCamelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCamelCase__ ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class a_ ( __UpperCamelCase ): UpperCamelCase_ : int = ["pixel_values"] def __init__( self : Optional[Any] , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = PILImageResampling.BILINEAR , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 255 , snake_case__ : bool = True , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , **snake_case__ : Optional[Any] , ): super().__init__(**snake_case__ ) lowerCAmelCase__ = size if size is not None else {"""shortest_edge""": 224} lowerCAmelCase__ = get_size_dict(snake_case__ , default_to_square=snake_case__ ) lowerCAmelCase__ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowerCAmelCase__ = get_size_dict(snake_case__ , param_name="""crop_size""" ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = do_center_crop lowerCAmelCase__ = crop_size lowerCAmelCase__ = resample lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : np.ndarray , snake_case__ : Dict[str, int] , snake_case__ : PILImageResampling = PILImageResampling.BILINEAR , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Tuple , ): lowerCAmelCase__ = get_size_dict(snake_case__ , default_to_square=snake_case__ ) if "shortest_edge" in size: lowerCAmelCase__ = get_resize_output_image_size(snake_case__ , size["""shortest_edge"""] , default_to_square=snake_case__ ) elif "height" in size and "width" in size: lowerCAmelCase__ = (size["""height"""], size["""width"""]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : np.ndarray , snake_case__ : Dict[str, int] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[Any] , ): lowerCAmelCase__ = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(snake_case__ , size=(size["""height"""], size["""width"""]) , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : np.ndarray , snake_case__ : Union[int, float] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Tuple , ): return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : np.ndarray , snake_case__ : Union[float, List[float]] , snake_case__ : Union[float, List[float]] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[Any] , ): return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : ImageInput , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = None , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : bool = None , snake_case__ : float = None , snake_case__ : bool = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCAmelCase__ = to_numpy_array(snake_case__ ) if do_resize: lowerCAmelCase__ = self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) if do_center_crop: lowerCAmelCase__ = self.center_crop(snake_case__ , size=snake_case__ ) if do_rescale: lowerCAmelCase__ = self.rescale(image=snake_case__ , scale=snake_case__ ) if do_normalize: lowerCAmelCase__ = self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) lowerCAmelCase__ = to_channel_dimension_format(snake_case__ , snake_case__ ) return image def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : ImageInput , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = None , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : bool = None , snake_case__ : float = None , snake_case__ : bool = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : ChannelDimension = ChannelDimension.FIRST , **snake_case__ : Any , ): lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(snake_case__ , default_to_square=snake_case__ ) lowerCAmelCase__ = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ = get_size_dict(snake_case__ , param_name="""crop_size""" ) if not valid_images(snake_case__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) lowerCAmelCase__ = make_batched(snake_case__ ) lowerCAmelCase__ = [ [ self._preprocess_image( image=snake_case__ , do_resize=snake_case__ , size=snake_case__ , resample=snake_case__ , do_center_crop=snake_case__ , crop_size=snake_case__ , do_rescale=snake_case__ , rescale_factor=snake_case__ , do_normalize=snake_case__ , image_mean=snake_case__ , image_std=snake_case__ , data_format=snake_case__ , ) for img in video ] for video in videos ] lowerCAmelCase__ = {"""pixel_values""": videos} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
714
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" while b: lowerCAmelCase__ , lowerCAmelCase__ = b, a % b return a def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase__ , a % b ) def _UpperCAmelCase ( ): """simple docstring""" print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
674
0
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class a_ ( __UpperCamelCase ): UpperCamelCase_ : BigBirdConfig UpperCamelCase_ : jnp.dtype = jnp.floataa UpperCamelCase_ : bool = True def _SCREAMING_SNAKE_CASE ( self : Any ): super().setup() lowerCAmelCase__ = nn.Dense(5 , dtype=self.dtype ) def __call__( self : str , *snake_case__ : int , **snake_case__ : Optional[int] ): lowerCAmelCase__ = super().__call__(*snake_case__ , **snake_case__ ) lowerCAmelCase__ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class a_ ( __UpperCamelCase ): UpperCamelCase_ : Any = FlaxBigBirdForNaturalQuestionsModule def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" def cross_entropy(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): lowerCAmelCase__ = logits.shape[-1] lowerCAmelCase__ = (labels[..., None] == jnp.arange(lowerCamelCase__ )[None]).astype("""f4""" ) lowerCAmelCase__ = jax.nn.log_softmax(lowerCamelCase__ , axis=-1 ) lowerCAmelCase__ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowerCAmelCase__ = reduction(lowerCamelCase__ ) return loss lowerCAmelCase__ = partial(lowerCamelCase__ , reduction=jnp.mean ) lowerCAmelCase__ = cross_entropy(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = cross_entropy(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = cross_entropy(lowerCamelCase__ , lowerCamelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class a_ : UpperCamelCase_ : str = "google/bigbird-roberta-base" UpperCamelCase_ : int = 3000 UpperCamelCase_ : int = 1_0500 UpperCamelCase_ : int = 128 UpperCamelCase_ : int = 3 UpperCamelCase_ : int = 1 UpperCamelCase_ : int = 5 # tx_args UpperCamelCase_ : float = 3e-5 UpperCamelCase_ : float = 0.0 UpperCamelCase_ : int = 2_0000 UpperCamelCase_ : float = 0.00_95 UpperCamelCase_ : str = "bigbird-roberta-natural-questions" UpperCamelCase_ : str = "training-expt" UpperCamelCase_ : str = "data/nq-training.jsonl" UpperCamelCase_ : str = "data/nq-validation.jsonl" def _SCREAMING_SNAKE_CASE ( self : int ): os.makedirs(self.base_dir , exist_ok=snake_case__ ) lowerCAmelCase__ = os.path.join(self.base_dir , self.save_dir ) lowerCAmelCase__ = self.batch_size_per_device * jax.device_count() @dataclass class a_ : UpperCamelCase_ : int UpperCamelCase_ : int = 4096 # no dynamic padding on TPUs def __call__( self : int , snake_case__ : Any ): lowerCAmelCase__ = self.collate_fn(snake_case__ ) lowerCAmelCase__ = jax.tree_util.tree_map(snake_case__ , snake_case__ ) return batch def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Dict ): lowerCAmelCase__ , lowerCAmelCase__ = self.fetch_inputs(features["""input_ids"""] ) lowerCAmelCase__ = { """input_ids""": jnp.array(snake_case__ , dtype=jnp.intaa ), """attention_mask""": jnp.array(snake_case__ , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : list ): lowerCAmelCase__ = [self._fetch_inputs(snake_case__ ) for ids in input_ids] return zip(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : list ): lowerCAmelCase__ = [1 for _ in range(len(snake_case__ ) )] while len(snake_case__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" if seed is not None: lowerCAmelCase__ = dataset.shuffle(seed=lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) // batch_size ): lowerCAmelCase__ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowerCamelCase__ ) @partial(jax.pmap , axis_name="""batch""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" def loss_fn(lowerCamelCase__ ): lowerCAmelCase__ = model_inputs.pop("""start_labels""" ) lowerCAmelCase__ = model_inputs.pop("""end_labels""" ) lowerCAmelCase__ = model_inputs.pop("""pooled_labels""" ) lowerCAmelCase__ = state.apply_fn(**lowerCamelCase__ , params=lowerCamelCase__ , dropout_rng=lowerCamelCase__ , train=lowerCamelCase__ ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = outputs return state.loss_fn( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) lowerCAmelCase__ , lowerCAmelCase__ = jax.random.split(lowerCamelCase__ ) lowerCAmelCase__ = jax.value_and_grad(lowerCamelCase__ ) lowerCAmelCase__ , lowerCAmelCase__ = grad_fn(state.params ) lowerCAmelCase__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowerCAmelCase__ = jax.lax.pmean(lowerCamelCase__ , """batch""" ) lowerCAmelCase__ = state.apply_gradients(grads=lowerCamelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def _UpperCAmelCase ( lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = model_inputs.pop("""start_labels""" ) lowerCAmelCase__ = model_inputs.pop("""end_labels""" ) lowerCAmelCase__ = model_inputs.pop("""pooled_labels""" ) lowerCAmelCase__ = state.apply_fn(**lowerCamelCase__ , params=state.params , train=lowerCamelCase__ ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = outputs lowerCAmelCase__ = state.loss_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class a_ ( train_state.TrainState ): UpperCamelCase_ : Callable = struct.field(pytree_node=__UpperCamelCase ) @dataclass class a_ : UpperCamelCase_ : Args UpperCamelCase_ : Callable UpperCamelCase_ : Callable UpperCamelCase_ : Callable UpperCamelCase_ : Callable UpperCamelCase_ : wandb UpperCamelCase_ : Callable = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : int=None ): lowerCAmelCase__ = model.params lowerCAmelCase__ = TrainState.create( apply_fn=model.__call__ , params=snake_case__ , tx=snake_case__ , loss_fn=snake_case__ , ) if ckpt_dir is not None: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = restore_checkpoint(snake_case__ , snake_case__ ) lowerCAmelCase__ = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowerCAmelCase__ , lowerCAmelCase__ = build_tx(**snake_case__ ) lowerCAmelCase__ = train_state.TrainState( step=snake_case__ , apply_fn=model.__call__ , params=snake_case__ , tx=snake_case__ , opt_state=snake_case__ , ) lowerCAmelCase__ = args lowerCAmelCase__ = data_collator lowerCAmelCase__ = lr lowerCAmelCase__ = params lowerCAmelCase__ = jax_utils.replicate(snake_case__ ) return state def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : Any ): lowerCAmelCase__ = self.args lowerCAmelCase__ = len(snake_case__ ) // args.batch_size lowerCAmelCase__ = jax.random.PRNGKey(0 ) lowerCAmelCase__ = jax.random.split(snake_case__ , jax.device_count() ) for epoch in range(args.max_epochs ): lowerCAmelCase__ = jnp.array(0 , dtype=jnp.floataa ) lowerCAmelCase__ = get_batched_dataset(snake_case__ , args.batch_size , seed=snake_case__ ) lowerCAmelCase__ = 0 for batch in tqdm(snake_case__ , total=snake_case__ , desc=F"""Running EPOCH-{epoch}""" ): lowerCAmelCase__ = self.data_collator(snake_case__ ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.train_step_fn(snake_case__ , snake_case__ , **snake_case__ ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: lowerCAmelCase__ = jax_utils.unreplicate(state.step ) lowerCAmelCase__ = running_loss.item() / i lowerCAmelCase__ = self.scheduler_fn(state_step - 1 ) lowerCAmelCase__ = self.evaluate(snake_case__ , snake_case__ ) lowerCAmelCase__ = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(snake_case__ ) ) self.logger.log(snake_case__ , commit=snake_case__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Optional[Any] , snake_case__ : int ): lowerCAmelCase__ = get_batched_dataset(snake_case__ , self.args.batch_size ) lowerCAmelCase__ = len(snake_case__ ) // self.args.batch_size lowerCAmelCase__ = jnp.array(0 , dtype=jnp.floataa ) lowerCAmelCase__ = 0 for batch in tqdm(snake_case__ , total=snake_case__ , desc="""Evaluating ... """ ): lowerCAmelCase__ = self.data_collator(snake_case__ ) lowerCAmelCase__ = self.val_step_fn(snake_case__ , **snake_case__ ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Any , snake_case__ : Any ): lowerCAmelCase__ = jax_utils.unreplicate(snake_case__ ) print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=""" ... """ ) self.model_save_fn(snake_case__ , params=state.params ) with open(os.path.join(snake_case__ , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(snake_case__ , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(snake_case__ , """data_collator.joblib""" ) ) with open(os.path.join(snake_case__ , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , snake_case__ ) print("""DONE""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" print(f"""RESTORING CHECKPOINT FROM {save_dir}""" , end=""" ... """ ) with open(os.path.join(lowerCamelCase__ , """flax_model.msgpack""" ) , """rb""" ) as f: lowerCAmelCase__ = from_bytes(state.params , f.read() ) with open(os.path.join(lowerCamelCase__ , """opt_state.msgpack""" ) , """rb""" ) as f: lowerCAmelCase__ = from_bytes(state.opt_state , f.read() ) lowerCAmelCase__ = joblib.load(os.path.join(lowerCamelCase__ , """args.joblib""" ) ) lowerCAmelCase__ = joblib.load(os.path.join(lowerCamelCase__ , """data_collator.joblib""" ) ) with open(os.path.join(lowerCamelCase__ , """training_state.json""" ) , """r""" ) as f: lowerCAmelCase__ = json.load(lowerCamelCase__ ) lowerCAmelCase__ = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = num_train_steps - warmup_steps lowerCAmelCase__ = optax.linear_schedule(init_value=lowerCamelCase__ , end_value=lowerCamelCase__ , transition_steps=lowerCamelCase__ ) lowerCAmelCase__ = optax.linear_schedule(init_value=lowerCamelCase__ , end_value=1e-7 , transition_steps=lowerCamelCase__ ) lowerCAmelCase__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" def weight_decay_mask(lowerCamelCase__ ): lowerCAmelCase__ = traverse_util.flatten_dict(lowerCamelCase__ ) lowerCAmelCase__ = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(lowerCamelCase__ ) lowerCAmelCase__ = scheduler_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = optax.adamw(learning_rate=lowerCamelCase__ , weight_decay=lowerCamelCase__ , mask=lowerCamelCase__ ) return tx, lr
715
"""simple docstring""" import os def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = os.path.dirname(os.path.realpath(lowerCamelCase__ ) ) lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """triangle.txt""" ) with open(lowerCamelCase__ ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = [] for line in triangle: lowerCAmelCase__ = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(lowerCamelCase__ ) ) a.append(lowerCamelCase__ ) for i in range(1 , len(lowerCamelCase__ ) ): for j in range(len(a[i] ) ): lowerCAmelCase__ = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCAmelCase__ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCamelCase__ , lowerCamelCase__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
674
0
"""simple docstring""" import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = BigBirdConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: lowerCAmelCase__ = BigBirdForQuestionAnswering(lowerCamelCase__ ) else: lowerCAmelCase__ = BigBirdForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(lowerCamelCase__ , lowerCamelCase__ , is_trivia_qa=lowerCamelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) __lowerCAmelCase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
716
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCAmelCase : Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __lowerCAmelCase : Optional[int] = json.load(f) @require_torch class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Dict ): return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ): lowerCAmelCase__ = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Any , snake_case__ : int ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowerCAmelCase__ = F"""facebook/wmt19-{pair}""" lowerCAmelCase__ = self.get_tokenizer(snake_case__ ) lowerCAmelCase__ = self.get_model(snake_case__ ) lowerCAmelCase__ = bleu_data[pair]["""src"""] lowerCAmelCase__ = bleu_data[pair]["""tgt"""] lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""pt""" , truncation=snake_case__ , padding="""longest""" ).to(snake_case__ ) lowerCAmelCase__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCAmelCase__ = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) lowerCAmelCase__ = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["""bleu"""] , snake_case__ )
674
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : List[str] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.linear_k": "encoder.layers.*.self_attn.linear_k", "self_attn.linear_v": "encoder.layers.*.self_attn.linear_v", "self_attn.linear_q": "encoder.layers.*.self_attn.linear_q", "self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u", "self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v", "self_attn.linear_out": "encoder.layers.*.self_attn.linear_out", "self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos", "self_attn.rotary_emb": "encoder.embed_positions", "self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm", "conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1", "conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2", "conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv", "conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm", "conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm", "ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense", "ffn1.w_2": "encoder.layers.*.ffn1.output_dense", "ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm", "ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense", "ffn2.w_2": "encoder.layers.*.ffn2.output_dense", "ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __lowerCAmelCase : str = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" for attribute in key.split(""".""" ): lowerCAmelCase__ = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: lowerCAmelCase__ = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: lowerCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase__ = value elif weight_type == "weight_g": lowerCAmelCase__ = value elif weight_type == "weight_v": lowerCAmelCase__ = value elif weight_type == "bias": lowerCAmelCase__ = value elif weight_type == "running_mean": lowerCAmelCase__ = value elif weight_type == "running_var": lowerCAmelCase__ = value elif weight_type == "num_batches_tracked": lowerCAmelCase__ = value elif weight_type == "inv_freq": lowerCAmelCase__ = value else: lowerCAmelCase__ = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = fairseq_model.state_dict() lowerCAmelCase__ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase__ = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == """group""" , ) lowerCAmelCase__ = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase__ = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowerCAmelCase__ = True if "*" in mapped_key: lowerCAmelCase__ = name.split(lowerCamelCase__ )[0].split(""".""" )[-2] lowerCAmelCase__ = mapped_key.replace("""*""" , lowerCamelCase__ ) if "pos_bias_u" in name: lowerCAmelCase__ = None elif "pos_bias_v" in name: lowerCAmelCase__ = None elif "weight_g" in name: lowerCAmelCase__ = """weight_g""" elif "weight_v" in name: lowerCAmelCase__ = """weight_v""" elif "bias" in name: lowerCAmelCase__ = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase__ = """weight""" elif "running_mean" in name: lowerCAmelCase__ = """running_mean""" elif "inv_freq" in name: lowerCAmelCase__ = """inv_freq""" elif "running_var" in name: lowerCAmelCase__ = """running_var""" elif "num_batches_tracked" in name: lowerCAmelCase__ = """num_batches_tracked""" else: lowerCAmelCase__ = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = full_name.split("""conv_layers.""" )[-1] lowerCAmelCase__ = name.split(""".""" ) lowerCAmelCase__ = int(items[0] ) lowerCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCamelCase__ ) @torch.no_grad() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True ): """simple docstring""" if config_path is not None: lowerCAmelCase__ = WavaVecaConformerConfig.from_pretrained(lowerCamelCase__ , hidden_act="""swish""" ) else: lowerCAmelCase__ = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowerCAmelCase__ = """rotary""" if is_finetuned: if dict_path: lowerCAmelCase__ = Dictionary.load(lowerCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase__ = target_dict.pad_index lowerCAmelCase__ = target_dict.bos_index lowerCAmelCase__ = target_dict.eos_index lowerCAmelCase__ = len(target_dict.symbols ) lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """vocab.json""" ) if not os.path.isdir(lowerCamelCase__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCamelCase__ ) ) return os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) lowerCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = WavaVecaCTCTokenizer( lowerCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCamelCase__ , ) lowerCAmelCase__ = True if config.feat_extract_norm == """layer""" else False lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) lowerCAmelCase__ = WavaVecaProcessor(feature_extractor=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) lowerCAmelCase__ = WavaVecaConformerForCTC(lowerCamelCase__ ) else: lowerCAmelCase__ = WavaVecaConformerForPreTraining(lowerCamelCase__ ) if is_finetuned: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: lowerCAmelCase__ = argparse.Namespace(task="""audio_pretraining""" ) lowerCAmelCase__ = fairseq.tasks.setup_task(lowerCamelCase__ ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCamelCase__ ) lowerCAmelCase__ = model[0].eval() recursively_load_weights(lowerCamelCase__ , lowerCamelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __lowerCAmelCase : int = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
717
"""simple docstring""" import pprint import requests __lowerCAmelCase : Union[str, Any] = "https://zenquotes.io/api" def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = random_quotes() pprint.pprint(response)
674
0
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path __lowerCAmelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) __lowerCAmelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] __lowerCAmelCase : set[int] = {ord(char) for char in VALID_CHARS} __lowerCAmelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = """""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 for keychar, cipherchar in zip(cycle(lowerCamelCase__ ) , lowerCamelCase__ ): lowerCAmelCase__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowerCamelCase__ ) return decoded def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [] for key in product(lowerCamelCase__ , repeat=3 ): lowerCAmelCase__ = try_key(lowerCamelCase__ , lowerCamelCase__ ) if encoded is not None: possibles.append(lowerCamelCase__ ) return possibles def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def _UpperCAmelCase ( lowerCamelCase__ = "p059_cipher.txt" ): """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = Path(lowerCamelCase__ ).parent.joinpath(lowerCamelCase__ ).read_text(encoding="""utf-8""" ) lowerCAmelCase__ = [int(lowerCamelCase__ ) for number in data.strip().split(""",""" )] lowerCAmelCase__ = filter_valid_chars(lowerCamelCase__ ) for common_word in COMMON_WORDS: lowerCAmelCase__ = filter_common_word(lowerCamelCase__ , lowerCamelCase__ ) if len(lowerCamelCase__ ) == 1: break lowerCAmelCase__ = possibles[0] return sum(ord(lowerCamelCase__ ) for char in decoded_text ) if __name__ == "__main__": print(F"{solution() = }")
718
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = CLIPConfig() # Create a dummy config file with image_proceesor_type lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ).to_dict() config_dict.pop("""image_processor_type""" ) lowerCAmelCase__ = CLIPImageProcessor(**snake_case__ ) # save in new folder model_config.save_pretrained(snake_case__ ) config.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) # make sure private variable is not incorrectly saved lowerCAmelCase__ = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with self.assertRaisesRegex( snake_case__ , """clip-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""clip-base""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): with self.assertRaisesRegex( snake_case__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , revision="""aaaaaa""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): with self.assertRaisesRegex( snake_case__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , trust_remote_code=snake_case__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ): try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoImageProcessor.register(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = CustomImageProcessor.from_pretrained(snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self : List[str] ): class a_ ( __UpperCamelCase ): UpperCamelCase_ : Tuple = True try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # If remote code is not set, the default is to use local lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(snake_case__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
674
0
"""simple docstring""" import re def _UpperCAmelCase ( lowerCamelCase__ ) -> Tuple: """simple docstring""" return [char.split() for char in re.split(r"""[^ a-z A-Z 0-9 \s]""" , str_ )] def _UpperCAmelCase ( lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: """simple docstring""" try: lowerCAmelCase__ = split_input(lowerCamelCase__ ) if upper: lowerCAmelCase__ = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: lowerCAmelCase__ = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _UpperCAmelCase ( lowerCamelCase__ ) -> Dict: """simple docstring""" return to_simple_case(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ) -> Any: """simple docstring""" try: lowerCAmelCase__ = to_simple_case(lowerCamelCase__ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ) -> Any: """simple docstring""" return to_complex_case(lowerCamelCase__ , lowerCamelCase__ , """_""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" return to_complex_case(lowerCamelCase__ , lowerCamelCase__ , """-""" ) if __name__ == "__main__": __import__("doctest").testmod()
719
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a_ : def __init__( self : Optional[int] , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=64 , snake_case__ : Any=None ): lowerCAmelCase__ = np.random.default_rng(snake_case__ ) lowerCAmelCase__ = length lowerCAmelCase__ = rng.normal(size=(length,) ).astype(np.floataa ) lowerCAmelCase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[Any] ): return self.length def __getitem__( self : List[str] , snake_case__ : Optional[int] ): return {"x": self.x[i], "y": self.y[i]} class a_ ( torch.nn.Module ): def __init__( self : List[str] , snake_case__ : str=0 , snake_case__ : Dict=0 , snake_case__ : Any=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Any=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a[0] + self.b[0] class a_ ( torch.nn.Module ): def __init__( self : Any , snake_case__ : Union[str, Any]=0 , snake_case__ : Union[str, Any]=0 , snake_case__ : List[Any]=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any]=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a + self.b def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase__ = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} lowerCAmelCase__ = load_dataset("""csv""" , data_files=lowerCamelCase__ ) lowerCAmelCase__ = datasets["""train"""].unique("""label""" ) lowerCAmelCase__ = {v: i for i, v in enumerate(lowerCamelCase__ )} def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" ) if "label" in examples: lowerCAmelCase__ = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase__ = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=2 ) lowerCAmelCase__ = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
674
0
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = LayoutLMTokenizer UpperCamelCase_ : List[Any] = LayoutLMTokenizerFast UpperCamelCase_ : Dict = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() A = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : Union[str, Any] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Tuple ): A = """UNwant\u00E9d,running""" A = """unwanted, running""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): A = self.tokenizer_class(self.vocab_file ) A = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(snake_case__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): pass
720
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = MobileBertConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = MobileBertForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint lowerCAmelCase__ = load_tf_weights_in_mobilebert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
674
0
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ = 50 ): """simple docstring""" lowerCAmelCase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"{solution() = }")
721
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: lowerCAmelCase__ = f"""The input value of [n={number}] has to be > 0""" raise ValueError(lowerCamelCase__ ) else: lowerCAmelCase__ = sylvester(number - 1 ) lowerCAmelCase__ = num - 1 lowerCAmelCase__ = num return lower * upper + 1 if __name__ == "__main__": print(F"The 8th number in Sylvester's sequence: {sylvester(8)}")
674
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES lowerCAmelCase = """tiny-wmt19-en-ru""" # Build # borrowed from a test lowerCAmelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowerCAmelCase = dict(zip(vocab, range(len(vocab)))) lowerCAmelCase = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = Path(tmpdirname) lowerCAmelCase = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""] lowerCAmelCase = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""] lowerCAmelCase = build_dir / VOCAB_FILES_NAMES["""merges_file"""] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) lowerCAmelCase = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) lowerCAmelCase = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) lowerCAmelCase = FSMTForConditionalGeneration(config) print(F'num of params {tiny_model.num_parameters()}') # Test lowerCAmelCase = tokenizer(["""Making tiny model"""], return_tensors="""pt""") lowerCAmelCase = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-ru
675
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''bert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : List[Any] = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """microsoft/swinv2-tiny-patch4-window8-256""": ( """https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json""" ), } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''swinv2''' _lowerCAmelCase : Union[str, Any] = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowercase__=2_2_4 , lowercase__=4 , lowercase__=3 , lowercase__=9_6 , lowercase__=[2, 2, 6, 2] , lowercase__=[3, 6, 1_2, 2_4] , lowercase__=7 , lowercase__=4.0 , lowercase__=True , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.1 , lowercase__="gelu" , lowercase__=False , lowercase__=0.0_2 , lowercase__=1e-5 , lowercase__=3_2 , **lowercase__ , ): super().__init__(**lowercase__) __UpperCAmelCase : str = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : List[Any] = num_channels __UpperCAmelCase : List[Any] = embed_dim __UpperCAmelCase : Optional[Any] = depths __UpperCAmelCase : Union[str, Any] = len(lowercase__) __UpperCAmelCase : Optional[int] = num_heads __UpperCAmelCase : int = window_size __UpperCAmelCase : str = mlp_ratio __UpperCAmelCase : Optional[int] = qkv_bias __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : int = drop_path_rate __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : Union[str, Any] = use_absolute_embeddings __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : int = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCAmelCase : Tuple = int(embed_dim * 2 ** (len(lowercase__) - 1)) __UpperCAmelCase : Dict = (0, 0, 0, 0)
675
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
1
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path lowerCAmelCase = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def __SCREAMING_SNAKE_CASE ( lowercase_=True ) -> List[str]: '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_UpperCamelCase ) ) class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = None _lowerCAmelCase : List[str] = None def A( self , lowercase__ , lowercase__): with TemporaryDirectory() as tmp_dir: __UpperCAmelCase : Tuple = dataset_module_factory(lowercase__ , cache_dir=lowercase__) __UpperCAmelCase : Optional[int] = import_main_class(dataset_module.module_path , dataset=lowercase__) __UpperCAmelCase : DatasetBuilder = builder_cls( cache_dir=lowercase__ , config_name=lowercase__ , hash=dataset_module.hash , ) __UpperCAmelCase : str = '''/'''.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowercase__).replace(os.sep , '''/'''), config.DATASET_INFO_FILENAME, ]) __UpperCAmelCase : List[str] = cached_path(lowercase__ , cache_dir=lowercase__) self.assertTrue(os.path.exists(lowercase__)) @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[Any] = tmp_path_factory.mktemp('''test_hf_gcp''' ) / '''test_wikipedia_simple''' __UpperCAmelCase : Tuple = dataset_module_factory('''wikipedia''' , cache_dir=lowercase_ ) __UpperCAmelCase : List[Any] = import_main_class(dataset_module.module_path ) __UpperCAmelCase : DatasetBuilder = builder_cls( cache_dir=lowercase_ , config_name='''20220301.frr''' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __UpperCAmelCase : str = None builder_instance.download_and_prepare() __UpperCAmelCase : int = builder_instance.as_dataset() assert ds @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = dataset_module_factory('''wikipedia''' , cache_dir=lowercase_ ) __UpperCAmelCase : Tuple = import_main_class(dataset_module.module_path , dataset=lowercase_ ) __UpperCAmelCase : DatasetBuilder = builder_cls( cache_dir=lowercase_ , config_name='''20220301.frr''' , hash=dataset_module.hash , ) __UpperCAmelCase : List[str] = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowercase_ , lowercase_ ) assert "train" in ds assert isinstance(ds['''train'''] , lowercase_ ) assert next(iter(ds['''train'''] ) )
675
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
675
1
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase ( unittest.TestCase ): @property def A( self): torch.manual_seed(0) __UpperCAmelCase : Dict = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def A( self): __UpperCAmelCase : Union[str, Any] = self.dummy_uncond_unet __UpperCAmelCase : int = PNDMScheduler() __UpperCAmelCase : List[str] = PNDMPipeline(unet=lowercase__ , scheduler=lowercase__) pndm.to(lowercase__) pndm.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : List[Any] = torch.manual_seed(0) __UpperCAmelCase : Any = pndm(generator=lowercase__ , num_inference_steps=2_0 , output_type='''numpy''').images __UpperCAmelCase : Optional[int] = torch.manual_seed(0) __UpperCAmelCase : Dict = pndm(generator=lowercase__ , num_inference_steps=2_0 , output_type='''numpy''' , return_dict=lowercase__)[0] __UpperCAmelCase : int = image[0, -3:, -3:, -1] __UpperCAmelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __UpperCAmelCase : int = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : Any = '''google/ddpm-cifar10-32''' __UpperCAmelCase : List[str] = UNetaDModel.from_pretrained(lowercase__) __UpperCAmelCase : str = PNDMScheduler() __UpperCAmelCase : Any = PNDMPipeline(unet=lowercase__ , scheduler=lowercase__) pndm.to(lowercase__) pndm.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : Optional[Any] = torch.manual_seed(0) __UpperCAmelCase : List[Any] = pndm(generator=lowercase__ , output_type='''numpy''').images __UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __UpperCAmelCase : List[Any] = np.array([0.1_5_6_4, 0.1_4_6_4_5, 0.1_4_0_6, 0.1_4_7_1_5, 0.1_2_4_2_5, 0.1_4_0_4_5, 0.1_3_1_1_5, 0.1_2_1_7_5, 0.1_2_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
675
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
675
1
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() __UpperCAmelCase : List[Any] = value_function __UpperCAmelCase : List[Any] = unet __UpperCAmelCase : Optional[Any] = scheduler __UpperCAmelCase : int = env __UpperCAmelCase : Optional[int] = env.get_dataset() __UpperCAmelCase : List[Any] = {} for key in self.data.keys(): try: __UpperCAmelCase : Union[str, Any] = self.data[key].mean() except: # noqa: E722 pass __UpperCAmelCase : Optional[int] = {} for key in self.data.keys(): try: __UpperCAmelCase : List[Any] = self.data[key].std() except: # noqa: E722 pass __UpperCAmelCase : Tuple = env.observation_space.shape[0] __UpperCAmelCase : List[str] = env.action_space.shape[0] def A( self , lowercase__ , lowercase__): return (x_in - self.means[key]) / self.stds[key] def A( self , lowercase__ , lowercase__): return x_in * self.stds[key] + self.means[key] def A( self , lowercase__): if type(lowercase__) is dict: return {k: self.to_torch(lowercase__) for k, v in x_in.items()} elif torch.is_tensor(lowercase__): return x_in.to(self.unet.device) return torch.tensor(lowercase__ , device=self.unet.device) def A( self , lowercase__ , lowercase__ , lowercase__): for key, val in cond.items(): __UpperCAmelCase : Optional[int] = val.clone() return x_in def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[int] = x.shape[0] __UpperCAmelCase : Union[str, Any] = None for i in tqdm.tqdm(self.scheduler.timesteps): # create batch of timesteps to pass into model __UpperCAmelCase : Dict = torch.full((batch_size,) , lowercase__ , device=self.unet.device , dtype=torch.long) for _ in range(lowercase__): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models __UpperCAmelCase : Optional[int] = self.value_function(x.permute(0 , 2 , 1) , lowercase__).sample __UpperCAmelCase : Dict = torch.autograd.grad([y.sum()] , [x])[0] __UpperCAmelCase : Union[str, Any] = self.scheduler._get_variance(lowercase__) __UpperCAmelCase : str = torch.exp(0.5 * posterior_variance) __UpperCAmelCase : Tuple = model_std * grad __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : List[Any] = x.detach() __UpperCAmelCase : Dict = x + scale * grad __UpperCAmelCase : str = self.reset_xa(lowercase__ , lowercase__ , self.action_dim) __UpperCAmelCase : int = self.unet(x.permute(0 , 2 , 1) , lowercase__).sample.permute(0 , 2 , 1) # TODO: verify deprecation of this kwarg __UpperCAmelCase : List[Any] = self.scheduler.step(lowercase__ , lowercase__ , lowercase__ , predict_epsilon=lowercase__)['''prev_sample'''] # apply conditions to the trajectory (set the initial state) __UpperCAmelCase : List[Any] = self.reset_xa(lowercase__ , lowercase__ , self.action_dim) __UpperCAmelCase : Dict = self.to_torch(lowercase__) return x, y def __call__( self , lowercase__ , lowercase__=6_4 , lowercase__=3_2 , lowercase__=2 , lowercase__=0.1): # normalize the observations and create batch dimension __UpperCAmelCase : Any = self.normalize(lowercase__ , '''observations''') __UpperCAmelCase : Any = obs[None].repeat(lowercase__ , axis=0) __UpperCAmelCase : Optional[Any] = {0: self.to_torch(lowercase__)} __UpperCAmelCase : Tuple = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) __UpperCAmelCase : Any = randn_tensor(lowercase__ , device=self.unet.device) __UpperCAmelCase : Any = self.reset_xa(lowercase__ , lowercase__ , self.action_dim) __UpperCAmelCase : List[Any] = self.to_torch(lowercase__) # run the diffusion process __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.run_diffusion(lowercase__ , lowercase__ , lowercase__ , lowercase__) # sort output trajectories by value __UpperCAmelCase : Dict = y.argsort(0 , descending=lowercase__).squeeze() __UpperCAmelCase : str = x[sorted_idx] __UpperCAmelCase : Dict = sorted_values[:, :, : self.action_dim] __UpperCAmelCase : int = actions.detach().cpu().numpy() __UpperCAmelCase : Tuple = self.de_normalize(lowercase__ , key='''actions''') # select the action with the highest value if y is not None: __UpperCAmelCase : Tuple = 0 else: # if we didn't run value guiding, select a random action __UpperCAmelCase : str = np.random.randint(0 , lowercase__) __UpperCAmelCase : Union[str, Any] = denorm_actions[selected_index, 0] return denorm_actions
675
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
1
from statistics import mean, stdev def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = 3 ) -> list: '''simple docstring''' __UpperCAmelCase : str = min(lowercase_ ) __UpperCAmelCase : List[Any] = max(lowercase_ ) # normalize data return [round((x - x_min) / (x_max - x_min) , lowercase_ ) for x in data] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = 3 ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[int] = mean(lowercase_ ) __UpperCAmelCase : List[str] = stdev(lowercase_ ) # standardize data return [round((x - mu) / (sigma) , lowercase_ ) for x in data]
675
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
1
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=None , lowercase__=True , lowercase__=True , lowercase__=None , ): __UpperCAmelCase : Any = size if size is not None else {'''height''': 2_0, '''width''': 2_0} __UpperCAmelCase : str = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : Any = min_resolution __UpperCAmelCase : Optional[int] = max_resolution __UpperCAmelCase : str = size __UpperCAmelCase : List[str] = do_normalize __UpperCAmelCase : int = do_convert_rgb __UpperCAmelCase : Any = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] __UpperCAmelCase : Any = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} def A( self): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def A( self): __UpperCAmelCase : Dict = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' __UpperCAmelCase : Union[str, Any] = Image.open(requests.get(lowercase__ , stream=lowercase__).raw).convert('''RGB''') return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Optional[int] = PixaStructImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = PixaStructImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) self.assertTrue(hasattr(lowercase__ , '''do_convert_rgb''')) def A( self): __UpperCAmelCase : Dict = self.image_processor_tester.prepare_dummy_image() __UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Optional[Any] = 2_0_4_8 __UpperCAmelCase : int = image_processor(lowercase__ , return_tensors='''pt''' , max_patches=lowercase__) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_6_0_6) , atol=1e-3 , rtol=1e-3)) def A( self): # Initialize image_processor __UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict) # create random PIL images __UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image) # Test not batched input __UpperCAmelCase : str = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __UpperCAmelCase : Optional[int] = image_processor( lowercase__ , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A( self): # Initialize image_processor __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images __UpperCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image) # Test not batched input __UpperCAmelCase : Dict = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 __UpperCAmelCase : Tuple = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowercase__): __UpperCAmelCase : List[str] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches __UpperCAmelCase : Union[str, Any] = '''Hello''' __UpperCAmelCase : List[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase__ , header_text=lowercase__).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __UpperCAmelCase : Dict = image_processor( lowercase__ , return_tensors='''pt''' , max_patches=lowercase__ , header_text=lowercase__).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A( self): # Initialize image_processor __UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __UpperCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray) __UpperCAmelCase : Optional[int] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __UpperCAmelCase : str = image_processor( lowercase__ , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A( self): # Initialize image_processor __UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor) # Test not batched input __UpperCAmelCase : Tuple = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __UpperCAmelCase : Optional[Any] = image_processor( lowercase__ , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Union[str, Any] = PixaStructImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Dict = PixaStructImageProcessingTester(self , num_channels=4) __UpperCAmelCase : str = 3 @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) self.assertTrue(hasattr(lowercase__ , '''do_convert_rgb''')) def A( self): # Initialize image_processor __UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images __UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image) # Test not batched input __UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __UpperCAmelCase : Dict = image_processor( lowercase__ , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
675
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase = logging.get_logger(__name__) class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Optional[int] = ['''pixel_values'''] def __init__( self , lowercase__ = True , lowercase__ = None , lowercase__ = 0.9 , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = 1 / 2_5_5 , lowercase__ = True , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(**lowercase__) __UpperCAmelCase : Any = size if size is not None else {'''shortest_edge''': 2_2_4} __UpperCAmelCase : List[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__) __UpperCAmelCase : int = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} __UpperCAmelCase : Optional[Any] = get_size_dict(lowercase__ , param_name='''crop_size''') __UpperCAmelCase : List[Any] = do_resize __UpperCAmelCase : Any = size __UpperCAmelCase : str = crop_pct __UpperCAmelCase : Tuple = resample __UpperCAmelCase : Optional[int] = do_center_crop __UpperCAmelCase : Optional[int] = crop_size __UpperCAmelCase : List[Any] = do_rescale __UpperCAmelCase : Dict = rescale_factor __UpperCAmelCase : Tuple = do_normalize __UpperCAmelCase : Dict = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A( self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): __UpperCAmelCase : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}") if crop_pct is not None: if "shortest_edge" in size: __UpperCAmelCase : Optional[Any] = int(size['''shortest_edge'''] / crop_pct) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCAmelCase : Union[str, Any] = int(size['''height'''] / crop_pct) else: __UpperCAmelCase : Dict = (int(size['''height'''] / crop_pct), int(size['''width'''] / crop_pct)) else: raise ValueError('''Invalid size for resize: {}'''.format(lowercase__)) __UpperCAmelCase : Tuple = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__) else: if "shortest_edge" in size: __UpperCAmelCase : int = get_resize_output_image_size(lowercase__ , size=size['''shortest_edge'''] , default_to_square=lowercase__) elif "height" in size and "width" in size: __UpperCAmelCase : Any = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(lowercase__)) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): __UpperCAmelCase : int = get_size_dict(lowercase__) if "height" not in size or "width" not in size: raise ValueError(F"size must contain 'height' and 'width' as keys. Got {size.keys()}") return center_crop(lowercase__ , size=(size['''height'''], size['''width''']) , data_format=lowercase__ , **lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__) def A( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): __UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : str = crop_pct if crop_pct is not None else self.crop_pct __UpperCAmelCase : Dict = resample if resample is not None else self.resample __UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : int = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Any = image_std if image_std is not None else self.image_std __UpperCAmelCase : Tuple = size if size is not None else self.size __UpperCAmelCase : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__) __UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Optional[int] = get_size_dict(lowercase__ , param_name='''crop_size''') __UpperCAmelCase : str = make_list_of_images(lowercase__) if not valid_images(lowercase__): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''') if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # All transformations expect numpy arrays. __UpperCAmelCase : int = [to_numpy_array(lowercase__) for image in images] if do_resize: __UpperCAmelCase : str = [self.resize(image=lowercase__ , size=lowercase__ , crop_pct=lowercase__ , resample=lowercase__) for image in images] if do_center_crop: __UpperCAmelCase : List[Any] = [self.center_crop(image=lowercase__ , size=lowercase__) for image in images] if do_rescale: __UpperCAmelCase : Tuple = [self.rescale(image=lowercase__ , scale=lowercase__) for image in images] if do_normalize: __UpperCAmelCase : List[str] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__) for image in images] __UpperCAmelCase : Union[str, Any] = [to_channel_dimension_format(lowercase__ , lowercase__) for image in images] __UpperCAmelCase : Optional[int] = {'''pixel_values''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__)
675
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
1
from __future__ import annotations from typing import Any class lowerCamelCase : def __init__( self , lowercase__ = 6): __UpperCAmelCase : Node | None = None __UpperCAmelCase : Node | None = None self.create_linked_list(lowercase__) def A( self , lowercase__): __UpperCAmelCase : int = Node() __UpperCAmelCase : int = current_node __UpperCAmelCase : Optional[int] = current_node __UpperCAmelCase : Optional[Any] = current_node for _ in range(1 , lowercase__): __UpperCAmelCase : Any = Node() __UpperCAmelCase : Union[str, Any] = current_node __UpperCAmelCase : Any = previous_node __UpperCAmelCase : Any = current_node __UpperCAmelCase : Optional[Any] = self.front __UpperCAmelCase : Optional[int] = previous_node def A( self): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A( self): self.check_can_perform_operation() return self.front.data if self.front else None def A( self , lowercase__): if self.rear is None: return self.check_is_full() if not self.is_empty(): __UpperCAmelCase : List[Any] = self.rear.next if self.rear: __UpperCAmelCase : str = data def A( self): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: __UpperCAmelCase : Tuple = self.front.data __UpperCAmelCase : Dict = None return data __UpperCAmelCase : int = self.front __UpperCAmelCase : Dict = old_front.next __UpperCAmelCase : Union[str, Any] = old_front.data __UpperCAmelCase : Dict = None return data def A( self): if self.is_empty(): raise Exception('''Empty Queue''') def A( self): if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''') class lowerCamelCase : def __init__( self): __UpperCAmelCase : Any | None = None __UpperCAmelCase : Node | None = None __UpperCAmelCase : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
675
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""YolosFeatureExtractor"""] lowerCAmelCase = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
675
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
1
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor lowerCAmelCase = logging.get_logger(__name__) class lowerCamelCase ( _UpperCamelCase ): def __init__( self , *lowercase__ , **lowercase__): warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , lowercase__ , ) super().__init__(*lowercase__ , **lowercase__)
675
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[Union[str, Path]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 1 _lowerCAmelCase : Optional[Union[str, bool]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None def A( self): return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
675
1