code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase = { """vocab_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-german-cased""": ( """https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json""" ), """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase = { """distilbert-base-uncased""": 512, """distilbert-base-uncased-distilled-squad""": 512, """distilbert-base-cased""": 512, """distilbert-base-cased-distilled-squad""": 512, """distilbert-base-german-cased""": 512, """distilbert-base-multilingual-cased""": 512, } lowerCAmelCase = { """distilbert-base-uncased""": {"""do_lower_case""": True}, """distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True}, """distilbert-base-cased""": {"""do_lower_case""": False}, """distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False}, """distilbert-base-german-cased""": {"""do_lower_case""": False}, """distilbert-base-multilingual-cased""": {"""do_lower_case""": False}, } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Any = VOCAB_FILES_NAMES _lowerCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] _lowerCAmelCase : Dict = DistilBertTokenizer def __init__( self , lowercase__=None , lowercase__=None , lowercase__=True , lowercase__="[UNK]" , lowercase__="[SEP]" , lowercase__="[PAD]" , lowercase__="[CLS]" , lowercase__="[MASK]" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( lowercase__ , tokenizer_file=lowercase__ , do_lower_case=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , pad_token=lowercase__ , cls_token=lowercase__ , mask_token=lowercase__ , tokenize_chinese_chars=lowercase__ , strip_accents=lowercase__ , **lowercase__ , ) __UpperCAmelCase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('''lowercase''' , lowercase__) != do_lower_case or normalizer_state.get('''strip_accents''' , lowercase__) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowercase__) != tokenize_chinese_chars ): __UpperCAmelCase : Any = getattr(lowercase__ , normalizer_state.pop('''type''')) __UpperCAmelCase : Dict = do_lower_case __UpperCAmelCase : Optional[Any] = strip_accents __UpperCAmelCase : str = tokenize_chinese_chars __UpperCAmelCase : Tuple = normalizer_class(**lowercase__) __UpperCAmelCase : str = do_lower_case def A( self , lowercase__ , lowercase__=None): __UpperCAmelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : Tuple = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : int = self._tokenizer.model.save(lowercase__ , name=lowercase__) return tuple(lowercase__)
675
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:] __UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
1
import torch from diffusers import StableDiffusionPipeline lowerCAmelCase = """path-to-your-trained-model""" lowerCAmelCase = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") lowerCAmelCase = """A photo of sks dog in a bucket""" lowerCAmelCase = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
675
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
1
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class lowerCamelCase ( _UpperCamelCase ): def A( self , lowercase__): return 0.0 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[int | float, int | float]: '''simple docstring''' __UpperCAmelCase : Optional[int] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) __UpperCAmelCase : Optional[Any] = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 512 __UpperCAmelCase : Tuple = [1] + [0] * (size - 1) __UpperCAmelCase : Dict = [filter_type.process(lowercase_ ) for item in inputs] __UpperCAmelCase : Tuple = [0] * (samplerate - size) # zero-padding outputs += filler __UpperCAmelCase : Any = np.abs(np.fft.fft(lowercase_ ) ) __UpperCAmelCase : str = 20 * np.logaa(lowercase_ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds __UpperCAmelCase : str = get_bounds(lowercase_ , lowercase_ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(lowercase_ ) plt.show() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> None: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 512 __UpperCAmelCase : str = [1] + [0] * (size - 1) __UpperCAmelCase : Union[str, Any] = [filter_type.process(lowercase_ ) for item in inputs] __UpperCAmelCase : List[Any] = [0] * (samplerate - size) # zero-padding outputs += filler __UpperCAmelCase : List[Any] = np.angle(np.fft.fft(lowercase_ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(lowercase_ , -2 * pi ) ) plt.show()
675
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
1
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=4 , lowercase__="gelu" , lowercase__=0.0 , lowercase__=0.1 , lowercase__=True , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Dict = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : int = seq_length __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : List[str] = use_input_mask __UpperCAmelCase : Dict = use_token_type_ids __UpperCAmelCase : int = use_labels __UpperCAmelCase : str = vocab_size __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : Tuple = num_hidden_layers __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : str = intermediate_multiple_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Union[str, Any] = hidden_dropout __UpperCAmelCase : Any = attention_dropout __UpperCAmelCase : Optional[int] = weight_tying __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : Union[str, Any] = type_sequence_label_size __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : int = num_labels __UpperCAmelCase : List[str] = num_choices __UpperCAmelCase : Tuple = scope def A( self): __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Union[str, Any] = None if self.use_input_mask: __UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : Union[str, Any] = self.get_config() return config, input_ids, input_mask, token_labels def A( self): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase : Optional[Any] = True return config, input_ids, input_mask, token_labels def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Dict = GPTNeoXJapaneseModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[str] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Dict = True __UpperCAmelCase : Union[str, Any] = GPTNeoXJapaneseModel(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : int = GPTNeoXJapaneseForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : List[Any] = GPTNeoXJapaneseForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() # first forward pass __UpperCAmelCase : Dict = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : int = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __UpperCAmelCase : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : str = torch.cat([input_mask, next_mask] , dim=-1) __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , output_hidden_states=lowercase__) __UpperCAmelCase : Optional[Any] = output_from_no_past['''hidden_states'''][0] __UpperCAmelCase : int = model( lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ , output_hidden_states=lowercase__ , )['''hidden_states'''][0] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : str = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self): __UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = config_and_inputs __UpperCAmelCase : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Union[str, Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _lowerCAmelCase : List[str] = ( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : Dict = False _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : Optional[Any] = False def A( self): __UpperCAmelCase : Any = GPTNeoXJapaneseModelTester(self) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowercase__ , lowercase__ , lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowercase__ , lowercase__ , lowercase__) def A( self): # This regression test was failing with PyTorch < 1.3 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() __UpperCAmelCase : str = None self.model_tester.create_and_check_model_as_decoder(lowercase__ , lowercase__ , lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowercase__ , lowercase__ , lowercase__) def A( self): __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowercase__) @slow def A( self): __UpperCAmelCase : List[str] = '''abeja/gpt-neox-japanese-2.7b''' __UpperCAmelCase : Tuple = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] __UpperCAmelCase : List[str] = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] __UpperCAmelCase : List[Any] = GPTNeoXJapaneseTokenizer.from_pretrained(lowercase__) __UpperCAmelCase : List[Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(lowercase__) __UpperCAmelCase : Tuple = [] for prompt in prompts: __UpperCAmelCase : Union[str, Any] = tokenizer(lowercase__ , return_tensors='''pt''').input_ids __UpperCAmelCase : Optional[int] = model.generate(lowercase__ , max_length=5_0) __UpperCAmelCase : int = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) predicted_outputs += generated_string self.assertListEqual(lowercase__ , lowercase__)
675
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = """▁""" lowerCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCAmelCase = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } lowerCAmelCase = { """facebook/mbart-large-50-one-to-many-mmt""": 1_024, } # fmt: off lowerCAmelCase = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = VOCAB_FILES_NAMES _lowerCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Optional[Any] = ['''input_ids''', '''attention_mask'''] _lowerCAmelCase : List[int] = [] _lowerCAmelCase : List[int] = [] def __init__( self , lowercase__ , lowercase__=None , lowercase__=None , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__ = None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else mask_token __UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs __UpperCAmelCase : Optional[Any] = kwargs.get('''additional_special_tokens''' , []) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowercase__ , tgt_lang=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , ) __UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(lowercase__)) __UpperCAmelCase : Any = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Any = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Optional[Any] = len(self.sp_model) __UpperCAmelCase : Union[str, Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowercase__) } __UpperCAmelCase : Any = {v: k for k, v in self.lang_code_to_id.items()} __UpperCAmelCase : int = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) __UpperCAmelCase : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __UpperCAmelCase : Optional[Any] = src_lang if src_lang is not None else '''en_XX''' __UpperCAmelCase : Dict = self.lang_code_to_id[self._src_lang] __UpperCAmelCase : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def A( self): return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def A( self): return self._src_lang @src_lang.setter def A( self , lowercase__): __UpperCAmelCase : int = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self): __UpperCAmelCase : List[Any] = self.__dict__.copy() __UpperCAmelCase : Optional[Any] = None return state def __setstate__( self , lowercase__): __UpperCAmelCase : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): __UpperCAmelCase : int = {} __UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def A( self): __UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(lowercase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A( self , lowercase__): return self.sp_model.encode(lowercase__ , out_type=lowercase__) def A( self , lowercase__): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Optional[Any] = self.sp_model.PieceToId(lowercase__) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A( self , lowercase__): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A( self , lowercase__): __UpperCAmelCase : List[str] = [] __UpperCAmelCase : List[str] = '''''' __UpperCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase__) + token __UpperCAmelCase : Tuple = True __UpperCAmelCase : List[str] = [] else: current_sub_tokens.append(lowercase__) __UpperCAmelCase : str = False out_string += self.sp_model.decode(lowercase__) return out_string.strip() def A( self , lowercase__ , lowercase__ = None): if not os.path.isdir(lowercase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __UpperCAmelCase : str = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowercase__) elif not os.path.isfile(self.vocab_file): with open(lowercase__ , '''wb''') as fi: __UpperCAmelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowercase__) return (out_vocab_file,) def A( self , lowercase__ , lowercase__ = None , lowercase__ = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__) __UpperCAmelCase : int = [1] * len(self.prefix_tokens) __UpperCAmelCase : List[str] = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase__)) + suffix_ones return prefix_ones + ([0] * len(lowercase__)) + ([0] * len(lowercase__)) + suffix_ones def A( self , lowercase__ , lowercase__ = None): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''') __UpperCAmelCase : str = src_lang __UpperCAmelCase : List[Any] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__) __UpperCAmelCase : Any = self.convert_tokens_to_ids(lowercase__) __UpperCAmelCase : Optional[Any] = tgt_lang_id return inputs def A( self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): __UpperCAmelCase : Optional[Any] = src_lang __UpperCAmelCase : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__) def A( self): return self.set_src_lang_special_tokens(self.src_lang) def A( self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def A( self , lowercase__): __UpperCAmelCase : List[Any] = self.lang_code_to_id[src_lang] __UpperCAmelCase : Optional[Any] = [self.cur_lang_code_id] __UpperCAmelCase : List[str] = [self.eos_token_id] def A( self , lowercase__): __UpperCAmelCase : Tuple = self.lang_code_to_id[tgt_lang] __UpperCAmelCase : int = [self.cur_lang_code_id] __UpperCAmelCase : Dict = [self.eos_token_id]
675
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
675
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = len(lowercase_ ) // 2 # choose the middle 3 elements __UpperCAmelCase : Optional[Any] = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
675
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
1
import argparse import collections import json import os import re import string import sys import numpy as np lowerCAmelCase = re.compile(R"""\b(a|an|the)\b""", re.UNICODE) lowerCAmelCase = None def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=lowercase_ , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=lowercase_ , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __UpperCAmelCase : Optional[Any] = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' def remove_articles(lowercase_ ): return ARTICLES_REGEX.sub(''' ''' , lowercase_ ) def white_space_fix(lowercase_ ): return " ".join(text.split() ) def remove_punc(lowercase_ ): __UpperCAmelCase : str = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowercase_ ) ) ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' if not s: return [] return normalize_answer(lowercase_ ).split() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' return int(normalize_answer(lowercase_ ) == normalize_answer(lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = get_tokens(lowercase_ ) __UpperCAmelCase : Optional[Any] = get_tokens(lowercase_ ) __UpperCAmelCase : Union[str, Any] = collections.Counter(lowercase_ ) & collections.Counter(lowercase_ ) __UpperCAmelCase : List[Any] = sum(common.values() ) if len(lowercase_ ) == 0 or len(lowercase_ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 __UpperCAmelCase : str = 1.0 * num_same / len(lowercase_ ) __UpperCAmelCase : Optional[int] = 1.0 * num_same / len(lowercase_ ) __UpperCAmelCase : List[str] = (2 * precision * recall) / (precision + recall) return fa def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = {} __UpperCAmelCase : List[str] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __UpperCAmelCase : List[Any] = qa['''id'''] __UpperCAmelCase : Optional[int] = [t for t in qa['''answers''']['''text'''] if normalize_answer(lowercase_ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string __UpperCAmelCase : Union[str, Any] = [''''''] if qid not in preds: print(f"Missing prediction for {qid}" ) continue __UpperCAmelCase : str = preds[qid] # Take max over all gold answers __UpperCAmelCase : Tuple = max(compute_exact(lowercase_ , lowercase_ ) for a in gold_answers ) __UpperCAmelCase : str = max(compute_fa(lowercase_ , lowercase_ ) for a in gold_answers ) return exact_scores, fa_scores def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = {} for qid, s in scores.items(): __UpperCAmelCase : Tuple = na_probs[qid] > na_prob_thresh if pred_na: __UpperCAmelCase : Union[str, Any] = float(not qid_to_has_ans[qid] ) else: __UpperCAmelCase : List[str] = s return new_scores def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None ) -> int: '''simple docstring''' if not qid_list: __UpperCAmelCase : int = len(lowercase_ ) return collections.OrderedDict( [ ('''exact''', 1_0_0.0 * sum(exact_scores.values() ) / total), ('''f1''', 1_0_0.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: __UpperCAmelCase : int = len(lowercase_ ) return collections.OrderedDict( [ ('''exact''', 1_0_0.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 1_0_0.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' for k in new_eval: __UpperCAmelCase : Optional[int] = new_eval[k] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' plt.step(lowercase_ , lowercase_ , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(lowercase_ , lowercase_ , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.0_5] ) plt.ylim([0.0, 1.0_5] ) plt.title(lowercase_ ) plt.savefig(lowercase_ ) plt.clf() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Dict = sorted(lowercase_ , key=lambda lowercase_ : na_probs[k] ) __UpperCAmelCase : Union[str, Any] = 0.0 __UpperCAmelCase : int = 1.0 __UpperCAmelCase : str = 0.0 __UpperCAmelCase : str = [1.0] __UpperCAmelCase : str = [0.0] __UpperCAmelCase : Union[str, Any] = 0.0 for i, qid in enumerate(lowercase_ ): if qid_to_has_ans[qid]: true_pos += scores[qid] __UpperCAmelCase : Dict = true_pos / float(i + 1 ) __UpperCAmelCase : List[Any] = true_pos / float(lowercase_ ) if i == len(lowercase_ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(lowercase_ ) recalls.append(lowercase_ ) if out_image: plot_pr_curve(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return {"ap": 1_0_0.0 * avg_prec} def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' if out_image_dir and not os.path.exists(lowercase_ ): os.makedirs(lowercase_ ) __UpperCAmelCase : str = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return __UpperCAmelCase : Tuple = make_precision_recall_eval( lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) __UpperCAmelCase : Dict = make_precision_recall_eval( lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) __UpperCAmelCase : List[str] = {k: float(lowercase_ ) for k, v in qid_to_has_ans.items()} __UpperCAmelCase : List[str] = make_precision_recall_eval( lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(lowercase_ , lowercase_ , '''pr_exact''' ) merge_eval(lowercase_ , lowercase_ , '''pr_f1''' ) merge_eval(lowercase_ , lowercase_ , '''pr_oracle''' ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' if not qid_list: return __UpperCAmelCase : Tuple = [na_probs[k] for k in qid_list] __UpperCAmelCase : str = np.ones_like(lowercase_ ) / float(len(lowercase_ ) ) plt.hist(lowercase_ , weights=lowercase_ , bins=20 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(f"Histogram of no-answer probability: {name}" ) plt.savefig(os.path.join(lowercase_ , f"na_prob_hist_{name}.png" ) ) plt.clf() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) __UpperCAmelCase : Any = num_no_ans __UpperCAmelCase : Optional[Any] = cur_score __UpperCAmelCase : List[str] = 0.0 __UpperCAmelCase : Tuple = sorted(lowercase_ , key=lambda lowercase_ : na_probs[k] ) for i, qid in enumerate(lowercase_ ): if qid not in scores: continue if qid_to_has_ans[qid]: __UpperCAmelCase : Tuple = scores[qid] else: if preds[qid]: __UpperCAmelCase : Optional[Any] = -1 else: __UpperCAmelCase : str = 0 cur_score += diff if cur_score > best_score: __UpperCAmelCase : Optional[int] = cur_score __UpperCAmelCase : int = na_probs[qid] return 1_0_0.0 * best_score / len(lowercase_ ), best_thresh def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = find_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = find_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) __UpperCAmelCase : int = best_exact __UpperCAmelCase : List[Any] = exact_thresh __UpperCAmelCase : Union[str, Any] = best_fa __UpperCAmelCase : Optional[Any] = fa_thresh def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' with open(OPTS.data_file ) as f: __UpperCAmelCase : List[Any] = json.load(lowercase_ ) __UpperCAmelCase : List[Any] = dataset_json['''data'''] with open(OPTS.pred_file ) as f: __UpperCAmelCase : str = json.load(lowercase_ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: __UpperCAmelCase : Optional[int] = json.load(lowercase_ ) else: __UpperCAmelCase : List[str] = {k: 0.0 for k in preds} __UpperCAmelCase : int = make_qid_to_has_ans(lowercase_ ) # maps qid to True/False __UpperCAmelCase : int = [k for k, v in qid_to_has_ans.items() if v] __UpperCAmelCase : List[Any] = [k for k, v in qid_to_has_ans.items() if not v] __UpperCAmelCase , __UpperCAmelCase : Dict = get_raw_scores(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = apply_no_ans_threshold(lowercase_ , lowercase_ , lowercase_ , OPTS.na_prob_thresh ) __UpperCAmelCase : Optional[Any] = apply_no_ans_threshold(lowercase_ , lowercase_ , lowercase_ , OPTS.na_prob_thresh ) __UpperCAmelCase : Any = make_eval_dict(lowercase_ , lowercase_ ) if has_ans_qids: __UpperCAmelCase : Tuple = make_eval_dict(lowercase_ , lowercase_ , qid_list=lowercase_ ) merge_eval(lowercase_ , lowercase_ , '''HasAns''' ) if no_ans_qids: __UpperCAmelCase : List[str] = make_eval_dict(lowercase_ , lowercase_ , qid_list=lowercase_ ) merge_eval(lowercase_ , lowercase_ , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , OPTS.out_image_dir ) histogram_na_prob(lowercase_ , lowercase_ , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(lowercase_ , lowercase_ , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(lowercase_ , lowercase_ ) else: print(json.dumps(lowercase_ , indent=2 ) ) if __name__ == "__main__": lowerCAmelCase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
675
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } lowerCAmelCase = { """junnyu/roformer_chinese_small""": 1_536, """junnyu/roformer_chinese_base""": 1_536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } lowerCAmelCase = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES _lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : Dict = PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase : Tuple = RoFormerTokenizer def __init__( self , lowercase__=None , lowercase__=None , lowercase__=True , lowercase__="[UNK]" , lowercase__="[SEP]" , lowercase__="[PAD]" , lowercase__="[CLS]" , lowercase__="[MASK]" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( lowercase__ , tokenizer_file=lowercase__ , do_lower_case=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , pad_token=lowercase__ , cls_token=lowercase__ , mask_token=lowercase__ , tokenize_chinese_chars=lowercase__ , strip_accents=lowercase__ , **lowercase__ , ) __UpperCAmelCase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( pre_tok_state.get('''lowercase''' , lowercase__) != do_lower_case or pre_tok_state.get('''strip_accents''' , lowercase__) != strip_accents ): __UpperCAmelCase : Optional[int] = getattr(lowercase__ , pre_tok_state.pop('''type''')) __UpperCAmelCase : Optional[int] = do_lower_case __UpperCAmelCase : Dict = strip_accents __UpperCAmelCase : str = pre_tok_class(**lowercase__) __UpperCAmelCase : Dict = do_lower_case def __getstate__( self): __UpperCAmelCase : str = self.__dict__.copy() __UpperCAmelCase : Any = BertPreTokenizer() return state def __setstate__( self , lowercase__): __UpperCAmelCase : Optional[Any] = d __UpperCAmelCase : Optional[int] = self.__dict__['''_tokenizer'''].get_vocab() __UpperCAmelCase : Optional[Any] = PreTokenizer.custom(JiebaPreTokenizer(lowercase__)) def A( self , lowercase__ , lowercase__=None): __UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : List[str] = self._tokenizer.model.save(lowercase__ , name=lowercase__) return tuple(lowercase__) def A( self , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=False , **lowercase__ , ): __UpperCAmelCase : Optional[int] = BertPreTokenizer() return super().save_pretrained(lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__)
675
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
1
from ...processing_utils import ProcessorMixin class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Optional[int] = ['''image_processor''', '''feature_extractor'''] _lowerCAmelCase : Optional[Any] = '''TvltImageProcessor''' _lowerCAmelCase : str = '''TvltFeatureExtractor''' def __init__( self , lowercase__ , lowercase__): super().__init__(image_processor=lowercase__ , feature_extractor=lowercase__) __UpperCAmelCase : Any = image_processor __UpperCAmelCase : str = feature_extractor def __call__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , *lowercase__ , **lowercase__ , ): if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''') __UpperCAmelCase : List[str] = None if images is not None: __UpperCAmelCase : List[str] = self.image_processor(lowercase__ , mask_pixel=lowercase__ , *lowercase__ , **lowercase__) if images_mixed is not None: __UpperCAmelCase : Union[str, Any] = self.image_processor(lowercase__ , is_mixed=lowercase__ , *lowercase__ , **lowercase__) if audio is not None: __UpperCAmelCase : List[Any] = self.feature_extractor( lowercase__ , *lowercase__ , sampling_rate=lowercase__ , mask_audio=lowercase__ , **lowercase__) __UpperCAmelCase : List[str] = {} if audio is not None: output_dict.update(lowercase__) if images is not None: output_dict.update(lowercase__) if images_mixed_dict is not None: output_dict.update(lowercase__) return output_dict @property def A( self): __UpperCAmelCase : Tuple = self.image_processor.model_input_names __UpperCAmelCase : Any = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
675
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
1
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''bert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : List[Any] = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
1
import os import jsonlines import numpy as np from tqdm import tqdm lowerCAmelCase = 2_048 lowerCAmelCase = 4_096 lowerCAmelCase = 42 lowerCAmelCase = os.environ.pop("""PROCESS_TRAIN""", """false""") lowerCAmelCase = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4} def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: '''simple docstring''' def choose_first(lowercase_ , lowercase_=False ): assert isinstance(lowercase_ , lowercase_ ) if len(lowercase_ ) == 1: __UpperCAmelCase : Any = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __UpperCAmelCase : str = {k: [a[k]] for k in a} if len(a['''start_token'''] ) > 0: break return a __UpperCAmelCase : Optional[Any] = {'''id''': example['''id''']} __UpperCAmelCase : int = example['''annotations'''] __UpperCAmelCase : Optional[Any] = annotation['''yes_no_answer'''] if 0 in yes_no_answer or 1 in yes_no_answer: __UpperCAmelCase : Optional[int] = ['''yes'''] if 1 in yes_no_answer else ['''no'''] __UpperCAmelCase : int = [] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Optional[int] = ['''<cls>'''] else: __UpperCAmelCase : Optional[int] = ['''short'''] __UpperCAmelCase : int = choose_first(annotation['''short_answers'''] ) if len(out['''start_token'''] ) == 0: # answer will be long if short is not available __UpperCAmelCase : Union[str, Any] = ['''long'''] __UpperCAmelCase : List[str] = choose_first(annotation['''long_answer'''] , is_long_answer=lowercase_ ) __UpperCAmelCase : Optional[int] = [] answer.update(lowercase_ ) # disregard some samples if len(answer['''start_token'''] ) > 1 or answer["start_token"] == answer["end_token"]: __UpperCAmelCase : Tuple = True else: __UpperCAmelCase : Any = False __UpperCAmelCase : Tuple = ['''start_token''', '''end_token''', '''start_byte''', '''end_byte''', '''text'''] if not all(isinstance(answer[k] , lowercase_ ) for k in cols ): raise ValueError('''Issue in ID''' , example['''id'''] ) return answer def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[Any] = _get_single_answer(lowercase_ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __UpperCAmelCase : List[str] = example['''document''']['''tokens'''] __UpperCAmelCase : Tuple = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) return { "context": " ".join(lowercase_ ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __UpperCAmelCase : Union[str, Any] = ['''start_token''', '''end_token'''] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __UpperCAmelCase : Dict = example['''document''']['''tokens'''] __UpperCAmelCase : str = answer['''start_token'''] __UpperCAmelCase : Dict = answer['''end_token'''] __UpperCAmelCase : Union[str, Any] = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __UpperCAmelCase : List[str] = ''' '''.join(context[start_token:end_token] ) # checking above code if assertion: __UpperCAmelCase : Dict = doc['''is_html'''][answer['''start_token'''] : answer['''end_token''']] __UpperCAmelCase : Optional[int] = doc['''token'''][answer['''start_token'''] : answer['''end_token''']] __UpperCAmelCase : Tuple = ''' '''.join([old[i] for i in range(len(lowercase_ ) ) if not is_html[i]] ) if new != old: print('''ID:''' , example['''id'''] ) print('''New:''' , lowercase_ , end='''\n''' ) print('''Old:''' , lowercase_ , end='''\n\n''' ) return { "context": " ".join(lowercase_ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=2048 , lowercase_=4096 , lowercase_=True ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = get_context_and_ans(lowercase_ , assertion=lowercase_ ) __UpperCAmelCase : int = out['''answer'''] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __UpperCAmelCase : Dict = tokenizer(example['''question''']['''text'''] , out['''context'''] ).input_ids __UpperCAmelCase : Any = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __UpperCAmelCase : Any = [] __UpperCAmelCase : str = [] __UpperCAmelCase : str = input_ids[:q_len] __UpperCAmelCase : Any = range(lowercase_ , len(lowercase_ ) , max_length - doc_stride ) for i in doc_start_indices: __UpperCAmelCase : Optional[int] = i + max_length - q_len __UpperCAmelCase : int = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['''category'''][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowercase_ ), "end_token": [-100] * len(lowercase_ ), "category": category, }, } __UpperCAmelCase : List[Any] = out['''context'''].split() __UpperCAmelCase : Optional[Any] = splitted_context[answer['''end_token''']] __UpperCAmelCase : Dict = len( tokenizer( ''' '''.join(splitted_context[: answer['''start_token''']] ) , add_special_tokens=lowercase_ , ).input_ids ) __UpperCAmelCase : Optional[Any] = len( tokenizer(''' '''.join(splitted_context[: answer['''end_token''']] ) , add_special_tokens=lowercase_ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __UpperCAmelCase : Dict = len(tokenizer(lowercase_ , add_special_tokens=lowercase_ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __UpperCAmelCase : List[str] = input_ids[answer['''start_token'''] : answer['''end_token'''] + 1] # right & left are inclusive __UpperCAmelCase : str = answer['''start_token'''] __UpperCAmelCase : Optional[int] = answer['''end_token'''] if assertion: __UpperCAmelCase : Optional[int] = tokenizer.decode(lowercase_ ) if answer["span"] != new: print('''ISSUE IN TOKENIZATION''' ) print('''OLD:''' , answer['''span'''] ) print('''NEW:''' , lowercase_ , end='''\n\n''' ) if len(lowercase_ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __UpperCAmelCase : Optional[Any] = input_ids[:q_len] __UpperCAmelCase : Tuple = range(lowercase_ , len(lowercase_ ) , max_length - doc_stride ) __UpperCAmelCase : str = [] __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : Any = [] # null, yes, no, long, short for i in doc_start_indices: __UpperCAmelCase : Union[str, Any] = i + max_length - q_len __UpperCAmelCase : Optional[int] = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __UpperCAmelCase : int = start_token - i + q_len __UpperCAmelCase : Any = end_token - i + q_len answers_category.append(answer['''category'''][0] ) # ["short"] -> "short" else: __UpperCAmelCase : Any = -100 __UpperCAmelCase : List[Any] = -100 answers_category.append('''null''' ) __UpperCAmelCase : Dict = inputs[-1][start_token : end_token + 1] answers_start_token.append(lowercase_ ) answers_end_token.append(lowercase_ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('''ISSUE in strided for ID:''' , example['''id'''] ) print('''New:''' , tokenizer.decode(lowercase_ ) ) print('''Old:''' , tokenizer.decode(lowercase_ ) , end='''\n\n''' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=2048 , lowercase_=4096 , lowercase_=False ) -> Any: '''simple docstring''' __UpperCAmelCase : List[str] = get_strided_contexts_and_ans( lowercase_ , lowercase_ , doc_stride=lowercase_ , max_length=lowercase_ , assertion=lowercase_ , ) return example def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' with jsonlines.open(lowercase_ , '''a''' ) as writer: for example in tqdm(lowercase_ , total=len(lowercase_ ) , desc='''Saving samples ... ''' ): __UpperCAmelCase : Union[str, Any] = example['''labels'''] for ids, start, end, cat in zip( example['''input_ids'''] , labels['''start_token'''] , labels['''end_token'''] , labels['''category'''] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { '''input_ids''': ids, '''start_token''': start, '''end_token''': end, '''category''': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer lowerCAmelCase = load_dataset("""natural_questions""") lowerCAmelCase = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") lowerCAmelCase = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""] lowerCAmelCase = { """tokenizer""": tokenizer, """doc_stride""": DOC_STRIDE, """max_length""": MAX_LENGTH, """assertion""": False, } lowerCAmelCase = data.map(prepare_inputs, fn_kwargs=fn_kwargs) lowerCAmelCase = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) lowerCAmelCase = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl""" save_to_disk(data, file_name=cache_file_name)
675
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
1
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' return int(input_a == input_a == 0 ) def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f"| 0 | 0 | {nor_gate(0 , 0 )} |" ) print(f"| 0 | 1 | {nor_gate(0 , 1 )} |" ) print(f"| 1 | 0 | {nor_gate(1 , 0 )} |" ) print(f"| 1 | 1 | {nor_gate(1 , 1 )} |" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowerCAmelCase = CLIPImageProcessor() lowerCAmelCase = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") lowerCAmelCase = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
675
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
675
1
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
675
1
import heapq import sys import numpy as np lowerCAmelCase = tuple[int, int] class lowerCamelCase : def __init__( self): __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Union[str, Any] = set() def A( self): if not self.empty(): return self.elements[0][0] else: return float('''inf''') def A( self): return len(self.elements) == 0 def A( self , lowercase__ , lowercase__): if item not in self.set: heapq.heappush(self.elements , (priority, item)) self.set.add(lowercase__) else: # update # print("update", item) __UpperCAmelCase : List[str] = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) : Optional[int] = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) ((__UpperCAmelCase) , (__UpperCAmelCase)) : Optional[Any] = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx)) def A( self , lowercase__): if item in self.set: self.set.remove(lowercase__) __UpperCAmelCase : List[Any] = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) : Dict = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) ((__UpperCAmelCase) , (__UpperCAmelCase)) : Optional[int] = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy)) def A( self): return self.elements[0][1] def A( self): ((__UpperCAmelCase) , (__UpperCAmelCase)) : List[Any] = heapq.heappop(self.elements) self.set.remove(lowercase__) return (priority, item) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = np.array(lowercase_ ) __UpperCAmelCase : Optional[Any] = np.array(lowercase_ ) return np.linalg.norm(a - b ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' return consistent_heuristic(lowercase_ , lowercase_ ) // t def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = g_function[start] + Wa * heuristics[i](lowercase_ , lowercase_ ) return ans def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = np.chararray((n, n) ) for i in range(lowercase_ ): for j in range(lowercase_ ): __UpperCAmelCase : str = '''*''' for i in range(lowercase_ ): for j in range(lowercase_ ): if (j, (n - 1) - i) in blocks: __UpperCAmelCase : List[str] = '''#''' __UpperCAmelCase : Union[str, Any] = '''-''' __UpperCAmelCase : List[str] = back_pointer[goal] while x != start: ((__UpperCAmelCase) , (__UpperCAmelCase)) : int = x # print(x) __UpperCAmelCase : List[str] = '''-''' __UpperCAmelCase : str = back_pointer[x] __UpperCAmelCase : Dict = '''-''' for i in range(lowercase_ ): for j in range(lowercase_ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCAmelCase : Any = back_pointer[goal] while x != start: print(lowercase_ , end=''' ''' ) __UpperCAmelCase : Optional[Any] = back_pointer[x] print(lowercase_ ) sys.exit() def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Union[str, Any]: '''simple docstring''' for itera in range(lowercase_ ): open_list[itera].remove_element(lowercase_ ) # print("s", s) # print("j", j) ((__UpperCAmelCase) , (__UpperCAmelCase)) : Optional[int] = s __UpperCAmelCase : Any = (x - 1, y) __UpperCAmelCase : Any = (x + 1, y) __UpperCAmelCase : List[Any] = (x, y + 1) __UpperCAmelCase : Any = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowercase_ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowercase_ ) __UpperCAmelCase : Optional[int] = -1 __UpperCAmelCase : Dict = float('''inf''' ) if valid(lowercase_ ) and g_function[neighbours] > g_function[s] + 1: __UpperCAmelCase : Tuple = g_function[s] + 1 __UpperCAmelCase : Tuple = s if neighbours not in close_list_anchor: open_list[0].put(lowercase_ , key(lowercase_ , 0 , lowercase_ , lowercase_ ) ) if neighbours not in close_list_inad: for var in range(1 , lowercase_ ): if key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) <= Wa * key( lowercase_ , 0 , lowercase_ , lowercase_ ): open_list[j].put( lowercase_ , key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list lowerCAmelCase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} lowerCAmelCase = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] lowerCAmelCase = make_common_ground() lowerCAmelCase = blocks_blk # hyper parameters lowerCAmelCase = 1 lowerCAmelCase = 1 lowerCAmelCase = 20 lowerCAmelCase = 3 # one consistent and two other inconsistent # start and end destination lowerCAmelCase = (0, 0) lowerCAmelCase = (n - 1, n - 1) lowerCAmelCase = 1 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = {start: 0, goal: float('''inf''' )} __UpperCAmelCase : Any = {start: -1, goal: -1} __UpperCAmelCase : List[str] = [] __UpperCAmelCase : List[str] = set() for i in range(lowercase_ ): open_list.append(PriorityQueue() ) open_list[i].put(lowercase_ , key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) ) __UpperCAmelCase : list[int] = [] __UpperCAmelCase : list[int] = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , lowercase_ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(lowercase_ , lowercase_ , lowercase_ ) else: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = open_list[i].top_show() visited.add(lowercase_ ) expand_state( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) close_list_inad.append(lowercase_ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(lowercase_ , lowercase_ , lowercase_ ) else: __UpperCAmelCase : Tuple = open_list[0].top_show() visited.add(lowercase_ ) expand_state( lowercase_ , 0 , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) close_list_anchor.append(lowercase_ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowercase_ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
675
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
1
import argparse import os import re lowerCAmelCase = """src/transformers/models/auto""" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict lowerCAmelCase = re.compile(R"""[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict""") # re pattern that matches identifiers in mappings lowerCAmelCase = re.compile(R"""\s*\(\s*\"(\S[^\"]+)\"""") def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = False ) -> Optional[Any]: '''simple docstring''' with open(lowercase_ , '''r''' , encoding='''utf-8''' ) as f: __UpperCAmelCase : Optional[int] = f.read() __UpperCAmelCase : int = content.split('''\n''' ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Union[str, Any] = 0 while line_idx < len(lowercase_ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __UpperCAmelCase : Optional[int] = len(re.search(r'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 __UpperCAmelCase : Optional[int] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __UpperCAmelCase : Optional[Any] = line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __UpperCAmelCase : Optional[Any] = sorted(lowercase_ , key=lambda lowercase_ : _re_identifier.search(lowercase_ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowercase_ ) ) elif "\n".join(lowercase_ ) != content: return True def __SCREAMING_SNAKE_CASE ( lowercase_ = False ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = [os.path.join(lowercase_ , lowercase_ ) for f in os.listdir(lowercase_ ) if f.endswith('''.py''' )] __UpperCAmelCase : int = [sort_auto_mapping(lowercase_ , overwrite=lowercase_ ) for fname in fnames] if not overwrite and any(lowercase_ ): __UpperCAmelCase : Any = [f for f, d in zip(lowercase_ , lowercase_ ) if d] raise ValueError( f"The following files have auto mappings that need sorting: {', '.join(lowercase_ )}. Run `make style` to fix" ''' this.''' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCAmelCase = parser.parse_args() sort_all_auto_mappings(not args.check_only)
675
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
1
from __future__ import annotations from decimal import Decimal from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[list[float]]: '''simple docstring''' __UpperCAmelCase : Any = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowercase_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix __UpperCAmelCase : List[Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements __UpperCAmelCase : Optional[int] = [[0.0, 0.0], [0.0, 0.0]] __UpperCAmelCase , __UpperCAmelCase : Dict = matrix[1][1], matrix[0][0] __UpperCAmelCase , __UpperCAmelCase : int = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowercase_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowercase_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __UpperCAmelCase : Any = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix __UpperCAmelCase : str = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] __UpperCAmelCase : List[str] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) __UpperCAmelCase : Any = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) __UpperCAmelCase : Dict = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) __UpperCAmelCase : Optional[int] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) __UpperCAmelCase : Optional[Any] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) __UpperCAmelCase : Optional[int] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) __UpperCAmelCase : str = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) __UpperCAmelCase : Optional[int] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) __UpperCAmelCase : int = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) __UpperCAmelCase : Dict = array(lowercase_ ) for i in range(3 ): for j in range(3 ): __UpperCAmelCase : List[str] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __UpperCAmelCase : str = array(lowercase_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowercase_ ) # Calculate the inverse of the matrix return [[float(d(lowercase_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
675
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
1
lowerCAmelCase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCAmelCase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCAmelCase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
675
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Any = '''gpt_neo''' _lowerCAmelCase : Tuple = ['''past_key_values'''] _lowerCAmelCase : str = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , lowercase__=5_0_2_5_7 , lowercase__=2_0_4_8 , lowercase__=2_0_4_8 , lowercase__=2_4 , lowercase__=[[["global", "local"], 1_2]] , lowercase__=1_6 , lowercase__=None , lowercase__=2_5_6 , lowercase__="gelu_new" , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=1e-5 , lowercase__=0.0_2 , lowercase__=True , lowercase__=5_0_2_5_6 , lowercase__=5_0_2_5_6 , **lowercase__ , ): __UpperCAmelCase : Dict = vocab_size __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Dict = num_layers __UpperCAmelCase : Union[str, Any] = num_heads __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Optional[Any] = window_size __UpperCAmelCase : List[str] = activation_function __UpperCAmelCase : Union[str, Any] = resid_dropout __UpperCAmelCase : Any = embed_dropout __UpperCAmelCase : Optional[int] = attention_dropout __UpperCAmelCase : List[str] = classifier_dropout __UpperCAmelCase : Optional[int] = layer_norm_epsilon __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : Tuple = bos_token_id __UpperCAmelCase : Optional[Any] = eos_token_id __UpperCAmelCase : List[Any] = attention_types __UpperCAmelCase : str = self.expand_attention_types_params(lowercase__) if len(self.attention_layers) != self.num_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.attention_layers)` == `config.num_layers` ''' F"but is `len(config.attention_layers) = {len(self.attention_layers)}`, " F"`config.num_layers = {self.num_layers}`. " '''`config.attention_layers` is prepared using `config.attention_types`. ''' '''Please verify the value of `config.attention_types` argument.''') super().__init__(bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) @staticmethod def A( lowercase__): __UpperCAmelCase : int = [] for item in attention_types: for _ in range(item[1]): attentions.extend(item[0]) return attentions def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' import torch __UpperCAmelCase : Tuple = input.size() __UpperCAmelCase : Any = len(lowercase_ ) __UpperCAmelCase : str = shape[dimension] __UpperCAmelCase : List[str] = torch.arange(0 , lowercase_ , lowercase_ ) __UpperCAmelCase : Tuple = torch.div(sizedim - size , lowercase_ , rounding_mode='''floor''' ) + 1 __UpperCAmelCase : List[Any] = torch.arange(lowercase_ ) + low_indices[:min_length][:, None] __UpperCAmelCase : Tuple = [slice(lowercase_ )] * rank __UpperCAmelCase : str = indices __UpperCAmelCase : Any = input[s] __UpperCAmelCase : int = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' import torch __UpperCAmelCase : Optional[int] = torch.arange(1 , lowercase_ ) __UpperCAmelCase : Dict = torch.remainder(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = remainders == 0 __UpperCAmelCase : str = candidates[divisor_indices] __UpperCAmelCase : List[Any] = torch.max(lowercase_ ) return largest_divisor, torch.div(lowercase_ , lowercase_ , rounding_mode='''floor''' ) class lowerCamelCase ( _UpperCamelCase ): @property def A( self): __UpperCAmelCase : Dict = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}}) if self.use_past: self.fill_with_past_key_values_(lowercase__ , direction='''inputs''') __UpperCAmelCase : Dict = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def A( self): return self._config.num_heads def A( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ): __UpperCAmelCase : Dict = super(lowercase__ , self).generate_dummy_inputs( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__) # We need to order the input in the way they appears in the forward() __UpperCAmelCase : List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''') else: import torch __UpperCAmelCase , __UpperCAmelCase : Tuple = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __UpperCAmelCase : Optional[Any] = seqlen + 2 __UpperCAmelCase : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCAmelCase : Dict = [ (torch.zeros(lowercase__), torch.zeros(lowercase__)) for _ in range(self.num_layers) ] __UpperCAmelCase : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: __UpperCAmelCase : Dict = ordered_inputs['''attention_mask'''].dtype __UpperCAmelCase : int = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(lowercase__ , lowercase__ , dtype=lowercase__)] , dim=1) return ordered_inputs @property def A( self): return 1_3
675
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
1
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''M-CLIP''' def __init__( self , lowercase__=1_0_2_4 , lowercase__=7_6_8 , **lowercase__): __UpperCAmelCase : Optional[int] = transformerDimSize __UpperCAmelCase : Optional[int] = imageDimSize super().__init__(**lowercase__) class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = MCLIPConfig def __init__( self , lowercase__ , *lowercase__ , **lowercase__): super().__init__(lowercase__ , *lowercase__ , **lowercase__) __UpperCAmelCase : int = XLMRobertaModel(lowercase__) __UpperCAmelCase : Optional[Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims) def A( self , lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = self.transformer(input_ids=lowercase__ , attention_mask=lowercase__)[0] __UpperCAmelCase : Any = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None] return self.LinearTransformation(lowercase__), embs
675
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
1
import argparse from collections import defaultdict import yaml lowerCAmelCase = """docs/source/en/_toctree.yml""" def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[str] = defaultdict(lowercase_ ) __UpperCAmelCase : Any = [] __UpperCAmelCase : Tuple = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(lowercase_ ) __UpperCAmelCase : List[Any] = new_doc_list __UpperCAmelCase : Dict = [key for key, value in counts.items() if value > 1] __UpperCAmelCase : Union[str, Any] = [] for duplicate_key in duplicates: __UpperCAmelCase : List[str] = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(lowercase_ ) > 1: raise ValueError( f"{duplicate_key} is present several times in the documentation table of content at " '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) __UpperCAmelCase : int = sorted(lowercase_ , key=lambda lowercase_ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowercase_ ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(lowercase_ ) # Sort return overview_doc def __SCREAMING_SNAKE_CASE ( lowercase_=False ) -> List[Any]: '''simple docstring''' with open(lowercase_ , encoding='''utf-8''' ) as f: __UpperCAmelCase : Optional[int] = yaml.safe_load(f.read() ) # Get to the API doc __UpperCAmelCase : Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCAmelCase : List[Any] = content[api_idx]['''sections'''] # Then to the model doc __UpperCAmelCase : Any = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 __UpperCAmelCase : Union[str, Any] = api_doc[scheduler_idx]['''sections'''] __UpperCAmelCase : Optional[int] = clean_doc_toc(lowercase_ ) __UpperCAmelCase : Optional[int] = False if new_scheduler_doc != scheduler_doc: __UpperCAmelCase : Tuple = True if overwrite: __UpperCAmelCase : Union[str, Any] = new_scheduler_doc if diff: if overwrite: __UpperCAmelCase : Dict = api_doc with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(lowercase_ , allow_unicode=lowercase_ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def __SCREAMING_SNAKE_CASE ( lowercase_=False ) -> List[Any]: '''simple docstring''' with open(lowercase_ , encoding='''utf-8''' ) as f: __UpperCAmelCase : Tuple = yaml.safe_load(f.read() ) # Get to the API doc __UpperCAmelCase : str = 0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCAmelCase : Optional[int] = content[api_idx]['''sections'''] # Then to the model doc __UpperCAmelCase : Any = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 __UpperCAmelCase : Any = False __UpperCAmelCase : Union[str, Any] = api_doc[pipeline_idx]['''sections'''] __UpperCAmelCase : List[Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: __UpperCAmelCase : Dict = pipeline_doc['''section'''] __UpperCAmelCase : Optional[Any] = clean_doc_toc(lowercase_ ) if overwrite: __UpperCAmelCase : int = new_sub_pipeline_doc new_pipeline_docs.append(lowercase_ ) # sort overall pipeline doc __UpperCAmelCase : List[str] = clean_doc_toc(lowercase_ ) if new_pipeline_docs != pipeline_docs: __UpperCAmelCase : Tuple = True if overwrite: __UpperCAmelCase : List[Any] = new_pipeline_docs if diff: if overwrite: __UpperCAmelCase : Union[str, Any] = api_doc with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(lowercase_ , allow_unicode=lowercase_ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCAmelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
675
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[Union[str, Path]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 1 _lowerCAmelCase : Optional[Union[str, bool]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None def A( self): return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
675
1
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> dict[str, str]: '''simple docstring''' __UpperCAmelCase : List[Any] = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __UpperCAmelCase : Optional[Any] = remove_duplicates(key.upper() ) __UpperCAmelCase : Union[str, Any] = len(lowercase_ ) # First fill cipher with key characters __UpperCAmelCase : Optional[Any] = {alphabet[i]: char for i, char in enumerate(lowercase_ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowercase_ ) , 26 ): __UpperCAmelCase : str = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __UpperCAmelCase : str = alphabet[i - offset] __UpperCAmelCase : Tuple = char return cipher_alphabet def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' return "".join(cipher_map.get(lowercase_ , lowercase_ ) for ch in message.upper() ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowercase_ , lowercase_ ) for ch in message.upper() ) def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : List[Any] = input('''Enter message to encode or decode: ''' ).strip() __UpperCAmelCase : int = input('''Enter keyword: ''' ).strip() __UpperCAmelCase : Tuple = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: __UpperCAmelCase : Dict = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) __UpperCAmelCase : List[str] = create_cipher_map(lowercase_ ) print(func(lowercase_ , lowercase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:] __UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : torch.FloatTensor _lowerCAmelCase : torch.FloatTensor _lowerCAmelCase : Optional[torch.FloatTensor] = None class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): _lowerCAmelCase : Tuple = 2 @register_to_config def __init__( self , lowercase__ = 0.0_2 , lowercase__ = 1_0_0 , lowercase__ = 1.0_0_7 , lowercase__ = 8_0 , lowercase__ = 0.0_5 , lowercase__ = 5_0 , ): # standard deviation of the initial noise distribution __UpperCAmelCase : str = sigma_max # setable values __UpperCAmelCase : int = None __UpperCAmelCase : np.IntTensor = None __UpperCAmelCase : torch.FloatTensor = None # sigma(t_i) def A( self , lowercase__ , lowercase__ = None): return sample def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : str = num_inference_steps __UpperCAmelCase : Optional[int] = np.arange(0 , self.num_inference_steps)[::-1].copy() __UpperCAmelCase : List[Any] = torch.from_numpy(lowercase__).to(lowercase__) __UpperCAmelCase : List[Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __UpperCAmelCase : Any = torch.tensor(lowercase__ , dtype=torch.floataa , device=lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ = None): if self.config.s_min <= sigma <= self.config.s_max: __UpperCAmelCase : Optional[Any] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1) else: __UpperCAmelCase : Tuple = 0 # sample eps ~ N(0, S_noise^2 * I) __UpperCAmelCase : Any = self.config.s_noise * randn_tensor(sample.shape , generator=lowercase__).to(sample.device) __UpperCAmelCase : str = sigma + gamma * sigma __UpperCAmelCase : Any = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = True , ): __UpperCAmelCase : Dict = sample_hat + sigma_hat * model_output __UpperCAmelCase : List[str] = (sample_hat - pred_original_sample) / sigma_hat __UpperCAmelCase : Dict = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowercase__ , derivative=lowercase__ , pred_original_sample=lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = True , ): __UpperCAmelCase : Optional[int] = sample_prev + sigma_prev * model_output __UpperCAmelCase : Optional[Any] = (sample_prev - pred_original_sample) / sigma_prev __UpperCAmelCase : Optional[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowercase__ , derivative=lowercase__ , pred_original_sample=lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__): raise NotImplementedError()
675
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
1
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowerCAmelCase = logging.getLogger(__name__) class lowerCamelCase ( _UpperCamelCase ): def A( self , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None): __UpperCAmelCase : Optional[int] = self.layer[current_layer](lowercase__ , lowercase__ , head_mask[current_layer]) __UpperCAmelCase : List[str] = layer_outputs[0] return hidden_states @add_start_docstrings( '''The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.''' , _UpperCamelCase , ) class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__): super().__init__(lowercase__) __UpperCAmelCase : Dict = BertEncoderWithPabee(lowercase__) self.init_weights() __UpperCAmelCase : Dict = 0 __UpperCAmelCase : str = 0 __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[str] = 0 def A( self , lowercase__): __UpperCAmelCase : str = threshold def A( self , lowercase__): __UpperCAmelCase : str = patience def A( self): __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Optional[int] = 0 def A( self): __UpperCAmelCase : List[Any] = self.inference_layers_num / self.inference_instances_num __UpperCAmelCase : Optional[int] = ( F"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" F" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(lowercase__) @add_start_docstrings_to_model_forward(lowercase__) def A( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''') elif input_ids is not None: __UpperCAmelCase : str = input_ids.size() elif inputs_embeds is not None: __UpperCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''') __UpperCAmelCase : Any = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __UpperCAmelCase : Any = torch.ones(lowercase__ , device=lowercase__) if token_type_ids is None: __UpperCAmelCase : List[Any] = torch.zeros(lowercase__ , dtype=torch.long , device=lowercase__) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __UpperCAmelCase : torch.Tensor = self.get_extended_attention_mask(lowercase__ , lowercase__ , lowercase__) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = encoder_hidden_states.size() __UpperCAmelCase : Tuple = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __UpperCAmelCase : str = torch.ones(lowercase__ , device=lowercase__) __UpperCAmelCase : int = self.invert_attention_mask(lowercase__) else: __UpperCAmelCase : List[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __UpperCAmelCase : Any = self.get_head_mask(lowercase__ , self.config.num_hidden_layers) __UpperCAmelCase : Union[str, Any] = self.embeddings( input_ids=lowercase__ , position_ids=lowercase__ , token_type_ids=lowercase__ , inputs_embeds=lowercase__) __UpperCAmelCase : Any = embedding_output if self.training: __UpperCAmelCase : Any = [] for i in range(self.config.num_hidden_layers): __UpperCAmelCase : int = self.encoder.adaptive_forward( lowercase__ , current_layer=lowercase__ , attention_mask=lowercase__ , head_mask=lowercase__) __UpperCAmelCase : Optional[int] = self.pooler(lowercase__) __UpperCAmelCase : List[Any] = output_layers[i](output_dropout(lowercase__)) res.append(lowercase__) elif self.patience == 0: # Use all layers for inference __UpperCAmelCase : Optional[int] = self.encoder( lowercase__ , attention_mask=lowercase__ , head_mask=lowercase__ , encoder_hidden_states=lowercase__ , encoder_attention_mask=lowercase__ , ) __UpperCAmelCase : Optional[Any] = self.pooler(encoder_outputs[0]) __UpperCAmelCase : Optional[Any] = [output_layers[self.config.num_hidden_layers - 1](lowercase__)] else: __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Any = 0 for i in range(self.config.num_hidden_layers): calculated_layer_num += 1 __UpperCAmelCase : Optional[int] = self.encoder.adaptive_forward( lowercase__ , current_layer=lowercase__ , attention_mask=lowercase__ , head_mask=lowercase__) __UpperCAmelCase : Tuple = self.pooler(lowercase__) __UpperCAmelCase : List[Any] = output_layers[i](lowercase__) if regression: __UpperCAmelCase : Optional[int] = logits.detach() if patient_result is not None: __UpperCAmelCase : Tuple = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold: patient_counter += 1 else: __UpperCAmelCase : List[Any] = 0 else: __UpperCAmelCase : str = logits.detach().argmax(dim=1) if patient_result is not None: __UpperCAmelCase : Optional[int] = patient_result.detach().argmax(dim=1) if (patient_result is not None) and torch.all(labels.eq(lowercase__)): patient_counter += 1 else: __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : str = logits if patient_counter == self.patience: break __UpperCAmelCase : Optional[int] = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( '''Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. ''' , _UpperCamelCase , ) class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__): super().__init__(lowercase__) __UpperCAmelCase : Optional[int] = config.num_labels __UpperCAmelCase : Any = BertModelWithPabee(lowercase__) __UpperCAmelCase : List[str] = nn.Dropout(config.hidden_dropout_prob) __UpperCAmelCase : Dict = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels) for _ in range(config.num_hidden_layers)]) self.init_weights() @add_start_docstrings_to_model_forward(lowercase__) def A( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , ): __UpperCAmelCase : str = self.bert( input_ids=lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , position_ids=lowercase__ , head_mask=lowercase__ , inputs_embeds=lowercase__ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __UpperCAmelCase : Dict = (logits[-1],) if labels is not None: __UpperCAmelCase : Tuple = None __UpperCAmelCase : str = 0 for ix, logits_item in enumerate(lowercase__): if self.num_labels == 1: # We are doing regression __UpperCAmelCase : str = MSELoss() __UpperCAmelCase : Optional[Any] = loss_fct(logits_item.view(-1) , labels.view(-1)) else: __UpperCAmelCase : Dict = CrossEntropyLoss() __UpperCAmelCase : Tuple = loss_fct(logits_item.view(-1 , self.num_labels) , labels.view(-1)) if total_loss is None: __UpperCAmelCase : Dict = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __UpperCAmelCase : Dict = (total_loss / total_weights,) + outputs return outputs
675
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
1
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = False ) -> bool: '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( '''Warning: upper bound of deterministic test is exceeded. ''' '''Pass allow_probable=True to allow probabilistic test. ''' '''A return value of True indicates a probable prime.''' ) # array bounds provided by analysis __UpperCAmelCase : Optional[int] = [ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] __UpperCAmelCase : Union[str, Any] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(lowercase_ , 1 ): if n < _p: # then we have our last prime to check __UpperCAmelCase : Optional[Any] = primes[:idx] break __UpperCAmelCase , __UpperCAmelCase : Dict = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: __UpperCAmelCase : Union[str, Any] = False for r in range(lowercase_ ): __UpperCAmelCase : Dict = pow(lowercase_ , d * 2**r , lowercase_ ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): __UpperCAmelCase : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
675
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
1
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class lowerCamelCase : _lowerCAmelCase : str = field( metadata={'''help''': '''The output directory where the model will be written.'''} , ) _lowerCAmelCase : str = field( metadata={ '''help''': ( '''The encoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train an encoder model from scratch.''' ) } , ) _lowerCAmelCase : str = field( metadata={ '''help''': ( '''The decoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train a decoder model from scratch.''' ) } , ) _lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={'''help''': '''Pretrained encoder config name or path if not the same as encoder_model_name'''} ) _lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={'''help''': '''Pretrained decoder config name or path if not the same as decoder_model_name'''} ) def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments,) ) ((__UpperCAmelCase) , ) : Optional[Any] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: __UpperCAmelCase : Tuple = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: __UpperCAmelCase : List[str] = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: __UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed __UpperCAmelCase : str = True __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : str = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=lowercase_ , decoder_config=lowercase_ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens __UpperCAmelCase : Tuple = decoder_config.decoder_start_token_id __UpperCAmelCase : str = decoder_config.pad_token_id if decoder_start_token_id is None: __UpperCAmelCase : Optional[Any] = decoder_config.bos_token_id if pad_token_id is None: __UpperCAmelCase : Any = decoder_config.eos_token_id # This is necessary to make Flax's generate() work __UpperCAmelCase : Any = decoder_config.eos_token_id __UpperCAmelCase : Dict = decoder_start_token_id __UpperCAmelCase : Optional[int] = pad_token_id __UpperCAmelCase : Any = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) __UpperCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
675
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[int]: '''simple docstring''' __UpperCAmelCase : int = 2 __UpperCAmelCase : int = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowercase_ ) if n > 1: factors.append(lowercase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
675
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
1
import math from collections.abc import Iterator from itertools import takewhile def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __SCREAMING_SNAKE_CASE ( ) -> Iterator[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = 2 while True: if is_prime(lowercase_ ): yield num num += 1 def __SCREAMING_SNAKE_CASE ( lowercase_ = 2000000 ) -> int: '''simple docstring''' return sum(takewhile(lambda lowercase_ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'{solution() = }')
675
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : List[str] = tempfile.mkdtemp() # fmt: off __UpperCAmelCase : Tuple = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __UpperCAmelCase : Dict = dict(zip(lowercase__ , range(len(lowercase__)))) __UpperCAmelCase : Dict = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __UpperCAmelCase : Tuple = {'''unk_token''': '''<unk>'''} __UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) __UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(lowercase__) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(lowercase__)) __UpperCAmelCase : List[str] = { '''do_resize''': True, '''size''': 2_0, '''do_center_crop''': True, '''crop_size''': 1_8, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __UpperCAmelCase : Any = os.path.join(self.tmpdirname , lowercase__) with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp: json.dump(lowercase__ , lowercase__) def A( self , **lowercase__): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowercase__) def A( self , **lowercase__): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowercase__) def A( self , **lowercase__): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase__) def A( self): shutil.rmtree(self.tmpdirname) def A( self): __UpperCAmelCase : str = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta)] __UpperCAmelCase : Dict = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1)) for x in image_inputs] return image_inputs def A( self): __UpperCAmelCase : Any = self.get_tokenizer() __UpperCAmelCase : Dict = self.get_rust_tokenizer() __UpperCAmelCase : str = self.get_image_processor() __UpperCAmelCase : Dict = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__) processor_slow.save_pretrained(self.tmpdirname) __UpperCAmelCase : Optional[int] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase__) __UpperCAmelCase : List[str] = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__) processor_fast.save_pretrained(self.tmpdirname) __UpperCAmelCase : Union[str, Any] = OwlViTProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , lowercase__) self.assertIsInstance(processor_fast.tokenizer , lowercase__) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , lowercase__) self.assertIsInstance(processor_fast.image_processor , lowercase__) def A( self): __UpperCAmelCase : Any = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __UpperCAmelCase : Optional[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') __UpperCAmelCase : Tuple = self.get_image_processor(do_normalize=lowercase__) __UpperCAmelCase : Optional[int] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowercase__) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowercase__) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowercase__) def A( self): __UpperCAmelCase : int = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : Dict = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__) __UpperCAmelCase : Tuple = self.prepare_image_inputs() __UpperCAmelCase : int = image_processor(lowercase__ , return_tensors='''np''') __UpperCAmelCase : Tuple = processor(images=lowercase__ , return_tensors='''np''') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def A( self): __UpperCAmelCase : Union[str, Any] = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : Any = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__) __UpperCAmelCase : List[str] = '''lower newer''' __UpperCAmelCase : Dict = processor(text=lowercase__ , return_tensors='''np''') __UpperCAmelCase : Optional[int] = tokenizer(lowercase__ , return_tensors='''np''') for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist()) def A( self): __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Dict = self.get_tokenizer() __UpperCAmelCase : List[Any] = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__) __UpperCAmelCase : Union[str, Any] = '''lower newer''' __UpperCAmelCase : Union[str, Any] = self.prepare_image_inputs() __UpperCAmelCase : Optional[Any] = processor(text=lowercase__ , images=lowercase__) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''pixel_values''']) # test if it raises when no input is passed with pytest.raises(lowercase__): processor() def A( self): __UpperCAmelCase : Tuple = '''google/owlvit-base-patch32''' __UpperCAmelCase : Tuple = OwlViTProcessor.from_pretrained(lowercase__) __UpperCAmelCase : Dict = ['''cat''', '''nasa badge'''] __UpperCAmelCase : List[Any] = processor(text=lowercase__) __UpperCAmelCase : Any = 1_6 self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''']) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length)) # test if it raises when no input is passed with pytest.raises(lowercase__): processor() def A( self): __UpperCAmelCase : List[str] = '''google/owlvit-base-patch32''' __UpperCAmelCase : Optional[Any] = OwlViTProcessor.from_pretrained(lowercase__) __UpperCAmelCase : Optional[int] = [['''cat''', '''nasa badge'''], ['''person''']] __UpperCAmelCase : Any = processor(text=lowercase__) __UpperCAmelCase : int = 1_6 __UpperCAmelCase : int = len(lowercase__) __UpperCAmelCase : int = max([len(lowercase__) for texts in input_texts]) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''']) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length)) # test if it raises when no input is passed with pytest.raises(lowercase__): processor() def A( self): __UpperCAmelCase : List[Any] = '''google/owlvit-base-patch32''' __UpperCAmelCase : Tuple = OwlViTProcessor.from_pretrained(lowercase__) __UpperCAmelCase : Optional[int] = ['''cat''', '''nasa badge'''] __UpperCAmelCase : List[Any] = processor(text=lowercase__) __UpperCAmelCase : Optional[int] = 1_6 __UpperCAmelCase : Optional[Any] = inputs['''input_ids'''] __UpperCAmelCase : str = [ [4_9_4_0_6, 2_3_6_8, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9_4_0_6, 6_8_4_1, 1_1_3_0_1, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''']) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length)) self.assertListEqual(list(input_ids[0]) , predicted_ids[0]) self.assertListEqual(list(input_ids[1]) , predicted_ids[1]) def A( self): __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : Union[str, Any] = self.get_tokenizer() __UpperCAmelCase : Optional[int] = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__) __UpperCAmelCase : str = self.prepare_image_inputs() __UpperCAmelCase : Dict = self.prepare_image_inputs() __UpperCAmelCase : int = processor(images=lowercase__ , query_images=lowercase__) self.assertListEqual(list(inputs.keys()) , ['''query_pixel_values''', '''pixel_values''']) # test if it raises when no input is passed with pytest.raises(lowercase__): processor() def A( self): __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : int = self.get_tokenizer() __UpperCAmelCase : List[Any] = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__) __UpperCAmelCase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : int = processor.batch_decode(lowercase__) __UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(lowercase__) self.assertListEqual(lowercase__ , lowercase__)
675
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
1
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
1
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' def run_func(lowercase_ ): @wraps(lowercase_ ) def run_in_eager_mode(*lowercase_ , **lowercase_ ): return func(*lowercase_ , **lowercase_ ) @wraps(lowercase_ ) @tf.function(experimental_compile=lowercase_ ) def run_in_graph_mode(*lowercase_ , **lowercase_ ): return func(*lowercase_ , **lowercase_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> ["tf.Tensor"]: '''simple docstring''' __UpperCAmelCase : Tuple = random.Random() __UpperCAmelCase : Any = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowercase_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : TensorFlowBenchmarkArguments _lowerCAmelCase : PretrainedConfig _lowerCAmelCase : str = "TensorFlow" @property def A( self): return tf.__version__ def A( self , lowercase__ , lowercase__ , lowercase__): # initialize GPU on separate process __UpperCAmelCase : Dict = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''') __UpperCAmelCase : int = self._prepare_inference_func(lowercase__ , lowercase__ , lowercase__) return self._measure_speed(_inference) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : int = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''') __UpperCAmelCase : List[Any] = self._prepare_train_func(lowercase__ , lowercase__ , lowercase__) return self._measure_speed(_train) def A( self , lowercase__ , lowercase__ , lowercase__): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowercase__) __UpperCAmelCase : Tuple = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''') __UpperCAmelCase : List[str] = self._prepare_inference_func(lowercase__ , lowercase__ , lowercase__) return self._measure_memory(_inference) def A( self , lowercase__ , lowercase__ , lowercase__): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowercase__) __UpperCAmelCase : str = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''') __UpperCAmelCase : Optional[Any] = self._prepare_train_func(lowercase__ , lowercase__ , lowercase__) return self._measure_memory(_train) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Any = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''') __UpperCAmelCase : Tuple = ( hasattr(lowercase__ , '''architectures''') and isinstance(config.architectures , lowercase__) and len(config.architectures) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __UpperCAmelCase : Optional[int] = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model __UpperCAmelCase : List[str] = __import__('''transformers''' , fromlist=[model_class]) __UpperCAmelCase : Union[str, Any] = getattr(lowercase__ , lowercase__) __UpperCAmelCase : Any = model_cls(lowercase__) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''') else: __UpperCAmelCase : int = TF_MODEL_MAPPING[config.__class__](lowercase__) # encoder-decoder has vocab size saved differently __UpperCAmelCase : Dict = config.vocab_size if hasattr(lowercase__ , '''vocab_size''') else config.encoder.vocab_size __UpperCAmelCase : Optional[int] = random_input_ids(lowercase__ , lowercase__ , lowercase__) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla) def encoder_decoder_forward(): return model(lowercase__ , decoder_input_ids=lowercase__ , training=lowercase__) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla) def encoder_forward(): return model(lowercase__ , training=lowercase__) __UpperCAmelCase : int = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[Any] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''') if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''') __UpperCAmelCase : Tuple = ( hasattr(lowercase__ , '''architectures''') and isinstance(config.architectures , lowercase__) and len(config.architectures) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __UpperCAmelCase : List[Any] = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model __UpperCAmelCase : Any = __import__('''transformers''' , fromlist=[model_class]) __UpperCAmelCase : Dict = getattr(lowercase__ , lowercase__) __UpperCAmelCase : Optional[int] = model_cls(lowercase__) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''') else: __UpperCAmelCase : int = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowercase__) # encoder-decoder has vocab size saved differently __UpperCAmelCase : Dict = config.vocab_size if hasattr(lowercase__ , '''vocab_size''') else config.encoder.vocab_size __UpperCAmelCase : Any = random_input_ids(lowercase__ , lowercase__ , lowercase__) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla) def encoder_decoder_train(): __UpperCAmelCase : Any = model(lowercase__ , decoder_input_ids=lowercase__ , labels=lowercase__ , training=lowercase__)[0] __UpperCAmelCase : str = tf.gradients(lowercase__ , model.trainable_variables) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla) def encoder_train(): __UpperCAmelCase : str = model(lowercase__ , labels=lowercase__ , training=lowercase__)[0] __UpperCAmelCase : int = tf.gradients(lowercase__ , model.trainable_variables) return gradients __UpperCAmelCase : Dict = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def A( self , lowercase__): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''') timeit.repeat(lowercase__ , repeat=1 , number=5) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average __UpperCAmelCase : Optional[int] = timeit.repeat( lowercase__ , repeat=self.args.repeat , number=1_0 , ) return min(lowercase__) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}") def A( self , lowercase__): logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''') with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''') __UpperCAmelCase : Optional[Any] = start_memory_tracing('''transformers''') if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''') elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''') __UpperCAmelCase : Any = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''') # init nvml nvml.nvmlInit() func() __UpperCAmelCase : Optional[int] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx) __UpperCAmelCase : int = nvml.nvmlDeviceGetMemoryInfo(lowercase__) __UpperCAmelCase : Dict = meminfo.used __UpperCAmelCase : Optional[Any] = Memory(lowercase__) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''') __UpperCAmelCase : Any = None else: __UpperCAmelCase : int = measure_peak_memory_cpu(lowercase__) __UpperCAmelCase : List[str] = Memory(lowercase__) if isinstance(lowercase__ , lowercase__) else memory_bytes if self.args.trace_memory_line_by_line: __UpperCAmelCase : Any = stop_memory_tracing(lowercase__) if memory is None: __UpperCAmelCase : Tuple = summary.total else: __UpperCAmelCase : List[str] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}") return "N/A", None
675
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Union[str, Any] = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def A( self , lowercase__=0): __UpperCAmelCase : List[Any] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(lowercase__)) __UpperCAmelCase : Tuple = np.random.RandomState(lowercase__) __UpperCAmelCase : Optional[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def A( self): __UpperCAmelCase : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') pipe.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : List[Any] = self.get_dummy_inputs() __UpperCAmelCase : List[Any] = pipe(**lowercase__).images __UpperCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) __UpperCAmelCase : List[Any] = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def A( self): __UpperCAmelCase : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') __UpperCAmelCase : Dict = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase__) pipe.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : Any = self.get_dummy_inputs() __UpperCAmelCase : Optional[Any] = pipe(**lowercase__).images __UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __UpperCAmelCase : str = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def A( self): __UpperCAmelCase : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') __UpperCAmelCase : Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase__) # warmup pass to apply optimizations __UpperCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs()) __UpperCAmelCase : Any = self.get_dummy_inputs() __UpperCAmelCase : Tuple = pipe(**lowercase__).images __UpperCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __UpperCAmelCase : Optional[Any] = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def A( self): __UpperCAmelCase : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') __UpperCAmelCase : Tuple = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : Optional[int] = self.get_dummy_inputs() __UpperCAmelCase : Tuple = pipe(**lowercase__).images __UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __UpperCAmelCase : Tuple = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def A( self): __UpperCAmelCase : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') __UpperCAmelCase : Union[str, Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs() __UpperCAmelCase : Optional[Any] = pipe(**lowercase__).images __UpperCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __UpperCAmelCase : Any = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def A( self): __UpperCAmelCase : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') __UpperCAmelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : Optional[Any] = self.get_dummy_inputs() __UpperCAmelCase : Union[str, Any] = pipe(**lowercase__).images __UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __UpperCAmelCase : str = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): @property def A( self): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A( self): __UpperCAmelCase : Optional[Any] = ort.SessionOptions() __UpperCAmelCase : int = False return options def A( self): __UpperCAmelCase : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') __UpperCAmelCase : Optional[Any] = init_image.resize((7_6_8, 5_1_2)) # using the PNDM scheduler by default __UpperCAmelCase : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : Dict = '''A fantasy landscape, trending on artstation''' __UpperCAmelCase : List[Any] = np.random.RandomState(0) __UpperCAmelCase : List[Any] = pipe( prompt=lowercase__ , image=lowercase__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=lowercase__ , output_type='''np''' , ) __UpperCAmelCase : List[str] = output.images __UpperCAmelCase : List[str] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) __UpperCAmelCase : Optional[Any] = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def A( self): __UpperCAmelCase : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') __UpperCAmelCase : Tuple = init_image.resize((7_6_8, 5_1_2)) __UpperCAmelCase : Any = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''') __UpperCAmelCase : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=lowercase__ , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : List[Any] = '''A fantasy landscape, trending on artstation''' __UpperCAmelCase : Optional[int] = np.random.RandomState(0) __UpperCAmelCase : str = pipe( prompt=lowercase__ , image=lowercase__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=lowercase__ , output_type='''np''' , ) __UpperCAmelCase : List[Any] = output.images __UpperCAmelCase : Tuple = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) __UpperCAmelCase : Tuple = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
675
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''bert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : List[Any] = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
1
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , **lowercase_ ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = AutoConfig.from_pretrained(lowercase_ , **lowercase_ ) __UpperCAmelCase : List[Any] = AutoModelForSeqaSeqLM.from_config(lowercase_ ) model.save_pretrained(lowercase_ ) AutoTokenizer.from_pretrained(lowercase_ ).save_pretrained(lowercase_ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
675
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCamelCase : _lowerCAmelCase : int _lowerCAmelCase : TreeNode | None = None _lowerCAmelCase : TreeNode | None = None lowerCAmelCase = namedtuple("""CoinsDistribResult""", """moves excess""") def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase_ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase_ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase_ ) != count_coins(lowercase_ ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(lowercase_ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = get_distrib(node.left ) __UpperCAmelCase , __UpperCAmelCase : Any = get_distrib(node.right ) __UpperCAmelCase : Optional[Any] = 1 - left_distrib_excess __UpperCAmelCase : Union[str, Any] = 1 - right_distrib_excess __UpperCAmelCase : str = ( left_distrib_moves + right_distrib_moves + abs(lowercase_ ) + abs(lowercase_ ) ) __UpperCAmelCase : Union[str, Any] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase_ , lowercase_ ) return get_distrib(lowercase_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
675
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
675
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
675
1
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
675
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
675
1
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = analyze_text(lowercase_ ) __UpperCAmelCase : List[str] = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. __UpperCAmelCase : str = sum(single_char_strings.values() ) # one length string __UpperCAmelCase : List[str] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __UpperCAmelCase : Tuple = single_char_strings[ch] __UpperCAmelCase : List[Any] = my_str / all_sum my_fir_sum += prob * math.loga(lowercase_ ) # entropy formula. # print entropy print(f"{round(-1 * my_fir_sum ):.1f}" ) # two len string __UpperCAmelCase : Dict = sum(two_char_strings.values() ) __UpperCAmelCase : Optional[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __UpperCAmelCase : Optional[int] = cha + cha if sequence in two_char_strings: __UpperCAmelCase : Optional[int] = two_char_strings[sequence] __UpperCAmelCase : Union[str, Any] = int(lowercase_ ) / all_sum my_sec_sum += prob * math.loga(lowercase_ ) # print second entropy print(f"{round(-1 * my_sec_sum ):.1f}" ) # print the difference between them print(f"{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}" ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> tuple[dict, dict]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = Counter() # type: ignore __UpperCAmelCase : Optional[int] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowercase_ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
675
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
1
import os import sys import unittest lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCAmelCase = os.path.join(git_repo_path, """src""", """transformers""") lowerCAmelCase = """ {0} = None """ lowerCAmelCase = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ lowerCAmelCase = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : Any = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowercase__) __UpperCAmelCase : Any = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowercase__ , '''tokenizers''') __UpperCAmelCase : Dict = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowercase__ , '''tensorflow_text''') __UpperCAmelCase : Optional[Any] = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowercase__ , '''sentencepiece_and_tokenizers''') __UpperCAmelCase : Optional[int] = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowercase__ , '''sentencepiece_and_tensorflow_text''') __UpperCAmelCase : List[Any] = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowercase__ , '''sentencepiece_and_tokenizers_and_vision''') def A( self): __UpperCAmelCase : Optional[Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowercase__) self.assertIn('''tensorflow_text''' , lowercase__) self.assertIn('''sentencepiece_and_tokenizers''' , lowercase__) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def A( self): __UpperCAmelCase : int = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowercase__ , '''\nCONSTANT = None\n''') __UpperCAmelCase : List[str] = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowercase__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') __UpperCAmelCase : str = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' __UpperCAmelCase : Dict = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowercase__ , lowercase__) def A( self): __UpperCAmelCase : List[Any] = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' __UpperCAmelCase : Union[str, Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowercase__)
675
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
1
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase = logging.get_logger(__name__) # General docstring lowerCAmelCase = """MobileNetV1Config""" # Base docstring lowerCAmelCase = """google/mobilenet_v1_1.0_224""" lowerCAmelCase = [1, 1_024, 7, 7] # Image classification docstring lowerCAmelCase = """google/mobilenet_v1_1.0_224""" lowerCAmelCase = """tabby, tabby cat""" lowerCAmelCase = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = {} if isinstance(lowercase_ , lowercase_ ): __UpperCAmelCase : Dict = model.mobilenet_va else: __UpperCAmelCase : List[str] = model __UpperCAmelCase : Union[str, Any] = '''MobilenetV1/Conv2d_0/''' __UpperCAmelCase : Union[str, Any] = backbone.conv_stem.convolution.weight __UpperCAmelCase : Optional[Any] = backbone.conv_stem.normalization.bias __UpperCAmelCase : Tuple = backbone.conv_stem.normalization.weight __UpperCAmelCase : Optional[int] = backbone.conv_stem.normalization.running_mean __UpperCAmelCase : int = backbone.conv_stem.normalization.running_var for i in range(13 ): __UpperCAmelCase : List[str] = i + 1 __UpperCAmelCase : Optional[int] = i * 2 __UpperCAmelCase : Any = backbone.layer[pt_index] __UpperCAmelCase : Optional[Any] = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" __UpperCAmelCase : List[Any] = pointer.convolution.weight __UpperCAmelCase : Any = pointer.normalization.bias __UpperCAmelCase : List[str] = pointer.normalization.weight __UpperCAmelCase : Tuple = pointer.normalization.running_mean __UpperCAmelCase : Optional[int] = pointer.normalization.running_var __UpperCAmelCase : Union[str, Any] = backbone.layer[pt_index + 1] __UpperCAmelCase : str = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" __UpperCAmelCase : int = pointer.convolution.weight __UpperCAmelCase : List[str] = pointer.normalization.bias __UpperCAmelCase : int = pointer.normalization.weight __UpperCAmelCase : int = pointer.normalization.running_mean __UpperCAmelCase : List[Any] = pointer.normalization.running_var if isinstance(lowercase_ , lowercase_ ): __UpperCAmelCase : Any = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' __UpperCAmelCase : Any = model.classifier.weight __UpperCAmelCase : Optional[Any] = model.classifier.bias return tf_to_pt_map def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model __UpperCAmelCase : Any = tf.train.list_variables(lowercase_ ) __UpperCAmelCase : Union[str, Any] = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) __UpperCAmelCase : Optional[int] = tf.train.load_variable(lowercase_ , lowercase_ ) __UpperCAmelCase : Any = array # Build TF to PyTorch weights loading map __UpperCAmelCase : Optional[int] = _build_tf_to_pytorch_map(lowercase_ , lowercase_ , lowercase_ ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue __UpperCAmelCase : Dict = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) __UpperCAmelCase : List[Any] = np.transpose(lowercase_ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer __UpperCAmelCase : Optional[Any] = array.squeeze().transpose() else: __UpperCAmelCase : str = np.transpose(lowercase_ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) __UpperCAmelCase : List[str] = torch.from_numpy(lowercase_ ) tf_weights.pop(lowercase_ , lowercase_ ) tf_weights.pop(name + '''/RMSProp''' , lowercase_ ) tf_weights.pop(name + '''/RMSProp_1''' , lowercase_ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , lowercase_ ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> torch.Tensor: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Optional[int] = features.shape[-2:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = conv_layer.stride __UpperCAmelCase , __UpperCAmelCase : Any = conv_layer.kernel_size if in_height % stride_height == 0: __UpperCAmelCase : str = max(kernel_height - stride_height , 0 ) else: __UpperCAmelCase : List[str] = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: __UpperCAmelCase : List[Any] = max(kernel_width - stride_width , 0 ) else: __UpperCAmelCase : Tuple = max(kernel_width - (in_width % stride_width) , 0 ) __UpperCAmelCase : Union[str, Any] = pad_along_width // 2 __UpperCAmelCase : str = pad_along_width - pad_left __UpperCAmelCase : List[Any] = pad_along_height // 2 __UpperCAmelCase : Union[str, Any] = pad_along_height - pad_top __UpperCAmelCase : Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowercase_ , lowercase_ , '''constant''' , 0.0 ) class lowerCamelCase ( nn.Module ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1 , lowercase__ = 1 , lowercase__ = False , lowercase__ = True , lowercase__ = True , ): super().__init__() __UpperCAmelCase : int = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups.") __UpperCAmelCase : Tuple = 0 if config.tf_padding else int((kernel_size - 1) / 2) __UpperCAmelCase : List[str] = nn.Convad( in_channels=lowercase__ , out_channels=lowercase__ , kernel_size=lowercase__ , stride=lowercase__ , padding=lowercase__ , groups=lowercase__ , bias=lowercase__ , padding_mode='''zeros''' , ) if use_normalization: __UpperCAmelCase : Any = nn.BatchNormad( num_features=lowercase__ , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=lowercase__ , track_running_stats=lowercase__ , ) else: __UpperCAmelCase : Optional[Any] = None if use_activation: if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowercase__): __UpperCAmelCase : Optional[int] = ACTaFN[config.hidden_act] else: __UpperCAmelCase : Optional[int] = config.hidden_act else: __UpperCAmelCase : List[Any] = None def A( self , lowercase__): if self.config.tf_padding: __UpperCAmelCase : Optional[int] = apply_tf_padding(lowercase__ , self.convolution) __UpperCAmelCase : Dict = self.convolution(lowercase__) if self.normalization is not None: __UpperCAmelCase : int = self.normalization(lowercase__) if self.activation is not None: __UpperCAmelCase : str = self.activation(lowercase__) return features class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Dict = MobileNetVaConfig _lowerCAmelCase : int = load_tf_weights_in_mobilenet_va _lowerCAmelCase : List[str] = '''mobilenet_v1''' _lowerCAmelCase : Optional[Any] = '''pixel_values''' _lowerCAmelCase : Dict = False def A( self , lowercase__): if isinstance(lowercase__ , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowercase__ , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) lowerCAmelCase = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , _UpperCamelCase , ) class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ = True): super().__init__(lowercase__) __UpperCAmelCase : Tuple = config __UpperCAmelCase : Tuple = 3_2 __UpperCAmelCase : int = max(int(depth * config.depth_multiplier) , config.min_depth) __UpperCAmelCase : List[str] = MobileNetVaConvLayer( lowercase__ , in_channels=config.num_channels , out_channels=lowercase__ , kernel_size=3 , stride=2 , ) __UpperCAmelCase : int = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __UpperCAmelCase : Union[str, Any] = nn.ModuleList() for i in range(1_3): __UpperCAmelCase : List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 __UpperCAmelCase : int = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( lowercase__ , in_channels=lowercase__ , out_channels=lowercase__ , kernel_size=3 , stride=strides[i] , groups=lowercase__ , )) self.layer.append( MobileNetVaConvLayer( lowercase__ , in_channels=lowercase__ , out_channels=lowercase__ , kernel_size=1 , )) __UpperCAmelCase : Optional[int] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def A( self , lowercase__): raise NotImplementedError @add_start_docstrings_to_model_forward(lowercase__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A( self , lowercase__ = None , lowercase__ = None , lowercase__ = None , ): __UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''') __UpperCAmelCase : Optional[int] = self.conv_stem(lowercase__) __UpperCAmelCase : Dict = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): __UpperCAmelCase : str = layer_module(lowercase__) if output_hidden_states: __UpperCAmelCase : Tuple = all_hidden_states + (hidden_states,) __UpperCAmelCase : Union[str, Any] = hidden_states if self.pooler is not None: __UpperCAmelCase : Optional[int] = torch.flatten(self.pooler(lowercase__) , start_dim=1) else: __UpperCAmelCase : List[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase__ , pooler_output=lowercase__ , hidden_states=lowercase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , _UpperCamelCase , ) class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__): super().__init__(lowercase__) __UpperCAmelCase : str = config.num_labels __UpperCAmelCase : Optional[int] = MobileNetVaModel(lowercase__) __UpperCAmelCase : Optional[int] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __UpperCAmelCase : Optional[Any] = nn.Dropout(config.classifier_dropout_prob , inplace=lowercase__) __UpperCAmelCase : Tuple = nn.Linear(lowercase__ , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A( self , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , ): __UpperCAmelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : Any = self.mobilenet_va(lowercase__ , output_hidden_states=lowercase__ , return_dict=lowercase__) __UpperCAmelCase : List[Any] = outputs.pooler_output if return_dict else outputs[1] __UpperCAmelCase : Optional[int] = self.classifier(self.dropout(lowercase__)) __UpperCAmelCase : str = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __UpperCAmelCase : int = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __UpperCAmelCase : List[Any] = '''single_label_classification''' else: __UpperCAmelCase : List[str] = '''multi_label_classification''' if self.config.problem_type == "regression": __UpperCAmelCase : List[str] = MSELoss() if self.num_labels == 1: __UpperCAmelCase : List[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: __UpperCAmelCase : str = loss_fct(lowercase__ , lowercase__) elif self.config.problem_type == "single_label_classification": __UpperCAmelCase : str = CrossEntropyLoss() __UpperCAmelCase : List[str] = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": __UpperCAmelCase : Union[str, Any] = BCEWithLogitsLoss() __UpperCAmelCase : Tuple = loss_fct(lowercase__ , lowercase__) if not return_dict: __UpperCAmelCase : str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowercase__ , logits=lowercase__ , hidden_states=outputs.hidden_states , )
675
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
1
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowerCAmelCase = logging.get_logger("""transformers.models.encodec""") lowerCAmelCase = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } lowerCAmelCase = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } lowerCAmelCase = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } lowerCAmelCase = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } lowerCAmelCase = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } lowerCAmelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowerCAmelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowerCAmelCase = [] lowerCAmelCase = [] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' for attribute in key.split('''.''' ): __UpperCAmelCase : Dict = getattr(lowercase_ , lowercase_ ) if weight_type is not None: __UpperCAmelCase : int = getattr(lowercase_ , lowercase_ ).shape else: __UpperCAmelCase : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": __UpperCAmelCase : Optional[Any] = value elif weight_type == "weight_g": __UpperCAmelCase : List[str] = value elif weight_type == "weight_v": __UpperCAmelCase : List[str] = value elif weight_type == "bias": __UpperCAmelCase : Dict = value elif weight_type == "running_mean": __UpperCAmelCase : Optional[Any] = value elif weight_type == "running_var": __UpperCAmelCase : Tuple = value elif weight_type == "num_batches_tracked": __UpperCAmelCase : Any = value elif weight_type == "weight_ih_l0": __UpperCAmelCase : Union[str, Any] = value elif weight_type == "weight_hh_l0": __UpperCAmelCase : Union[str, Any] = value elif weight_type == "bias_ih_l0": __UpperCAmelCase : List[Any] = value elif weight_type == "bias_hh_l0": __UpperCAmelCase : str = value elif weight_type == "weight_ih_l1": __UpperCAmelCase : Dict = value elif weight_type == "weight_hh_l1": __UpperCAmelCase : str = value elif weight_type == "bias_ih_l1": __UpperCAmelCase : List[str] = value elif weight_type == "bias_hh_l1": __UpperCAmelCase : Optional[int] = value else: __UpperCAmelCase : Union[str, Any] = value logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __UpperCAmelCase , __UpperCAmelCase : Optional[int] = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : str = [] if model_name == "encodec_24khz" or "encodec_32khz": __UpperCAmelCase : Union[str, Any] = MAPPING_24K elif model_name == "encodec_48khz": __UpperCAmelCase : Dict = MAPPING_48K else: raise ValueError(f"Unsupported model: {model_name}" ) for name, value in orig_dict.items(): if should_ignore(lowercase_ , lowercase_ ): logger.info(f"{name} was ignored" ) continue __UpperCAmelCase : Optional[Any] = False for key, mapped_key in MAPPING.items(): if "*" in key: __UpperCAmelCase , __UpperCAmelCase : Optional[int] = key.split('''.*.''' ) if prefix in name and suffix in name: __UpperCAmelCase : List[str] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue __UpperCAmelCase : Tuple = True if "*" in mapped_key: __UpperCAmelCase : Dict = name.split(lowercase_ )[0].split('''.''' )[-2] __UpperCAmelCase : Tuple = mapped_key.replace('''*''' , lowercase_ ) if "weight_g" in name: __UpperCAmelCase : Optional[int] = '''weight_g''' elif "weight_v" in name: __UpperCAmelCase : List[Any] = '''weight_v''' elif "weight_ih_l0" in name: __UpperCAmelCase : Dict = '''weight_ih_l0''' elif "weight_hh_l0" in name: __UpperCAmelCase : List[Any] = '''weight_hh_l0''' elif "bias_ih_l0" in name: __UpperCAmelCase : str = '''bias_ih_l0''' elif "bias_hh_l0" in name: __UpperCAmelCase : Any = '''bias_hh_l0''' elif "weight_ih_l1" in name: __UpperCAmelCase : Optional[Any] = '''weight_ih_l1''' elif "weight_hh_l1" in name: __UpperCAmelCase : Optional[Any] = '''weight_hh_l1''' elif "bias_ih_l1" in name: __UpperCAmelCase : str = '''bias_ih_l1''' elif "bias_hh_l1" in name: __UpperCAmelCase : Optional[Any] = '''bias_hh_l1''' elif "bias" in name: __UpperCAmelCase : Tuple = '''bias''' elif "weight" in name: __UpperCAmelCase : str = '''weight''' elif "running_mean" in name: __UpperCAmelCase : Any = '''running_mean''' elif "running_var" in name: __UpperCAmelCase : int = '''running_var''' elif "num_batches_tracked" in name: __UpperCAmelCase : Dict = '''num_batches_tracked''' else: __UpperCAmelCase : Optional[Any] = None set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(f"Unused weights: {unused_weights}" ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , ) -> Any: '''simple docstring''' if config_path is not None: __UpperCAmelCase : int = EncodecConfig.from_pretrained(lowercase_ ) else: __UpperCAmelCase : Dict = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": __UpperCAmelCase : Optional[int] = [8, 5, 4, 4] __UpperCAmelCase : str = [2.2] __UpperCAmelCase : Optional[int] = 64 __UpperCAmelCase : str = 32000 __UpperCAmelCase : Optional[Any] = 2048 __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Tuple = False elif model_name == "encodec_48khz": __UpperCAmelCase : Tuple = [8, 5, 4, 2] __UpperCAmelCase : str = [3.0, 6.0, 1_2.0, 2_4.0] __UpperCAmelCase : str = 48000 __UpperCAmelCase : List[Any] = 2 __UpperCAmelCase : Tuple = False __UpperCAmelCase : str = '''time_group_norm''' __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Optional[int] = 1.0 __UpperCAmelCase : Optional[int] = 0.0_1 else: raise ValueError(f"Unknown model name: {model_name}" ) __UpperCAmelCase : str = EncodecModel(lowercase_ ) __UpperCAmelCase : Optional[Any] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowercase_ ) __UpperCAmelCase : int = torch.load(lowercase_ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights __UpperCAmelCase : Optional[int] = original_checkpoint['''best_state'''] recursively_load_weights(lowercase_ , lowercase_ , lowercase_ ) model.save_pretrained(lowercase_ ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
675
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
1
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : int = CpmAntTokenizer _lowerCAmelCase : Union[str, Any] = False def A( self): super().setUp() __UpperCAmelCase : Any = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] __UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) @tooslow def A( self): __UpperCAmelCase : Tuple = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''') __UpperCAmelCase : List[Any] = '''今天天气真好!''' __UpperCAmelCase : Union[str, Any] = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] __UpperCAmelCase : str = tokenizer.tokenize(lowercase__) self.assertListEqual(lowercase__ , lowercase__) __UpperCAmelCase : Optional[Any] = '''今天天气真好!''' __UpperCAmelCase : Optional[int] = [tokenizer.bos_token] + tokens __UpperCAmelCase : Tuple = [6, 9_8_0_2, 1_4_9_6_2, 2_0_8_2, 8_3_1, 2_4_4] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__) , lowercase__) __UpperCAmelCase : List[Any] = tokenizer.decode(lowercase__) self.assertEqual(lowercase__ , lowercase__)
675
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
1
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase = get_tests_dir("""fixtures/test_sentencepiece_with_bytefallback.model""") @require_sentencepiece @require_tokenizers class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : int = GPTSwaTokenizer _lowerCAmelCase : Any = False _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : Optional[Any] = False def A( self): super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : Tuple = GPTSwaTokenizer(lowercase__ , eos_token='''<unk>''' , bos_token='''<unk>''' , pad_token='''<unk>''') tokenizer.save_pretrained(self.tmpdirname) def A( self , lowercase__): __UpperCAmelCase : Dict = '''This is a test''' __UpperCAmelCase : Tuple = '''This is a test''' return input_text, output_text def A( self): __UpperCAmelCase : List[str] = '''<s>''' __UpperCAmelCase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__) , lowercase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__) , lowercase__) def A( self): __UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''j''') self.assertEqual(len(lowercase__) , 2_0_0_0) def A( self): self.assertEqual(self.get_tokenizer().vocab_size , 2_0_0_0) def A( self): __UpperCAmelCase : Optional[int] = GPTSwaTokenizer(lowercase__) __UpperCAmelCase : Optional[int] = tokenizer.tokenize('''This is a test''') self.assertListEqual(lowercase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__) , [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2]) __UpperCAmelCase : List[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') # fmt: off self.assertListEqual( lowercase__ , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] , ) # fmt: on __UpperCAmelCase : List[Any] = tokenizer.convert_tokens_to_ids(lowercase__) self.assertListEqual( lowercase__ , [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0] , ) __UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(lowercase__) # fmt: off self.assertListEqual( lowercase__ , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.''']) # fmt: on def A( self): __UpperCAmelCase : Optional[int] = GPTSwaTokenizer(lowercase__) __UpperCAmelCase : str = ['''This is a test''', '''I was born in 92000, and this is falsé.'''] __UpperCAmelCase : str = [ [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2], [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(lowercase__ , lowercase__): self.assertListEqual(tokenizer.encode_fast(lowercase__) , lowercase__) # Test that decode_fast returns the input text for text, token_ids in zip(lowercase__ , lowercase__): self.assertEqual(tokenizer.decode_fast(lowercase__) , lowercase__) @slow def A( self): __UpperCAmelCase : Any = [ '''<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')''', '''Hey there, how are you doing this fine day?''', '''This is a text with a trailing spaces followed by a dot .''', '''Häj sväjs lillebrör! =)''', '''Det är inget fel på Mr. Cool''', ] # fmt: off __UpperCAmelCase : int = {'''input_ids''': [[6_3_4_2_3, 5, 6_8_1_1, 1_4_9_5_4, 2_8_2, 8_1_6, 3_8_2_1, 6_3_4_6_6, 6_3_4_2_5, 6_3_4_6_2, 1_8, 6_3_9_7_8, 6_7_8, 3_0_1, 1_3_2_0, 6_3_4_2_3, 6_3_4_5_5, 6_3_4_5_8, 1_8, 6_3_9_8_2, 4_2_4_6, 3_9_4_0, 1_9_0_1, 4_7_7_8_9, 5_5_4_7, 1_8_9_9_4], [1_9_6_3_0, 1_1_0_0, 6_3_4_4_6, 1_3_4_2, 6_3_3, 5_4_4, 4_4_8_8, 5_9_3, 5_1_0_2, 2_4_1_6, 6_3_4_9_5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_6_5_2, 4_2_8, 2_6_8, 1_9_3_6, 5_1_5, 2_6_8, 5_8_5_9_3, 2_2_4_1_3, 9_1_0_6, 5_4_6, 2_6_8, 3_3_2_1_3, 6_3_9_7_9, 6_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5_1_3_0, 6_3_4_5_0, 9_2_4, 6_3_4_4_9, 2_2_4_9, 4_0_6_2, 1_5_5_8, 3_1_8, 6_3_5_0_4, 2_1_4_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_0_9, 3_7_7, 2_8_2_7, 2_5_5_9, 3_3_2, 6_5_7_5, 6_3_4_4_3, 2_6_8_0_1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name='''AI-Sweden/gpt-sw3-126m''' , sequences=lowercase__ , )
675
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
1
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __SCREAMING_SNAKE_CASE ( ) -> tuple[list[int], int]: '''simple docstring''' __UpperCAmelCase : Any = [randint(-1000 , 1000 ) for i in range(10 )] __UpperCAmelCase : Union[str, Any] = randint(-5000 , 5000 ) return (arr, r) lowerCAmelCase = make_dataset() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[int, ...]: '''simple docstring''' for triplet in permutations(lowercase_ , 3 ): if sum(lowercase_ ) == target: return tuple(sorted(lowercase_ ) ) return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[int, int, int]: '''simple docstring''' arr.sort() __UpperCAmelCase : Tuple = len(lowercase_ ) for i in range(n - 1 ): __UpperCAmelCase , __UpperCAmelCase : Tuple = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( ) -> tuple[float, float]: '''simple docstring''' __UpperCAmelCase : List[Any] = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __UpperCAmelCase : Union[str, Any] = ''' triplet_sum1(*dataset) ''' __UpperCAmelCase : Tuple = ''' triplet_sum2(*dataset) ''' __UpperCAmelCase : List[Any] = repeat(setup=lowercase_ , stmt=lowercase_ , repeat=5 , number=10000 ) __UpperCAmelCase : Union[str, Any] = repeat(setup=lowercase_ , stmt=lowercase_ , repeat=5 , number=10000 ) return (min(lowercase_ ), min(lowercase_ )) if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
675
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[Union[str, Path]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 1 _lowerCAmelCase : Optional[Union[str, bool]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None def A( self): return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
675
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowerCAmelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) _lowerCAmelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) _lowerCAmelCase : str = "audio" _lowerCAmelCase : str = "transcription" def A( self , lowercase__): if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , lowercase__): raise ValueError(F"Column {self.audio_column} is not an Audio type.") __UpperCAmelCase : Union[str, Any] = copy.deepcopy(self) __UpperCAmelCase : int = self.input_schema.copy() __UpperCAmelCase : List[Any] = features[self.audio_column] __UpperCAmelCase : int = input_schema return task_template @property def A( self): return {self.audio_column: "audio", self.transcription_column: "transcription"}
675
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:] __UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
1
import unittest from transformers import DonutProcessor lowerCAmelCase = """naver-clova-ix/donut-base""" class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : List[str] = DonutProcessor.from_pretrained(lowercase__) def A( self): __UpperCAmelCase : Dict = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } __UpperCAmelCase : Union[str, Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) __UpperCAmelCase : Dict = self.processor.tokenajson(lowercase__) self.assertDictEqual(lowercase__ , lowercase__)
675
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''bert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : List[Any] = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
1
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[Any] = '''lxmert''' _lowerCAmelCase : Optional[int] = {} def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=9_5_0_0 , lowercase__=1_6_0_0 , lowercase__=4_0_0 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=9 , lowercase__=5 , lowercase__=5 , lowercase__=2_0_4_8 , lowercase__=4 , lowercase__=6.6_7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , **lowercase__ , ): __UpperCAmelCase : int = vocab_size __UpperCAmelCase : str = hidden_size __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : str = hidden_act __UpperCAmelCase : Union[str, Any] = intermediate_size __UpperCAmelCase : Any = hidden_dropout_prob __UpperCAmelCase : Tuple = attention_probs_dropout_prob __UpperCAmelCase : Any = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = initializer_range __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : Optional[Any] = num_qa_labels __UpperCAmelCase : List[Any] = num_object_labels __UpperCAmelCase : Optional[Any] = num_attr_labels __UpperCAmelCase : Union[str, Any] = l_layers __UpperCAmelCase : Any = x_layers __UpperCAmelCase : Optional[int] = r_layers __UpperCAmelCase : int = visual_feat_dim __UpperCAmelCase : int = visual_pos_dim __UpperCAmelCase : int = visual_loss_normalizer __UpperCAmelCase : int = task_matched __UpperCAmelCase : str = task_mask_lm __UpperCAmelCase : Tuple = task_obj_predict __UpperCAmelCase : Tuple = task_qa __UpperCAmelCase : List[str] = visual_obj_loss __UpperCAmelCase : Optional[Any] = visual_attr_loss __UpperCAmelCase : Union[str, Any] = visual_feat_loss __UpperCAmelCase : int = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**lowercase__)
675
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
1
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : int = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : List[Any] = seq_length __UpperCAmelCase : List[Any] = is_training __UpperCAmelCase : Any = use_input_mask __UpperCAmelCase : List[Any] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : str = vocab_size __UpperCAmelCase : str = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : List[str] = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : Any = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : Any = num_labels __UpperCAmelCase : List[Any] = num_choices __UpperCAmelCase : Tuple = scope def A( self): __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Optional[int] = None if self.use_input_mask: __UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : List[str] = None __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Tuple = DistilBertModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , lowercase__) __UpperCAmelCase : Optional[int] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Dict = DistilBertForMaskedLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[int] = DistilBertForQuestionAnswering(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model( lowercase__ , attention_mask=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Dict = self.num_labels __UpperCAmelCase : int = DistilBertForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : str = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : Union[str, Any] = DistilBertForTokenClassification(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = self.num_choices __UpperCAmelCase : Optional[Any] = DistilBertForMultipleChoice(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Tuple = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __UpperCAmelCase : Optional[int] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __UpperCAmelCase : List[str] = model( lowercase__ , attention_mask=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A( self): __UpperCAmelCase : int = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) : Dict = config_and_inputs __UpperCAmelCase : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Optional[Any] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _lowerCAmelCase : Dict = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : str = True _lowerCAmelCase : Any = True _lowerCAmelCase : int = True def A( self): __UpperCAmelCase : int = DistilBertModelTester(self) __UpperCAmelCase : str = ConfigTester(self , config_class=lowercase__ , dim=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase__) def A( self): __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase__) def A( self): __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase__) def A( self): __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase__) def A( self): __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase__) @slow def A( self): for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[str] = DistilBertModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) @slow @require_torch_gpu def A( self): __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __UpperCAmelCase : str = True __UpperCAmelCase : str = model_class(config=lowercase__) __UpperCAmelCase : str = self._prepare_for_class(lowercase__ , lowercase__) __UpperCAmelCase : Any = torch.jit.trace( lowercase__ , (inputs_dict['''input_ids'''].to('''cpu'''), inputs_dict['''attention_mask'''].to('''cpu'''))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ , os.path.join(lowercase__ , '''traced_model.pt''')) __UpperCAmelCase : Optional[int] = torch.jit.load(os.path.join(lowercase__ , '''traced_model.pt''') , map_location=lowercase__) loaded(inputs_dict['''input_ids'''].to(lowercase__) , inputs_dict['''attention_mask'''].to(lowercase__)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : List[str] = DistilBertModel.from_pretrained('''distilbert-base-uncased''') __UpperCAmelCase : Tuple = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) __UpperCAmelCase : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): __UpperCAmelCase : Dict = model(lowercase__ , attention_mask=lowercase__)[0] __UpperCAmelCase : int = torch.Size((1, 1_1, 7_6_8)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : List[str] = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase__ , atol=1e-4))
675
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"""tokenizer_file""": """tokenizer.json"""} lowerCAmelCase = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Optional[int] = VOCAB_FILES_NAMES _lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Tuple = ['''input_ids''', '''attention_mask'''] _lowerCAmelCase : List[str] = None def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__=False , lowercase__=False , **lowercase__ , ): super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , add_prefix_space=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , ) __UpperCAmelCase : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' , lowercase__) != add_prefix_space: __UpperCAmelCase : List[Any] = getattr(lowercase__ , pre_tok_state.pop('''type''')) __UpperCAmelCase : str = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**lowercase__) __UpperCAmelCase : Optional[int] = add_prefix_space def A( self , *lowercase__ , **lowercase__): __UpperCAmelCase : Optional[int] = kwargs.get('''is_split_into_words''' , lowercase__) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" ''' pretokenized inputs.''') return super()._batch_encode_plus(*lowercase__ , **lowercase__) def A( self , *lowercase__ , **lowercase__): __UpperCAmelCase : Union[str, Any] = kwargs.get('''is_split_into_words''' , lowercase__) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" ''' pretokenized inputs.''') return super()._encode_plus(*lowercase__ , **lowercase__) def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(lowercase__ , name=lowercase__) return tuple(lowercase__) def A( self , lowercase__): __UpperCAmelCase : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__) + [self.eos_token_id]) if len(lowercase__) > self.model_max_length: __UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :] return input_ids
675
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
1
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowerCamelCase : def __init__( self , lowercase__ , lowercase__ = 1_3 , lowercase__ = 6_4 , lowercase__ = 2 , lowercase__ = 3 , lowercase__ = 3 , lowercase__ = True , lowercase__ = True , lowercase__ = 1_2_8 , lowercase__=[1_6, 3_2, 6_4, 1_2_8] , lowercase__ = 7 , lowercase__ = 4 , lowercase__ = 3_7 , lowercase__ = "gelu" , lowercase__ = 0.1 , lowercase__ = 0.1 , lowercase__ = 1_0 , lowercase__ = 0.0_2 , lowercase__ = 2 , lowercase__ = 1 , lowercase__ = 1_2_8 , lowercase__ = [2, 2, 2, 2] , lowercase__ = 2 , lowercase__ = 2 , ): __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : Union[str, Any] = image_size __UpperCAmelCase : int = patch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = type_sequence_label_size __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : List[Any] = encoder_stride __UpperCAmelCase : Optional[Any] = num_attention_outputs __UpperCAmelCase : Union[str, Any] = embed_dim __UpperCAmelCase : List[str] = embed_dim + 1 __UpperCAmelCase : int = resolution __UpperCAmelCase : str = depths __UpperCAmelCase : Optional[Any] = hidden_sizes __UpperCAmelCase : Optional[Any] = dim __UpperCAmelCase : Any = mlp_expansion_ratio def A( self): __UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCAmelCase : int = None if self.use_labels: __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def A( self): return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Tuple = TFEfficientFormerModel(config=lowercase__) __UpperCAmelCase : Dict = model(lowercase__ , training=lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : int = self.type_sequence_label_size __UpperCAmelCase : Optional[int] = TFEfficientFormerForImageClassification(lowercase__) __UpperCAmelCase : Any = model(lowercase__ , labels=lowercase__ , training=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images __UpperCAmelCase : str = 1 __UpperCAmelCase : Any = TFEfficientFormerForImageClassification(lowercase__) __UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __UpperCAmelCase : Any = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = config_and_inputs __UpperCAmelCase : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Tuple = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : Optional[int] = False _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : Tuple = False _lowerCAmelCase : List[str] = False def A( self): __UpperCAmelCase : Tuple = TFEfficientFormerModelTester(self) __UpperCAmelCase : Tuple = ConfigTester( self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''') def A( self): pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''') def A( self): pass def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = model_class(lowercase__) __UpperCAmelCase : Any = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] __UpperCAmelCase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__) def A( self): def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[str] = model_class(lowercase__) __UpperCAmelCase : Dict = model(**self._prepare_for_class(lowercase__ , lowercase__) , training=lowercase__) __UpperCAmelCase : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Optional[int] = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(lowercase__) , lowercase__) if hasattr(self.model_tester , '''encoder_seq_length'''): __UpperCAmelCase : Optional[int] = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1: __UpperCAmelCase : List[str] = seq_length * self.model_tester.chunk_length else: __UpperCAmelCase : str = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __UpperCAmelCase : Tuple = outputs.decoder_hidden_states self.asseretIsInstance(lowercase__ , (list, tuple)) self.assertEqual(len(lowercase__) , lowercase__) __UpperCAmelCase : int = getattr(self.model_tester , '''seq_length''' , lowercase__) __UpperCAmelCase : Union[str, Any] = getattr(self.model_tester , '''decoder_seq_length''' , lowercase__) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : List[Any] = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__=False): __UpperCAmelCase : Tuple = super()._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def A( self): __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''') def A( self): __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__) @slow def A( self): for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : str = TFEfficientFormerModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = True __UpperCAmelCase : int = getattr(self.model_tester , '''seq_length''' , lowercase__) __UpperCAmelCase : List[str] = getattr(self.model_tester , '''encoder_seq_length''' , lowercase__) __UpperCAmelCase : List[Any] = getattr(self.model_tester , '''key_length''' , lowercase__) __UpperCAmelCase : Any = getattr(self.model_tester , '''chunk_length''' , lowercase__) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''): __UpperCAmelCase : List[Any] = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Any = True __UpperCAmelCase : List[str] = model_class(lowercase__) __UpperCAmelCase : Tuple = model(**self._prepare_for_class(lowercase__ , lowercase__) , training=lowercase__) __UpperCAmelCase : Union[str, Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowercase__) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : List[str] = True __UpperCAmelCase : Optional[int] = model_class(lowercase__) __UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(lowercase__ , lowercase__) , training=lowercase__) __UpperCAmelCase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowercase__) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def A( self): # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __UpperCAmelCase : List[Any] = model_class(lowercase__) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __UpperCAmelCase : Optional[int] = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowercase__) for key, val in model.input_signature.items() if key in model.dummy_inputs } __UpperCAmelCase : Union[str, Any] = model(lowercase__) self.assertTrue(outputs_dict is not None) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''') if is_vision_available() else None ) @slow def A( self): __UpperCAmelCase : List[str] = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''') __UpperCAmelCase : str = self.default_image_processor __UpperCAmelCase : str = prepare_img() __UpperCAmelCase : List[str] = image_processor(images=lowercase__ , return_tensors='''tf''') # forward pass __UpperCAmelCase : Any = model(**lowercase__ , training=lowercase__) # verify the logits __UpperCAmelCase : Optional[Any] = tf.TensorShape((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , lowercase__) __UpperCAmelCase : List[str] = tf.constant([-0.0_5_5_5, 0.4_8_2_5, -0.0_8_5_2]) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''') __UpperCAmelCase : Optional[Any] = self.default_image_processor __UpperCAmelCase : Any = prepare_img() __UpperCAmelCase : List[Any] = image_processor(images=lowercase__ , return_tensors='''tf''') # forward pass __UpperCAmelCase : Union[str, Any] = model(**lowercase__ , training=lowercase__) # verify the logits __UpperCAmelCase : Union[str, Any] = tf.TensorShape((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , lowercase__) __UpperCAmelCase : str = tf.constant([-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9]) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4))
675
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
1
from __future__ import annotations import math lowerCAmelCase = """2020.9.26""" lowerCAmelCase = """xcodz-dot, cclaus, dhruvmanila""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, float]: '''simple docstring''' if not all(isinstance(lowercase_ , (float, int) ) for val in locals().values() ): __UpperCAmelCase : Tuple = f"Input values must either be float or int: {list(locals().values() )}" raise TypeError(lowercase_ ) __UpperCAmelCase : List[Any] = ((x * distance) / (z + distance)) * scale __UpperCAmelCase : Tuple = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, float, float]: '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ): raise TypeError('''Axis must be a str''' ) __UpperCAmelCase : Any = locals() del input_variables["axis"] if not all(isinstance(lowercase_ , (float, int) ) for val in input_variables.values() ): __UpperCAmelCase : Union[str, Any] = ( '''Input values except axis must either be float or int: ''' f"{list(input_variables.values() )}" ) raise TypeError(lowercase_ ) __UpperCAmelCase : Tuple = (angle % 360) / 450 * 180 / math.pi if axis == "z": __UpperCAmelCase : Any = x * math.cos(lowercase_ ) - y * math.sin(lowercase_ ) __UpperCAmelCase : Tuple = y * math.cos(lowercase_ ) + x * math.sin(lowercase_ ) __UpperCAmelCase : List[Any] = z elif axis == "x": __UpperCAmelCase : Union[str, Any] = y * math.cos(lowercase_ ) - z * math.sin(lowercase_ ) __UpperCAmelCase : str = z * math.cos(lowercase_ ) + y * math.sin(lowercase_ ) __UpperCAmelCase : Any = x elif axis == "y": __UpperCAmelCase : str = x * math.cos(lowercase_ ) - z * math.sin(lowercase_ ) __UpperCAmelCase : Any = z * math.cos(lowercase_ ) + x * math.sin(lowercase_ ) __UpperCAmelCase : str = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }') print(F'{rotate(1.0, 2.0, 3.0, "y", 90.0) = }')
675
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
1
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:] __UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''bert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : List[Any] = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase = {"""configuration_unispeech""": ["""UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP""", """UniSpeechConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST""", """UniSpeechForCTC""", """UniSpeechForPreTraining""", """UniSpeechForSequenceClassification""", """UniSpeechModel""", """UniSpeechPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
675
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
1
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = [1] for i in range(2 , lowercase_ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __UpperCAmelCase : Any = [] __UpperCAmelCase : List[Any] = list(range(lowercase_ ) ) # Find permutation while factorials: __UpperCAmelCase : Optional[Any] = factorials.pop() __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = divmod(lowercase_ , lowercase_ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
675
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
1
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCAmelCase = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCamelCase ( datasets.BuilderConfig ): _lowerCAmelCase : Optional[datasets.Features] = None _lowerCAmelCase : str = "utf-8" _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = True # deprecated _lowerCAmelCase : Optional[int] = None # deprecated _lowerCAmelCase : int = 1_0 << 2_0 # 10MB _lowerCAmelCase : Optional[bool] = None class lowerCamelCase ( datasets.ArrowBasedBuilder ): _lowerCAmelCase : Optional[Any] = JsonConfig def A( self): if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''') __UpperCAmelCase : Optional[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''') if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''') return datasets.DatasetInfo(features=self.config.features) def A( self , lowercase__): if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}") __UpperCAmelCase : Optional[int] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowercase__ , (str, list, tuple)): __UpperCAmelCase : Any = data_files if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : List[str] = [files] __UpperCAmelCase : str = [dl_manager.iter_files(lowercase__) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})] __UpperCAmelCase : int = [] for split_name, files in data_files.items(): if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : str = [files] __UpperCAmelCase : Dict = [dl_manager.iter_files(lowercase__) for file in files] splits.append(datasets.SplitGenerator(name=lowercase__ , gen_kwargs={'''files''': files})) return splits def A( self , lowercase__): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): __UpperCAmelCase : Optional[int] = self.config.features.arrow_schema.field(lowercase__).type __UpperCAmelCase : List[Any] = pa_table.append_column(lowercase__ , pa.array([None] * len(lowercase__) , type=lowercase__)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example __UpperCAmelCase : str = table_cast(lowercase__ , self.config.features.arrow_schema) return pa_table def A( self , lowercase__): for file_idx, file in enumerate(itertools.chain.from_iterable(lowercase__)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(lowercase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: __UpperCAmelCase : int = json.load(lowercase__) # We keep only the field we are interested in __UpperCAmelCase : List[Any] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(lowercase__ , (list, tuple)): __UpperCAmelCase : Any = set().union(*[row.keys() for row in dataset]) __UpperCAmelCase : str = {col: [row.get(lowercase__) for row in dataset] for col in keys} else: __UpperCAmelCase : List[str] = dataset __UpperCAmelCase : Any = pa.Table.from_pydict(lowercase__) yield file_idx, self._cast_table(lowercase__) # If the file has one json object per line else: with open(lowercase__ , '''rb''') as f: __UpperCAmelCase : Any = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small __UpperCAmelCase : Dict = max(self.config.chunksize // 3_2 , 1_6 << 1_0) __UpperCAmelCase : Any = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: __UpperCAmelCase : Optional[Any] = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(lowercase__) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": __UpperCAmelCase : Optional[Any] = batch.decode(self.config.encoding , errors=lowercase__).encode('''utf-8''') try: while True: try: __UpperCAmelCase : str = paj.read_json( io.BytesIO(lowercase__) , read_options=paj.ReadOptions(block_size=lowercase__)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(lowercase__ , pa.ArrowInvalid) and "straddling" not in str(lowercase__) or block_size > len(lowercase__) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"Batch of {len(lowercase__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.") block_size *= 2 except pa.ArrowInvalid as e: try: with open( lowercase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: __UpperCAmelCase : int = json.load(lowercase__) except json.JSONDecodeError: logger.error(F"Failed to read file '{file}' with error {type(lowercase__)}: {e}") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(lowercase__ , lowercase__): # list is the only sequence type supported in JSON try: __UpperCAmelCase : Optional[Any] = set().union(*[row.keys() for row in dataset]) __UpperCAmelCase : Union[str, Any] = {col: [row.get(lowercase__) for row in dataset] for col in keys} __UpperCAmelCase : Union[str, Any] = pa.Table.from_pydict(lowercase__) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"Failed to read file '{file}' with error {type(lowercase__)}: {e}") raise ValueError(F"Not able to read records in the JSON file at {file}.") from None yield file_idx, self._cast_table(lowercase__) break else: logger.error(F"Failed to read file '{file}' with error {type(lowercase__)}: {e}") raise ValueError( F"Not able to read records in the JSON file at {file}. " F"You should probably indicate the field of the JSON file containing your records. " F"This JSON file contain the following fields: {str(list(dataset.keys()))}. " F"Select the correct one and provide it as `field='XXX'` to the dataset loading method. ") from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowercase__) batch_idx += 1
675
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
675
1
from timeit import timeit lowerCAmelCase = { """MALAYALAM""": True, """String""": False, """rotor""": True, """level""": True, """A""": True, """BB""": True, """ABC""": False, """amanaplanacanalpanama""": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Any = len(lowercase_ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : Any = len(lowercase_ ) // 2 __UpperCAmelCase : Any = len(lowercase_ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool: '''simple docstring''' if len(lowercase_ ) <= 2: return True if s[0] == s[len(lowercase_ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool: '''simple docstring''' return s == s[::-1] def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' __UpperCAmelCase : int = f"all({name}(key) is value for key, value in test_data.items())" __UpperCAmelCase : Optional[int] = f"from __main__ import test_data, {name}" __UpperCAmelCase : Optional[Any] = 500000 __UpperCAmelCase : List[Any] = timeit(stmt=lowercase_ , setup=lowercase_ , number=lowercase_ ) print(f"{name:<35} finished {number:,} runs in {result:.5f} seconds" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F'{key:21} {value}') print("""a man a plan a canal panama""") # finished 500,000 runs in 0.46793 seconds benchmark_function("""is_palindrome_slice""") # finished 500,000 runs in 0.85234 seconds benchmark_function("""is_palindrome""") # finished 500,000 runs in 1.32028 seconds benchmark_function("""is_palindrome_recursive""") # finished 500,000 runs in 2.08679 seconds benchmark_function("""is_palindrome_traversal""")
675
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
675
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Optional[int] = ['''pixel_values'''] def __init__( self , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = True , lowercase__ = 1 / 2_5_5 , lowercase__ = True , lowercase__ = None , lowercase__ = None , lowercase__ = True , **lowercase__ , ): super().__init__(**lowercase__) __UpperCAmelCase : Any = size if size is not None else {'''shortest_edge''': 2_2_4} __UpperCAmelCase : str = get_size_dict(lowercase__ , default_to_square=lowercase__) __UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} __UpperCAmelCase : str = get_size_dict(lowercase__ , default_to_square=lowercase__ , param_name='''crop_size''') __UpperCAmelCase : List[Any] = do_resize __UpperCAmelCase : List[Any] = size __UpperCAmelCase : Optional[int] = resample __UpperCAmelCase : List[Any] = do_center_crop __UpperCAmelCase : Union[str, Any] = crop_size __UpperCAmelCase : Optional[int] = do_rescale __UpperCAmelCase : Optional[int] = rescale_factor __UpperCAmelCase : List[Any] = do_normalize __UpperCAmelCase : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCAmelCase : Tuple = image_std if image_std is not None else OPENAI_CLIP_STD __UpperCAmelCase : List[str] = do_convert_rgb def A( self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): __UpperCAmelCase : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") __UpperCAmelCase : str = get_resize_output_image_size(lowercase__ , size=size['''shortest_edge'''] , default_to_square=lowercase__) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): __UpperCAmelCase : str = get_size_dict(lowercase__) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}") return center_crop(lowercase__ , size=(size['''height'''], size['''width''']) , data_format=lowercase__ , **lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__) def A( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): __UpperCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Dict = size if size is not None else self.size __UpperCAmelCase : Tuple = get_size_dict(lowercase__ , param_name='''size''' , default_to_square=lowercase__) __UpperCAmelCase : str = resample if resample is not None else self.resample __UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Dict = get_size_dict(lowercase__ , param_name='''crop_size''' , default_to_square=lowercase__) __UpperCAmelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : List[str] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Optional[Any] = image_std if image_std is not None else self.image_std __UpperCAmelCase : List[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCAmelCase : Union[str, Any] = make_list_of_images(lowercase__) if not valid_images(lowercase__): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCAmelCase : Optional[Any] = [convert_to_rgb(lowercase__) for image in images] # All transformations expect numpy arrays. __UpperCAmelCase : Tuple = [to_numpy_array(lowercase__) for image in images] if do_resize: __UpperCAmelCase : Dict = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__) for image in images] if do_center_crop: __UpperCAmelCase : Union[str, Any] = [self.center_crop(image=lowercase__ , size=lowercase__) for image in images] if do_rescale: __UpperCAmelCase : List[str] = [self.rescale(image=lowercase__ , scale=lowercase__) for image in images] if do_normalize: __UpperCAmelCase : List[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__) for image in images] __UpperCAmelCase : Optional[int] = [to_channel_dimension_format(lowercase__ , lowercase__) for image in images] __UpperCAmelCase : int = {'''pixel_values''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__)
675
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ = 4 ) -> list[list[int]]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = abs(lowercase_ ) or 4 return [[1 + x + y * row_size for x in range(lowercase_ )] for y in range(lowercase_ )] def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[list[int]]: '''simple docstring''' return reverse_row(transpose(lowercase_ ) ) # OR.. transpose(reverse_column(matrix)) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[list[int]]: '''simple docstring''' return reverse_row(reverse_column(lowercase_ ) ) # OR.. reverse_column(reverse_row(matrix)) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[list[int]]: '''simple docstring''' return reverse_column(transpose(lowercase_ ) ) # OR.. transpose(reverse_row(matrix)) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[list[int]]: '''simple docstring''' __UpperCAmelCase : Any = [list(lowercase_ ) for x in zip(*lowercase_ )] return matrix def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[list[int]]: '''simple docstring''' __UpperCAmelCase : Tuple = matrix[::-1] return matrix def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[list[int]]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = [x[::-1] for x in matrix] return matrix def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' for i in matrix: print(*lowercase_ ) if __name__ == "__main__": lowerCAmelCase = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 90 counterclockwise:\n""") print_matrix(rotate_aa(matrix)) lowerCAmelCase = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 180:\n""") print_matrix(rotate_aaa(matrix)) lowerCAmelCase = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 270 counterclockwise:\n""") print_matrix(rotate_aaa(matrix))
675
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
1
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : int = GPTSanJapaneseTokenizer _lowerCAmelCase : Tuple = False _lowerCAmelCase : Tuple = {'''do_clean_text''': False, '''add_prefix_space''': False} def A( self): super().setUp() # fmt: off __UpperCAmelCase : Union[str, Any] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on __UpperCAmelCase : str = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 __UpperCAmelCase : Union[str, Any] = {'''unk_token''': '''<unk>'''} __UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) __UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) with open(self.emoji_file , '''w''') as emoji_writer: emoji_writer.write(json.dumps(lowercase__)) def A( self , **lowercase__): kwargs.update(self.special_tokens_map) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowercase__) def A( self , lowercase__): __UpperCAmelCase : Optional[Any] = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' __UpperCAmelCase : Tuple = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def A( self , lowercase__): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.get_input_output_texts(lowercase__) __UpperCAmelCase : Tuple = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__) __UpperCAmelCase : Dict = tokenizer.decode(lowercase__ , clean_up_tokenization_spaces=lowercase__) return text, ids def A( self): pass # TODO add if relevant def A( self): pass # TODO add if relevant def A( self): pass # TODO add if relevant def A( self): __UpperCAmelCase : List[Any] = self.get_tokenizer() # Testing tokenization __UpperCAmelCase : Any = '''こんにちは、世界。 こんばんは、㔺界。''' __UpperCAmelCase : List[Any] = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] __UpperCAmelCase : List[Any] = tokenizer.tokenize(lowercase__) self.assertListEqual(lowercase__ , lowercase__) # Testing conversion to ids without special tokens __UpperCAmelCase : List[Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __UpperCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(lowercase__) self.assertListEqual(lowercase__ , lowercase__) # Testing conversion to ids with special tokens __UpperCAmelCase : Optional[Any] = tokens + [tokenizer.unk_token] __UpperCAmelCase : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] __UpperCAmelCase : Dict = tokenizer.convert_tokens_to_ids(lowercase__) self.assertListEqual(lowercase__ , lowercase__) def A( self): __UpperCAmelCase : str = self.get_tokenizer() # Testing tokenization __UpperCAmelCase : List[str] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' __UpperCAmelCase : Optional[Any] = '''こんにちは、、、、世界。こんばんは、、、、世界。''' __UpperCAmelCase : Any = tokenizer.encode(lowercase__) __UpperCAmelCase : List[Any] = tokenizer.decode(lowercase__) self.assertEqual(lowercase__ , lowercase__) @slow def A( self): __UpperCAmelCase : List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''') # Testing tokenization __UpperCAmelCase : Dict = '''こんにちは、世界。''' __UpperCAmelCase : List[str] = '''こんばんは、㔺界。😀''' __UpperCAmelCase : Union[str, Any] = '''こんにちは、世界。こんばんは、世界。😀''' __UpperCAmelCase : Optional[Any] = tokenizer.encode(prefix_text + input_text) __UpperCAmelCase : int = tokenizer.encode('''''' , prefix_text=prefix_text + input_text) __UpperCAmelCase : List[Any] = tokenizer.encode(lowercase__ , prefix_text=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(lowercase__) __UpperCAmelCase : Tuple = tokenizer.decode(lowercase__) __UpperCAmelCase : Optional[Any] = tokenizer.decode(lowercase__) self.assertEqual(lowercase__ , lowercase__) self.assertEqual(lowercase__ , lowercase__) self.assertEqual(lowercase__ , lowercase__) @slow def A( self): __UpperCAmelCase : int = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''') # Testing tokenization __UpperCAmelCase : Tuple = '''こんにちは、世界。''' __UpperCAmelCase : List[Any] = '''こんばんは、㔺界。😀''' __UpperCAmelCase : Union[str, Any] = len(tokenizer.encode(lowercase__)) - 2 __UpperCAmelCase : Tuple = len(tokenizer.encode(lowercase__)) - 2 __UpperCAmelCase : int = [1] + [0] * (len_prefix + len_text + 1) __UpperCAmelCase : Optional[Any] = [1] * (len_prefix + len_text + 1) + [0] __UpperCAmelCase : Dict = [1] + [1] * (len_prefix) + [0] * (len_text + 1) __UpperCAmelCase : List[Any] = tokenizer(prefix_text + input_text).token_type_ids __UpperCAmelCase : int = tokenizer('''''' , prefix_text=prefix_text + input_text).token_type_ids __UpperCAmelCase : int = tokenizer(lowercase__ , prefix_text=lowercase__).token_type_ids self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , lowercase__) @slow def A( self): __UpperCAmelCase : str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''') __UpperCAmelCase : Union[str, Any] = tokenizer.encode('''あンいワ''') __UpperCAmelCase : str = tokenizer.encode('''''' , prefix_text='''あンいワ''') __UpperCAmelCase : Optional[Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''') self.assertEqual(tokenizer.decode(lowercase__) , tokenizer.decode(lowercase__)) self.assertEqual(tokenizer.decode(lowercase__) , tokenizer.decode(lowercase__)) self.assertNotEqual(lowercase__ , lowercase__) self.assertNotEqual(lowercase__ , lowercase__) self.assertEqual(x_token_a[1] , x_token_a[-1]) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3]) # SEG token @slow def A( self): __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''') __UpperCAmelCase : List[str] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] __UpperCAmelCase : List[Any] = tokenizer(lowercase__ , padding=lowercase__) __UpperCAmelCase : Tuple = tokenizer.batch_encode_plus(lowercase__ , padding=lowercase__) # fmt: off __UpperCAmelCase : str = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] __UpperCAmelCase : List[str] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __UpperCAmelCase : int = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowercase__) self.assertListEqual(x_token.token_type_ids , lowercase__) self.assertListEqual(x_token.attention_mask , lowercase__) self.assertListEqual(x_token_a.input_ids , lowercase__) self.assertListEqual(x_token_a.token_type_ids , lowercase__) self.assertListEqual(x_token_a.attention_mask , lowercase__) def A( self): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def A( self): # tokenizer has no padding token pass
675
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
1
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any: '''simple docstring''' __UpperCAmelCase : str = set() __UpperCAmelCase : Any = [] def parse_line(lowercase_ ): for line in fp: if isinstance(lowercase_ , lowercase_ ): __UpperCAmelCase : List[Any] = line.decode('''UTF-8''' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(''' ''' ): # process a single warning and move it to `selected_warnings`. if len(lowercase_ ) > 0: __UpperCAmelCase : Any = '''\n'''.join(lowercase_ ) # Only keep the warnings specified in `targets` if any(f": {x}: " in warning for x in targets ): selected_warnings.add(lowercase_ ) buffer.clear() continue else: __UpperCAmelCase : str = line.strip() buffer.append(lowercase_ ) if from_gh: for filename in os.listdir(lowercase_ ): __UpperCAmelCase : Optional[Any] = os.path.join(lowercase_ , lowercase_ ) if not os.path.isdir(lowercase_ ): # read the file if filename != "warnings.txt": continue with open(lowercase_ ) as fp: parse_line(lowercase_ ) else: try: with zipfile.ZipFile(lowercase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase_ ): # read the file if filename != "warnings.txt": continue with z.open(lowercase_ ) as fp: parse_line(lowercase_ ) except Exception: logger.warning( f"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." ) return selected_warnings def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[Any] = set() __UpperCAmelCase : Optional[Any] = [os.path.join(lowercase_ , lowercase_ ) for p in os.listdir(lowercase_ ) if (p.endswith('''.zip''' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowercase_ , lowercase_ ) ) return selected_warnings if __name__ == "__main__": def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: '''simple docstring''' return values.split(''',''' ) lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links lowerCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts lowerCAmelCase = extract_warnings(args.output_dir, args.targets) lowerCAmelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
675
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
1
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
675
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Dict = '''instructblip_vision_model''' def __init__( self , lowercase__=1_4_0_8 , lowercase__=6_1_4_4 , lowercase__=3_9 , lowercase__=1_6 , lowercase__=2_2_4 , lowercase__=1_4 , lowercase__="gelu" , lowercase__=1e-6 , lowercase__=0.0 , lowercase__=1e-10 , lowercase__=True , **lowercase__ , ): super().__init__(**lowercase__) __UpperCAmelCase : str = hidden_size __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[str] = patch_size __UpperCAmelCase : Union[str, Any] = image_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Union[str, Any] = attention_dropout __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : str = qkv_bias @classmethod def A( cls , lowercase__ , **lowercase__): cls._set_token_in_kwargs(lowercase__) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase__ , **lowercase__) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''') == "instructblip": __UpperCAmelCase : Any = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(lowercase__ , **lowercase__) class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[Any] = '''instructblip_qformer''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=2 , lowercase__=1_4_0_8 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : List[str] = layer_norm_eps __UpperCAmelCase : Union[str, Any] = position_embedding_type __UpperCAmelCase : List[Any] = cross_attention_frequency __UpperCAmelCase : List[str] = encoder_hidden_size @classmethod def A( cls , lowercase__ , **lowercase__): cls._set_token_in_kwargs(lowercase__) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase__ , **lowercase__) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''') == "instructblip": __UpperCAmelCase : List[str] = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(lowercase__ , **lowercase__) class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : str = '''instructblip''' _lowerCAmelCase : int = True def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=3_2 , **lowercase__): super().__init__(**lowercase__) if vision_config is None: __UpperCAmelCase : int = {} logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''') if qformer_config is None: __UpperCAmelCase : Dict = {} logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''') if text_config is None: __UpperCAmelCase : Dict = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''') __UpperCAmelCase : Dict = InstructBlipVisionConfig(**lowercase__) __UpperCAmelCase : Optional[Any] = InstructBlipQFormerConfig(**lowercase__) __UpperCAmelCase : int = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __UpperCAmelCase : Dict = CONFIG_MAPPING[text_model_type](**lowercase__) __UpperCAmelCase : int = self.text_config.tie_word_embeddings __UpperCAmelCase : List[str] = self.text_config.is_encoder_decoder __UpperCAmelCase : Optional[int] = num_query_tokens __UpperCAmelCase : List[Any] = self.vision_config.hidden_size __UpperCAmelCase : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __UpperCAmelCase : Optional[Any] = 1.0 __UpperCAmelCase : List[Any] = 0.0_2 @classmethod def A( cls , lowercase__ , lowercase__ , lowercase__ , **lowercase__ , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase__ , ) def A( self): __UpperCAmelCase : Optional[Any] = copy.deepcopy(self.__dict__) __UpperCAmelCase : int = self.vision_config.to_dict() __UpperCAmelCase : Dict = self.qformer_config.to_dict() __UpperCAmelCase : Optional[int] = self.text_config.to_dict() __UpperCAmelCase : Tuple = self.__class__.model_type return output
675
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
1
from math import sqrt def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 for i in range(1 , int(sqrt(lowercase_ ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase_ ): total += i + n // i elif i == sqrt(lowercase_ ): total += i return total - n def __SCREAMING_SNAKE_CASE ( lowercase_ = 10000 ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = sum( i for i in range(1 , lowercase_ ) if sum_of_divisors(sum_of_divisors(lowercase_ ) ) == i and sum_of_divisors(lowercase_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
675
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[Union[str, Path]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 1 _lowerCAmelCase : Optional[Union[str, bool]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None def A( self): return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
675
1
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class lowerCamelCase ( nn.Module ): def __init__( self): super().__init__() __UpperCAmelCase : int = nn.Linear(3 , 4) __UpperCAmelCase : Tuple = nn.BatchNormad(4) __UpperCAmelCase : str = nn.Linear(4 , 5) def A( self , lowercase__): return self.lineara(self.batchnorm(self.lineara(lowercase__))) class lowerCamelCase ( _UpperCamelCase ): def A( self , lowercase__ , *lowercase__ , **lowercase__): return (args[0] + 1,) + args[1:], kwargs class lowerCamelCase ( _UpperCamelCase ): def A( self , lowercase__ , lowercase__): return output + 1 class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : Union[str, Any] = ModelForTest() __UpperCAmelCase : str = ModelHook() add_hook_to_module(lowercase__ , lowercase__) self.assertEqual(test_model._hf_hook , lowercase__) self.assertTrue(hasattr(lowercase__ , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(lowercase__) self.assertFalse(hasattr(lowercase__ , '''_hf_hook''')) self.assertFalse(hasattr(lowercase__ , '''_old_forward''')) def A( self): __UpperCAmelCase : Optional[int] = ModelForTest() __UpperCAmelCase : str = ModelHook() add_hook_to_module(lowercase__ , lowercase__) add_hook_to_module(lowercase__ , lowercase__ , append=lowercase__) self.assertEqual(isinstance(test_model._hf_hook , lowercase__) , lowercase__) self.assertEqual(len(test_model._hf_hook.hooks) , 2) self.assertTrue(hasattr(lowercase__ , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(lowercase__) self.assertFalse(hasattr(lowercase__ , '''_hf_hook''')) self.assertFalse(hasattr(lowercase__ , '''_old_forward''')) def A( self): __UpperCAmelCase : Tuple = ModelForTest() __UpperCAmelCase : Union[str, Any] = torch.randn(2 , 3) __UpperCAmelCase : str = test_model(x + 1) __UpperCAmelCase : List[Any] = test_model(x + 2) __UpperCAmelCase : Union[str, Any] = PreForwardHook() add_hook_to_module(lowercase__ , lowercase__) __UpperCAmelCase : List[Any] = test_model(lowercase__) self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-5)) # Attaching a hook to a model when it already has one replaces, does not chain __UpperCAmelCase : Union[str, Any] = PreForwardHook() add_hook_to_module(lowercase__ , lowercase__) __UpperCAmelCase : List[Any] = test_model(lowercase__) self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-5)) # You need to use the sequential hook to chain two or more hooks __UpperCAmelCase : Optional[Any] = SequentialHook(PreForwardHook() , PreForwardHook()) add_hook_to_module(lowercase__ , lowercase__) __UpperCAmelCase : Optional[int] = test_model(lowercase__) assert torch.allclose(lowercase__ , lowercase__ , atol=1e-5) def A( self): __UpperCAmelCase : Optional[int] = ModelForTest() __UpperCAmelCase : Dict = torch.randn(2 , 3) __UpperCAmelCase : List[str] = test_model(lowercase__) __UpperCAmelCase : Optional[Any] = PostForwardHook() add_hook_to_module(lowercase__ , lowercase__) __UpperCAmelCase : str = test_model(lowercase__) self.assertTrue(torch.allclose(lowercase__ , output + 1 , atol=1e-5)) # Attaching a hook to a model when it already has one replaces, does not chain __UpperCAmelCase : Optional[int] = PostForwardHook() add_hook_to_module(lowercase__ , lowercase__) __UpperCAmelCase : Any = test_model(lowercase__) self.assertTrue(torch.allclose(lowercase__ , output + 1 , atol=1e-5)) # You need to use the sequential hook to chain two or more hooks __UpperCAmelCase : Any = SequentialHook(PostForwardHook() , PostForwardHook()) add_hook_to_module(lowercase__ , lowercase__) __UpperCAmelCase : List[Any] = test_model(lowercase__) assert torch.allclose(lowercase__ , output + 2 , atol=1e-5) def A( self): __UpperCAmelCase : Optional[int] = ModelForTest() __UpperCAmelCase : Any = torch.randn(2 , 3) __UpperCAmelCase : Optional[Any] = test_model(lowercase__) __UpperCAmelCase : Tuple = PostForwardHook() add_hook_to_module(lowercase__ , lowercase__) __UpperCAmelCase : Optional[Any] = test_model(lowercase__) self.assertTrue(torch.allclose(lowercase__ , output + 1)) self.assertTrue(outputa.requires_grad) __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Dict = test_model(lowercase__) self.assertFalse(outputa.requires_grad) @require_multi_gpu def A( self): __UpperCAmelCase : str = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1)) self.assertEqual(model.lineara.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0)) self.assertEqual(model.lineara.weight.device , torch.device(1)) # We can still make a forward pass. The input does not need to be on any particular device __UpperCAmelCase : Any = torch.randn(2 , 3) __UpperCAmelCase : Union[str, Any] = model(lowercase__) self.assertEqual(output.device , torch.device(1)) # We can add a general hook to put back output on same device as input. add_hook_to_module(lowercase__ , AlignDevicesHook(io_same_device=lowercase__)) __UpperCAmelCase : int = torch.randn(2 , 3).to(0) __UpperCAmelCase : str = model(lowercase__) self.assertEqual(output.device , torch.device(0)) def A( self): __UpperCAmelCase : List[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices __UpperCAmelCase : List[str] = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase__)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowercase__)) add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase__)) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device __UpperCAmelCase : Dict = torch.device(hook_kwargs['''execution_device''']) self.assertEqual(model.batchnorm.running_mean.device , lowercase__) __UpperCAmelCase : str = torch.randn(2 , 3) __UpperCAmelCase : int = model(lowercase__) self.assertEqual(output.device , lowercase__) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload __UpperCAmelCase : str = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase__)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowercase__)) add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase__)) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) __UpperCAmelCase : Dict = torch.randn(2 , 3) __UpperCAmelCase : Optional[int] = model(lowercase__) self.assertEqual(output.device , lowercase__) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def A( self): __UpperCAmelCase : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices __UpperCAmelCase : str = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(lowercase__ , execution_device=lowercase__ , offload=lowercase__) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device __UpperCAmelCase : Union[str, Any] = torch.device(lowercase__) self.assertEqual(model.batchnorm.running_mean.device , lowercase__) __UpperCAmelCase : Optional[Any] = torch.randn(2 , 3) __UpperCAmelCase : Any = model(lowercase__) self.assertEqual(output.device , lowercase__) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase__) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook(lowercase__ , execution_device=lowercase__ , offload=lowercase__ , offload_buffers=lowercase__) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) __UpperCAmelCase : List[str] = torch.randn(2 , 3) __UpperCAmelCase : int = model(lowercase__) self.assertEqual(output.device , lowercase__) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase__) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def A( self): __UpperCAmelCase : Dict = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices __UpperCAmelCase : Tuple = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( lowercase__ , execution_device=lowercase__ , offload=lowercase__ , weights_map=model.state_dict()) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device __UpperCAmelCase : Optional[int] = torch.device(lowercase__) self.assertEqual(model.batchnorm.running_mean.device , lowercase__) __UpperCAmelCase : Optional[int] = torch.randn(2 , 3) __UpperCAmelCase : str = model(lowercase__) self.assertEqual(output.device , lowercase__) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase__) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook( lowercase__ , execution_device=lowercase__ , offload=lowercase__ , weights_map=model.state_dict() , offload_buffers=lowercase__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) __UpperCAmelCase : Dict = torch.randn(2 , 3) __UpperCAmelCase : Dict = model(lowercase__) self.assertEqual(output.device , lowercase__) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase__) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
675
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:] __UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
1
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase : def __init__( self , lowercase__): __UpperCAmelCase : List[str] = str(id_) __UpperCAmelCase : str = None __UpperCAmelCase : Any = None __UpperCAmelCase : str = [] __UpperCAmelCase : Union[str, Any] = {} # {vertex:distance} def __lt__( self , lowercase__): return self.key < other.key def __repr__( self): return self.id def A( self , lowercase__): self.neighbors.append(lowercase__) def A( self , lowercase__ , lowercase__): __UpperCAmelCase : int = weight def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowercase_ ) graph[b - 1].add_edge(graph[a - 1] , lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : int = [] for u in graph: __UpperCAmelCase : List[str] = math.inf __UpperCAmelCase : Optional[Any] = None __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : Tuple = graph[:] while q: __UpperCAmelCase : Any = min(lowercase_ ) q.remove(lowercase_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __UpperCAmelCase : List[Any] = u __UpperCAmelCase : List[str] = u.edges[v.id] for i in range(1 , len(lowercase_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Iterator[tuple]: '''simple docstring''' for u in graph: __UpperCAmelCase : Any = math.inf __UpperCAmelCase : Optional[Any] = None __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Any = list(lowercase_ ) hq.heapify(lowercase_ ) while h: __UpperCAmelCase : Union[str, Any] = hq.heappop(lowercase_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __UpperCAmelCase : Any = u __UpperCAmelCase : Dict = u.edges[v.id] hq.heapify(lowercase_ ) for i in range(1 , len(lowercase_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
675
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[list[int]]: '''simple docstring''' __UpperCAmelCase : list[list[int]] = [] __UpperCAmelCase : list[int] = [] __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : int = sum(lowercase_ ) create_state_space_tree(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return result def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> None: '''simple docstring''' if sum(lowercase_ ) > max_sum or (remaining_nums_sum + sum(lowercase_ )) < max_sum: return if sum(lowercase_ ) == max_sum: result.append(lowercase_ ) return for index in range(lowercase_ , len(lowercase_ ) ): create_state_space_tree( lowercase_ , lowercase_ , index + 1 , [*path, nums[index]] , lowercase_ , remaining_nums_sum - nums[index] , ) lowerCAmelCase = [3, 34, 4, 12, 5, 2] lowerCAmelCase = 9 lowerCAmelCase = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
675
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase = 16 lowerCAmelCase = 32 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = 16 ) -> Any: '''simple docstring''' __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __UpperCAmelCase : Tuple = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowercase_ ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : Union[str, Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCAmelCase : Any = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCAmelCase : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCAmelCase : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCAmelCase : Optional[Any] = 16 elif accelerator.mixed_precision != "no": __UpperCAmelCase : List[Any] = 8 else: __UpperCAmelCase : str = None return tokenizer.pad( lowercase_ , padding='''longest''' , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors='''pt''' , ) # Instantiate dataloaders. __UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) __UpperCAmelCase : List[str] = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase = mocked_dataloaders # noqa: F811 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowercase_ ) == "1": __UpperCAmelCase : List[str] = 2 # New Code # __UpperCAmelCase : Tuple = int(args.gradient_accumulation_steps ) __UpperCAmelCase : int = int(args.local_sgd_steps ) # Initialize accelerator __UpperCAmelCase : Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase_ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCAmelCase : Tuple = config['''lr'''] __UpperCAmelCase : Dict = int(config['''num_epochs'''] ) __UpperCAmelCase : Union[str, Any] = int(config['''seed'''] ) __UpperCAmelCase : Dict = int(config['''batch_size'''] ) __UpperCAmelCase : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) set_seed(lowercase_ ) __UpperCAmelCase , __UpperCAmelCase : Dict = get_dataloaders(lowercase_ , lowercase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCAmelCase : str = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowercase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCAmelCase : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer __UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowercase_ ) # Instantiate scheduler __UpperCAmelCase : Optional[Any] = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=100 , num_training_steps=(len(lowercase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Now we train the model for epoch in range(lowercase_ ): model.train() with LocalSGD( accelerator=lowercase_ , model=lowercase_ , local_sgd_steps=lowercase_ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase_ ): __UpperCAmelCase : Optional[Any] = model(**lowercase_ ) __UpperCAmelCase : Union[str, Any] = output.loss accelerator.backward(lowercase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCAmelCase : List[str] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits.argmax(dim=-1 ) __UpperCAmelCase , __UpperCAmelCase : List[str] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) __UpperCAmelCase : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , lowercase_ ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowercase_ , default=lowercase_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=lowercase_ , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument( '''--local_sgd_steps''' , type=lowercase_ , default=8 , help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) __UpperCAmelCase : List[str] = parser.parse_args() __UpperCAmelCase : Optional[Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
675
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available lowerCAmelCase = {"""tokenization_herbert""": ["""HerbertTokenizer"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""HerbertTokenizerFast"""] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
675
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=3_2 , lowercase__=3 , lowercase__=4 , lowercase__=[1_0, 2_0, 3_0, 4_0] , lowercase__=[2, 2, 3, 2] , lowercase__=True , lowercase__=True , lowercase__=3_7 , lowercase__="gelu" , lowercase__=1_0 , lowercase__=0.0_2 , lowercase__=["stage2", "stage3", "stage4"] , lowercase__=3 , lowercase__=None , ): __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : Dict = image_size __UpperCAmelCase : str = num_channels __UpperCAmelCase : Optional[Any] = num_stages __UpperCAmelCase : Union[str, Any] = hidden_sizes __UpperCAmelCase : Optional[int] = depths __UpperCAmelCase : Union[str, Any] = is_training __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Union[str, Any] = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Union[str, Any] = out_features __UpperCAmelCase : Dict = num_labels __UpperCAmelCase : Union[str, Any] = scope __UpperCAmelCase : Optional[Any] = num_stages def A( self): __UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def A( self): return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def A( self): return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowercase__ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=lowercase__ , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = UperNetForSemanticSegmentation(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : str = model(lowercase__) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Optional[Any] = config_and_inputs __UpperCAmelCase : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Any = (UperNetForSemanticSegmentation,) if is_torch_available() else () _lowerCAmelCase : Dict = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} _lowerCAmelCase : int = False _lowerCAmelCase : Tuple = False _lowerCAmelCase : Tuple = False _lowerCAmelCase : int = False _lowerCAmelCase : Optional[int] = False _lowerCAmelCase : Tuple = False def A( self): __UpperCAmelCase : Dict = UperNetModelTester(self) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=3_7) def A( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A( self): return def A( self): __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(lowercase__) __UpperCAmelCase : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Dict = [*signature.parameters.keys()] __UpperCAmelCase : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__) def A( self): __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase__) @unittest.skip(reason='''UperNet does not use inputs_embeds''') def A( self): pass @unittest.skip(reason='''UperNet does not support input and output embeddings''') def A( self): pass @unittest.skip(reason='''UperNet does not have a base model''') def A( self): pass @unittest.skip(reason='''UperNet does not have a base model''') def A( self): pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''') def A( self): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def A( self): pass def A( self): def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = model_class(lowercase__) model.to(lowercase__) model.eval() with torch.no_grad(): __UpperCAmelCase : List[str] = model(**self._prepare_for_class(lowercase__ , lowercase__)) __UpperCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(lowercase__) , expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Dict = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : List[Any] = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = _config_zero_init(lowercase__) __UpperCAmelCase : Any = _config_zero_init(configs_no_init.backbone_config) for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = model_class(config=lowercase__) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip(reason='''UperNet does not have tied weights''') def A( self): pass @slow def A( self): for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = UperNetForSemanticSegmentation.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) __UpperCAmelCase : Tuple = Image.open(lowercase_ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : Any = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''') __UpperCAmelCase : Optional[Any] = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''').to(lowercase__) __UpperCAmelCase : Optional[int] = prepare_img() __UpperCAmelCase : Optional[Any] = processor(images=lowercase__ , return_tensors='''pt''').to(lowercase__) with torch.no_grad(): __UpperCAmelCase : Tuple = model(**lowercase__) __UpperCAmelCase : str = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2)) self.assertEqual(outputs.logits.shape , lowercase__) __UpperCAmelCase : List[str] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]]).to(lowercase__) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase__ , atol=1e-4)) def A( self): __UpperCAmelCase : List[Any] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''') __UpperCAmelCase : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''').to(lowercase__) __UpperCAmelCase : Tuple = prepare_img() __UpperCAmelCase : List[str] = processor(images=lowercase__ , return_tensors='''pt''').to(lowercase__) with torch.no_grad(): __UpperCAmelCase : str = model(**lowercase__) __UpperCAmelCase : int = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2)) self.assertEqual(outputs.logits.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]]).to(lowercase__) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase__ , atol=1e-4))
675
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
1
lowerCAmelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> list[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = set() # keep track of all the paths to be checked __UpperCAmelCase : Tuple = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __UpperCAmelCase : List[str] = queue.pop(0 ) # get the last node from the path __UpperCAmelCase : Any = path[-1] if node not in explored: __UpperCAmelCase : str = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __UpperCAmelCase : int = list(lowercase_ ) new_path.append(lowercase_ ) queue.append(lowercase_ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowercase_ ) # in case there's no path between the 2 nodes return [] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __UpperCAmelCase : Dict = [start] __UpperCAmelCase : Optional[int] = set(lowercase_ ) # Keep tab on distances from `start` node. __UpperCAmelCase : int = {start: 0, target: -1} while queue: __UpperCAmelCase : int = queue.pop(0 ) if node == target: __UpperCAmelCase : Dict = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowercase_ ) queue.append(lowercase_ ) __UpperCAmelCase : str = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, """G""", """D""")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, """G""", """D""")) # returns 4
675
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Union[List[PIL.Image.Image], np.ndarray] _lowerCAmelCase : Optional[List[bool]] _lowerCAmelCase : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
675
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
1
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCamelCase : _lowerCAmelCase : CommonSchedulerState # setable values _lowerCAmelCase : jnp.ndarray _lowerCAmelCase : jnp.ndarray _lowerCAmelCase : Optional[int] = None @classmethod def A( cls , lowercase__ , lowercase__ , lowercase__): return cls(common=lowercase__ , init_noise_sigma=lowercase__ , timesteps=lowercase__) @dataclass class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : DDPMSchedulerState class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): _lowerCAmelCase : Dict = [e.name for e in FlaxKarrasDiffusionSchedulers] _lowerCAmelCase : jnp.dtype @property def A( self): return True @register_to_config def __init__( self , lowercase__ = 1_0_0_0 , lowercase__ = 0.0_0_0_1 , lowercase__ = 0.0_2 , lowercase__ = "linear" , lowercase__ = None , lowercase__ = "fixed_small" , lowercase__ = True , lowercase__ = "epsilon" , lowercase__ = jnp.floataa , ): __UpperCAmelCase : Tuple = dtype def A( self , lowercase__ = None): if common is None: __UpperCAmelCase : Any = CommonSchedulerState.create(self) # standard deviation of the initial noise distribution __UpperCAmelCase : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype) __UpperCAmelCase : str = jnp.arange(0 , self.config.num_train_timesteps).round()[::-1] return DDPMSchedulerState.create( common=lowercase__ , init_noise_sigma=lowercase__ , timesteps=lowercase__ , ) def A( self , lowercase__ , lowercase__ , lowercase__ = None): return sample def A( self , lowercase__ , lowercase__ , lowercase__ = ()): __UpperCAmelCase : Tuple = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __UpperCAmelCase : Tuple = (jnp.arange(0 , lowercase__) * step_ratio).round()[::-1] return state.replace( num_inference_steps=lowercase__ , timesteps=lowercase__ , ) def A( self , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None): __UpperCAmelCase : List[str] = state.common.alphas_cumprod[t] __UpperCAmelCase : Optional[Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype)) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __UpperCAmelCase : Union[str, Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __UpperCAmelCase : List[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __UpperCAmelCase : Optional[int] = jnp.clip(lowercase__ , a_min=1e-20) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __UpperCAmelCase : List[Any] = jnp.log(jnp.clip(lowercase__ , a_min=1e-20)) elif variance_type == "fixed_large": __UpperCAmelCase : Dict = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __UpperCAmelCase : str = jnp.log(state.common.betas[t]) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __UpperCAmelCase : Optional[Any] = variance __UpperCAmelCase : Optional[Any] = state.common.betas[t] __UpperCAmelCase : Union[str, Any] = (predicted_variance + 1) / 2 __UpperCAmelCase : Optional[Any] = frac * max_log + (1 - frac) * min_log return variance def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = True , ): __UpperCAmelCase : int = timestep if key is None: __UpperCAmelCase : Any = jax.random.PRNGKey(0) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __UpperCAmelCase , __UpperCAmelCase : List[Any] = jnp.split(lowercase__ , sample.shape[1] , axis=1) else: __UpperCAmelCase : Dict = None # 1. compute alphas, betas __UpperCAmelCase : Dict = state.common.alphas_cumprod[t] __UpperCAmelCase : Optional[Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype)) __UpperCAmelCase : Tuple = 1 - alpha_prod_t __UpperCAmelCase : int = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __UpperCAmelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __UpperCAmelCase : Union[str, Any] = model_output elif self.config.prediction_type == "v_prediction": __UpperCAmelCase : List[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " ''' for the FlaxDDPMScheduler.''') # 3. Clip "predicted x_0" if self.config.clip_sample: __UpperCAmelCase : Any = jnp.clip(lowercase__ , -1 , 1) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCAmelCase : Any = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __UpperCAmelCase : Optional[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCAmelCase : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __UpperCAmelCase : Optional[Any] = jax.random.split(lowercase__ , num=1) __UpperCAmelCase : str = jax.random.normal(lowercase__ , shape=model_output.shape , dtype=self.dtype) return (self._get_variance(lowercase__ , lowercase__ , predicted_variance=lowercase__) ** 0.5) * noise __UpperCAmelCase : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype)) __UpperCAmelCase : int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=lowercase__ , state=lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): return add_noise_common(state.common , lowercase__ , lowercase__ , lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): return get_velocity_common(state.common , lowercase__ , lowercase__ , lowercase__) def __len__( self): return self.config.num_train_timesteps
675
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
1
lowerCAmelCase = tuple[float, float, float] lowerCAmelCase = tuple[float, float, float] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Vectorad: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = end_pointa[0] - end_pointa[0] __UpperCAmelCase : Union[str, Any] = end_pointa[1] - end_pointa[1] __UpperCAmelCase : List[str] = end_pointa[2] - end_pointa[2] return (x, y, z) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Vectorad: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ab[1] * ac[2] - ab[2] * ac[1] # *i __UpperCAmelCase : str = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __UpperCAmelCase : str = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' return tuple(round(lowercase_ , lowercase_ ) for x in vector ) == (0, 0, 0) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ = 10 ) -> bool: '''simple docstring''' __UpperCAmelCase : Tuple = create_vector(lowercase_ , lowercase_ ) __UpperCAmelCase : str = create_vector(lowercase_ , lowercase_ ) return is_zero_vector(get_ad_vectors_cross(lowercase_ , lowercase_ ) , lowercase_ )
675
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
1
from random import randint from tempfile import TemporaryFile import numpy as np def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = 0 if start < end: __UpperCAmelCase : List[str] = randint(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = a[end] __UpperCAmelCase : int = a[pivot] __UpperCAmelCase : List[Any] = temp __UpperCAmelCase , __UpperCAmelCase : Dict = _in_place_partition(lowercase_ , lowercase_ , lowercase_ ) count += _in_place_quick_sort(lowercase_ , lowercase_ , p - 1 ) count += _in_place_quick_sort(lowercase_ , p + 1 , lowercase_ ) return count def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : int = randint(lowercase_ , lowercase_ ) __UpperCAmelCase : Dict = a[end] __UpperCAmelCase : Any = a[pivot] __UpperCAmelCase : Optional[int] = temp __UpperCAmelCase : List[str] = start - 1 for index in range(lowercase_ , lowercase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value __UpperCAmelCase : Optional[int] = new_pivot_index + 1 __UpperCAmelCase : Union[str, Any] = a[new_pivot_index] __UpperCAmelCase : Optional[int] = a[index] __UpperCAmelCase : Optional[int] = temp __UpperCAmelCase : Tuple = a[new_pivot_index + 1] __UpperCAmelCase : Optional[Any] = a[end] __UpperCAmelCase : Optional[int] = temp return new_pivot_index + 1, count lowerCAmelCase = TemporaryFile() lowerCAmelCase = 100 # 1000 elements are to be sorted lowerCAmelCase ,lowerCAmelCase = 0, 1 # mean and standard deviation lowerCAmelCase = np.random.normal(mu, sigma, p) np.save(outfile, X) print("""The array is""") print(X) outfile.seek(0) # using the same array lowerCAmelCase = np.load(outfile) lowerCAmelCase = len(M) - 1 lowerCAmelCase = _in_place_quick_sort(M, 0, r) print( """No of Comparisons for 100 elements selected from a standard normal distribution""" """is :""" ) print(z)
675
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''bert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : List[Any] = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
1
from __future__ import annotations from math import pi def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> dict[str, float]: '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if inductance < 0: raise ValueError('''Inductance cannot be negative''' ) if frequency < 0: raise ValueError('''Frequency cannot be negative''' ) if reactance < 0: raise ValueError('''Inductive reactance cannot be negative''' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
675
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''pytorch''', '''script''': '''run_ddp.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf_dist.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.7}, }, ] ) class lowerCamelCase ( unittest.TestCase ): def A( self): if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='''utf-8''' , check=lowercase__ , ) assert hasattr(self , '''env''') def A( self , lowercase__): __UpperCAmelCase : List[Any] = F"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}" # distributed data settings __UpperCAmelCase : List[str] = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=lowercase__ , instance_count=lowercase__ , instance_type=self.instance_type , debugger_hook_config=lowercase__ , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=lowercase__ , py_version='''py36''' , ) def A( self , lowercase__): TrainingJobAnalytics(lowercase__).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv") @parameterized.expand([(2,)]) def A( self , lowercase__): # create estimator __UpperCAmelCase : int = self.create_estimator(lowercase__) # run training estimator.fit() # result dataframe __UpperCAmelCase : int = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis __UpperCAmelCase : Any = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value''']) __UpperCAmelCase : Any = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value''']) # get train time from SageMaker job, this includes starting, preprocessing, stopping __UpperCAmelCase : Any = ( Session().describe_training_job(estimator.latest_training_job.name).get('''TrainingTimeInSeconds''' , 9_9_9_9_9_9) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy) assert all(t <= self.results['''eval_loss'''] for t in eval_loss) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , '''w''') as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , lowercase__)
675
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' if len(lowercase_ ) < k or k < 0: raise ValueError('''Invalid Input''' ) __UpperCAmelCase : List[str] = sum(array[:k] ) for i in range(len(lowercase_ ) - k ): __UpperCAmelCase : int = current_sum - array[i] + array[i + k] __UpperCAmelCase : Optional[int] = max(lowercase_ , lowercase_ ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowerCAmelCase = [randint(-1_000, 1_000) for i in range(100)] lowerCAmelCase = randint(0, 110) print(F'The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}')
675
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
675
1
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class lowerCamelCase ( pl.LightningModule ): def __init__( self , lowercase__): super().__init__() __UpperCAmelCase : List[str] = model __UpperCAmelCase : List[str] = 2 __UpperCAmelCase : int = nn.Linear(self.model.config.hidden_size , self.num_labels) def A( self): pass def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = LongformerModel.from_pretrained(lowercase_ ) __UpperCAmelCase : List[Any] = LightningModel(lowercase_ ) __UpperCAmelCase : Any = torch.load(lowercase_ , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model __UpperCAmelCase : Optional[Any] = LongformerForQuestionAnswering.from_pretrained(lowercase_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowercase_ ) print(f"Conversion successful. Model saved under {pytorch_dump_folder_path}" ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--longformer_model""", default=None, type=str, required=True, help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""", ) parser.add_argument( """--longformer_question_answering_ckpt_path""", default=None, type=str, required=True, help="""Path the official PyTorch Lightning Checkpoint.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
675
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
675
1
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowerCAmelCase = """pytorch_model.bin""" lowerCAmelCase = """pytorch_model.bin.index.json""" lowerCAmelCase = """adapter_config.json""" lowerCAmelCase = """adapter_model.bin""" lowerCAmelCase = """adapter_model.safetensors""" lowerCAmelCase = """tf_model.h5""" lowerCAmelCase = """tf_model.h5.index.json""" lowerCAmelCase = """model.ckpt""" lowerCAmelCase = """flax_model.msgpack""" lowerCAmelCase = """flax_model.msgpack.index.json""" lowerCAmelCase = """model.safetensors""" lowerCAmelCase = """model.safetensors.index.json""" lowerCAmelCase = """config.json""" lowerCAmelCase = """preprocessor_config.json""" lowerCAmelCase = FEATURE_EXTRACTOR_NAME lowerCAmelCase = """generation_config.json""" lowerCAmelCase = """modelcard.json""" lowerCAmelCase = """▁""" lowerCAmelCase = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowerCAmelCase = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowerCAmelCase = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowerCAmelCase = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: '''simple docstring''' if version.parse(lowercase_ ) < version.parse(lowercase_ ): if "dev" in min_version: __UpperCAmelCase : Union[str, Any] = ( '''This example requires a source install from HuggingFace Transformers (see ''' '''`https://huggingface.co/docs/transformers/installation#install-from-source`),''' ) else: __UpperCAmelCase : List[Any] = f"This example requires a minimum version of {min_version}," error_message += f" but the version found is {__version__}.\n" raise ImportError( error_message + '''Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ''' '''versions of HuggingFace Transformers.''' )
675
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
1
from torch import nn class lowerCamelCase ( nn.Module ): def __init__( self , lowercase__ , lowercase__): super().__init__() __UpperCAmelCase : str = class_size __UpperCAmelCase : Union[str, Any] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __UpperCAmelCase : List[str] = nn.Linear(lowercase__ , lowercase__) def A( self , lowercase__): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) __UpperCAmelCase : Union[str, Any] = self.mlp(lowercase__) return logits
675
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
1
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any: '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=0 ) -> Optional[int]: '''simple docstring''' return sorted(lowercase_ , key=lambda lowercase_ : x[column] ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=float('''inf''' ) ) -> Any: '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , lowercase_ ): __UpperCAmelCase : List[Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCAmelCase : Any = current_dis return min_dis def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=float('''inf''' ) ) -> Optional[int]: '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , lowercase_ ): for j in range(max(0 , i - 6 ) , lowercase_ ): __UpperCAmelCase : str = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCAmelCase : Dict = current_dis return min_dis def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(lowercase_ , lowercase_ ) # recursion __UpperCAmelCase : int = points_counts // 2 __UpperCAmelCase : Tuple = closest_pair_of_points_sqr( lowercase_ , points_sorted_on_y[:mid] , lowercase_ ) __UpperCAmelCase : Optional[int] = closest_pair_of_points_sqr( lowercase_ , points_sorted_on_y[mid:] , points_counts - mid ) __UpperCAmelCase : int = min(lowercase_ , lowercase_ ) __UpperCAmelCase : str = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(lowercase_ ) __UpperCAmelCase : Dict = dis_between_closest_in_strip( lowercase_ , len(lowercase_ ) , lowercase_ ) return min(lowercase_ , lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : str = column_based_sort(lowercase_ , column=0 ) __UpperCAmelCase : Any = column_based_sort(lowercase_ , column=1 ) return ( closest_pair_of_points_sqr( lowercase_ , lowercase_ , lowercase_ ) ) ** 0.5 if __name__ == "__main__": lowerCAmelCase = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("""Distance:""", closest_pair_of_points(points, len(points)))
675
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] lowerCAmelCase = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] lowerCAmelCase = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): lowerCAmelCase = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
675
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
1
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType lowerCAmelCase = logging.get_logger(__name__) class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Any = '''vision-encoder-decoder''' _lowerCAmelCase : Tuple = True def __init__( self , **lowercase__): super().__init__(**lowercase__) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"A configuraton of type {self.model_type} cannot be instantiated because " F"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}") __UpperCAmelCase : int = kwargs.pop('''encoder''') __UpperCAmelCase : Optional[int] = encoder_config.pop('''model_type''') __UpperCAmelCase : Tuple = kwargs.pop('''decoder''') __UpperCAmelCase : Any = decoder_config.pop('''model_type''') __UpperCAmelCase : Union[str, Any] = AutoConfig.for_model(lowercase__ , **lowercase__) __UpperCAmelCase : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__) __UpperCAmelCase : str = True @classmethod def A( cls , lowercase__ , lowercase__ , **lowercase__): logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''') __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowercase__) def A( self): __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__) __UpperCAmelCase : Optional[int] = self.encoder.to_dict() __UpperCAmelCase : Optional[Any] = self.decoder.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = version.parse('''1.11''' ) @property def A( self): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def A( self): return 1e-4 @property def A( self): return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}}) class lowerCamelCase ( _UpperCamelCase ): @property def A( self): __UpperCAmelCase : Dict = OrderedDict() __UpperCAmelCase : str = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} __UpperCAmelCase : str = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} __UpperCAmelCase : str = {0: '''batch''', 1: '''encoder_sequence'''} return common_inputs def A( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ): import torch __UpperCAmelCase : Optional[Any] = OrderedDict() __UpperCAmelCase : int = super().generate_dummy_inputs( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = dummy_input['''input_ids'''].shape __UpperCAmelCase : List[Any] = (batch, encoder_sequence, self._config.encoder_hidden_size) __UpperCAmelCase : Optional[Any] = dummy_input.pop('''input_ids''') __UpperCAmelCase : Optional[int] = dummy_input.pop('''attention_mask''') __UpperCAmelCase : Tuple = torch.zeros(lowercase__) return common_inputs class lowerCamelCase ( _UpperCamelCase ): @property def A( self): pass def A( self , lowercase__): return VisionEncoderDecoderEncoderOnnxConfig(lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ = "default"): __UpperCAmelCase : List[Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(lowercase__ , lowercase__)
675
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
1
from __future__ import annotations lowerCAmelCase = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCAmelCase = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[float]: '''simple docstring''' __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : Dict = len(lowercase_ ) for i in range(lowercase_ ): __UpperCAmelCase : float = -1 for j in range(i + 1 , lowercase_ ): if arr[i] < arr[j]: __UpperCAmelCase : List[Any] = arr[j] break result.append(lowercase_ ) return result def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[float]: '''simple docstring''' __UpperCAmelCase : Any = [] for i, outer in enumerate(lowercase_ ): __UpperCAmelCase : float = -1 for inner in arr[i + 1 :]: if outer < inner: __UpperCAmelCase : Any = inner break result.append(lowercase_ ) return result def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[float]: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : list[float] = [] __UpperCAmelCase : list[float] = [-1] * arr_size for index in reversed(range(lowercase_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: __UpperCAmelCase : int = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
675
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
1
from typing import List from .keymap import KEYMAP, get_character def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: '''simple docstring''' def decorator(lowercase_ ): __UpperCAmelCase : Dict = getattr(lowercase_ , '''handle_key''' , [] ) handle += [key] setattr(lowercase_ , '''handle_key''' , lowercase_ ) return func return decorator def __SCREAMING_SNAKE_CASE ( *lowercase_ ) -> int: '''simple docstring''' def decorator(lowercase_ ): __UpperCAmelCase : List[Any] = getattr(lowercase_ , '''handle_key''' , [] ) handle += keys setattr(lowercase_ , '''handle_key''' , lowercase_ ) return func return decorator class lowerCamelCase ( _UpperCamelCase ): def __new__( cls , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[int] = super().__new__(cls , lowercase__ , lowercase__ , lowercase__) if not hasattr(lowercase__ , '''key_handler'''): setattr(lowercase__ , '''key_handler''' , {}) setattr(lowercase__ , '''handle_input''' , KeyHandler.handle_input) for value in attrs.values(): __UpperCAmelCase : str = getattr(lowercase__ , '''handle_key''' , []) for key in handled_keys: __UpperCAmelCase : List[str] = value return new_cls @staticmethod def A( cls): __UpperCAmelCase : Optional[int] = get_character() if char != KEYMAP["undefined"]: __UpperCAmelCase : Any = ord(lowercase__) __UpperCAmelCase : int = cls.key_handler.get(lowercase__) if handler: __UpperCAmelCase : List[str] = char return handler(cls) else: return None def __SCREAMING_SNAKE_CASE ( cls ) -> int: '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
675
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[Union[str, Path]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 1 _lowerCAmelCase : Optional[Union[str, bool]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None def A( self): return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
675
1
from typing import Any class lowerCamelCase : def __init__( self , lowercase__): __UpperCAmelCase : Optional[Any] = data __UpperCAmelCase : Tuple = None def __repr__( self): return F"Node({self.data})" class lowerCamelCase : def __init__( self): __UpperCAmelCase : List[Any] = None def __iter__( self): __UpperCAmelCase : Tuple = self.head while node: yield node.data __UpperCAmelCase : int = node.next def __len__( self): return sum(1 for _ in self) def __repr__( self): return "->".join([str(lowercase__) for item in self]) def __getitem__( self , lowercase__): if not 0 <= index < len(self): raise ValueError('''list index out of range.''') for i, node in enumerate(self): if i == index: return node return None def __setitem__( self , lowercase__ , lowercase__): if not 0 <= index < len(self): raise ValueError('''list index out of range.''') __UpperCAmelCase : Dict = self.head for _ in range(lowercase__): __UpperCAmelCase : Optional[int] = current.next __UpperCAmelCase : str = data def A( self , lowercase__): self.insert_nth(len(self) , lowercase__) def A( self , lowercase__): self.insert_nth(0 , lowercase__) def A( self , lowercase__ , lowercase__): if not 0 <= index <= len(self): raise IndexError('''list index out of range''') __UpperCAmelCase : List[str] = Node(lowercase__) if self.head is None: __UpperCAmelCase : Union[str, Any] = new_node elif index == 0: __UpperCAmelCase : Dict = self.head # link new_node to head __UpperCAmelCase : Dict = new_node else: __UpperCAmelCase : Optional[int] = self.head for _ in range(index - 1): __UpperCAmelCase : List[str] = temp.next __UpperCAmelCase : Union[str, Any] = temp.next __UpperCAmelCase : List[Any] = new_node def A( self): # print every node data print(self) def A( self): return self.delete_nth(0) def A( self): # delete from tail return self.delete_nth(len(self) - 1) def A( self , lowercase__ = 0): if not 0 <= index <= len(self) - 1: # test if index is valid raise IndexError('''List index out of range.''') __UpperCAmelCase : Union[str, Any] = self.head # default first node if index == 0: __UpperCAmelCase : str = self.head.next else: __UpperCAmelCase : List[Any] = self.head for _ in range(index - 1): __UpperCAmelCase : List[Any] = temp.next __UpperCAmelCase : List[str] = temp.next __UpperCAmelCase : Dict = temp.next.next return delete_node.data def A( self): return self.head is None def A( self): __UpperCAmelCase : Dict = None __UpperCAmelCase : int = self.head while current: # Store the current node's next node. __UpperCAmelCase : List[str] = current.next # Make the current node's next point backwards __UpperCAmelCase : Any = prev # Make the previous node be the current node __UpperCAmelCase : List[str] = current # Make the current node the next node (to progress iteration) __UpperCAmelCase : int = next_node # Return prev in order to put the head at the end __UpperCAmelCase : Union[str, Any] = prev def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Dict = LinkedList() assert linked_list.is_empty() is True assert str(lowercase_ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(lowercase_ ) == i linked_list.insert_nth(lowercase_ , i + 1 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(lowercase_ ) == 9 assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __UpperCAmelCase : Optional[int] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(-8 , 1 ) ) def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = [ -9, 100, Node(77345112 ), '''dlrow olleH''', 7, 5555, 0, -1_9_2.5_5_5_5_5, '''Hello, world!''', 7_7.9, Node(10 ), None, None, 1_2.2_0, ] __UpperCAmelCase : Tuple = LinkedList() for i in test_input: linked_list.insert_tail(lowercase_ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(lowercase_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __UpperCAmelCase : List[str] = linked_list.delete_head() assert result == -9 assert ( str(lowercase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __UpperCAmelCase : Any = linked_list.delete_tail() assert result == 1_2.2 assert ( str(lowercase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __UpperCAmelCase : int = linked_list.delete_nth(10 ) assert result is None assert ( str(lowercase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''' ) ) assert ( str(lowercase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(lowercase_ ) assert ( str(lowercase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(lowercase_ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' from doctest import testmod testmod() __UpperCAmelCase : Dict = LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() ) linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() ) linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() print('''\nDelete head''' ) linked_list.delete_head() print('''Delete tail''' ) linked_list.delete_tail() print('''\nPrint list:''' ) linked_list.print_list() print('''\nReverse linked list''' ) linked_list.reverse() print('''\nPrint list:''' ) linked_list.print_list() print('''\nString representation of linked list:''' ) print(lowercase_ ) print('''\nReading/changing Node data using indexing:''' ) print(f"Element at Position 1: {linked_list[1]}" ) __UpperCAmelCase : List[str] = input('''Enter New Value: ''' ).strip() print('''New list:''' ) print(lowercase_ ) print(f"length of linked_list is : {len(lowercase_ )}" ) if __name__ == "__main__": main()
675
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:] __UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
1
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = R""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. """ class lowerCamelCase ( _UpperCamelCase ): @add_start_docstrings(lowercase__) def __call__( self , lowercase__ , lowercase__ , **lowercase__): raise NotImplementedError('''StoppingCriteria needs to be subclassed''') class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : Union[str, Any] = max_length __UpperCAmelCase : Tuple = max_position_embeddings @add_start_docstrings(lowercase__) def __call__( self , lowercase__ , lowercase__ , **lowercase__): __UpperCAmelCase : Any = input_ids.shape[-1] __UpperCAmelCase : str = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( '''This is a friendly reminder - the current text generation call will exceed the model\'s predefined ''' F"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe " '''exceptions, performance degradation, or nothing at all.''') return is_done class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__): warnings.warn( '''The class `MaxNewTokensCriteria` is deprecated. ''' F"Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` " '''with `max_length = start_length + max_new_tokens` instead.''' , lowercase__ , ) __UpperCAmelCase : str = start_length __UpperCAmelCase : Optional[Any] = max_new_tokens __UpperCAmelCase : Tuple = start_length + max_new_tokens @add_start_docstrings(lowercase__) def __call__( self , lowercase__ , lowercase__ , **lowercase__): return input_ids.shape[-1] >= self.max_length class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : Optional[int] = max_time __UpperCAmelCase : Any = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(lowercase__) def __call__( self , lowercase__ , lowercase__ , **lowercase__): return time.time() - self.initial_timestamp > self.max_time class lowerCamelCase ( _UpperCamelCase ): @add_start_docstrings(lowercase__) def __call__( self , lowercase__ , lowercase__ , **lowercase__): return any(criteria(lowercase__ , lowercase__) for criteria in self) @property def A( self): for stopping_criterium in self: if isinstance(lowercase__ , lowercase__): return stopping_criterium.max_length elif isinstance(lowercase__ , lowercase__): return stopping_criterium.max_length return None def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> StoppingCriteriaList: '''simple docstring''' __UpperCAmelCase : List[str] = stopping_criteria.max_length __UpperCAmelCase : Dict = deepcopy(lowercase_ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''' , lowercase_ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=lowercase_ ) ) return new_stopping_criteria
675
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=True , lowercase_="pt" ) -> str: '''simple docstring''' __UpperCAmelCase : int = {'''add_prefix_space''': True} if isinstance(lowercase_ , lowercase_ ) and not line.startswith(''' ''' ) else {} __UpperCAmelCase : List[Any] = padding_side return tokenizer( [line] , max_length=lowercase_ , padding='''max_length''' if pad_to_max_length else None , truncation=lowercase_ , return_tensors=lowercase_ , add_special_tokens=lowercase_ , **lowercase_ , ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = input_ids.ne(lowercase_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__="train" , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="" , ): super().__init__() __UpperCAmelCase : int = Path(lowercase__).joinpath(type_path + '''.source''') __UpperCAmelCase : Dict = Path(lowercase__).joinpath(type_path + '''.target''') __UpperCAmelCase : int = self.get_char_lens(self.src_file) __UpperCAmelCase : Optional[Any] = max_source_length __UpperCAmelCase : str = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" __UpperCAmelCase : int = tokenizer __UpperCAmelCase : str = prefix if n_obs is not None: __UpperCAmelCase : Any = self.src_lens[:n_obs] __UpperCAmelCase : List[Any] = src_lang __UpperCAmelCase : Dict = tgt_lang def __len__( self): return len(self.src_lens) def __getitem__( self , lowercase__): __UpperCAmelCase : Union[str, Any] = index + 1 # linecache starts at 1 __UpperCAmelCase : List[str] = self.prefix + linecache.getline(str(self.src_file) , lowercase__).rstrip('''\n''') __UpperCAmelCase : Optional[int] = linecache.getline(str(self.tgt_file) , lowercase__).rstrip('''\n''') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowercase__): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCAmelCase : Dict = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowercase__) else self.tokenizer ) __UpperCAmelCase : Tuple = self.tokenizer.generator if isinstance(self.tokenizer , lowercase__) else self.tokenizer __UpperCAmelCase : int = encode_line(lowercase__ , lowercase__ , self.max_source_length , '''right''') __UpperCAmelCase : Optional[int] = encode_line(lowercase__ , lowercase__ , self.max_target_length , '''right''') __UpperCAmelCase : Tuple = source_inputs['''input_ids'''].squeeze() __UpperCAmelCase : Optional[Any] = target_inputs['''input_ids'''].squeeze() __UpperCAmelCase : List[Any] = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def A( lowercase__): return [len(lowercase__) for x in Path(lowercase__).open().readlines()] def A( self , lowercase__): __UpperCAmelCase : Optional[int] = torch.stack([x['''input_ids'''] for x in batch]) __UpperCAmelCase : str = torch.stack([x['''attention_mask'''] for x in batch]) __UpperCAmelCase : Dict = torch.stack([x['''decoder_input_ids'''] for x in batch]) __UpperCAmelCase : Optional[Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowercase__) else self.tokenizer.pad_token_id ) __UpperCAmelCase : Dict = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowercase__) else self.tokenizer.pad_token_id ) __UpperCAmelCase : str = trim_batch(lowercase__ , lowercase__) __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = trim_batch(lowercase__ , lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : Dict = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch lowerCAmelCase = getLogger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' return list(itertools.chain.from_iterable(lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' __UpperCAmelCase : Any = get_git_info() save_json(lowercase_ , os.path.join(lowercase_ , '''git_log.json''' ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=4 , **lowercase_ ) -> Dict: '''simple docstring''' with open(lowercase_ , '''w''' ) as f: json.dump(lowercase_ , lowercase_ , indent=lowercase_ , **lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: '''simple docstring''' with open(lowercase_ ) as f: return json.load(lowercase_ ) def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : Any = git.Repo(search_parent_directories=lowercase_ ) __UpperCAmelCase : Optional[Any] = { '''repo_id''': str(lowercase_ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List: '''simple docstring''' return list(map(lowercase_ , lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any: '''simple docstring''' with open(lowercase_ , '''wb''' ) as f: return pickle.dump(lowercase_ , lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' def remove_articles(lowercase_ ): return re.sub(r'''\b(a|an|the)\b''' , ''' ''' , lowercase_ ) def white_space_fix(lowercase_ ): return " ".join(text.split() ) def remove_punc(lowercase_ ): __UpperCAmelCase : Optional[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowercase_ ) ) ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[str] = normalize_answer(lowercase_ ).split() __UpperCAmelCase : int = normalize_answer(lowercase_ ).split() __UpperCAmelCase : Optional[Any] = Counter(lowercase_ ) & Counter(lowercase_ ) __UpperCAmelCase : int = sum(common.values() ) if num_same == 0: return 0 __UpperCAmelCase : Optional[int] = 1.0 * num_same / len(lowercase_ ) __UpperCAmelCase : List[Any] = 1.0 * num_same / len(lowercase_ ) __UpperCAmelCase : Optional[Any] = (2 * precision * recall) / (precision + recall) return fa def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any: '''simple docstring''' return normalize_answer(lowercase_ ) == normalize_answer(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' assert len(lowercase_ ) == len(lowercase_ ) __UpperCAmelCase : Any = 0 for hypo, pred in zip(lowercase_ , lowercase_ ): em += exact_match_score(lowercase_ , lowercase_ ) if len(lowercase_ ) > 0: em /= len(lowercase_ ) return {"em": em} def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' return model_prefix.startswith('''rag''' ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' __UpperCAmelCase : int = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCAmelCase : Optional[int] = '''dropout_rate''' for p in extra_params: if getattr(lowercase_ , lowercase_ , lowercase_ ): if not hasattr(lowercase_ , lowercase_ ) and not hasattr(lowercase_ , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(lowercase_ ) ) delattr(lowercase_ , lowercase_ ) continue __UpperCAmelCase : List[Any] = p if hasattr(lowercase_ , lowercase_ ) else equivalent_param[p] setattr(lowercase_ , lowercase_ , getattr(lowercase_ , lowercase_ ) ) delattr(lowercase_ , lowercase_ ) return hparams, config
675
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=2 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , lowercase__=0 , ): __UpperCAmelCase : Any = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : List[str] = seq_length __UpperCAmelCase : List[str] = is_training __UpperCAmelCase : Optional[Any] = use_input_mask __UpperCAmelCase : int = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : Tuple = attention_probs_dropout_prob __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : str = type_vocab_size __UpperCAmelCase : List[str] = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : Tuple = num_labels __UpperCAmelCase : int = num_choices __UpperCAmelCase : Optional[Any] = scope __UpperCAmelCase : List[str] = projection_dim def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Tuple = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py __UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : int = None __UpperCAmelCase : int = None __UpperCAmelCase : Dict = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Dict = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) __UpperCAmelCase : int = DPRConfig(projection_dim=self.projection_dim , **config.to_dict()) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : int = TFDPRContextEncoder(config=lowercase__) __UpperCAmelCase : Any = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) __UpperCAmelCase : Any = model(lowercase__ , token_type_ids=lowercase__) __UpperCAmelCase : Union[str, Any] = model(lowercase__) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[str] = TFDPRQuestionEncoder(config=lowercase__) __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) __UpperCAmelCase : str = model(lowercase__ , token_type_ids=lowercase__) __UpperCAmelCase : Optional[Any] = model(lowercase__) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = TFDPRReader(config=lowercase__) __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[Any] = config_and_inputs __UpperCAmelCase : List[str] = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) _lowerCAmelCase : Tuple = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {} _lowerCAmelCase : List[str] = False _lowerCAmelCase : List[Any] = False _lowerCAmelCase : List[str] = False _lowerCAmelCase : Dict = False _lowerCAmelCase : Tuple = False def A( self): __UpperCAmelCase : int = TFDPRModelTester(self) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*lowercase__) def A( self): __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*lowercase__) @slow def A( self): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = TFDPRContextEncoder.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = TFDPRContextEncoder.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[Any] = TFDPRQuestionEncoder.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[Any] = TFDPRReader.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) @require_tf class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Any = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''') __UpperCAmelCase : List[Any] = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]]) # [CLS] hello, is my dog cute? [SEP] __UpperCAmelCase : Dict = model(lowercase__)[0] # embedding shape = (1, 768) # compare the actual values for a slice. __UpperCAmelCase : Dict = tf.constant( [ [ 0.0_3_2_3_6_2_5_3, 0.1_2_7_5_3_3_3_5, 0.1_6_8_1_8_5_0_9, 0.0_0_2_7_9_7_8_6, 0.3_8_9_6_9_3_3, 0.2_4_2_6_4_9_4_5, 0.2_1_7_8_9_7_1, -0.0_2_3_3_5_2_2_7, -0.0_8_4_8_1_9_5_9, -0.1_4_3_2_4_1_1_7, ] ]) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() , expected_slice.numpy() , atol=1e-4))
675
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
1
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence __UpperCAmelCase : Optional[int] = gray_code_sequence_string(lowercase_ ) # # convert them to integers for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = int(sequence[i] , 2 ) return sequence def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __UpperCAmelCase : Union[str, Any] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __UpperCAmelCase : Any = gray_code_sequence_string(bit_count - 1 ) __UpperCAmelCase : Optional[Any] = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __UpperCAmelCase : Any = '''0''' + smaller_sequence[i] sequence.append(lowercase_ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __UpperCAmelCase : List[Any] = '''1''' + smaller_sequence[i] sequence.append(lowercase_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
675
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
1
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
675
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
1
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=3_0 , lowercase__=2 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=1_0 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=None , lowercase__=2 , ): __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : List[Any] = patch_size __UpperCAmelCase : List[Any] = num_channels __UpperCAmelCase : List[str] = is_training __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = scope __UpperCAmelCase : List[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __UpperCAmelCase : List[str] = (image_size // patch_size) ** 2 __UpperCAmelCase : Any = num_patches + 2 def A( self): __UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCAmelCase : Tuple = None if self.use_labels: __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : str = self.get_config() return config, pixel_values, labels def A( self): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : str = DeiTModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = DeiTForMaskedImageModeling(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Union[str, Any] = model(lowercase__) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images __UpperCAmelCase : List[str] = 1 __UpperCAmelCase : Dict = DeiTForMaskedImageModeling(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __UpperCAmelCase : List[str] = model(lowercase__) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[str] = self.type_sequence_label_size __UpperCAmelCase : Optional[Any] = DeiTForImageClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images __UpperCAmelCase : List[str] = 1 __UpperCAmelCase : List[Any] = DeiTForImageClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __UpperCAmelCase : int = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def A( self): __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Optional[Any] = config_and_inputs __UpperCAmelCase : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Optional[Any] = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) _lowerCAmelCase : Tuple = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False _lowerCAmelCase : int = False _lowerCAmelCase : Tuple = False def A( self): __UpperCAmelCase : Dict = DeiTModelTester(self) __UpperCAmelCase : Union[str, Any] = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''') def A( self): pass def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(lowercase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __UpperCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear)) def A( self): __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = model_class(lowercase__) __UpperCAmelCase : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : str = [*signature.parameters.keys()] __UpperCAmelCase : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__=False): __UpperCAmelCase : List[str] = super()._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def A( self): if not self.model_tester.is_training: return __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowercase__) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue __UpperCAmelCase : Union[str, Any] = model_class(lowercase__) model.to(lowercase__) model.train() __UpperCAmelCase : Optional[int] = self._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__) __UpperCAmelCase : Optional[int] = model(**lowercase__).loss loss.backward() def A( self): __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCAmelCase : str = False __UpperCAmelCase : Any = True for model_class in self.all_model_classes: if model_class in get_values(lowercase__) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue __UpperCAmelCase : List[str] = model_class(lowercase__) model.gradient_checkpointing_enable() model.to(lowercase__) model.train() __UpperCAmelCase : Any = self._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__) __UpperCAmelCase : Optional[Any] = model(**lowercase__).loss loss.backward() def A( self): __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : str = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowercase__), *get_values(lowercase__), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}"): __UpperCAmelCase : Optional[int] = problem_type['''title'''] __UpperCAmelCase : List[Any] = problem_type['''num_labels'''] __UpperCAmelCase : Any = model_class(lowercase__) model.to(lowercase__) model.train() __UpperCAmelCase : str = self._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__) if problem_type["num_labels"] > 1: __UpperCAmelCase : Optional[int] = inputs['''labels'''].unsqueeze(1).repeat(1 , problem_type['''num_labels''']) __UpperCAmelCase : int = inputs['''labels'''].to(problem_type['''dtype''']) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowercase__) as warning_list: __UpperCAmelCase : Optional[Any] = model(**lowercase__).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}") loss.backward() @slow def A( self): for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[Any] = DeiTModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def __SCREAMING_SNAKE_CASE ( ) -> Tuple: '''simple docstring''' __UpperCAmelCase : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''') if is_vision_available() else None ) @slow def A( self): __UpperCAmelCase : Optional[int] = DeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''').to( lowercase__) __UpperCAmelCase : List[Any] = self.default_image_processor __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : Tuple = image_processor(images=lowercase__ , return_tensors='''pt''').to(lowercase__) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**lowercase__) # verify the logits __UpperCAmelCase : List[str] = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , lowercase__) __UpperCAmelCase : List[str] = torch.tensor([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1]).to(lowercase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4)) @slow @require_accelerate @require_torch_gpu def A( self): __UpperCAmelCase : str = DeiTModel.from_pretrained( '''facebook/deit-base-distilled-patch16-224''' , torch_dtype=torch.floataa , device_map='''auto''') __UpperCAmelCase : Tuple = self.default_image_processor __UpperCAmelCase : Optional[int] = prepare_img() __UpperCAmelCase : Tuple = image_processor(images=lowercase__ , return_tensors='''pt''') __UpperCAmelCase : int = inputs.pixel_values.to(lowercase__) # forward pass to make sure inference works in fp16 with torch.no_grad(): __UpperCAmelCase : Any = model(lowercase__)
675
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', F'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', F'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qpos_proj.weight', F'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kpos_proj.weight', F'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.weight', F'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', F'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', F'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kpos_proj.weight', F'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.weight', F'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', F'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', F'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', F'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_qpos_proj.bias', F'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_kpos_proj.bias', F'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.bias', F'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', F'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', F'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_kpos_proj.bias', F'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.bias', F'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', F'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = state_dict.pop(lowercase_ ) __UpperCAmelCase : Tuple = val def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __UpperCAmelCase : Dict = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) __UpperCAmelCase : int = value else: __UpperCAmelCase : List[str] = value return new_state_dict def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : int = '''''' if is_panoptic: __UpperCAmelCase : List[Any] = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __UpperCAmelCase : Dict = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) __UpperCAmelCase : Dict = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : Any = in_proj_weight[:256, :] __UpperCAmelCase : Dict = in_proj_bias[:256] __UpperCAmelCase : str = in_proj_weight[256:512, :] __UpperCAmelCase : Any = in_proj_bias[256:512] __UpperCAmelCase : List[str] = in_proj_weight[-256:, :] __UpperCAmelCase : Tuple = in_proj_bias[-256:] def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Union[str, Any] = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __UpperCAmelCase : Dict = '''resnet101''' if "dc5" in model_name: __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Optional[Any] = '''panoptic''' in model_name if is_panoptic: __UpperCAmelCase : Optional[int] = 250 else: __UpperCAmelCase : Dict = 91 __UpperCAmelCase : Optional[Any] = '''huggingface/label-files''' __UpperCAmelCase : int = '''coco-detection-id2label.json''' __UpperCAmelCase : Tuple = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : Optional[Any] = {int(lowercase_ ): v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = idalabel __UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()} # load image processor __UpperCAmelCase : Any = '''coco_panoptic''' if is_panoptic else '''coco_detection''' __UpperCAmelCase : str = ConditionalDetrImageProcessor(format=lowercase_ ) # prepare image __UpperCAmelCase : Optional[int] = prepare_img() __UpperCAmelCase : Optional[int] = image_processor(images=lowercase_ , return_tensors='''pt''' ) __UpperCAmelCase : List[Any] = encoding['''pixel_values'''] logger.info(f"Converting model {model_name}..." ) # load original model from torch hub __UpperCAmelCase : Optional[Any] = torch.hub.load('''DeppMeng/ConditionalDETR''' , lowercase_ , pretrained=lowercase_ ).eval() __UpperCAmelCase : Any = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __UpperCAmelCase : str = '''conditional_detr.''' + src rename_key(lowercase_ , lowercase_ , lowercase_ ) __UpperCAmelCase : Any = rename_backbone_keys(lowercase_ ) # query, key and value matrices need special treatment read_in_q_k_v(lowercase_ , is_panoptic=lowercase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __UpperCAmelCase : Optional[int] = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): __UpperCAmelCase : Union[str, Any] = state_dict.pop(lowercase_ ) __UpperCAmelCase : str = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __UpperCAmelCase : Tuple = state_dict.pop(lowercase_ ) __UpperCAmelCase : int = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: __UpperCAmelCase : Dict = state_dict.pop(lowercase_ ) __UpperCAmelCase : str = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): __UpperCAmelCase : List[Any] = state_dict.pop(lowercase_ ) __UpperCAmelCase : int = val # finally, create HuggingFace model and load state dict __UpperCAmelCase : str = ConditionalDetrForSegmentation(lowercase_ ) if is_panoptic else ConditionalDetrForObjectDetection(lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() model.push_to_hub(repo_id=lowercase_ , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion __UpperCAmelCase : List[Any] = conditional_detr(lowercase_ ) __UpperCAmelCase : int = model(lowercase_ ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) image_processor.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCAmelCase = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
675
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
1
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
1
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration lowerCAmelCase = HfArgumentParser(InitializationArguments) lowerCAmelCase = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization lowerCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks lowerCAmelCase = { """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) lowerCAmelCase = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config lowerCAmelCase = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
675
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
1
from math import isqrt, loga def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[int]: '''simple docstring''' __UpperCAmelCase : str = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowercase_ , lowercase_ ): __UpperCAmelCase : List[str] = False return [i for i in range(2 , lowercase_ ) if is_prime[i]] def __SCREAMING_SNAKE_CASE ( lowercase_ = 800800 , lowercase_ = 800800 ) -> int: '''simple docstring''' __UpperCAmelCase : str = degree * loga(lowercase_ ) __UpperCAmelCase : List[Any] = int(lowercase_ ) __UpperCAmelCase : int = calculate_prime_numbers(lowercase_ ) __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'{solution() = }')
675
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''bert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : List[Any] = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
1
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float: '''simple docstring''' return round(float(moles / volume ) * nfactor ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float: '''simple docstring''' return round(float((moles * 0.0_8_2_1 * temperature) / (volume) ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float: '''simple docstring''' return round(float((moles * 0.0_8_2_1 * temperature) / (pressure) ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float: '''simple docstring''' return round(float((pressure * volume) / (0.0_8_2_1 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
1